
Journal of Computational Physics 469 (2022) 111548
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

High-order bound-preserving discontinuous Galerkin methods 

for multicomponent chemically reacting flows✩

Jie Du a,b, Yang Yang c,∗
a Yau Mathematical Sciences Center, Tsinghua University, Beijing, 100084, PR China
b Yanqi Lake Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, PR China
c Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 February 2022
Received in revised form 14 July 2022
Accepted 15 August 2022
Available online xxxx

Keywords:
Bound-preserving
Discontinuous Galerkin methods
Conservative time integration
Multicomponent chemically reacting flows

In this paper, we design high-order bound-preserving discontinuous Galerkin (DG) methods 
for multicomponent chemically reacting flows. In this problem, the density and pressure 
are positive and the mass fractions are between 0 and 1. There are three main difficulties. 
First of all, it is not easy to construct high-order positivity-preserving schemes for 
convection-diffusion equations. In this paper, we design a special penalty term to the 
diffusion term and construct the positivity-preserving flux for the system. The proposed 
idea is locally conservative, high-order accurate and easy to implement. Secondly, the 
positivity-preserving technique cannot preserve the upper bound 1 of the mass fractions. 
To bridge this gap, we apply the positivity-preserving technique to each mass fraction 
and develop consistent numerical fluxes in the system and conservative time integrations 
to preserve the summation of the mass fractions to be 1. Therefore, each mass fraction 
would be between 0 and 1. Finally, most previous bound-preserving DG methods are 
based on Euler forward time discretization. However, due to the rapid reaction rates, 
the target system may contain stiff sources, leading to restricted time step sizes. To fix 
this and preserve conservative property, we apply the conservative modified exponential 
Runge-Kutta method. The method is third-order accurate and keeps the summation of 
the mass fractions to be 1. Numerical experiments will be given to demonstrate the good 
performance of the proposed schemes.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The multicomponent chemically reacting flows have been widely used to simulate inertial confinement fusion, high-
speed combustion, supernovae explosion and cavitation bubble clouds. The effective numerical methods may not be easy to 
design due to the appearance of the strong oscillations resulting from the high-order shock-capturing numerical methods. 
The oscillations may send some positive quantities negative, leading to the blow-up of the numerical simulations. There 
are many works discussing numerical methods for multicomponent chemically reacting flows in the literature, such as 
the low-dissipation method [19], the ghost fluid method [20], the entropy-stable hybrid method [31], and the interface-
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capturing methods [24], etc. Moreover, adaptive methods [35,3] and moving mesh methods [34] were also discussed to 
reduce the computational cost. In addition to the above, the discontinuous Galerkin (DG) methods were also successfully 
applied to multicomponent chemically reacting flows [29,30,25,2]. However, no previous works focused on the bound-
preserving techniques, and the most commonly used technique to preserve the bounds is to apply a cut-off operator, leading 
to the loss of the mass. In this paper, we apply high-order DG methods for multicomponent chemically reacting flows and 
construct the bound-preserving technique to obtain positive density and pressure. Moreover, the mass fractions are also 
designed to be between 0 and 1.

The DG method, first introduced in [38] in the framework of neutron linear transport, becomes one of the most popular 
numerical methods for convection-diffusion equations due to its high-order accuracy and flexibility on h-p adaptivity and 
on complex geometry. Because of the local structure of the DG scheme, limiters can easily be applied to preserve some 
physical properties. One of the major achievements in this direction is the high-order bound-preserving technique. There 
were several works discussing the bound-preserving techniques for convection-diffusion equations in the past several years. 
In [49], Zhang and Shu first constructed the genuinely high-order maximum-principle-preserving (MPP) DG schemes for 
scalar conservation laws. Later, the high-order positivity-preserving (PP) DG schemes for compressible Euler equations were 
developed in [50,52,51] to preserve the positivity of the density and pressure. Subsequently, the idea was further extended 
to other hyperbolic equations and systems [47,54,37] to obtain the L1 stability of the schemes. For convection-diffusion 
equations, the second-order MPP DG methods were given in [53]. However, the idea can hardly be extended to construct 
high-order MPP schemes. Later, the third-order MPP DG schemes were developed in [5,9] based on the direct DG methods 
[27] and the local DG (LDG) methods on overlapping meshes [12]. Besides the above, the flux limiters provide another 
direction in constructing high-order MPP and PP schemes for convection-diffusion equations, see [45,18] as an incomplete 
list. In addition, a special high-order PP DG method for compressible Navier-Stokes equations was given in [48], where an 
artificially designed penalty term was added to the numerical fluxes of the diffusion term.

Recently, the PP technique has been applied to inviscid compressible reacting flows in [42], where the density, pressure 
and mass fractures are designed to be positive. However, the scheme could not theoretically guarantee the upper bound 1 
of the mass fractions. The time integration proposed in [42] was the strong-stability-preserving (SSP) explicit Runge-Kutta 
(RK)/multistep methods [15,39,40], hence the time step due to the stiff source can be limited. Moreover, the modified 
Patankar RK methods were also applied to preserve the mass conservation and the positivity of the density and mass 
fractions [22,23]. However, such an idea cannot theoretically yield positive pressure for multicomponent flows. To the best 
knowledge of the authors, no previous works discussing the bound-preserving technique for multicomponent chemically 
reacting flows governed by Navier-Stokes equations are available. There are three main difficulties:

1. The high-order PP spatial discretization. Most of the previous works discussing bound-preserving DG methods for 
convection-diffusion equations are not easily extendable to multicomponent chemically reacting flows. In this paper, 
we extend the idea proposed in [48] and construct a new penalty term to preserve the positivity of the density, pres-
sure, and the mass fractions. The proposed scheme is locally conservative, keeps the high-order accuracy and is easy to 
implement.

2. The high-order bound-preserving technique. The PP technique cannot preserve the upper bound 1 of the mass fractions. 
To fix this gap, we apply the PP technique to each component and construct conservative time integrations to preserve 
the summation of the mass fractions to be 1. Therefore, each mass fraction would be between 0 and 1. This idea was 
first introduced in [17,6,46,14] for DG methods for problems in petroleum engineering, and further extended to finite 
difference methods in [28,16]. The key point is to design special consistent fluxes such that the summation of the 
schemes for the mass fractions is that for the density function.

3. The system may contain stiff source terms. The bound-preserving technique to be constructed in this paper only works 
for explicit SSP time integrations. However, the traditional SSP RK methods may require limited time step sizes. To 
eliminate the constraint, we adopt the modified exponential RK methods [21]. The basic idea is to add an artificial 
source to remove the stiffness and use the exponential factor to restore the decay property. Unfortunately, with the 
exponential factor, the conservative property may not be satisfied. To fix this gap, we designed the conservative modified 
exponential RK (CMERK) methods [8,10,11]. The CMERK method is up to third-order accurate in time, conservative, 
sign-preserving and steady-state-preserving.

With the PP technique and the CMERK time discretization, we can theoretically prove that the proposed scheme preserves 
all the physical bounds.

The rest of the work is organized as follows. In Section 2, we discuss the governing equations and the conservative 
property of the system. In Section 3, we construct the DG spatial discretization and the CMERK methods for problems 
in one space dimension. The bound-preserving techniques will then be developed in Sections 4. Problems in two space 
dimensions will be discussed in Section 5. Some numerical experiments will be given in Section 6 to demonstrate the good 
performance of the proposed scheme. We will end in Section 7 with some concluding remarks.
2



J. Du and Y. Yang Journal of Computational Physics 469 (2022) 111548
2. Governing equations

In this section, we give the formulation of the governing equations. For the brevity of this paper, we start with the 
two dimensional model directly. The one dimensional version is straightforward to obtain. The Navier-Stokes equations for 
multi-species flow with chemical reactions in two space dimensions [13,19,26,36] read

wt + fax + gay = fdx + gdy + s, (2.1)

where the primitive variables and the advection fluxes are given by

w =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ
ρu
ρv
E
r1
...

rNs

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, fa =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρu
ρu2 + p

ρuv
u(E + p)

r1u
...

rNsu

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ga =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρv
ρuv

ρv2 + p
v(E + p)

r1v
...

rNs v

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and the diffusion fluxes and the source term are given by

fd =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
τxx
τxy

uτxx + vτxy − qx
−r1u1

...

−rNsuNs

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, gd =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
τyx

τyy

uτyx + vτyy − qy

−r1v1
...

−rNs vNs

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, s =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
ω1
...

ωNs

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Here ρ , u, v , E and p are the total density, the velocity in x direction, the velocity in y direction, the total energy per unit 
column and the pressure, respectively. The stress tensor and the diffusion heat flux vector are represented by

τ =
(

τxx τxy
τyx τyy

)
, q =

(
qx
qy

)
,

respectively. The total number of chemical species is denoted as Ns . We further denote m := Ns + 4 and hence we have 
w ∈ Rm . We use ri , ui , vi and ωi to denote the density, the diffusion velocity in x direction, the diffusion velocity in y
direction and the mass production rate of the ith (i = 1, · · · , Ns) species, respectively. Also, we let ri = ρYi and hence Yi is 
the mass fraction of the ith species. Physically, the mass fractions satisfy

0 ≤ Yi ≤ 1, i = 1, · · · ,Ns,

Ns∑
i=1

Yi = 1. (2.2)

Notice that the detailed formulations of the pressure function, chemical reaction rate, diffusion velocity, stress tensor 
and diffusion heat flux are not unique based on different hypothesis. The discussions in this paper do not rely on the 
specific definitions. The key point is that the governing equations (2.1) should satisfy the conservative property, which will 
be used to design the bound preserving technique. In Sections 2.1-2.3, we will briefly show the formulations adopted in our 
numerical examples. In Section 2.4, we will define and discuss the conservative property.

2.1. Energy and pressure

The total energy E is the sum of the potential energy and kinetic energy and can be written as

E = ρ

Ns∑
i=1

Yihi − p + 1

2
ρ(u2 + v2), (2.3)

where

hi(T ) = �hT0
f ,i +

Tˆ
cp,i(s)ds
T0

3
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is the enthalpy per unit mass of the ith species. Here �hT0
f ,i and cp,i are the enthalpy of formation at reference temperature 

T0 and constant-pressure specific heat of species i, and T is the temperature of the mixture. The enthalpy of formation 
of each specific species is a standard constant and can be found in the JANAF (Joint Army Navy NASA Air Force) Thermo-
chemical Tables [41]. For a calorically perfect gas, the specific heat is a constant [1] and can also be taken from the JANAF 
table. For a thermally perfect gas in which the specific heat is a function of the temperature [1], one can use the NASA’s 
polynomial expressions [33].

The equation of state for multi-species flow is

p = ρRuT
Ns∑
i=1

Yi

Wi
, (2.4)

where Wi is the molecular weight of species i and Ru is the universal gas constant. By combining equations (2.3) and (2.4), 
we can solve for the temperature T from the primitive variables and thus can further compute the value of pressure p.

2.2. Diffusion fluxes

The diffusion fluxes fd and gd account for mass diffusion, viscosity and heat conduction. The species mass diffusion flux 
of species i is denoted as

Ji = ρYiVi,

where Vi = [ui, vi]T is the diffusion velocity of species i. Following the formulations used in [19], we first compute the 
diffusion velocity as

V̂i = −Di,mix

Xi

(∇Xi + (Xi − Yi)∇(ln p)
)
,

and then apply the following correction procedure recommended in [7] to ensure mass conservation

Vi = V̂i −
Ns∑
j=1

Y jV̂ j, (2.5)

where

Xi = Yi

Wi
/

Ns∑
j=1

Y j

W j

is the mole fraction of species i and

Di,mix = 1− Yi∑Ns
j �=i X j/Dij

is the mixture-averaged diffusion coefficient for species i relative to the rest of the multicomponent mixture. Here Dij is 
the binary diffusion coefficient defined for species j with respect to species i [26].

The stress tensor can be computed by

τxx = 2

3
η(2ux − v y), τxy = τyx = η(uy + vx), τyy = 2

3
η(2v y − ux),

where η is the mixture viscosity. The thermal diffusion vector can be computed by

q =
Ns∑
i=1

hiJi − λ∇T ,

where Ji is the species mass diffusion flux of species i and λ is the thermal conductivity of the mixture. For a single species 
i, we denote its viscosity and thermal conductivity [26] by ηi and λi , respectively, which can be determined if we know the 
temperature T . For a mixture, we can find the viscosity by using the Wilke formula [44,4]

η =
Ns∑
i=1

Xiηi∑Ns
j=1 Xiφi j

,

where
4
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φi j = 1√
8

( 1√
1+ Wi

W j

)(
1+

√
ηi

η j

4

√
W j

Wi

)2
.

We can write the mixture thermal conductivity using a combination averaging formula due to Mathur [32].

λ = 1

2

( Ns∑
i=1

Xiλi + 1∑Ns
i=1

Xi
λi

)
.

2.3. Stiff source terms

The source term ωi describes the chemical reactions. We consider R reactions of the form

ν ′
1,r Z1 + ν ′

2,r Z2 + · · · + ν ′
Ns,r ZNs → ν ′′

1,r Z1 + ν ′′
2,r Z2 + · · · + ν ′′

Ns,r ZNs , r = 1,2, · · · , R,

where Zi is the chemical symbol of species i, ν ′
i,r and ν ′′

i,r are the stoichiometric coefficients of the reactants and products, 
respectively, of the ith species in the rth reaction. For reversible reactions, we rewrite the reverse reaction as a forward 
reaction and add it to the system. The mass rate of production of the ith species can be written as

ωi = Wi

R∑
r=1

(ν ′′
i,r − ν ′

i,r)

⎡⎣kr(T )

Ns∏
j=1

[X j]ν
′
j,r

⎤⎦ , i = 1,2, · · · ,Ns,

where [X j] = ρY j
W j

is the molar concentration of Z j . The chemical reaction rate kr(T ) is given as

kr(T ) = ArT
βr exp

Ea,r
RuT

,

where Ar , βr and Ea,r are the pre-exponential factor, the temperature exponent and the activation energy, respectively, for 
the rth reaction. In general, the reaction speed of the chemical species is extremely fast, leading to stiff source terms in the 
model system.

2.4. Conservative property

As we mentioned above, the discussions in this paper can be applied to generic forms of the pressure, stress tensor, heat 
flux, chemical reaction rate and so on. The key point is that the model should satisfy the following conservative property.

Definition 2.1. Considering the governing equations (2.1), if there exists a constant vector v ∈ Rm such that the solution w
satisfies

d

dt
(w · v) = 0, (2.6)

then we say the model problem is conservative. That is to say, w ·v is a conserved quantity and its value remains unchanged 
during the time evolution.

To achieve the conservative property, one key point is to apply the correction procedure in (2.5) for the diffusion velocity, 
and hence can check that

Ns∑
i=1

YiVi = 0, (2.7)

as long as we have 
∑Ns

i=1 Yi = 1. Moreover, it is easy to check that

Ns∑
i=1

ωi = 0.

By introducing a constant vector v = [1, 0, 0, 0, −1, · · · , −1] ∈Rm , system (2.1) satisfies

fa · v = ga · v = fd · v = gd · v = s · v = 0. (2.8)

Taking dot product with v on both sides of (2.1), we can obtain the conservative property (2.6), and the conserved quantity 
is
5
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w · v = ρ − ρ

Ns∑
i=1

Yi .

We assume that initially we have w · v = 0, i.e., 
∑Ns

i=1 Yi = 1 and then this relation remains valid for latter time.
In this paper, we will construct suitable numerical schemes that can preserve the conservative property, which will help 

design the bound-preserving technique. Also, one may have noticed that the summation of the last Ns equations in (2.1) is 
exactly the first equation in this system as long as the conservative property is satisfied. Hence, one of these equations is 
redundant. We still use (2.1) to illustrate the bound-preserving technique and conservative property. However, in practice 
we can replace the last equation in (2.1) by 

∑Ns
i=1 Yi = 1 to save computational cost.

3. Numerical schemes in one dimension

In this section, we introduce the numerical schemes for solving the one dimensional Navier-Stokes system for multi-
species flow with chemical reactions. In this case, the governing equations have the following form:

wt + fax = fdx + s, (3.1)

where the primitive variables, the advection and diffusion fluxes and the source term are given by

w =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ρ
ρu
E
r1
...

rNs

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, fa =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ρu
ρu2 + p
u(E + p)

r1u
...

rNsu

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, fd =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
τxx

uτxx − qx
−r1u1

...

−rNsuNs

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, s =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
ω1
...

ωNs

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Here w ∈Rm with m = Ns + 3.
In Section 3.1, we will use the LDG method to solve our problem in space and obtain the semi-discrete schemes. After 

that, we march in time by using the CMERK method to deal with the stiff source terms.

3.1. DG schemes in one dimension

The diffusion flux fd is dependent on the derivative of conserved variables w. Hence, we introduce an auxiliary variable 
q := wx and then rewrite the model (3.1) into the following system

wt = −fa(w)x + fd(w,q)x + s,

q = wx.

Let �h = {Ii, i = 1, · · · , N} be a partition of the computational domain �, where Ii = [xi− 1
2
, xi+ 1

2
]. We define the finite 

element space V k
h as

V k
h = {ψ : ψ |Ii ∈ Pk(Ii), i = 1, · · · ,N},

where Pk(Ii) denotes the set of polynomials of degree up to k in cell Ii . For simplicity, we still use the notations w and q
as the numerical approximations.

Following [48], we regard f = fa − fd as a single flux and formally treat fx as a convection term. Then the local DG scheme 
is to find w ∈ [V k

h ]m and q ∈ [V k
h ]m , such that for any test functions ψ ∈ [V k

h ]m and φ ∈ [V k
h ]m and any cell Ii ∈ �h , we have

ˆ

Ii

wt · ψ dx =
ˆ

Ii

f · ψx dx− f̂i+ 1
2

· ψ−
i+ 1

2
+ f̂i− 1

2
· ψ+

i− 1
2

+
ˆ

Ii

s · ψ dx, (3.2)

ˆ

Ii

q · φ dx = −
ˆ

Ii

w · φx dV + ŵi+ 1
2

· φ−
i+ 1

2
− ŵi− 1

2
· φ+

i− 1
2
, (3.3)

where ψ−
i+ 1

2
and ψ+

i+ 1
2
are values of ψ at the point xi+ 1

2
taken from the left and the right respectively. Central flux can be 

used for w:

ŵi+ 1
2

= 1

2
(w−

i+ 1
2

+w+
i+ 1

2
).

The flux f̂ 1 is taken as the following Lax-Friedrichs type positivity-preserving flux
i+ 2

6
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f̂i+ 1
2
(w−

i+ 1
2
,q−

i+ 1
2
,w+

i+ 1
2
,q+

i+ 1
2
)

= 1

2

[
f(w−

i+ 1
2
,q−

i+ 1
2
) + f(w+

i+ 1
2
,q+

i+ 1
2
) − βi+ 1

2
(w+

i+ 1
2

−w−
i+ 1

2
)
]
, (3.4)

where

βi+ 1
2

> max
w−

i+ 1
2
,q−

i+ 1
2
,w+

i+ 1
2
,q+

i+ 1
2

{∣∣∣∣u + b

2ρ P (w)

∣∣∣∣+
√

D

2ρ P (w)
, |u + un|,n = 1, · · · ,Ns

}
, (3.5)

with

b := ρqx − ρ

Ns∑
n=1

rnhn(0)un, P (w) := E −
Ns∑
i=1

rihi(0) − 1

2
ρu2,

and

D := b2 + 2ρ P (w)(p − τxx)
2.

The condition on βi+ 1
2
is to guarantee the bound-preserving property and the detailed proof will be discussed in Section 4.

Recall that the physical flux f in our model satisfies f · v = 0. If the same property is also satisfied by the numerical flux 
f̂i+ 1

2
, then we say the numerical flux is consistent.

Definition 3.1. If the numerical flux satisfies f̂i+ 1
2

· v = 0, then we say f̂i+ 1
2
is consistent.

It is easy to check that the numerical flux f̂i+ 1
2

defined in (3.4) is consistent as long as we already have w · v = 0

at the current time t . As discussed in Section 2.4, the original PDE system is conservative. Next, we will show that the 
semi-discrete scheme preserves this conservative property.

Theorem 3.1. The semi-discrete scheme (3.2)-(3.3) obtained by the LDG scheme is conservative in the sense that

d

dt
(w · v) = 0,

as long as the numerical flux ̂fi+ 1
2
is consistent, where v = [1, 0, 0, −1, · · · , −1] ∈Rm.

Proof. By taking the test function as ψ = zv with z ∈ V k
h , (3.2) becomes

ˆ

Ii

d

dt
(w · v)z dx =

ˆ

Ii

(f · v)zx dx− (f̂i+ 1
2

· v)z−
i+ 1

2
+ (f̂i− 1

2
· v)z+

i− 1
2

+
ˆ

Ii

(s · v)z dx.

For the original model, we already have f · v = s · v = 0. As long as the numerical flux is consistent, we haveˆ

Ii

d

dt
(w · v)z dx = 0.

Since d
dt (w · v) ∈ V k

h and z can be any function in V k
h , we have

d

dt
(w · v) = 0. �

3.2. Conservative time integrations

It is easy to solve for q locally on each cell Ii by using (3.3) and then substitute the results into (3.2). Next, we need to 
apply suitable time integrations on (3.2) to march in time. For simplicity of the formulation, we introduce the notation

f i(w,ψ) :=
ˆ

Ii

f · ψx dx− f̂i+ 1
2

· ψ−
i+ 1

2
+ f̂i− 1

2
· ψ+

i− 1
2
, (3.6)

and then the semi-discrete scheme (3.2) for solving w becomes
7



J. Du and Y. Yang Journal of Computational Physics 469 (2022) 111548
d

dt
(w,ψ)Ii = f i(w,ψ) + (s(w),ψ)Ii , ∀ψ ∈ [V k

h ]m, i = 1, · · · ,N,

where (·, ·)Ii denotes the L2 inner product on Ii . Since the system has stiff source term, we adopt the following third-order 
CMERK method [10] to get the fully discretized scheme:(

w(1),ψ
)
Ii

=
[
α10
(
wn,ψ

)
Ii

+ β10�t f i(w
n,ψ) + β10�t

(
s(wn) + μwn,ψ

)
Ii

]
/A1,(

w(2),ψ
)
Ii

=
[
α20
(
wn,ψ

)
Ii

+ β20�t f i(w
n,ψ) + β20�t

(
s(wn) + μwn,ψ

)
Ii

]
/A2

+ eβ10μ�t
[
α21
(
w(1),ψ

)
Ii

+ β21�t f i(w
(1),ψ) + β21�t

(
s(w(1)) + μw(1),ψ

)
Ii

]
/A2,(

wn+1,ψ
)
Ii

=
[
α30
(
wn,ψ

)
Ii

+ β30�t f i(w
n,ψ) + β30�t

(
s(wn) + μwn,ψ

)
Ii

]
/A3

+ eβ10μ�t
[
α31
(
w(1),ψ

)
Ii

+ β31�t f i(w
(1),ψ) + β31�t

(
s(w(1)) + μw(1),ψ

)
Ii

]
/A3

+ eAμ�t
[
α32
(
w(2),ψ

)
Ii

+ β32�t f i(w
(2),ψ) + β32�t

(
s(w(2)) + μw(2),ψ

)
Ii

]
/A3,

where

α10 = 1, β10 = 0.7071933376925014,

α20 = 0.6686892933074404, β20 = 0,

α21 = 0.3313107066925596, β21 = 0.4178047564915065,

α30 = 0.3487419430256090, β30 = 0,

α31 = 0.2039576138780898, β31 = 0,

α32 = 0.4473004430963011, β32 = 0.5640754637100439,

and

A = β20 + α21β10 + β21, (3.7)

A1 = α10 + β10μ�t, (3.8)

A2 = α20 + β20μ�t + eβ10μ�t(α21 + β21μ�t
)
, (3.9)

A3 = α30 + β30μ�t + eβ10μ�t(α31 + β31μ�t
)+ eAμ�t(α32 + β32μ�t

)
. (3.10)

Recall that the semi-discrete scheme preserves the conservative property of the original PDE. Next, we will show that 
the above fully discrete scheme is also conservative.

Theorem 3.2. The fully discrete scheme is conservative in the sense that if wn · v = 0, then we have

wn+1 · v = wn · v = 0.

In other words, if we have 
∑Ns

i=1 Yi = 1 at time level n, then this equation is still true at time level n + 1.

Proof. By taking the test function as ψ = zv with z ∈ V k
h and using the fact that s · v = 0, we have(

w(1) · v, z)Ii =
[
α10
(
wn · v, z)Ii + β10�t f i(w

n, zv) + β10�t
(
μwn · v, z)Ii]/A1.

By using the definition of f i in (3.6) and the fact that f · v = f̂i+ 1
2

· v = 0, we know that f i(wn, zv) = 0. Hence, we have

(
w(1) · v, z)Ii = α10 + β10μ�t

A1

(
wn · v, z)Ii .

Since A1 = α10 + β10μ�t , we obtain(
w(1) · v, z

)
Ii

= (wn · v, z)Ii .
Since z is an arbitrary function in V k

h , we have

w(1) · v = wn · v.
8
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Similarly, one can prove that

wn+1 · v = w(2) · v = w(1) · v = wn · v.
The idea of proof is the same and hence we omit the details. �

In our numerical simulation, we take the initial data which satisfies w0 · v = 0. Then our numerical results always 
preserve the condition that 

∑Ns
i=1 Yi = 1 at each time level.

Remark 3.1. In CMERK scheme, if μ is large, the exponential terms would be extremely large. We can apply Taylor’s expan-
sion to all the exponential functions, e.g.

eAμ�t ≈ [1 − Aμ�t + 1

2
(Aμ�t)2 − 1

6
(Aμ�t)3 + 1

24
(Aμ�t)4]−1.

This trick keeps the conservative property. Numerical experiments demonstrated that this trick can lead to better numerical 
approximations. For more details, we refer to [10].

4. Bound preserving technique in one dimension

We discuss the bound preserving technique in this section. In particular, we want to preserve the positivity of the total 
density ρ and the pressure p, and also preserve the two bounds 0 and 1 of each mass fraction Yi , i = 1, · · · , Ns .

4.1. The admissible set

For simplicity, we consider the calorically perfect gas for which the specific heats are constants. In this case, the one 
dimensional version of Equation (2.3) becomes

E =
Ns∑
i=1

ri
(
�hT0

f ,i + cp,i(T − T0)
)− p + 1

2
ρu2

=
Ns∑
i=1

rihi(0) + ρT
Ns∑
i=1

Yicp,i − p + 1

2
ρu2,

where hi(0) = �hT0
f ,i − cp,i T0 is the enthalpy of formation at 0K which is a constant for species i. Substituting (2.4) into the 

above equation, we can get

E =
Ns∑
i=1

rihi(0) + T
Ns∑
i=1

ricv,i + 1

2
ρu2,

where

cv,i = cp,i − Ru

Wi

is the specific heat at constant volume for species i. Thus, we can solve for the temperature T as:

T = [E −
Ns∑
i=1

rihi(0) − 1

2
ρu2]/ Ns∑

i=1

(ρYicv,i).

Substituting this equation into (2.4), we obtain

p = (γ − 1)
[
E −

Ns∑
i=1

rihi(0) − 1

2
ρu2],

where

γ (w) =
∑Ns

i=1 Yicp,i∑Ns
i=1 Yicv,i

is the ratio of specific heats for the mixture. It is easy to check that
9
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γ (w) − 1 =
∑Ns

i=1 Yi Ru/Wi∑Ns
i=1 Yicv,i

> 0

as long as Yi ≥ 0, i = 1, · · · , Ns and hence

p ≥ 0 ⇐⇒ P (w) = E −
Ns∑
i=1

rihi(0) − 1

2
ρu2 ≥ 0. (4.1)

Moreover, as discussed in the last section, the numerical results obtained by our scheme always satisfy

Ns∑
i=1

Yi = 1 (4.2)

at each time level. Hence, we only need to preserve the lower bound 0 of each mass fraction and guarantee that (4.2) will 
not be harmed after applying the bound preserving technique, and then the upper bound 1 of each Yi , i = 1, · · · , Ns will be 
preserved automatically. Also, the requirement Yi ≥ 0 can be replaced by ri ≥ 0 as long as the total density ρ ≥ 0. Hence, 
we define the set of admissible states as

G =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
w =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ρ
ρu
E
r1
...

rNs

⎞⎟⎟⎟⎟⎟⎟⎟⎠
: ρ ≥ 0, P (w) ≥ 0, ri ≥ 0, i = 1, · · · ,Ns

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
.

One can check that P is a concave function with respect to w and therefore G is a convex set. Next, we will construct
conservative bound-preserving methods such that the numerical solutions belong to the set of admissible states G .

4.2. Bound-preserving of the cell averages

Taking the test function as ψ = el , l = 1, · · · , m, respectively, where el ∈Rm is a constant vector with the lth component 
being 1 and other components being 0, the fully discrete scheme lead to the following equations for computing the cell 
averages of the solutions

w̄(1)
i =

[
α10C

n
i

(β10

α10
�t
)+ β10μ�tDn

i

]
/A1, (4.3)

w̄(2)
i =

[
α20C

n
i

(β20

α20
�t
)+ β20μ�tDn

i

]
/A2

+ eβ10μ�t
[
α21C

(1)
i

(β21

α21
�t
)+ β21μ�tD(1)

i

]
/A2, (4.4)

w̄n+1
i =

[
α30C

n
i

(β30

α30
�t
)+ β30μ�tDn

i

]
/A3

+ eβ10μ�t
[
α31C

(1)
i

(β31

α31
�t
)+ β31μ�tD(1)

i

]
/A3

+ eAμ�t
[
α32C

(2)
i

(β32

α32
�t
)+ β32μ�tD(2)

i

]
/A3, (4.5)

where

Cp
i (�t) := w̄p

i − �t

�xi
(f̂p

i+ 1
2

− f̂p
i− 1

2
), Dp

i = 1

μ
s̄pi + w̄p

i , p = n, (1), (2), (4.6)

with

w̄p
i = 1

�xi

ˆ

Ii

wpdx, s̄pi = 1

�xi

ˆ

Ii

s(wp)dx

being the cell averages of w and s(w) on Ii , respectively. By using the definition of A1, A2 and A3 in (3.8)-(3.10), we know 
that each stage of our scheme (4.3)-(4.5) is just a convex combination of the basic structures C and D. Next, assuming that 
10
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w̄p
i ∈ G , we aim to find sufficient conditions such that Cp

i (�t) ∈ G and Dp
i ∈ G for p = n, (1), (2), respectively. For simplicity, 

we omit the superscript p in the following discussions.
We consider Ci(�t) first. We use the idea in [48], but still need some recomputations since the model in [48] does not 

contain multiple species and reactions. Before we look into the details of the computation of Ci(�t), we need the following 
lemma.

Lemma 4.1. Consider any w = (ρ, ρu, E, r1, · · · , rNs )
T ∈ G and

f = fa − fd =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ρu
ρu2 + p − τxx

u(E + p) − uτxx + qx
r1(u + u1)

...

rNs (u + uNs )

⎞⎟⎟⎟⎟⎟⎟⎟⎠
where p, τxx, qx and ui , i = 1, · · · , Ns are not necessarily dependent on w. Then we have w ± β−1f ∈ G if and only if

β ≥ max

{∣∣∣∣u + b

2ρ P (w)

∣∣∣∣+
√

D

2ρ P (w)
, |u + ui|, i = 1, · · · ,Ns

}
,

where

b = ρqx − ρ

Ns∑
i=1

rihi(0)ui, D = b2 + 2ρ P (w)(p − τxx)
2.

Proof. First we have

w± β−1f =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ρ ± β−1ρu
ρu ± β−1(ρu2 + p − τxx)

E ± β−1(u(E + p) − uτxx + qx)
r1 ± β−1r1ũ1

...

rNs ± β−1rNs ũNs

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where ũi = u + ui . In order to have w ± β−1f ∈ G , we require

ρ ± β−1ρu ≥ 0,

ri ± β−1ri ũi ≥ 0, i = 1, · · · ,Ns

E ± β−1(u(E + p) − uτxx + qx) −
Ns∑
i=1

(ri ± β−1ri ũi)hi(0)

− 1

2
(ρu ± β−1(ρu2 + p − τxx))

2/(ρ ± β−1ρu) ≥ 0

Since β > 0, by multiplying β on both sides, the above conditions are equivalent to

β̄ρ ≥ 0, β̄iri ≥ 0, i = 1, · · · ,Ns (4.7)

β̄2ρE ± ρ(up − uτxx + qx)β̄ − β̄ρ

Ns∑
i=1

β̄irihi(0) − 1

2
(β̄ρu ± (p − τxx))

2 ≥ 0, (4.8)

where β̄ = β ± u and β̄i = β ± ũi . Then (4.7) is satisfied if and only if

β̄ ≥ 0, β̄i ≥ 0,

which means

β ≥ |u|, β ≥ |u + ui |. (4.9)

Moreover, (4.8) becomes
11
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ρ P (w)β̄2 ± ρ

(
qx −

Ns∑
i=1

rihi(0)ui

)
β̄ − 1

2
(p − τxx)

2 ≥ 0, (4.10)

where P (w) is defined in (4.1). Substituting β̄ = β ± u into (4.10), we obtain

ρ P (w)β2 ± (2ρuP (w) + b)β + c ≥ 0, (4.11)

with

c = ρu2P (w) + bu − 1

2
(p − τxx)

2,

which are two quadratic forms of β . Since w ∈ G , we have ρ P (w) ≥ 0 and we can check that

D = (2ρuP (w) + b)2 − 4ρ P (w)c

= b2 + 2ρ P (w)(p − τxx)
2 ≥ 0.

Hence, either quadratic form is opening up and has at least one root. Then the four roots for two quadratic equations are

β1,2 = −u + 1

2ρ P (w)

(− b ± √
D
)
,

β3,4 = u + 1

2ρ P (w)

(
b ± √

D
)
.

Hence, (4.9) together with (4.11) are satisfied if and only if

β ≥ max

{∣∣∣∣u + b

2ρ P (w)

∣∣∣∣+
√

D

2ρ P (w)
, |u + ui|, i = 1, · · · ,Ns

}
. �

Now we try to find sufficient conditions such that Ci(�t) ∈ G . Let L be the smallest integer satisfying 2L − 3 ≥ k. We 
consider an L-point Legendre Gauss-Lobatto quadrature on Ii and denote the quadrature points as

Ŝ i = {xi− 1
2

= x̂1i , x̂
2
i , · · · , x̂L−1

i , x̂Li = xi+ 1
2
}.

Moreover, we denote the quadrature weights on [− 1
2 , 12 ] as ω̂l such that 

∑L
l=1 ω̂l = 1 and let ω̂ = ω̂1 = ω̂L = 1

L(L−1) . Then, 
we can get the following theorem.

Theorem 4.1. Suppose

w±
i± 1

2
∈ G, w(x̂�

i ) ∈ G (� = 2, · · · , L − 1), (4.12)

then under the CFL condition
�t

�x
max

i
βi+ 1

2
≤ ω̂ = 1

L(L − 1)
,

we have Ci(�t) ∈ G in (4.6). Moreover, the conclusion is also valid if (4.12) is replaced by a weaker condition

w±
i± 1

2
∈ G,

L−1∑
�=2

ω̂�

1− 2ω̂
w(x̂�

i ) ∈ G. (4.13)

Proof. Using the L-point Legendre Gauss-Lobatto quadrature rule on Ii and the definition of the numerical flux (3.4), we 
obtain

Ci(�t) =
(
ω̂1 −

βi− 1
2

2

�t

�xi

)⎛⎝w+
i− 1

2
+ �t

2�xi

(
ω̂1 −

βi− 1
2

2

�t

�xi

)−1

f
(
w+

i− 1
2
,q+

i− 1
2

)⎞⎠
+
(
ω̂L −

βi+ 1
2

2

�t

�xi

)⎛⎝w−
i+ 1

2
− �t

2�xi

(
ω̂L −

βi+ 1
2

2

�t

�xi

)−1

f
(
w−

i+ 1
2
,q−

i+ 1
2

)⎞⎠
+

βi− 1
2 �t

(
w−

i− 1 + β−1
i− 1 f

(
w−

i− 1 ,q−
i− 1

))

2 �xi 2 2 2 2

12
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+
βi+ 1

2

2

�t

�xi

(
w+

i+ 1
2

− β−1
i+ 1

2
f
(
w+

i+ 1
2
,q+

i+ 1
2

))

+
L−1∑
�=2

ω̂�w(x̂�
i )

It is easy to check

�t

2�xi

(
ω̂1 −

βi− 1
2

2

�t

�xi

)−1

≤ β−1
i− 1

2
and

�t

2�xi

(
ω̂L −

βi+ 1
2

2

�t

�xi

)−1

≤ β−1
i+ 1

2

under the CFL condition �t
�x maxi βi+ 1

2
≤ ω̂. Then by using Lemma 4.1, and the condition in (3.5), we have

w+
i− 1

2
∈ G =⇒ w+

i− 1
2

+ �t

2�xi
(ω̂1 −

βi− 1
2

2

�t

�xi
)−1f

(
w+

i− 1
2
,q+

i− 1
2

)
∈ G,

w−
i+ 1

2
∈ G =⇒ w−

i+ 1
2

− �t

2�xi
(ω̂L −

βi+ 1
2

2

�t

�xi
)−1f

(
w−

i+ 1
2
,q−

i+ 1
2

)
∈ G,

w−
i− 1

2
∈ G =⇒ w−

i− 1
2

+ β−1
i− 1

2
f
(
w−

i− 1
2
,q−

i− 1
2

)
∈ G,

w+
i+ 1

2
∈ G =⇒ w+

i+ 1
2

− β−1
i+ 1

2
f
(
w+

i+ 1
2
,q+

i+ 1
2

)
∈ G.

Then Ci(�t) is a convex combination of elements in G and hence we have Ci(�t) ∈ G . For more details of the weaker 
condition, we refer to [48]. �

Next, we consider the condition for Di ∈ G . We adopt the M-point Gauss quadrature rule on Ii and denote the set of 
quadrature points on Ii as

S̃ i = {x1i , x2i , · · · , xMi }.
In addition, we denote

w(xαi ) = (ρα
i , (ρu)αi , Eα

i , (r1)
α
i , · · · , (rNs )

α
i })T ,

s(w(xαi )) = (0,0,0, (ω1)
α
i , · · · , (ωNs )

α
i

)T
,

for α = 1, · · · , M . Moreover, we denote the quadrature weights on [− 1
2 , 12 ] as cα , α = 1, · · · , M . We choose M large enough 

such that s̄i can be approximated accurately. In the numerical experiments, we choose M = k + 1. Then we can prove the 
following theorem.

Theorem 4.2. Suppose

w(xαi ) ∈ G, α = 1, · · · ,M,

then under the condition

μ ≥ max
α=1,··· ,M

{
Ns∑
n=1

(ωn)
α
i hn(0)

P (w(xαi )
, max

n=1,··· ,Ns
− (ωn)

α
i

(rn)αi
,0

}
, (4.14)

we have Di = 1
μ s̄i + w̄i ∈ G.

Proof. By using the M-point Gauss quadrature rule on Ii , we have

Di = 1

μ
s̄i + w̄i =

M∑
α=1

cα

[
1

μ
s(w(xαi )) +w(xαi )

]
. (4.15)

We need to find sufficient conditions such that 1 s(w(xα)) +w(xα) ∈ G for each fixed point xα . Notice that
μ i i i

13
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1

μ
s(w(xαi )) +w(xαi ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρα
i

(ρu)αi
Eα
i

(r1)αi + (ω1)
α
i

μ
...

(rNs )
α
i + (ωNs )

α
i

μ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Since w(xαi ) ∈ G , then we have ρα
i ≥ 0. Next, we require

(rn)
α
i + (ωn)

α
i

μ
≥ 0, n = 1, · · · ,Ns,

P (
1

μ
s(xαi ) +w(xαi )) = P (w(xαi )) −

Ns∑
n=1

(ωn)
α
i

μ
hn(0) ≥ 0,

which yield

μ ≥ − (ωn)
α
i

(rn)αi
, n = 1, · · · ,Ns,

μ ≥
Ns∑
n=1

(ωn)
α
i hn(0)

P (w(xαi ))
,

and hence we get (4.14). Then (4.15) shows that Di is a convex combination of elements in G , and hence we have Di ∈ G . �
Now we denote Si = Ŝ i ∪ S̃ i . Recall that the cell average at each time stage in (4.3)-(4.5) is a convex combination of the 

basic structures of C and D. Then combining Theorems 4.1 and 4.2, we get the following one. The proof is straightforward 
and we omit it.

Theorem 4.3. Suppose w(x) ∈ G, ∀x ∈ Si , i = 1, · · · , N and

μ ≥ max
i=1,··· ,N

max
α=1,··· ,M

{
Ns∑
n=1

(ωn)
α
i hn(0)

P (w(xαi )
, max

n=1,··· ,Ns
− (ωn)

α
i

(rn)αi
,0

}
(4.16)

for w = wn, w(1) , w(2) , then we have w̄n+1
i ∈ G under the CFL condition

�t

�x
max

i
βi+ 1

2
≤ min{α10

β10
,
α20

β20
,
α21

β21
,
α30

β30
,
α31

β31
,
α32

β32
}ω̂. (4.17)

4.3. Bound preserving limiter

At each time stage, we have w̄i ∈ G . Next, we proceed to discuss the bound-preserving limiter on each cell Ii and replace 
the original polynomial w(x) with a new one wnew(x), such that wnew(x) ∈ G , ∀ x ∈ Si . The full algorithm can be found in 
[10]. For the completeness of this paper, we review the main steps as follows. For more details and discussions, we refer to 
[10].

1. Set a small number ε = 10−13. If ρ̄ > ε , then we proceed to the next step. Otherwise, we take wnew = w̄ and skip the 
following steps.

2. Modify the total density. Compute

ρmin = min
x∈Si

ρ(x).

If ρmin < 0, then we take

ρ̂ = ρ̄ + θ(ρ − ρ̄), r̂n = r̄n + θ(rn − r̄n), n = 1, · · · ,Ns

with

θ = ρ̄ − ε
.

ρ̄ − ρmin

14
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3. Modify the mass fraction. For 1 ≤ n ≤ Ns , define Qn = {x ∈ Si : r̂n(x) ≤ 0}. Take

r̃n = r̂n + θ

(
r̄n
ρ̄

ρ̂ − r̂n

)
, n = 1, · · · ,Ns

with

θ = max
1≤n≤Ns

max
x∈Qn

{ −r̂n(x)ρ̄

r̄nρ̂(x) − r̂n(x)ρ̄
,0

}
.

4. Modify the pressure. Denote w̃ = (ρ̂, ρu, E, ̃r1, · · · , ̃rNs )
T . For each x ∈ Si , if w̃(x) ∈ G , then take θx = 1. Otherwise, take

θx = P (w̄)

P (w̄) − P (w̃(x))
.

Then we compute

wnew = w̄+ θ(w̃− w̄), θ = min
x∈Si

θx.

5. Two dimensional problems

In this section, we consider the two dimensional governing equations (2.1). Now we have m = Ns + 4 and w ∈ Rm . We 
will show the numerical schemes as well as the conservative property in Section 5.1. Then we give the bound-preserving 
technique in Section 5.2.

5.1. Numerical schemes

The diffusion fluxes fd and gd are dependent on the derivatives of conserved variables w. Similar to the one dimensional 
case, we first introduce an auxiliary variable Q := ∇w, where ∇w ∈ Rm×2 is the row-wise gradient of w, and then rewrite 
the model (2.1) into the following system

wt = −divFa(w) + divFd(w,Q) + s,

Q = ∇w,

where Fa := [fa, ga] ∈ Rm×2 and Fd := [fd, gd] ∈ Rm×2. For any φ ∈ Rm×2, we let φi be the ith row of φ and define the 
divergence as divφ = [divφ1, · · · , divφm]T . Let �h = {K } be a partition of the computational domain � with polygonal cells. 
We define the finite element space V k

h as

V k
h = {ψ : ψ |K ∈ Pk(K ),∀K ∈ �h}.

For simplicity, we still use the notations w and Q as the numerical approximations.
Following the idea in [48], we regard F = Fa − Fd as a single flux and formally treat divF as a convection term. Then the 

LDG scheme is to find w ∈ [V k
h ]m and Q ∈ [V k

h ]m×2, such that for any test functions ψ ∈ [V k
h ]m and φ ∈ [V k

h ]m×2 and any cell 
K ∈ �h , we have¨

K

wt · ψ dV =
¨

K

F : ∇ψ dV −
ˆ

∂K

F̂n · ψ ds +
¨

K

s · ψ dV , (5.1)

¨

K

Q : φ dV = −
¨

K

w · divφ dV +
ˆ

∂K

ŵ · (φn)ds, (5.2)

where n is the unit outer normal on ∂K . Central flux can be used for w:

ŵ|e = 1

2
(wint +wext),

where e ∈ ∂K is an edge of the cell K , wint and wext denote the approximations to w on e taken from interior and exterior 
of K , respectively. The numerical flux for F is taken as the Lax-Friedrichs type positivity-preserving flux

F̂n(wint,Qint,wext,Qext)|e = 1

2

[
F(wint,Qint)n+ F(wext,Qext)n− βe(w

ext −wint)
]
, (5.3)

where
15
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βe ≥ max

{∣∣∣∣V · n+ b

2ρ P (w)

∣∣∣∣+
√

D

2ρ P (w)
, |(V+ Vi) · n|, i = 1, · · · ,Ns

}
(5.4)

with

V = [u, v]T , b = ρ(q · n) − ρ

Ns∑
i=1

rihi(0)(Vi · n), D = b2 + 2ρ P (w)‖pn− τn‖2.

The maximum in (5.4) is taken over all wint , Qint , wext and Qext along the edge e. The condition on βe is to guarantee the 
bound-preserving property.

In the above scheme, the numerical flux F̂n is an approximation to Fn on the edge of each cell. By using (2.8), we know 
that Fn satisfies

(Fn) · v = vT [fa − fd,ga − gd]n = 0, (5.5)

where v = [1, 0, 0, 0, −1, · · · , −1] ∈ Rm . Then we clearly know that F̂n preserves the same property and have the following 
theorem.

Theorem 5.1. The numerical flux F̂n is consistent in the sense that F̂n · v = 0.

Now, it is easy to prove that the semi-discrete scheme in two dimensions preserves the conservative property of the 
original model. The idea of proof is almost the same as that for the one dimensional case, and hence we omit it.

Theorem 5.2. The semi-discrete scheme (5.1)-(5.2) is conservative in the sense that

d

dt
(w · v) = 0,

as long as the numerical flux F̂n is consistent.

Next, we apply the third-order CMERK method [10] in time and obtain:(
w(1),ψ

)
K = [α10

(
wn,ψ

)
K + β10�t F K (wn,ψ) + β10�t

(
s(wn) + μwn,ψ

)
K

]
/A1, (5.6)(

w(2),ψ
)
K = [α20

(
wn,ψ

)
K + β20�t F K (wn,ψ) + β20�t

(
s(wn) + μwn,ψ

)
K

]
/A2

+ eβ10μ�t

A2

[
α21
(
w(1),ψ

)
K + β21�t F K (w(1),ψ) + β21�t

(
s(w(1)) + μw(1),ψ

)
K

]
, (5.7)(

wn+1,ψ
)
K = [α30

(
wn,ψ

)
K + β30�t F K (wn,ψ) + β30�t

(
s(wn) + μwn,ψ

)
K

]
/A3

+ eβ10μ�t

A3

[
α31
(
w(1),ψ

)
K + β31�t F K (w(1),ψ) + β31�t

(
s(w(1)) + μw(1),ψ

)
K

]
+ eAμ�t

A3

[
α32
(
w(2),ψ

)
K + β32�t F K (w(2),ψ) + β32�t

(
s(w(2)) + μw(2),ψ

)
K

]
, (5.8)

where

FK (w,ψ) :=
¨

K

F : ∇ψ dV −
ˆ

∂K

F̂n · ψ ds,

and (·, ·)K denotes the L2 inner product on K .
As in the one dimensional case, it is easy to prove that the above fully discrete scheme is also conservative. Then our 

numerical results always preserve the condition that 
∑Ns

i=1 Yi = 1 at each time level.

Theorem 5.3. The fully discrete scheme (5.6)-(5.8) is conservative in the sense that if wn · v = 0, then we have

wn+1 · v = wn · v = 0.

In other words, if we have 
∑Ns Yi = 1 at time level n, then this equation is still valid at time level n + 1.
i=1

16
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5.2. Bound preserving technique

Similar to the one dimensional case, we define the admissible set to be

G =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
w =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ
ρu
ρv
E
r1
...

rNs

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: ρ ≥ 0, P (w) ≥ 0, ri ≥ 0, i = 1, · · · ,Ns

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

where P (w) is redefined as

P (w) := E −
Ns∑
i=1

rihi(0) − 1

2
ρ(u2 + v2). (5.9)

Once the lower bound of each mass fraction is preserved, the conservative property indicates that the upper bound is also 
preserved.

By taking suitable test functions in the fully discrete scheme (5.6)-(5.8), we can get the equations for computing the cell 
average

w̄K = 1

|K |
¨

K

wdV ,

where |K | is the area of the cell K . The resulting equations are similar to (4.3)-(4.5). One only need to replace the operators 
Ci and Di with

CK (�t) := w̄K − �t

|K |
ˆ

∂K

F̂n ds, DK = 1

μ
s̄K + w̄K ,

respectively. Next, we need to find sufficient conditions such that CK (�t) ∈ G and DK ∈ G , respectively. Similar to Lemma 4.1, 
we have the following lemma for the two dimensional problem.

Lemma 5.1. Suppose w = (ρ, ρVT , E, r1, · · · , rNs )
T ∈ G and

F = [fa − fd,ga − gd] =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ρVT

ρV ⊗ V+ pI − τ
(E + p)VT − VT τ + qT

r1(V+ V1)
T

...

rNs (V+ VNs )
T

⎞⎟⎟⎟⎟⎟⎟⎟⎠
where V = [u, v]T and I is the unit tensor. Here p, τ , q and Vi , i = 1, · · · , Ns are not necessarily dependent on w. For any unit vector 
n, we denote ṽ = V · n, q̃ = q · n, τ̃ = τn and ṽ i = Vi · n for i = 1, · · · , Ns. Then we have w ± β−1Fn ∈ G if and only if

β ≥ max
{|ṽ + b

2ρ P (w)
| +

√
D

2ρ P (w)
, |ṽ + ṽ i |, i = 1, · · · ,Ns

}
where

b = ρq̃ − ρ

Ns∑
i=1

rihi(0)ṽ i, D = b2 + 2ρ P (w)‖pn− τ̃‖2.

Proof. First we have

w± β−1Fn =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ρ ± β−1ρ ṽ
ρV ± β−1(ρ ṽV+ pn− τ̃ )

E ± β−1((E + p)ṽ − V · τ̃ + q̃)
r1 ± β−1r1ũ1

...

r ± β−1r ũ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

Ns Ns Ns

17
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where ũi = ṽ + ṽ i . In order to obtain w ± β−1Fn ∈ G , we require

ρ ± β−1ρ ṽ ≥ 0,

ri ± β−1ri ũi ≥ 0, i = 1, · · · ,Ns

E ± β−1((E + p)ṽ − V · τ̃ + q̃) −
Ns∑
i=1

(ri ± β−1ri ũi)hi(0)

− 1

2
‖ρV ± β−1(ρ ṽV+ pn− τ̃ )‖2/(ρ ± β−1ρ ṽ) ≥ 0

Since β > 0, by multiplying β on both sides, the above conditions are equivalent to

(β ± ṽ)ρ ≥ 0, (5.10)

(β ± ũi)ri ≥ 0, i = 1, · · · ,Ns, (5.11)

ρ P (w)β2 ± (2ρ ṽ P (w) + b)β + c ≥ 0, (5.12)

with

c = ρ ṽ2P (w) + bṽ − 1

2
‖pn − τ̃‖2.

Notice that the conditions (5.10)-(5.12) are similar to (4.7) and (4.10). Following the same idea of proof as in Lemma 4.1, we 
can obtain the condition for β . �

Now we try to find sufficient conditions such that CK (�t) ∈ G . We assume that the number of edges of K is E and 
denote the ith edge as ei . For integrals along each edge ei , we use the I-point Gauss quadrature and denote the ν-th 
quadrature point as xν,i . Let bν (ν = 1, · · · , I) denote the I-point Gauss quadrature weights on [− 1

2 , 12 ]. Then we have

CK (�t) = w̄K − �t

|K |
E∑

i=1

|ei |
I∑

ν=1

bν F̂n(w
int
ν,i,Q

int
ν,i,w

ext
ν,i ,Q

ext
ν,i ), (5.13)

where wint
ν,i and wext

ν,i are the numerical approximations of w at xν,i from interior and exterior of K , respectively. As in 
the one dimensional case, we need an accurate enough quadrature on K to represent the cell average w̄K as a con-
vex combination of certain point values. The quadrature points should include xν,i for all ν and i. We denote the set 
of quadrature points as Ŝ K . Assuming that the total number of quadrature points is J , we denote the remaining points 
as xλ (λ = E I + 1, · · · , J ). Moreover, let aν,i and aλ denote the corresponding normalized quadrature weights so that ∑E

i=1
∑I

ν=1 aν,i +∑ J
λ=E I+1 aλ = 1. Then, we have the following theorem.

Theorem 5.4. A sufficient condition for CK (�t) ∈ G in (4.6) is

wint
ν,i,w

ext
ν,i ∈ G, i = 1, · · · , E, ν = 1, · · · , I,

w(xλ) ∈ G, λ = E I + 1, · · · , J ,

under the CFL condition

�t
|ei |
|K | max

i
βei ≤ min

ν,i

aν,i

bν
.

Proof. By using the J -point quadrature rule on the cell K , we obtain the following cell average decomposition

w̄K = 1

|K |
¨

K

wdV =
E∑

i=1

I∑
ν=1

aν,iw
int
ν,i +

J∑
λ=E I+1

aλw(xλ)

Plugging the above decomposition and the definition of the numerical flux (5.3) into (5.13), we obtain

CK (�t) =
J∑

λ=E I+1

aλw(xλ) +
E∑

i=1

I∑
ν=1

�ν,iβei

[
wext

ν,i − β−1
ei F(wext

ν,i ,Q
ext
ν,i )ni

]
+

E∑
i=1

I∑
ν=1

(aν,i − �ν,iβei )
[
wint

ν,i − �ν,i(aν,i − �ν,iβei )
−1F(wint

ν,i,Q
int
ν,i)ni

]
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where �ν,i = 1
2�t |ei ||K |bν . Notice that �ν,i(aν,i − �ν,iβei )

−1 ≤ β−1
ei if and only if 0 ≤ �t |ei ||K | βei ≤ aν,i

bν
. By using Lemma 5.1, 

under the CFL condition �t |ei ||K | maxi βei ≤ minν,i
aν,i
bν

and the condition in (5.4), we have

wext
ν,i ∈ G =⇒ wext

ν,i − β−1
ei F(wext

ν,i ,Q
ext
ν,i )ni ∈ G,

wint
ν,i ∈ G =⇒ wint

ν,i − �ν,i(aν,i − �ν,iβei )
−1F(wint

ν,i,Q
int
ν,i)ni ∈ G.

Then CK (�t) is a convex combination of elements in G and hence CK (�t) ∈ G . �
Remark 5.1. The J point quadrature rule on the cell K is not unique. For rectangular mesh with lengths of sides being 
�x and �y, one can use tensor products of Gauss quadrature in one direction and Gauss-Lobatto quadrature in another 
direction. Then the CFL condition becomes �t( 1

�x + 1
�y ) maxi βei ≤ 1

P (P−1) , where P = �(k + 3)/2�. For more details and 
quadrature on other type of cells, we refer to [48]. For triangular meshes, the detailed construction of the quadrature points 
has been discussed in [52].

Next, we consider the condition for DK ∈ G . We adopt an accurate enough Gauss quadrature rule on the cell K and 
denote the set of quadrature points as S̃ K . Also, we denote the density and mass rate of production of species n at a certain 
point x as rn(x) and ωn(x), respectively. Then we can prove the following theorem. The proof is similar to Theorem 4.2 and 
hence we omit it.

Theorem 5.5. Suppose

w(x) ∈ G, ∀x ∈ S̃ K ,

then under the condition

μ ≥ max
x∈ S̃ K

{
Ns∑
n=1

ωn(x)hn(0)

P (w(x))
), max

n=1,··· ,Ns
−ωn(x)

rn(x)
,0

}
, (5.14)

we have DK = 1
μ s̄K + w̄K ∈ G.

Now we denote SK = Ŝ K ∪ S̃ K . Recall that the cell average at each time stage is a convex combination of the basic 
structures C and D. Then combining Theorems 5.4 and 5.5, we get the following one, whose proof is straightforward hence 
we omit it.

Theorem 5.6. Suppose w(x) ∈ G, ∀x ∈ SK , ∀K and

μ ≥ max
K

max
x∈ S̃ K

{ Ns∑
n=1

ωn(x)hn(0)

P (w(x))
), max

n=1,··· ,Ns
−ωn(x)

rn(x)
,0
}

for w = wn, w(1) , w(2) , then we have w̄n+1
K ∈ G under the CFL condition

�t
|ei |
|K | max

i
βei ≤ min{α10

β10
,
α20

β20
,
α21

β21
,
α30

β30
,
α31

β31
,
α32

β32
}min

ν,i

aν,i

bν
.

At each time stage, we already have w̄K ∈ G . Then, we can apply the bound-preserving limiter on each cell K and replace 
the original polynomial w(x) with a new one wnew(x), such that wnew(x) ∈ G for any x ∈ SK . The algorithm is the same as 
that given in Section 4.3. One only need to replace Si with SK .

6. Numerical examples

In this section, we test some numerical examples. We expand the exponential terms in CMERK method as demonstrated 
in Remark 3.1.

For the one-dimensional problem, our scheme is bound-preserving with suitable μ satisfying (4.16) for w = wn, w(1), w(2)

under the CFL condition (4.17) with βi+ 1
2
defined in (3.5). But it is hard to accurately estimate the values of μ for the inner 

time stages w(1) and w(2) , given solutions wn at time step n. Also, the constraint (4.17) is just a sufficient condition and 
may result in unnecessarily small time steps. In practice at time level n, we let μ satisfy (4.16) for w = wn and set the time 
step size as

�t = min{a�x

β∗ ,b
�x2

η∗ }, (6.1)
19
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where

β∗ = max
i

max
w−

i+ 1
2
,w+

i+ 1
2

⎛⎝|u| +
√

p2

2ρ P (w)

⎞⎠ ,

and η∗ = maxw η is the maximum mixture viscosity. Here a and b are two parameters. Then we restart the computation 
with the value of μ doubled and the time step size halved when non-physical cell averages emerge in any stage of CMERK. 
Theorem 4.3 ensures that there will be no endless loops for such a treatment. The recomputation will end at least when 
μ is large enough to satisfy (4.16) and �t is small enough to satisfy (4.17). In the numerical examples in this section, very 
few recomputations are observed. For the two-dimensional problem, we apply the similar treatment. At time level n, we 
compute μ based on wn and set the time step size as

�t = min{a�x

β∗ ,b
�x2

η∗ }, (6.2)

where

β = max
e

max
wint ,wext

⎛⎝|V · n| +
√

p2

2ρ P (w)

⎞⎠
and �x = minK mine∈∂K

|K |
|e| .

For all examples, we apply the DG method coupled with the CMERK method in time. Only bound-preserving techniques 
are added to show the performance of our numerical methods. For Examples 6.2, 6.3 and 6.4, we also show reference 
solutions which are computed by using our schemes on dense meshes with extra TVD limiters added.

Example 6.1. Accuracy test in 1D
In this example, we consider the one dimensional problem (3.1) and test the accuracy of our scheme. Two species are 

considered. The first species is H2 and the second species is O 2. The computational domain is [0, 2π ]. We use the following 
initial conditions

u = 1 m/s,

p = 1 Pa,

ρ = 0.1(2+ sin(x) + cos(x)) kg/m3,

r1 = 0.1(1+ sin(x)) kg/m3,

and periodic boundary conditions. Moreover, we artificially define the source terms as ω1 = −c(r1)7 and ω2 = c(r1)7. The 
parameter c can be used to adjust the stiffness of the problem. The final time is taken as T = 0.5.

We apply the DG method with piecewise P2 polynomials. The two parameters in the time step (6.1) are taken as a = 0.1
and b = 0.001. The numerical errors of r1 with different choices of c are listed in the left part of Table 6.1. Both nonstiff 
(c = 100) and stiff (c = 10000) cases are calculated. As shown in the table, we can observe the expected third order of 
accuracy of our scheme. For this problem, the total density should be nonnegative and the mass fractions should be between 
0 and 1. Hence, we further add the bound preserving limiter and the results are listed in the right part of Table 6.1. The 
percentage of cells that have been modified by the limiter is listed in the last column. By comparing the results with and 
without limiter, we can see that the limiter does not harm the original high order of accuracy. To test the advantage of the 
current CMERK methods over the traditional explicit SSP-RK3 time discretizations for stiff problems, we take c = 106 and 
compare different methods in Table 6.2. By taking the time step �t as in (6.1) with a and b defined above, we can observe 
high order of accuracy for the CMERK method. However, for the RK3 method with the same time step �t , the code will 
blow up when �x is not small enough. As shown in the last column, we need to further reduce the time step size and 
hence need more computational cost to obtain reasonable results.

Example 6.2. He/N2 shock tube problem
In this example, we consider a multi-component flow without chemical reactions. The first species is helium (He) and the 

second species is nitrogen (N2). This test problem calculates a Riemann problem in a 1 m long tube with initial conditions 
given by

(T ,u, p, Y1, Y2)(x,0) =
{

(300 K,0 m/s,10 atm,1,0), x� 0.4 m,

(300 K,0 m/s,1 atm,0,1), x > 0.4 m.
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Table 6.1
Accuracy test for the one dimensional problem.

N Without limiter With limiter

L2 norm order L∞ norm order L2 norm order L∞ norm order percentage

c=100
10 5.54E-04 – 1.64E-03 – 1.34E-03 – 6.64E-03 – 6.88%
20 8.94E-05 2.63 3.59E-04 2.20 1.25E-04 3.43 6.64E-04 3.32 2.19%
40 1.21E-05 2.89 4.65E-05 2.95 1.35E-05 3.21 6.00E-05 3.47 0.55%
80 1.58E-06 2.93 6.36E-06 2.87 1.59E-06 3.08 6.62E-06 3.18 0.21%
160 2.01E-07 2.97 8.05E-07 2.98 2.02E-07 2.98 8.09E-07 3.03 5.39E-2%
320 2.53E-08 2.99 1.01E-07 3.00 2.54E-08 2.99 1.01E-07 3.00 8.58E-3%

c=10000
10 6.19E-04 – 2.10E-03 – 1.44E-03 – 7.47E-03 – 7.50%
20 9.98E-05 2.63 5.44E-04 1.95 1.33E-04 3.44 7.04E-04 3.41 1.41%
40 1.50E-05 2.73 7.04E-05 2.95 1.54E-05 3.11 7.06E-05 3.32 0.43%
80 2.11E-06 2.83 1.09E-05 2.70 2.12E-06 2.86 1.09E-05 2.70 0.21%
160 2.79E-07 2.92 1.48E-06 2.88 2.80E-07 2.92 1.48E-06 2.88 5.39E-2%
320 3.57E-08 2.97 1.90E-07 2.96 3.57E-08 2.97 1.90E-07 2.96 8.58E-3%

Table 6.2
Accuracy test for the one dimensional stiff problem with c = 106.

N CMERK with �t RK3 with �t RK3 with 2
5�t

L2 norm order L2 norm order L2 norm order

10 1.84E-03 – NAN – 6.97E-04 –
20 1.97E-04 3.22 NAN – 1.52E-04 2.20
40 2.98E-05 2.73 2.83E-05 – 2.77E-05 2.46
80 4.88E-06 2.61 5.75E-06 2.30 4.41E-06 2.65
160 7.38E-07 2.72 9.48E-07 2.60 6.57E-07 2.75
320 1.00E-07 2.88 1.24E-07 2.93 8.98E-08 2.87
640 1.28E-08 2.96 1.54E-08 3.01 1.16E-08 2.95

We use 1000 cells in the computational domain [0, 1]. Third order (k = 2) DG method is adopted for the spacial dis-
cretization. The two parameters in the time step (6.1) are taken as a = 0.1 and b = 0.001. The solutions at the time 300 μs 
are shown in Fig. 6.1, which are consistent with the results shown in [19]. We use black lines to show the reference solu-
tions obtained by using 5000 cells, and use red circles to denote the numerical solutions with 1000 cells. We can see that 
our method preserves the positivity of the density and pressure, and the two bounds 0 and 1 of each mass fraction. If we do 
not use the bound-preserving limiter, the code will soon blow up. We compare the mass fraction profiles with and without 
the limiter at 0.5085 μs in Fig. 6.2. From the zoom in figure, we can see that the mass fraction Y2 will become negative if 
we do not apply the limiter.

Example 6.3. H2/O 2/Ar shock tube problem
We consider the 1D NS equations for multi-species flow without chemical reactions. Assume that we have a 2/1/7 molar 

ratio of H2/O 2/Ar. We run a 1D shock tube problem with initial conditions given by

(T ,u, p)(x,0) =
{

(400 K,0 m/s,8000 J
m3 ), x� 0.5 cm,

(1200 K,0 m/s,80000 J
m3 ), x > 0.5 cm.

This is done on a 10 cm domain for a time of 40 μs.

We use 400 cells. Third order (k = 2) DG method with bound-preserving limiter is adopted for the spacial discretization. 
The two parameters in the time step (6.1) are taken as a = 0.1 and b = 0.001. The solutions are shown in Fig. 6.3. We use 
red circles to denote the numerical solutions with 400 cells. Also, black lines are the reference solutions obtained by using 
5000 cells. We can see that our method preserves the right physical bounds. As in the previous example, if we do not apply 
the bound-preserving limiter, the code will soon blow up.

Example 6.4. H2/O 2/Ar with chemical reactions in 1D
In this example, we consider the 1D NS equations for multi-species flow with chemical reactions. Consider a shock 

hitting a solid wall boundary and reflecting off. After a delay a reaction wave kicks in at the boundary. This reaction wave 
picks up steam and merges with the shock causing a split into 3 waves. From wall to outflow (left to right) these waves are 
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Fig. 6.1. Helium/nitrogen shock tube problem at 300 μs. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

Fig. 6.2. Helium/nitrogen shock tube problem at 0.5085 μs.

a rarefaction, a contact discontinuity, and a shock. Assume that we have a 2/1/7 molar ratio of H2/O 2/Ar. All gases involved 
are assumed to be calorically perfect. The reaction mechanism used in this work consisted of 9 species (H , O , H2, O 2, OH , 
H2O , HO 2, H2O 2, and Ar) and 37 irreversible reactions [13]. We use the following initial conditions
22
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Fig. 6.3. H2/O 2/Ar shock tube problem at 40 μs.

(ρ,u, p)(x,0) =
{

(0.072 kg/m3,0 m/s,7173 J
m3 ), x� 6 cm,

(0.18075 kg/m3,−487.34 m/s,35594 J
m3 ), x > 6 cm.

This is done on a 12 cm domain for a time of 190 μs.

We use 400 grid cells. Third order (k = 2) DG method is adopted for the spacial discretization. The two parameters in 
the time step (6.1) are taken as a = 0.01 and b = 0.001. The numerical results are shown in Fig. 6.4 and Fig. 6.5. We use 
red circles to denote the numerical solutions with 400 cells. Also, black lines are the reference solutions obtained by using 
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Fig. 6.4. H2/O 2/Ar with chemical reactions.

1000 cells. We can observe some numerical oscillations since only the bound-preserving limiter is applied. But we can see 
that our method preserves all the physical bounds.

Example 6.5. Accuracy test in 2D
In this example, we consider the two dimensional problem (2.1) and test the accuracy of our scheme. Two species are 

considered. The first species is H2 and the second species is O 2. The computational domain is [0, 2π ] ×[0, 2π ]. We use the 
following initial conditions

u = 1 m/s,

v = 1 m/s,

p = 1 Pa,

ρ = 0.1(2+ sin(x + y) + cos(x + y)) kg/m3,
24



Fig. 6.5. H2/O 2/Ar with chemical reactions. Mass fractions.

r1 = 0.1(1+ sin(x + y)) kg/m3,

and periodic boundary conditions. Moreover, we define the source terms as ω1 = −c(r1)7 and ω2 = c(r1)7. The parameter c
can be used to adjust the stiffness of the problem. The final time is taken as T = 0.5.

We apply the DG method with piecewise P2 polynomials. The two parameters in the time step (6.2) are taken as 
a = 0.1 and b = 0.001. The numerical errors of r1 with different choices of c are listed in the left part of Table 6.3. Both 
nonstiff (c = 100) and stiff (c = 10000) cases are calculated. As shown in the table, we can observe the expected third 
order of accuracy of our scheme. For this problem, the total density should be nonnegative and the mass fractions should 
be between 0 and 1. Hence, we further add the bound preserving limiter and the results are listed in the right part of 
Table 6.3. The percentage of cells that have been modified by the limiter is listed in the last column. By comparing the 
results with and without limiter, we can see that the limiter does not harm the original high order of accuracy.

Example 6.6. H2/O 2/Ar with chemical reactions in 2D
In this example, we consider a two-dimensional hydrogen-oxygen detonation wave diluted in Argon. The computational 

domain has a channel with height 0.06 m. The four boundaries are simulated as walls. We use the following initial condi-
tions

(u, v) = (0,0) m/s,
J. Du and Y. Yang Journal of Computational Physics 469 (2022) 111548
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Table 6.3
Accuracy test for the two dimensional problem.

N Without limiter With limiter

L2 norm order L∞ norm order L2 norm order L∞ norm order percentage

c=100
20 3.66E-04 – 2.08E-03 – 8.80E-04 – 2.98E-03 – 6.56%
40 4.47E-05 3.03 2.85E-04 2.86 5.59E-05 3.98 3.11E-04 3.26 3.09%
80 5.53E-06 3.02 3.61E-05 2.98 5.80E-06 3.27 3.85E-05 3.01 0.86%
160 6.92E-07 3.00 4.55E-06 2.99 7.13E-07 3.02 4.82E-06 3.00 0.31%
320 8.66E-08 3.00 5.65E-07 3.01 8.97E-08 2.99 5.99E-07 3.01 5.09E-2%

c=10000
20 5.02E-04 – 2.77E-03 – 9.16E-04 – 3.69E-03 – 3.91%
40 6.37E-05 2.98 5.19E-04 2.41 6.71E-05 3.77 5.25E-04 2.81 1.82%
80 7.96E-06 3.00 6.92E-05 2.91 8.08E-06 3.05 6.92E-05 2.92 0.68%
160 9.94E-07 3.00 8.87E-06 2.96 1.01E-06 3.00 8.87E-06 2.96 0.29%
320 1.24E-07 3.00 1.12E-06 2.99 1.26E-07 2.99 1.12E-06 2.99 4.72E-2%

Fig. 6.6. 2D H2/O 2/Ar with chemical reactions. Temperature.
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Fig. 6.7. 2D H2/O 2/Ar with chemical reactions. Mach numbers.

Y Ar : YO2 : YH2 = 7 : 1 : 2, x > 0.025 m,

Y Ar : YO2 : YH2 : YOH = 7 : 1 : 2 : 0.01, 0.015 m < x < 0.025 m,

Y Ar : YH2O : YOH = 8 : 2 : 0.01, x < 0.015 m,

p =
{
5.50e5 Pa, x < 0.015 m,

6.67e3 Pa, x > 0.015 m,

T =
⎧⎨⎩ 298 K, x > 0.025 m,

350 K, 0.015 m < x < 0.025 m,

3500 K, x < 0.015 m,

with the exception of two additional high pressure and high temperature regions, located within the regions√
(x− 0.019)2 + (y − 0.015)2 = 0.0025 m and 

√
(x− 0.01)2 + (y − 0.044)2 = 0.0025 m, with conditions

(u, v) = (0,0) m/s,

Y Ar : YH2O : YOH = 8 : 2 : 0.01,
p = 5.5e5 Pa,

T = 3500 K.
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The reaction mechanism used in this work consisted of 9 species (H , O , H2, O 2, OH , H2O , HO 2, H2O 2, and Ar) and 34 
irreversible reactions. The detailed chemical kinetics are described by the reaction mechanism of Westbrook [43].

We use rectangular meshes with the cell length as �x = �y = 0.001 m. Second order (k = 1) DG method is adopted 
for the spacial discretization. The two parameters in the time step (6.2) are taken as a = 0.00005 and b = 0.01. Fig. 6.6
shows the temperature solutions at different times. Fig. 6.7 shows the Mach numbers at different times. The detonation 
is established after the initial shock collides with the two additional high pressure and high temperature regions. The 
perturbations lead to transverse waves traveling in the vertical directions that reflect off the top and bottom walls. The 
detonation front progresses through the simulation domain. For higher order spatial discretization, further limiter is needed 
to remove numerical oscillations and we will explore this in our future work.

7. Conclusion

In this paper, we constructed high-order bound-preserving DG methods for multicomponent chemically reacting flows. 
The CMERK methods was used for time discretization to preserve the conservative property. Thanks to the proposed scheme, 
the numerical approximations yield positive density and pressure, and the mass fractions are between 0 and 1.
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