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In this paper, we construct sign-preserving second-order IMplicit Pressure Explicit Con-
centration (IMPEC) time methods for generalized coupled non-Darcy flow and transport 
problems in petroleum engineering, extending the algorithm given in [10] which is only 
applicable to Darcy flows. We use interior penalty discontinuous Galerkin (IPDG) meth-
ods for spatial discretization, and develop bound-preserving technique to obtain physically 
relevant numerical approximations. The sign-preserving second-order IMPEC method is 
an important innovation. The method is based on the framework of the second-order 
strong-stability-preserving Runge-Kutta (SSP-RK2) method. The basic idea is to treat the 
pressure equation implicitly and the concentration equation explicitly so as to obtain a 
first-order time integration. Then we introduce a correction stage to compensate the ac-
curacy, maintaining the physical bounds of the numerical cell averages. Unfortunately, the 
above algorithm is not applicable to non-Darcy problems. There are two main difficulties. 
Firstly, since the velocity equation is nonlinear and time-independent, all variables in the 
equation must be calculated at the same time level. However, the treatment in [10] will 
yield an extremely complicated algorithm and significantly large computational cost, and 
some iterations whose convergence may not be available if the solutions are not smooth. In 
our scheme, we linearize the velocity equation and the numerical solutions are not at the 
same time level, leading to first-order accurate solutions. Therefore, we adopt a completely 
different approach from [10] to derive the correction stage, keeping the physical bounds 
of the numerical solutions. Secondly, though with the new correction stage, it is still not 
easy to solve velocity equations in some stages. In this paper, we construct a direct solver 
for the velocity equation to save computational cost. Numerical experiments will be given 
to demonstrate that the improved sign-preserving second-order IMPEC scheme can reduce 
the computational cost significantly compared with explicit schemes if the diffusion coef-
ficient D is small in the concentration equation. The proposed method also yields much 
larger CFL number compared with first-order IMPEC schemes. Moreover, the effectiveness 
of the bound-preserving technique will also be verified.
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1. Introduction

In this paper, we consider the fluid mixture with two components, and study the compressible miscible displacements 
with general non-Darcy models

d(c)
∂p

∂t
+ ∇ · u = q, (x, y) ∈ �, 0 < t ≤ T , (1.1)

F (u, c) = −∇p, (x, y) ∈ �, 0 < t ≤ T , (1.2)

φ
∂c

∂t
+ b(c)

∂p

∂t
+ u · ∇c − ∇ · (D(u)∇c) = (c̃ − c)q, (x, y) ∈ �, 0 < t ≤ T , (1.3)

as well as its one-dimensional version, where � is a bounded domain and [0, T ] is the time interval. The unknown variables 
p, u and c represent the pressure of the fluid mixture, the velocity of the mixture and the volumetric concentration of 
interested species, respectively. φ(x, y) is the porosity of the porous media. (1.2) gives the relationship between the velocity
u and the gradient of the pressure p. There are several models available and two are commonly used. For Darcy model 
[1,26,40], (1.2) can be written as

u = − κ

μ(c)
∇p, (1.4)

while for Darcy-Forchheimer model [11], it has the form

μ(c)

κ
u+ βρ(c)|u|u = −∇p, (1.5)

where κ(x, y) and β(x, y) are the permeability and dynamic viscosity, respectively. μ(c) is concentration-dependent viscos-
ity, and a commonly used relationship is the quarter-power rule [28]

μ(c) = μ1

[(
μ1

μ2

) 1
4

c + 1− c

]−4

. (1.6)

Moreover, we assume μ(c)
κ ≥ 0. ρ(c) is the density of fluid, which is given by the volume-average of the densities of the 

two components [28]

ρ(c) = ρ1c + ρ2(1 − c). (1.7)

Here μ1, μ2, ρ1 and ρ2 are all positive constants. The Darcy-Forchheimer model, whose theoretical derivation was given 
in [33], is more accurate than Darcy model if the velocity is high and the porosity is nonuniform. In this model, β ≥ 0
is referred to as the Forchheimer number [27]. If β = 0, Darcy-Forchheimer model degenerates to Darcy model. q is the 
external flow rate, and c̃ is the concentration in the external flow, which must be specified at injection wells (q > 0), and 
is assumed to be equal to c at production wells (q < 0). The diffusion coefficient D is a 2 × 2 symmetric matrix, and it has 
the form

D (u) = φ(x, y)(dmolI+ dlong |u|E+ dtran |u|E⊥), (1.8)

where E(u) = uuT

|u|2 is a 2 × 2 tensor representing the orthogonal projection along the velocity vector, and E⊥ = I − E is the 
orthogonal complement. dmol is the molecular diffusion coefficient. dlong and dtran show the longitudinal and transverse 
dispersion coefficients, respectively. In this paper, we assume D to be positive semidefinite. Therefore, we have D11 ≥
0, D22 ≥ 0 and D12 = D21. Other coefficients can be stated as follows:

c = c1 = 1− c2, d(c) = φ

2∑
j=1

z jc j, b(c) = φc1

⎧⎨⎩z1 −
2∑

j=1

z jc j

⎫⎬⎭ ,

where c j and z j are the concentration and the compressibility factor of the jth component of the fluid mixture, respectively. 
In this paper, we consider homogeneous Neumann boundary conditions

u · n = 0, (D(u)∇c − cu) · n = 0,

where n is the unit outer normal of the boundary ∂�. Moreover, the initial solutions are given as

c(x, y,0) = c0(x, y), p(x, y,0) = p0(x, y), (x, y) ∈ �.

There are several works discussing numerical methods for miscible displacements and the Darcy-Forchheimer models, 
such as mixed element method [13,27,28], finite difference method [23,30–32], discontinuous Galerkin method (DG) [16,19,
2
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38]. In many actual problems of miscible displacements, physical parameters are closely related to the concentration c. Some 
of the parameters are given by lab experiments and curve fits. If c is placed out of the interval [0, 1], we might not obtain 
the parameters used in the system, and the numerical approximations will blow up, especially for problems with large 
gradients. In [18], Guo and Yang first proposed the bound-preserving DG methods for the two-component compressible 
miscible displacements. The basic idea is as follows. (1) Enforce c1 + c2 = 1 by choosing consistent numerical fluxes (see 
Definition 3.1) in the schemes of the pressure and concentration equations. (2) Subtract the concentration scheme from the 
pressure one to obtain the scheme of the second component concentration. (3) Apply the positivity-preserving techniques 
that proposed in [45,46] to both c1 and c2, respectively. The authors [18] theoretically proved the bound-preserving property 
of numerical cell averages. Then a slope limiter was applied to correct the numerical approximation to be within the 
interval [0, 1]. Later, Chuenjarern et al. [9] proposed high-order bound-preserving DG methods on triangular meshes for 
multi-component miscible displacements, Feng et al. also extended the idea to simulate flows in fractured porous media 
[15]. The bound-preserving finite difference methods were also discussed in [17].

Unfortunately, most of the time discretizations in the above works are based on explicit methods, such as strong-stability-
preserving Runge-Kutta (SSP-RK) time methods [35,36,14], resulting in small time step sizes and large computational cost. 
Therefore, the above works can hardly be applied in practice. The main issue is due to the heterogeneity of the media, 
see e.g. [42,43,12]. In fact, in some part of the media, the permeability would be extremely high, leading to large diffusion 
coefficients in the pressure equation. Therefore, a straightforward alternative is to consider implicit forms of the pressure 
equation. Although the fully implicit scheme [24,48] has unconditional stability, such methods require a lot of computational 
resources in each time step since the system is fully coupled. Compared with the fully explicit methods and fully implicit 
methods, the IMplicit Pressure Explicit Concentration (IMPEC) [25,20,7,5,47] scheme has been a popular choice to simulate 
compressible flows in porous media. The basic idea is to treat the pressure equation implicitly, and update the concentration 
equation explicitly. This method can decouple the system and solves the equations in the system sequentially with mild 
time step size restrictions from the concentration equation. Hence it is straightforward to set up, efficient to implement, 
and occupies less computer memory per time step. Sheldon et al. [34] and Stone et al. [37] first proposed the IMPEC 
method. Later, it was widely applied to solve multi-phase flow problems, where it is called the IMplicit Pressure Explicit 
Saturation (IMPES) method [6,21,22,44]. In [3,4], the authors developed a fully mass-conservative IMPES scheme, and the 
saturation of each phase was proved to be bound-preserving if the time step size is smaller than a certain value. The fully 
mass-conservative iterative IMPEC method [2] was also proposed for multi-component compressible flow in porous media. 
However, above IMPEC methods have only first-order time accuracy. It is difficult to construct second-order IMPEC time 
method that is compatible with the bound-preserving techniques.

In [10], we first constructed a second-order IMPEC (SIPEC) time method for Darcy compressible miscible displacements. 
The basic idea is divided into three steps. (1) Based on the SSP-RK2 method, we treat the pressure equation implicitly and 
the concentration equation explicitly so as to obtain a first-order time scheme. (2) Derive the local truncation error of the 
above first-order scheme. (3) Following [8], a correction stage is introduced to compensate for the second-order accuracy of 
the above scheme, and maintain the bound-preserving property of the numerical cell averages in the meantime. However, 
the SIPEC method in [10] is only applicable to linear equations, i.e. β = 0.

In this paper, we extend the idea to non-Darcy models, especially Darcy-Forchheimer models, which is widely used in 
petroleum engineering. We will develop an improved sign-preserving SIPEC time method and use interior penalty discontin-
uous Galerkin (IPDG) method [29] for spatial discretization, and then apply bound-preserving techniques to obtain physically 
relevant numerical approximations. The improved sign-preserving SIPEC time method for non-Darcy flows is an important 
innovation. We emphasize that there are significant differences from [10] in the construction of the SIPEC scheme. In [10], 
the velocity equation is linear, so we can substitute the velocity equation into the pressure equation, and we only need 
to consider the time level of pressure. However, in this paper, since (1.2) is a nonlinear time-independent equation, we 
have to deal with the time level of velocity carefully to achieve second-order accuracy, which requires that all variables in 
the velocity equation must be calculated at the same time level. If we follow [10], there are two possible ways to achieve 
second-order time accuracy for solving the non-Darcy models. The first idea is to couple pressure equation and velocity 
equation to be solved iteratively, yet we cannot guarantee the convergence of the iteration. Moreover, the iterative pro-
cess will lead to large CPU time, and the proposed SIPEC method may not save CPU time compared with the fully explicit 
methods. The second idea is to linearize the velocity equation, avoiding iterations. However, such treatment results in the 
degeneration of accuracy, so additional correction stages are required at each stage in the Runge-Kutta method, and the 
algorithm is quite complicated and CPU time is still large. Though the second-order accuracy of the above two ideas can be 
maintained, the proposed schemes are not applicable in practice and major revisions of the well-developed programmers
based the IMPEC methods are necessary. Therefore, we adopt a completely different idea from [10] to construct a new sign-
preserving SIPEC time scheme so as to reduce computational cost and only a minor revision is needed in the traditional 
IMPEC method to achieve second-order accuracy.

There are two main difficulties in constructing the proposed schemes. Firstly, since the velocity equation is nonlinear and 
time-independent, variables p, u and c must be treated at the same time level, otherwise the accuracy will be degenerated 
to 1. In our scheme, to avoid the iterations whose convergence cannot be guaranteed theoretically, we use linearization, 
where nonlinear terms are processed in different time levels, and a first-order one-step error in velocity is generated. 
Therefore, the proof of the new correction stage turns out to be more complicated. Secondly, it is not easy to solve the 
nonlinear equations. According to the characteristics of equation (1.5), we construct a direct solver, whose computational 
3
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cost is negligible compared with the IMPEC procedure, instead of iterated methods. The improved sign-preserving SIPEC 
time method is more widely applicable, not only to linear equations, but also to general nonlinear and time-independent 
equations. The implementation of the improved sign-preserving SIPEC method is also straightforward. The whole algorithm 
is simply to apply the traditional IMPEC procedure four times, with a direct solver of the nonlinear equation after the 
first procedure and a linear combination in the end of each time step. Numerical experiments demonstrate that the time 
step size used in the improved SIPEC method can be much larger than that in the IMPEC method, especially for problems 
with discontinuities or large gradients. This is because we use the second-order IPDG method coupled with the first-order 
forward Euler time scheme for the concentration equation in the IMPEC method, leading to instability if �t ∼ �x and such 
instability can easily be triggered for problems with singularities. Therefore, the improved SIPEC method costs compatible 
and even less CPU time than the IMPEC method. Moreover, the bound-preserving technique for the improved SIPEC time 
integration is different from that for the fully explicit methods in [18,9], and we need to do some special treatment. In 
the concentration equation, we treat the velocity and pressure in the convection and source terms implicitly while those 
in the diffusion term explicitly so as to avoid the correction of the diffusion term, otherwise it will cause anti-diffusion 
and the bound-preserving techniques fail to work. In the correction stage, the pressure scheme has similar form to the 
concentration scheme to ensure that the bound-preserving technique is applicable. In numerical experiments, we compare 
the improved sign-preserving SIPEC time method with the SSP-RK2 method and the first-order IMPEC method. The results 
show that the CPU time by the SIPEC method is significantly less than that by the SSP-RK2 method. Moreover, we can 
observe strong oscillations by using the first-order IMPEC method if the time step is large, while the oscillations disappear 
for the SIPEC method. For stability issue, we only consider second-order spatial discretization, since the time integration 
is developed from the SSP-RK2 method. The case with high-order spatial discretizations will be considered in the future. 
Finally, we point out that if the diffusion coefficient D is small, the sign-preserving second-order IMPEC method presents a 
significant advantage compared with the SSP-RK2 scheme in computational cost. However, if D is large, the advantage may 
not be significant.

The rest of the paper is organized as follows. In Section 2, we propose an improved sign-preserving SIPEC time 
method for general non-Darcy flows. In Section 3, we give some notations, construct fully-discrete IPDG schemes for 
Darcy-Forchheimer compressible miscible displacements, and consider a direct method for solving nonlinear equations. The 
bound-preserving techniques will be discussed in Section 4. In Section 5, some numerical experiments are presented. We 
will end in Section 6 with concluding remarks.

2. The sign-preserving SIPEC time integration

In this section, we will construct a sign-preserving SIPEC time integration for compressible miscible displacements with 
non-Darcy models. The method is derived from the SSP-RK2 method with pressure equation solving implicitly followed by 
a correction stage. More generally, we consider the following ordinary differential equations:

pt = f1(u, r,q), (2.1)

u = f2(p, r,u), (2.2)

rt = g1(u, r,b) + g2(u, r), (2.3)

where the dependent variables are p, u and r, corresponding to pressure, velocity and concentration, respectively. It should 
be noted that if spatial variables are taken into account, r(x, y, t) = φ(x, y)c(x, y, t), so we use the notation r instead of 
c here, mainly in order to apply the bound-preserving technique in Section 4. q and b are given variables in the source 
terms. g1(u, r, b) stands for the convection and the source terms in the concentration equation while g2(u, r) represents 
the diffusion term. If (2.2) is a linear equation, then we can solve for u and substitute which into (2.1). Then the SIPEC 
method introduced in [10] can be applied. Unfortunately, if (2.2) is not linear in u, the idea given in [10] may not lead to 
less computational cost.

Let {tn = n�t}Mn=0 be a uniform partition of the time interval [0, T ] with time step �t such that M�t = T . However, 
such an assumption of uniform partition is not essential. We use on and o(tn) (o = p, u or r) as the numerical and exact 
solutions for (2.1)-(2.3) at tn , respectively. For n = 0, p0 and r0 are L2-projections of p(t0) and r(t0), respectively, and u0

can be obtained by solving

u0 = f2(p
0, r0,u0), (2.4)

where some iteration methods may be necessary in general. We will discuss an easier way to find u0 in the next section 
without iteration for the Darcy-Forchheimer model.

Given the numerical solutions pn , un and rn with n ≥ 0, we discuss how to find pn+1, un+1 and rn+1. The traditional 
sign-preserving IMPEC method, namely IMPEC-SP method, gives

pn+1 = pn + �t f1(u
n+1, rn,qn), un+1 = f2(p

n+1, rn,un), (2.5)

rn+1 = rn + �t
(
g1(u

n+1, rn,bn) + g2(u
n, rn)

)
. (2.6)
4
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Unfortunately, the above scheme is only first-order accurate. We will construct second-order ones. For simplicity, in the rest 
of this section, the error we will discuss is one step error and the accuracy is the global one unless otherwise stated. For 
example, the forward Euler time integration has error O (�t2) in one step and the accuracy is 1. Following [10] with some 
minor changes, we can get a SIPEC scheme, namely SIPEC-C method, whose detailed proof is omitted:

p(1) = pn + �t f1(u
(1), rn,qn), u(1) = f2(p

(1), rn,un), (2.7)

r(1) = rn + �t
(
g1(u

(1), rn,bn) + g2(u
n, rn)

)
, (2.8)

ǔ(1) = f2(p
(1), r(1), ǔ(1)), (2.9)

p̌(1) = pn + �t f1( ˇ̌u(1), rn,qn), ˇ̌u(1) = f2(p̌
(1), r(1), ǔ(1)), (2.10)

ř(1) = rn + �t
(
g1( ˇ̌u(1), rn,bn) + g2(u

n, rn)
)

, (2.11)

p(2) = p(1) + �t f1(u
(2), r(1),qn+1), u(2) = f2(p

(2), r(1),u(1)), (2.12)

r(2) = r(1) + �t
(
g1(u

(2), r(1),bn+1) + g2(ǔ
(1), r(1))

)
, (2.13)

ǔ(2) = f2(p
(2), r(2), ǔ(2)), (2.14)

p̌(2) = p̌(1) + �t f1( ˇ̌u(2), ř(1),qn+1), ˇ̌u(2) = f2(p̌
(2), r(2), ǔ(2)), (2.15)

ř(2) = ř(1) + �t
(
g1( ˇ̌u(2), ř(1),bn+1) + g2(ǔ

(1), ř(1))
)

, (2.16)

p(3) = 1

2
pn + 1

2
p̌(2), (2.17)

r(3) = 1

2
rn + 1

2
ř(2), (2.18)

as well as the correction stage

pcor,1 = pn + �t f1(u
cor,1, r(3),qn+1), ucor,1 = f2(p

cor,1, r(1), ǔ(1)), (2.19)

pcor,2 = p̌(1) + �t f1(u
cor,2, r(3),qn+1), ucor,2 = f2(p

cor,2, r(2), ǔ(2)), (2.20)

pn+1 = p(3) + �t
(
f1(u

cor,1, r(3),qn+1) − f1(u
cor,2, r(3),qn+1)

)
= p(3) + p̌(1) − pcor,2 + pcor,1 − pn, (2.21)

rn+1 = r(3) + �t
(
g1(u

cor,1, r(3),bn+1) − g1(u
cor,2, r(3),bn+1)

)
, (2.22)

un+1 = f2(p
n+1, rn+1,un+1), (2.23)

where qn+1 = q(tn+1) and bn+1 = b(tn+1). (2.1) and (2.2) are solved implicitly while (2.3) is solved explicitly in the above 
scheme. Note that the velocity equation (2.2) has been linearized in (2.7) and (2.12), which may degenerate the accuracy of 
u(1) and u(2) , i.e. u(1) = u(tn+1) + O (�t) and u(2) = u(tn+2) + O (�t). To fix this problem, we construct ǔ(1) , ǔ(2) , ˇ̌u(1) and 
ˇ̌u(2) such that ǔ(1) = u(tn+1) + O (�t2), ǔ(2) = u(tn+2) + O (�t2), ˇ̌u(1) = u(tn+1) + O (�t2) and ˇ̌u(2) = u(tn+2) + O (�t2). By 
the same analysis given above, we construct the correction stage (2.19) and (2.20) by using ǔ(1) and ǔ(2) . Moreover, we need 
to solve the nonlinear equations (2.9), (2.14) and (2.23), which will be discussed in the next section for Darcy-Forchheimer 
models. By the SIPEC-C scheme (2.7)-(2.23), we have pn+1 = p(tn+1) + O (�t3), un+1 = u(tn+1) + O (�t3), rn+1 = r(tn+1) +
O (�t3).

The detailed theoretical analysis of the above scheme can be found in [10] with some minor changes. Hence we omit 
it. However, the computational cost of the above scheme would be extremely large, since algorithm is too complicated and 
we need to update p and r six times. We can also confirm this point in numerical experiments. We still hope to find an 
improved sign-preserving second-order IMPEC method, namely SIPEC-S method, to save computational cost, and the new 
algorithm is given as follows.

p(1) = pn + �t f1(u
(1), rn,qn), u(1) = f2(p

(1), rn,un), (2.24)

r(1) = rn + �t
(
g1(u

(1), rn,bn) + g2(u
n, rn)

)
, (2.25)

ǔ(1) = f2(p
(1), r(1), ǔ(1)), (2.26)

p(2) = p(1) + �t f1(u
(2), r(1),qn+1), u(2) = f2(p

(2), r(1),u(1)), (2.27)

r(2) = r(1) + �t
(
g1(u

(2), r(1),bn+1) + g2(ǔ
(1), r(1))

)
, (2.28)
5
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p(3) = 1

2
pn + 1

2
p(2), (2.29)

r(3) = 1

2
rn + 1

2
r(2), (2.30)

and correction stage

pcor,1 = pn + �t f1(u
cor,1, r(3),qn+1), ucor,1 = f2(p

cor,1, r(3), ǔ(1)), (2.31)

pcor,2 = p(2) + �t f1(u
cor,2, r(3),qn+1), ucor,2 = f2(p

cor,2, r(3),u(1)), (2.32)

pn+1 = p(3) + 1

2
�t
(
f1(u

cor,1, r(3),qn+1) − f1(u
cor,2, r(3),qn+1)

)
= p(3) + 1

2
(p(2) − pcor,2 + pcor,1 − pn), (2.33)

rn+1 = r(3) + 1

2
�t
(
g1(u

cor,1, r(3),bn+1) − g1(u
cor,2, r(3),bn+1)

)
, (2.34)

un+1 = f2(p
n+1, rn+1,un+1). (2.35)

Different from SIPEC-C scheme, although accuracy of u(1) and u(2) degenerates, we do not make further processing in 
schemes (2.24)-(2.30). Instead, we directly construct a new correction stage (2.31)-(2.35) to guarantee the second-order 
accuracy of pn+1, rn+1 and un+1. The above algorithm is much easier than the SIPEC-C method, as we only need to update 
p and u four time, and the complexity is the same as that given in [10].

Now, we can state the following theorem.

Theorem 2.1. The SIPEC-S scheme (2.24)-(2.35) is second-order accurate in time.

Proof. Let’s start with the traditional SSP-RK2 method [36].

p̃(1) = pn + �t f1(u
n, rn,qn), (2.36)

r̃(1) = rn + �t
(
g1(u

n, rn,bn) + g2(u
n, rn)

)
, (2.37)

ũ(1) = f2(p̃
(1), r̃(1), ũ(1)), (2.38)

p̃(2) = p̃(1) + �t f1(ũ
(1), r̃(1),qn+1), (2.39)

r̃(2) = r̃(1) + �t
(
g1(ũ

(1), r̃(1),bn+1) + g2(ũ
(1), r̃(1))

)
, (2.40)

p̃n+1 = 1

2
pn + 1

2
p̃(2), (2.41)

r̃n+1 = 1

2
rn + 1

2
r̃(2), (2.42)

ũn+1 = f2(p̃
n+1, r̃n+1, ũn+1). (2.43)

By the SSP-RK2 scheme, we have p̃n+1 = p(tn+1) + O (�t3), ũn+1 = u(tn+1) + O (�t3) and r̃n+1 = r(tn+1) + O (�t3) after one 
step.

Next, we derive the relationship between SIPEC-S and SSP-RK2 schemes. We first obtain

p(1) = p̃(1) − �t f1(u
n, rn,qn) + �t f1(u

(1), rn,qn) (2.44)

by (2.24) and (2.36). It’s easy to see that p(1) = p(tn+1) + O (�t2). We use (2.27), (2.39) and (2.44) to get

p(2) = p̃(2) + �t
(
f1(u

(2), r(1),qn+1) + f1(u
(1), rn,qn) − f1(u

n, rn,qn) − f1(ũ
(1), r̃(1),qn+1)

)
. (2.45)

Using (2.29), (2.41) and (2.45), we have

p̃n+1 = p(3) + 1

2
�tR1 = p(tn+1) + O (�t3), (2.46)

where

R1 = f1(u
n, rn,qn) + f1(ũ

(1), r̃(1),qn+1) − f1(u
(2), r(1),qn+1) − f1(u

(1), rn,qn).

Similarly, it’s easy to obtain

r̃n+1 = r(3) + 1
�tR2 = r(tn+1) + O (�t3), (2.47)
2

6
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where

R2 = g1(u
n, rn,qn) + g1(ũ

(1), r̃(1),bn+1) − g1(u
(2), r(1),bn+1) − g1(u

(1), rn,bn) + g2(ũ
(1), r̃(1)) − g2(ǔ

(1), r(1)).

Next, let us deal with R1 and R2. We can substitute the expressions of u(1) , u(2) and ũ(1) into R1 to get that

R1 = f1
(
f2(p

n, rn,un), rn,qn
)

− f1
(
f2(p

(1), rn,un), rn,qn
)

+ f1
(
f2(p̃

(1), r̃(1), ũ(1)), r̃(1),qn+1
)

− f1
(
f2(p

(2), r(1),u(1)), r(1),qn+1
)

= f1
(
f2
(
p(tn), r(tn),u(tn)

)
, r(tn),qn

)
− f1

(
f2
(
p(tn+1), r(tn),u(tn)

)
, r(tn),qn

)
+ O (�t2)

+ f1
(
f2
(
p(tn+1), r(tn+1),u(tn+1)

)
, r(tn+1),qn+1

)
− f1

(
f2
(
p(tn+2), r(tn+1),u(1)), r(tn+1),qn+1

)
:=R11 − R12 + R13 − R14 + O (�t2).

Here we have used the fact that p(1), p̃(1), r̃(1), ũ(1), p(2), r(1) are locally second-order approximations (globally first-
order accurate) of the exact solutions at the corresponding time levels since we only march one step in time. Notice 
that u(1) = u(tn+1) + O (�t), so we leave it here for the moment. Then, with Taylor’s expansion, R11 and R12 are further 
transformed into

R11 := f1
(
f2
(
p(tn), r(tn),u(tn)

)
, r(tn),qn

)
= f1

(
f2
(
p(tn), r(tn),u(tn)

)
, r(tn+1),qn+1

)
− Frrt(t

n+1)�t − Fqqt(t
n+1)�t + O (�t2),

(2.48)

and

R12 := f1
(
f2
(
p(tn+1), r(tn),u(tn)

)
, r(tn),qn

)
= f1

(
f2
(
p(tn+1), r(tn),u(tn)

)
, r(tn+1),qn+1

)
− f1r

(
f2
(
p(tn+1), r(tn),u(tn)

)
, r(tn+1),qn+1

)
rt(t

n+1)�t

− f1q
(
f2
(
p(tn+1), r(tn),u(tn)

)
, r(tn+1),qn+1

)
qt(t

n+1)�t + O (�t2),

(2.49)

where

Fr := f1r
(
f2
(
p(tn), r(tn),u(tn)

)
, r(tn+1),qn+1

)
= f1r

(
f2
(
p(tn+1), r(tn),u(tn)

)
, r(tn+1),qn+1

)
+ O (�t),

(2.50)

and

Fq := f1q
(
f2
(
p(tn), r(tn),u(tn)

)
, r(tn+1),qn+1

)
= f1q

(
f2
(
p(tn+1), r(tn),u(tn)

)
, r(tn+1),qn+1

)
+ O (�t).

(2.51)

Therefore, we have

R11 − R12 = f1
(
f2
(
p(tn), r(tn),u(tn)

)
, r(tn+1),qn+1

)
− f1

(
f2
(
p(tn+1), r(tn),u(tn)

)
, r(tn+1),qn+1

)
+ O (�t2)

= f1

(
f2
(
p(tn), r(tn+1),u(tn+1)

)
, r(tn+1),qn+1

)
− f1

(
f2
(
p(tn+1), r(tn+1),u(tn+1)

)
, r(tn+1),qn+1

)
+ O (�t2),

(2.52)
7
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where in the second step we used Taylor’s expansion similar to (2.48)-(2.51). Now we proceed to consider R14. We have

R14 = f1
(
f2
(
p(tn+2), r(tn+1),u(1)), r(tn+1),qn+1

)
= f1

(
f2
(
p(tn+2), r(tn+1), f2

(
p(tn+1), r(tn),u(tn)

))
, r(tn+1),qn+1

)
+ O (�t2),

(2.53)

where in the last step, we used the fact that u(1) = f2(p(1), rn, un) = f2(p(tn+1), r(tn), u(tn)) + O (�t2). Combining (2.52)
and (2.53), R1 is rewritten as

R1 = f1

(
f2
(
p(tn), r(tn+1), f2

(
p(tn+1), r(tn+1),u(tn+1)

))
, r(tn+1),qn+1

)
− f1

(
f2
(
p(tn+2), r(tn+1), f2

(
p(tn+1), r(tn),u(tn)

))
, r(tn+1),qn+1

)
+ O (�t2)

= f1

(
f2
(
p(tn+1), r(tn+1), f2

(
p(tn+1), r(tn+1),u(tn+1)

))
, r(tn+1),qn+1

)
− f1

(
f2
(
p(tn+3), r(tn+1), f2

(
p(tn+1), r(tn),u(tn)

))
, r(tn+1),qn+1

)
+ O (�t2)

= f1
(
f2
(
p(tn+1), r(tn+1),u(tn+1)

)
, r(tn+1),qn+1

)
− f1

(
f2
(
p(tn+3), r(tn+1),u(1)), r(tn+1),qn+1

)
+ O (�t2),

(2.54)

where in the second step, we once again used Taylor’s expansion similar to (2.48)-(2.52). Similarly, R2 can be written as

R2 =g1
(
f2
(
p(tn+1), r(tn+1),u(tn+1)

)
, r(tn+1),bn+1

)
− g1

(
f2
(
p(tn+3), r(tn+1),u(1)), r(tn+1),bn+1

)
+ O (�t2).

(2.55)

Notice that the g2 term disappears in (2.55) because g2(ũ(1), ̃r(1)) − g2(ǔ(1), r(1)) = O (�t2).
Substituting (2.54), (2.55) into (2.46) and (2.47) respectively, we can obtain that

p(tn+1) =p(3) + 1

2
�t f1

(
f2
(
p(tn+1), r(tn+1),u(tn+1)

)
, r(tn+1),qn+1

)
− 1

2
�t f1

(
f2
(
p(tn+3), r(tn+1),u(1)), r(tn+1),qn+1

)
+ O (�t3),

and

r(tn+1) =r(3) + 1

2
�t g1

(
f2
(
p(tn+1), r(tn+1),u(tn+1)

)
, r(tn+1),bn+1

)
− 1

2
�t g1

(
f2
(
p(tn+3), r(tn+1),u(1)), r(tn+1),bn+1

)
+ O (�t3).

By the correction stage (2.31) and (2.32), we construct pcor,1, ucor,1, pcor,2 and ucor,2, which are locally second-order ap-
proximations of the exact solutions at the corresponding time levels. So we can conclude that pn+1 = p(tn+1) + O (�t3), 
un+1 = u(tn+1) + O (�t3) and rn+1 = r(tn+1) + O (�t3) in (2.33), (2.34) and (2.35). �
Remark 2.1. In proof of the Theorem 2.1, we can find that the construction of correction stage (2.31)-(2.35) is completely 
different from the correction stage in [10]. This is mainly because the velocity equation (2.2) is nonlinear and time-
independent. After calculating p(3) and r(3) by schemes (2.24)-(2.30), the second-order accuracy of pn+1, rn+1 and un+1

cannot be guaranteed if we use the correction stage in [10]. Moreover, the second step is necessary in (2.54), otherwise 
we need to use pn−1 to construct the correction stage, and this multi-step scheme is not what we want. In the correction 
stage, r(tn+1) must be approximated by r(3) , ensuring that the bound-preserving technique can be applied. Finally, (2.33)
and (2.34) are similar, though written in different forms.

Remark 2.2. It seems to be impossible to extend the proposed algorithm to construct third-order sign-preserving IMPEC 
method. Actually, to obtain third-order accuracy, we need to correct g2, the diffusion term, leading to anti-diffusion, and the 
8
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Table 1
Comparison the four time integrations.

Method Update p and r Nonlinear solver Global accuracy

SSP-RK2 2 2 2

IMPEC-SP 1 0 1

SIPEC-C 6 3 2

SIPEC-S 4 2 2

bound-preserving technique may fail to work. Though for problems with g2 = 0, this issue disappears, the correction stage 
is still too difficult to construct.

Remark 2.3. As a summary, we explain the main ideas of the SIPEC-C method in (2.7)-(2.23) and the SIPEC-S method 
in (2.24)-(2.35). For the SIPEC-C method, we first treat the pressure equation implicitly and the concentration equation 
explicitly based on the framework of the SSP-RK2 method, so we construct (2.7), (2.8), (2.12) and (2.13). However, due to 
the linearization of the velocity equation, the velocity accuracy decreases. To fix this problem, we construct ǔ(1) , ǔ(2) to 
update the pressure p and concentration r in (2.10), (2.11), (2.15) and (2.16), and we obtain first-order accurate in time. By 
comparing the scheme (2.7)-(2.18) with the traditional SSP-RK2 scheme (2.36)-(2.43), the truncation error between them 
is obtained. And we introduce a correction stage (2.19)-(2.23) to compensate for the second-order accuracy, maintaining 
the bound-preserving property of the numerical cell averages in the meantime. For SIPEC-S method, although the velocity 
accuracy decreases, we do not adjust it immediately. We derive the truncation error between scheme (2.24)-(2.30) and 
SSP-RK2 scheme directly, as shown in (2.46) and (2.47). By further derivation for truncation error, we get (2.54) and (2.55), 
therefore a new correction stage (2.31) -(2.35) is constructed. Compared with the SIPEC-C method, the SIPEC-S method has 
fewer number of stages and nonlinear solvers.

We compare the IMPEC-SP, SSP-RK2, SIPEC-C, SIPEC-S methods in Table 1 where the second and third columns give 
how many times we need to update p and r, and apply the nonlinear solver for (2.2), respectively. From the table, we 
can see that though IMPEC-SP has the least complexity, its accuracy is only one. Numerical experiments in Section 5 will 
demonstrate that the IMPEC-SP method requires a much smaller CFL number than the SIPEC-S method, otherwise, the 
IMPEC-SP method is not stable. Similar argument also works for SSP-RK2 method, which suffers from extremely limited 
time step sizes. Moreover, we would like to mention that the two correction stages in SIPEC-S scheme, see (2.31) and (2.32), 
and parallelizable leading to even smaller computational cost.

Finally, we summarize the SIPEC-S scheme in the following flow chart, where a typical IMPEC algorithm is given as 
(2.27)-(2.28):

pn,un, rn

{p(1),u(1), r(1)} = IMPEC(pn,un, rn,un)

ǔ(1)

{p(2),u(2), r(2)} = IMPEC(p(1),u(1), r(1), ǔ(1))

p(3), r(3)

{pcor,1,ucor,1} = IMPEC(pn, ǔ(1), r(3), ǔ(1)) {pcor,2,ucor,2} = IMPEC(p(2),u(1), r(3),u(1))

pn+1, rn+1

un+1

direct solver

linear combination

linear combination linear combination

direct solver
9
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Note that by the last two IMPEC schemes, we can obtain

rcor,1 = rn + �tg1(u
cor,1, r(3),bn+1),

rcor,2 = r(2) + �tg1(u
cor,2, r(3),bn+1),

rn+1 = r(3) + 1

2
(r(2) − rcor,2 + rcor,1 − rn),

which is exactly the same as equation (2.34), and we just abbreviate these stages in the SIPEC-S scheme.
Next, we introduce sign-preserving definition of general ODE system (2.1)-(2.3).

Definition 2.1. When 0 ≤ rn ≤ 	, if 0 ≤ rn+1 ≤ 	, the time discretization method of the ODE system (2.1)-(2.3) is said to be 
sign-preserving, where 	 is a constant.

To illustrate the sign-preserving property of the SIPEC-S method, we make the following assumptions for the ODE equa-
tions (2.1)-(2.3).

1. If r∗1 ≥ 0, then we have θ1 r∗1 + θ2 �t g1(u∗2, r∗1, b∗1) ≥ 0, (1 − θ1) r∗1 + θ2 �t g2(u∗3, r∗1) ≥ 0, where θ1, θ2 are two 
positive constants, and 0 ≤ θ1 ≤ 1.

2. If ⎧⎨⎩p∗1 = p∗2 + �t f1(u
∗3, r∗2,q∗2),

r∗1 = r∗2 + �t
(
g1(u

∗3, r∗2,b∗2) + g2(u
∗4, r∗2)

)
,

(2.56)

then we can get r∗12 = r∗22 + �t
(
g1(u∗3, r∗22 ,b∗2) + g2(u∗4, r∗22 )

)
, where r2 = 	 − r.

3. There exists ũ such that g1(u∗2, r∗1, b∗1) − g1(u∗3, r∗1, b∗1) = g1(ũ, r∗1, b∗1), f1(u∗2, r∗1, q∗1) − f1(u∗3, r∗1, q∗1) =
f1(ũ, r∗1, q∗1).

Here variables such as p∗1, r∗2, u∗2 represent the corresponding function values at any stage. Assumption 2 requires p and 
r on the right side of the equation (2.56) to be in the same stage, and the variable u in the functions f1 and g1 must be in 
the same stage. Based on the above assumptions, we state the following theorem.

Theorem 2.2. The SIPEC-S scheme (2.24)-(2.35) is sign-preserving.

Proof. Let’s assume that 0 ≤ rn ≤ 	. Firstly, by (2.25) and assumption 1, we get

r(1) = θ rn + �t g1(u
(1), rn,bn) + (1 − θ) rn + �t g2(u

n, rn) ≥ 0.

And using (2.24), (2.25) and assumption 2, we obtain

r(1)2 = rn2 + �t
(
g1(u

(1), rn2,b
n) + g2(u

n, rn2)
)

≥ 0

where r(1)2 = 	 − r(1) . Therefore, 0 ≤ r(1) ≤ 	. Similarly, we have 0 ≤ r(2) ≤ 	 and 0 ≤ r(3) ≤ 	. In correction stage, we can 
find

rn+1 = r(3) + 1

2
�t g1(ũ

cor, r(3),bn+1),

pn+1 = p(3) + 1

2
�t f1(ũ

cor, r(3),qn+1),

by assumption 3, so 0 ≤ rn+1 ≤ 	 by similar analysis. �
It should be noted that we only consider time discretization for Definition 2.1 and Theorem 2.2, and if spatial dis-

cretization is also considered, it is called bound-preserving technique. We need to do the analysis in two steps. (1) When 
0 ≤ rn(x, y) ≤ 	(x, y), we can prove 0 ≤ r̄n+1 ≤ 	̄, where r̄, 	̄ cell average of r, 	, respectively. (2) By using a slope limiter, 
we can obtain 0 ≤ rn+1(x, y) ≤ 	(x, y), and the slope limiter does not change the numerical cell averages. Moreover, as-
sumptions 1 and 2 can be proved to be valid by using some spatial techniques such as consistent fluxes (see Definition 3.1), 
and assumption 3 is natural for equation (1.1)-(1.3). The above sign-preserving analysis is abstract, please refer to Section 4
for more details.
10
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3. The fully-discrete IPDG schemes

In this section, we introduce the notations used throughout the paper and construct fully-discrete IPDG scheme for 
Darcy-Forchheimer compressible miscible displacements (1.1), (1.5) and (1.3).

3.1. Basic notations

For simplicity, we only consider rectangular meshes, and the techniques for triangular meshes can be obtained following 
[9]. Let � = [0, 2π ] × [0, 2π ] be the computational domain and define the grid points as

0 = x 1
2

< x 3
2

< · · · < xNx− 1
2

< xNx+ 1
2

= 2π,

0 = y 1
2

< y 3
2

< · · · < yNy− 1
2

< yNy+ 1
2

= 2π.

Define Ii = (xi− 1
2
, xi+ 1

2
) and J j = (y j− 1

2
, y j+ 1

2
). Let

Kij = Ii × J j, i = 1, . . . ,Nx, j = 1, . . . ,Ny

be the i, j-th rectangular cell. Denote �h = ∪
i, j

Ki j as a partition of �. If not otherwise stated, we always use K as the cell. 

The grid sizes in the x and y directions are given as

�xi = xi+ 1
2

− xi− 1
2
, �y j = y j+ 1

2
− y j− 1

2
.

For simplicity, we assume uniform partition and denote �x = �xi, �y = �y j . However, this assumption is not essential. 
Moreover, we denote � as the set of all element interfaces and �0 = �\∂�. ∀e ∈ �, |e| is the length of e. We choose 
β = (1, 1)T to be a fixed vector that is not parallel to any normals of the cell interfaces. ne is the unit normal of e ∈ �0 such 
that β · ne > 0. Furthermore, we define

∂�+ = {e ∈ ∂� : β · n > 0}, ∂�− = ∂�\∂�+,

where n is the unit outer normal of ∂�. Following [10], we will develop a second-order IPDG scheme, and the finite element 
space is chosen as

Wh = {z : z|K ∈ Q 1(K ), ∀K ∈ �h},
where Q 1(K ) denotes the tensor product space of linear polynomials in cell K . Moreover, given e ∈ �0, it is shared by two 
elements K
 and Kr , where β · n
 > 0 and β · nr < 0, with n
 and nr being the unit outer normal of K
 and Kr . ∀z ∈ Wh , 
we define z− = z|∂Kl and z+ = z|∂Kr . And we use

[z] = z+ − z−, {z} = 1

2
(z+ + z−)

as the jump and average of z at the cell interfaces, respectively. For s ∈ Wh = Wh × Wh , we define [s] and {s} analogously.

3.2. The fully-discrete IPDG schemes

We first rewrite (1.3) into the conservative form:

φ
∂c

∂t
+ ∇ · (uc) − ∇ · (D(u)∇c) = c̃q − φcz1pt . (3.1)

Following [18], we state the following key points for the bound-preserving technique.

1. Approximate r = φc instead of c. We take the test function to be 1 to obtain the cell average of r.
2. pt is used as a source to apply the positivity-preserving technique in (3.1).
3. Choose a consistent flux pair (see Definition 3.1) for equations (1.1) and (3.1) to ensure that the cell averages of r are 

less than or equal to the cell averages of φ.
4. Project the porosity φ into the finite element space, denoted as 	.
5. Construct a slope limiter to keep the cell average r̄ and modify the numerical approximations of r such that 0 ≤ r ≤ 	. 

Then we compute c = P
( r ) ∈ [0, 1], where P (u) |K is the interpolation of u at the four vertices of cell K .
	

11
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If not otherwise stated, we use p, u, c as the numerical approximations from now on. The IPDG scheme for (1.1), (1.5)
and (3.1) is to find p, r ∈ Wh , u ∈ Wh such that for any ξ, ζ ∈ Wh and η ∈ Wh ,

(d̃(r)pt, ξ) = P(u, ξ) + (q, ξ), (3.2)

(a(c)u,η) + (βρ(c)|u|u,η) = K(p,η), (3.3)

(rt, ζ ) = Lc(u, c, ζ ) +Ld(u, c, ζ ) + (c̃q − rz1pt, ζ ), (3.4)

where c = P
( r

	

)
, d̃(r) = z1r + z2(	 − r), a(c) = μ(c)

κ , (u, v) = ∫
�
uvdxdy, and

P(u, ξ) = (u,∇ξ) +
∑
e∈�0

∫
e

û · ne[ξ ]ds, (3.5)

K(p,η) = (p,∇ · η) +
∑
e∈�

∫
e

p̂[η · ne]ds, (3.6)

Lc(u, c, ζ ) = (uc,∇ζ ) +
∑
e∈�0

∫
e

ûc · ne[ζ ]ds, (3.7)

Ld(u, c, ζ ) = −(D(u)∇c,∇ζ )

−
∑
e∈�0

∫
e

(
{D(u)∇c · ne}[ζ ] + {D(u)∇ζ · ne}[c] + α̃

|e| [c][ζ ]
)
ds. (3.8)

In (3.5)-(3.7), p̂, û and ûc are the numerical fluxes. We use alternating fluxes for the diffusion terms, ∀e ∈ �0

p̂|e = p−|e, û|e = u+|e,
and we take

p̂|e = p−|e, ∀e ∈ ∂�+, p̂|e = p+|e, ∀e ∈ ∂�−.

For the convection term in (3.7), we use

ûc = u+c+ − α[c]ne.

Here α and α̃ are two positive constants to be chosen by the bound-preserving technique.
Next, we would like to introduce the definition of consistent fluxes, which is required by the bound-preserving technique 

[18].

Definition 3.1. ûc and û are said to be consistent if ûc = û by taking c = 1 in �.

Obviously, the numerical flux ûc and û are consistent. We can also discuss the following consistent fluxes for the bound-
preserving technique. The proofs are similar, so we only list some of them below without more details. We use them in 
different numerical examples in Section 5.

• p̂ = p+, û = u−, ûc = u−c− − α[c]ne .
• p̂ = 1

2 (p+ + p−), û = 1
2 (u+ + u−), ûc = 1

2 (u+c+ + u−c−) − α[c]ne .

Now, let us propose the fully-discrete SIPEC-S-IPDG schemes. By (2.24)-(2.30), we can obtain p(1), u(1), r(1), ǔ(1) , 
p(2), u(2), r(2) , p(3), r(3) such that for any ξ, ζ ∈ Wh and η ∈ Wh ,

(d̃(rn)p(1), ξ) = (d̃(rn)pn, ξ) + �t
(
P(u(1), ξ) + (qn, ξ)

)
, (3.9)

(a(cn)u(1),η) + (βρ(cn)|un|u(1),η) = K(p(1),η), (3.10)

(r(1), ζ ) = (rn, ζ ) + �t
(
Lc(u(1), cn, ζ ) +Ld(un, cn, ζ ) + (c̃nqn − rnz1p

(1)
t , ζ )

)
, (3.11)

(a(c(1))ǔ(1),η) + (βρ(c(1))|ǔ(1)|ǔ(1),η) = K(p(1),η), (3.12)

(d̃(r(1))p(2), ξ) = (d̃(r(1))p(1), ξ) + �t
(
P(u(2), ξ) + (qn+1, ξ)

)
, (3.13)

(a(c(1))u(2),η) + (βρ(c(1))|u(1)|u(2),η) = K(p(2),η), (3.14)

(r(2), ζ ) = (r(1), ζ ) + �t
(
Lc(u(2), c(1), ζ ) +Ld(ǔ(1), c(1), ζ ) + (c̃(1)qn+1 − r(1)z1p

(2)
t , ζ )

)
, (3.15)
12
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p(3) = 1

2
pn + 1

2
p(2), (3.16)

r(3) = 1

2
rn + 1

2
r(2), (3.17)

where p(1)
t = p(1)−pn

�t , p(2)
t = p(2)−p(1)

�t , and we use c = P
( r

	

)
to obtain cn, c(1), c(2), c(3) . Then we can obtain pn+1, rn+1 and 

un+1 by the correction stage

(d̃(r(3))pcor,1, ξ) = (d̃(r(3))pn, ξ) + �t
(
P(ucor,1, ξ) + (qn+1, ξ)

)
, (3.18)

(a(c(3))ucor,1,η) + (βρ(c(3))|ǔ(1)|ucor,1,η) = K(pcor,1,η), (3.19)

(d̃(r(3))pcor,2, ξ) = (d̃(r(3))p(2), ξ) + �t
(
P(ucor,2, ξ) + (qn+1, ξ)

)
, (3.20)

(a(c(3))ucor,2,η) + (βρ(c(3))|u(1)|ucor,2,η) = K(pcor,2,η), (3.21)

(d̃(r(3))pn+1, ξ) = (d̃(r(3))p(3), ξ) + 1

2
�t
(
P(ucor,1, ξ) −P(ucor,2, ξ)

)
, (3.22)

(rn+1, ζ ) = (r(3), ζ ) + 1

2
�t
(
Lc(ucor,1 − ucor,2, c(3), ζ ) −

(
r(3)z1(p

cor,1
t − pcor,2t ), ζ

))
, (3.23)

(a(cn+1)un+1,η) + (βρ(cn+1)|un+1|un+1,η) = K(pn+1,η), (3.24)

where pcor,2t = pcor,2 − p(2)

�t
and pcor,1t = pcor,1 − pn

�t
. In practice, (3.22) can actually be simplified to pn+1 = p(3) +

1

2

(
p(2) − pcor,2 + pcor,1 − pn

)
.

Next let us discuss the method for solving nonlinear equations. In fact, we can use a direct method since the expression 
of equation (1.2) is relatively simple. Let Ac(u) = a(c)u + βρ(c)|u|u. Taking (3.12) as an example, the first step is to find 
Ac(1) (ǔ(1)) = a(c(1))ǔ(1) + βρ(c(1))|ǔ(1)|ǔ(1) ∈ Wh such that for any η ∈ Wh ,(

Ac(1) (ǔ(1)),η
)

= K(p(1),η).

The second step is to find the value of ǔ(1) at arbitrary Gaussian quadrature point (xG , yG). We define the values of 
u(xG , yG), c(xG , yG), a(c(1)(xG , yG)), ρ(c(1)(xG , yG)), Ac(1) (ǔ(1)(xG , yG)) as uG , cG , aG , ρG , AG , respectively. We can solve 
ǔ(1)
G by the following equation,

aG ǔ
(1)
G + βρG |ǔ(1)

G |ǔ(1)
G = AG . (3.25)

In fact, by the above equation, we can get(
aG + βρG |ǔ(1)

G |
)2 |ǔ(1)

G |2 = |AG |2.
When βρG ≥ 0, dropping the negative term, we have

|ǔ(1)
G | =

−aG +
√
a2G + 4βρG |AG |
2βρG

. (3.26)

Substituting (3.26) into (3.25), ǔ(1)
G can be written as follows,

ǔ(1)
G = 2AG

aG +
√
a2G + 4βρG |AG |

.

The third step is to take L2-projection of 2A
a+√a2+4βρ|A| into Wh , i.e. find ǔ(1) ∈ Wh such that for any η ∈ Wh ,

(ǔ(1),η) =
(

2A

a +√a2 + 4βρ|A| ,η
)

=
∑
G

ǔ(1)
G η(xG , yG)wG ,

where wG is the Gaussian quadrature weight in a cell. Through the above three steps, we obtain ǔ(1) for (3.12). The method 
for equation (3.24) is similar, so we omit the details.
13
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Remark 3.1. In practice, we only need to obtain the values of u at the Gaussian points, and βρ(c) ≥ 0 can easily be satisfied. 
Actually, we get 0 ≤ c ≤ 1 by bound-preserving technique, and then βρ(c) = β (ρ1c + ρ2(1− c)) ≥ 0, where β ≥ 0, ρ1 and 
ρ2 are positive constants. For the general form of f2, we can use an iterative method. For example, we can solve (2.4) using 
the following equation,

u0,l+1 = f2(p
0, r0,u0,l).

This iterative method starts with random number u0,0 and stops when |u0,l+1 − u0,l| < ε , with ε = 10−10. And then we can 
obtain u0 ≈ u0,l+1.

4. Bound-preserving technique

4.1. Second-order bound-preserving

In this subsection, we will develop the bound-preserving technique for the sign-preserving SIPEC-S-IPDG scheme 
(3.9)-(3.24) in R2. For simplicity, we only consider the cells away from ∂�, while the boundary cells can be analyzed 
similarly with minor changes [18]. We use oij for the numerical approximation o in cell Kij with cell average ōi j . We ap-
proximate the above integrals by 2-point Gaussian quadratures. The Gaussian quadrature points on Ii and J j are denoted 
as {x1i , x2i } and {y1j , y2j }, respectively. The corresponding weights on the interval [− 1

2 , 12 ] are represented as w1 and w2. 
Moreover, o+

i+ 1
2 , j,β

, o+
i, j+ 1

2 ,β
and o++

i+ 1
2 , j+ 1

2
represent the values of o(x+

i+ 1
2
, yβ

j ), o(x
β

i , y+
j+ 1

2
) and o(x+

i+ 1
2
, y+

j+ 1
2
), respectively.

In [18], we have derived the bound-preserving analyses for IPDG schemes with forward Euler time integration, which can 
be directly extended to r(1) and r(2) in (3.9)-(3.15). Therefore, we conclude that 0 ≤ r̄(1) ≤ 	̄, 0 ≤ r̄(2) ≤ 	̄ and 0 ≤ r̄(3) ≤ 	̄

under different conditions. We take r(1) as an example and summarize the following theorem without further proof.

Theorem 4.1. Suppose 0 ≤ rn ≤ 	, and the parameters α and α̃ satisfy

α ≥ max
2≤i≤Nx−1,
2≤ j≤Ny−1,

β=1,2

{u1
(1)+
i+ 1

2 , j,β
, u2

(1)+
i, j+ 1

2 ,β
, 0}, (4.1)

α̃ ≥ max

{
�y

2�x
DM

11 + √
3DM

12,
�x

2�y
DM

22 + √
3DM

21

}
, (4.2)

where DM
mn = max

(x,y)∈�
|Dmn(un)(x, y)| (m, n = 1, 2). Moreover, if the fluxes ûc and û are consistent, then 0 ≤ r̄(1) ≤ 	̄ under the 

conditions

�t

�x
+ �t

�y
≤ 1

6
min

{
	m

α
, A(1)

1 , A(1)
2

}
, (4.3)

DM
11

�t

�x2
+ 2(α̃ + DM

12)
�t

�x�y
≤ 1

12
	m, (4.4)

DM
22

�t

�y2
+ 2(α̃ + DM

21)
�t

�x�y
≤ 1

12
	m, (4.5)

�t ≤ 1

6
min

{
1

z1p
(1)
M

,
1

z2p
(1)
M

,
	m

qM

}
, (4.6)

where

	m = min
(x,y)∈�

	(x, y), p(1)
M = max

i, j,
β,γ =1,2

{
p(1)
t (xβ

i , yγ
j ), 0

}
, qnM = max

i, j,
β,γ =1,2

{
−qn(xβ

i , yγ
j ), 0

}
,

A(1)
1 = min

2≤i≤Nx−1,
2≤ j≤Ny−1,

β=1,2

	+∓
i− 1

2 , j± 1
2

α − u1
(1)+
i− 1

2 , j,β

, A(1)
2 = min

2≤i≤Nx−1,
2≤ j≤Ny−1,

β=1,2

	∓+
i± 1

2 , j− 1
2

α − u2
(1)+
i, j− 1

2 ,β

.

Next, we consider the bound-preserving technique for the correction stage. In (3.23), we take ζ = 1 in Kij to obtain

r̄n+1 = Hc (r,u, c) + Hs (r, pt),
i j i j i j

14
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where

Hc
ij(r,u, c) = 1

2
r̄(3)i j

+1

2
λ

⎛⎜⎝∫
J j

̂ucor
1 c(3)

i− 1
2 , j − ̂ucor

1 c(3)
i+ 1

2 , jdy +
∫
Ii

̂ucor
2 c(3)

i, j− 1
2

− ̂ucor
2 c(3)

i, j+ 1
2
dx

⎞⎟⎠ ,

Hs
ij(r, pt) = 1

2
r̄(3)i j − 1

2
�tz1r

(3)
i j pcort ,

and

ucor = ucor(1) − ucor(2),

pcort = pcor(1)t − pcor(2)t ,

with λ = �t
�x�y and ucor = (ucor

1 , ucor
2 )T . We first consider the source term Hs

ij , and then analyze the convection term Hc
ij . 

The results are shown below.

Lemma 4.1. Suppose r(3) > 0 (c(3) > 0), then Hs
ij(r, pt) ≥ 0 under the condition

�t ≤ 1

z1pcorM

, (4.7)

where

pcorM = max
i, j,

β,γ =1,2

{
pcort (xβ

i , yγ
j ),0

}
. (4.8)

Lemma 4.2. Suppose r(3) > 0 (c(3) > 0), then Hc
ij(r, u, c) ≥ 0 if α and the time step �t satisfy

α ≥ max
2≤i≤Nx−1,
2≤ j≤Ny−1,

β=1,2

{u1
cor+
i+ 1

2 , j,β
, u2

cor+
i, j+ 1

2 ,β
, 0}, (4.9)

and

�t

�x
+ �t

�y
≤ 1

2
min

{
	m

α
, Acor

1 , Acor
2

}
, (4.10)

where 	m = min
(x,y)∈�

	(x, y) and

Acor
1 = min

2≤i≤Nx−1,
2≤ j≤Ny−1,

β=1,2

	+∓
i− 1

2 , j± 1
2

α − u1
cor+
i− 1

2 , j,β

, Acor
2 = min

2≤i≤Nx−1,
2≤ j≤Ny−1,

β=1,2

	∓+
i± 1

2 , j− 1
2

α − u2
cor+
i, j− 1

2 ,β

.

The proof of the above lemmas can be found in [10], which guarantees r̄n+1 ≥ 0. Next, we discuss how to prove r̄n+1 ≤ 	̄.

Theorem 4.2. Suppose the conditions in Lemma 4.1 and Lemma 4.2 are satisfied. Moreover, we assume 0 ≤ r(3) ≤ 	 and the flux pair 
(ûc, ̂u) is consistent, then 0 ≤ r̄n+1 ≤ 	̄ under another condition

�t ≤ 1

z2pcorM

, (4.11)

where pcorM is given in (4.8).

Proof. Since the flux ûc is consistent with û, then û − ûc = ûc2 where c2 = 1 − c. Take ξ = ζ in (3.22), and subtract (3.23)
from (3.22) to get

(rn+1
2 , ζ ) = (r(3)2 , ζ ) + 1

2
�t

⎛⎝(ucorc(3)
2 ,∇ζ ) +

∑
e∈�

∫
̂ucorc(3)

2 · ne[ζ ]ds − (r(3)2 z2p
cor
t , ζ )

⎞⎠ , (4.12)

0 e
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where r2 = 	 − r. We can easily see that (4.12) is exactly (3.23) when r, c and z1 are replaced by r2, c2 and z2, respectively. 
Following the same analyses in Lemma 4.1 and Lemma 4.2, we can show r̄n+1

2 ≥ 0, which further implies r̄n+1 ≤ 	̄. �
Remark 4.1. When we prove the bound-preserving of r̄(1) (or r̄(2)), the diffusion term satisfies (4.2), (4.4), (4.5). In practice, D
would be very small, and the time step size restrictions are very mild unless the meshes are extremely refined. It means that 
the SIPEC-S method is suitable, since concentration equation (1.3) is convection-dominant. In the numerical experiments, 
we will choose �t ∼ �x.

4.2. Slope limiter

By Theorem 4.2, we have proved that 0 ≤ r̄n+1 ≤ 	̄. However, the numerical approximations of r may be negative or 
larger than 	. Therefore, we need to apply a slope limiter to r. As discussed in [9], the procedure is given as follows.

1. Define Ŝ = {(x, y) ∈ K : r(x, y) ≤ 0}. Take

r̂ = r + θ

(
r̄

	̄
	 − r

)
, θ = max

(x,y)∈ Ŝ

{ −r(x, y)	̄

r̄	(x, y) − r(x, y)	̄
, 0

}
;

2. Set r2 = 	 − r̂, and repeat the above step for r2 to get r̂2;
3. Take r̃ = 	 − r̂2 as the new approximation.

After the above three steps, we have 0 ≤ r̃ ≤ 	. It is easy to check that the limiter does not change the numerical cell 
averages, i.e. 

∫
Kij

r̃(x)dx = ∫Kij
r(x)dx. Moreover, the limiter does not affect the accuracy. See [9] for more information.

5. Numerical experiments

In this section, we give six numerical examples to illustrate the accuracy and capability of the bound-preserving IPDG 
method with the sign-preserving SIPEC-S time discretization for Darcy-Forchheimer compressible miscible displacements. 
Unless otherwise stated, we take z1 = z2 = φ = κ = μ(c) = 1.

5.1. One dimensional case

In this subsection, we solve problems in one space dimension. In the first example, we construct analytical solutions 
and test the accuracy and CPU time of the IPDG methods with the IMPEC-SP (2.5)-(2.6), SIPEC-S (2.24)-(2.35), SIPEC-C 
(2.7)-(2.23) and SSP-RK2 (2.36)-(2.43) time discretizations, respectively.

Example 5.1. We first consider the problem with β = ρ = 1, D(u) = γ , where γ is a constant. We choose the initial condi-
tions as

c(x,0) = 1

2
(1 − cos(x)) , p(x,0) = cos(x) + 1

2
(sin(x) cos(x) − x) ,

and source parameters are taken as

q = −e−2t (sin(x) cos(x) − x) ,

c̃q = 1

2

(
e−(γ +1)t sin2(x) − e−2t(sin(x) cos(x) − x) + e−(γ +2)t

(
cos2(x) sin(x) − x cos(x)

))
.

It is easy to verify that the exact solutions are

c(x, t) = 1

2

(
1− e−γ t cos(x)

)
, x ∈ [0,π ],

p(x, t) = e−t cos(x) + e−2t

2
(sin(x) cos(x) − x) , x ∈ [0,π ],

u(x, t) = e−t sin(x), x ∈ [0,π ].
We take �t = 0.47�x (�x = π

N ), final time T = 1, and γ = 10−5. We first use the SIPEC-S-IPDG method (3.9)-(3.24). 
The error of c in the L2-norm, convergence rate and CPU time are listed in Table 2. We can observe optimal convergence 
rates regardless of whether the bound-preserving technique is used. Therefore, the bound-preserving technique does not 
degenerate the convergence order for one dimensional case.

Moreover, we test the accuracy and CPU time by using SIPEC-C (2.7)-(2.23) and SSP-RK2 (2.36)-(2.43) time methods 
without the bound-preserving limiter, where the maximum time steps are �t = 0.33�x and 0.12�x2, respectively. The 
16
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Table 2
Example 5.1: Accuracy test of c for SIPEC-S-IPDG schemes.

N With limiter No limiter

L2 error order CPU time(s) L2 error order CPU time(s)

5 2.13e-02 - 0.07 1.55e-02 - 0.06

10 4.22e-03 2.34 0.17 3.50e-03 2.14 0.06

20 9.26e-04 2.19 0.38 8.39e-04 2.06 0.11

40 2.20e-04 2.08 0.91 2.09e-04 2.01 0.58

80 5.30e-05 2.05 1.89 5.17e-05 2.01 1.66

160 1.29e-05 2.04 9.14 1.28e-05 2.02 7.75

Table 3
Example 5.1: Accuracy test of c for IPDG method 
with SIPEC-C time discretization.

N L2 error order CPU time(s)

5 1.83e-02 - 0.25

10 4.32e-03 2.08 0.29

20 1.07e-03 2.01 0.25

40 2.63e-04 2.03 0.47

80 6.63e-05 1.99 3.03

160 1.65e-05 2.00 18.81

Table 4
Example 5.1: Accuracy test of c for fully-discrete 
SSPRK2-IPDG schemes.

N L2 error order CPU time(s)

5 1.54e-02 - 0.06

10 3.61e-03 2.10 0.08

20 8.79e-04 2.04 0.14

40 2.17e-04 2.02 2.92

80 5.39e-05 2.01 20.31

160 1.34e-05 2.01 155.28

Table 5
Example 5.1: Accuracy test of c for IMPEC-SP-IPDG schemes.

N �t = 2.8�x2 �t = 0.33�x

L2 error order CPU time(s) L2 error order CPU time(s)

5 5.09e-01 - 0.03 7.53e-02 - 0.02

10 1.65e-01 1.62 0.14 3.71e-02 1.02 0.03

20 2.70e-02 2.61 0.42 1.86e-02 1.00 0.03

40 6.21e-03 2.12 0.88 9.33e-03 1.00 0.16

80 1.55e-03 2.00 1.86 4.68e-03 1.00 0.89

160 3.87e-04 2.00 24.23 2.34e-03 1.00 3.05

results are given in Table 3 and Table 4. By comparing the CPU time, it can be seen that the SIPEC-S method has the fastest 
computing speed. In addition, we also test this example using the IMPEC-SP method without limiter, where �t = 2.8�x2

and �t = 0.33�x are used. The results are shown in Table 5. By comparing Table 2 and Table 5, we find that the CPU time 
of SIPEC-S method is significantly smaller than that of IMPEC-SP method when the same accuracy is achieved. Though the 
IMPEC-SP method may yield less CPU time than the SIPEC-S method under the same resolution. However, to achieve the 
same error, the SIPEC-S method is also much faster than the IMPEC-SP method. Actually, we need N = 160 to make the 
error to be 2.34e − 3 and the CPU time is 3.05 s, while for the SIPEC-S method, we only need to take N = 20 to make the 
error even less, and the CPU time is only 0.11 s.
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Fig. 1. Example 5.2: Numerical approximations of c at T = 1.

Fig. 2. Example 5.2: Numerical approximations of c at T = 1 with and without bound-preserving limiter.

Example 5.2. We consider a problem with discontinuous initial solutions and test the necessity of the bound-preserving 
technique. Refer to [18], we set the initial conditions as

c(x,0) =
{
1, x < 1,

0, 1 ≤ x ≤ 2π,
p(x,0) =

{
5, x < 1,

0, 1 ≤ x ≤ 2π.

Other parameters are taken as

q(x, t) = 0, z1 = 0.1, z2 = 1, β = 0.5, ρ = 1, D(u) = 0.

We compute up to T = 1 with N = 80 and �t = 0.13�x (�x = 2π
N ). We solve the problem by using schemes (3.9)-(3.24)

with the bound-preserving limiter. The numerical approximation of c is shown in Fig. 1. We can observe that the numerical 
result is between 0 and 1. Then we solve the problem without the bound-preserving limiter, and the numerical approx-
imation blows up at T ≈ 0.02 s even though we take time step size as small as �t = 0.0001�x. Next, we change β = 1
and �t = 0.05�x. The results are shown in Fig. 2. We can observe oscillations and physically irrelevant values in Fig. 2(a). 
The above results demonstrate the necessity and effectiveness of the bound-preserving technique for Darcy-Forchheimer 
compressible miscible displacements.

Moreover, we also use SSP-RK2 time discretization to simulate the example. The results show that the CPU time by the 
SSP-RK2 method is about 38 s with maximum time step size �t = 0.002�x, while the CPU time by the SIPEC-S method is 
about 3.6 s with time step size �t = 0.13�x. Therefore, the CPU time of the SIPEC-S method is significantly less than that 
of SSP-RK2 method.
18



Fig. 3. Example 5.2: Concentrations c by the SIPEC-S (red) and IMPEC-SP (blue) time discretizations at T = 1 with different time step size �t . (For inter-
pretation of the colors in the figure(s), the reader is referred to the web version of this article.)

We also test the IMPEC-SP method, where the backward and forward Euler methods are used to discretize time deriva-
tives of pressure and concentration, respectively. The results are shown in Fig. 3. We can see that when the time step size is 
small, the difference between the SIPEC-S and IMPEC-SP methods is tiny. However, the larger the time step size, the more 
significant the difference. Though in the SIPEC-S method, we need to repeat the IMPEC-SP method 4 times, the CFL number 
for the SIPEC-S is more than 4 times larger than that for the IMPEC-SP method. Therefore, we expect the SIPEC-S method 
can yield compatible and even less CPU time than IMPEC-SP method, especially for problems with strong discontinuities.

In addition to the above, we compare the influence of β on the numerical solution of concentration. Since the initial 
pressure contains a discontinuity, the velocity can be large near the singularity. Therefore, the Darcy-Forchheimer model 
may be more accurate. In this example, we numerically test the difference between the Darcy and Darcy-Forchheimer 
model. We choose �t = 0.1�x, β = 0, 10, 20, 40. The results are shown in Fig. 4. We can see that when β is small, say 
β = 10, the Darcy model (β = 0) and the Darcy-Forchheimer model yield similar solutions. However, when β is large, the 
interfaces of the large gradient from the two models are different.

5.2. Two dimensional case

In this subsection, we solve equations (1.1)-(1.3) on the computational domain � = [0, 2π ] × [0, 2π ]. For simplicity, we 
take Nx = Ny = N and �x = �y = 2π

N . In the following example, we test the accuracy and CPU time of the bound-preserving 
IPDG schemes with different time methods.
W. Feng, H. Guo, L. Tian et al. Journal of Computational Physics 474 (2023) 111775
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Fig. 4. Example 5.2: Numerical approximations of c with different β at T = 1.

Fig. 5. Example 5.4: Distribution of concentration c with bound-preserving limiter at different time.
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Fig. 6. Example 5.4: Contour plots of concentration c with bound-preserving limiter at different time.

Example 5.3. We take the initial conditions

c(x, y,0) = 1

2
(1− cos(x) cos(y)) , p(x, y,0) = cos(x) cos(y) − 1.

The source parameters are chosen as

q = 2e−2t,

c̃ = 1

2

(
e−2γ t

(
1

2
sin2(x) cos2(y) + 1

2
cos2(x) sin2(y) − cos(x) cos(y)

)
+ 1

)
,

g = e−4t
√
sin2(x) cos2(y) + cos2(x) sin2(y)

(
sin(x) cos(y), cos(x) sin(y)

)T
,

where we add a source term g to the velocity equation. We consider β = ρ = 1 and constant matrix D(u) =
(

γ 0
0 γ

)
. It is 

easy to see that the exact solutions on � = [0, 2π ] × [0, 2π ] are
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Fig. 7. Example 5.4: Concentration c with and without bound-preserving limiter.

c(x, y, t) = 1

2

(
1− e−2γ t cos(x) cos(y)

)
,

p(x, y, t) = e−2t
(
cos(x) cos(y) − 1

)
,

u(x, y, t) = e−2t
(
sin(x) cos(y), cos(x) sin(y)

)T
.

We simulate the problem up to T = 0.1 with �t = 0.2�x and γ = 10−5 by using schemes (3.9)-(3.24). The L2 error, 
convergence orders and CPU time for c are given in Table 6. We can observe second-order accuracy with and without the 
bound-preserving limiter. Therefore, the limiter does not kill the accuracy for two dimensional case.

Moreover, we use SIPEC-C (2.7)-(2.23) and SSP-RK2 (2.36)-(2.43) time discretizations to test the accuracy and CPU time 
without the bound-preserving limiter. The maximum time step of the SIPEC-C scheme is �t = 0.15�x, and the results are 
shown in Table 7. The maximum time step of SSP-RK2 scheme is 0.07�x2, and the results are shown in Table 8. From 
the tables, we can see that the computing speed of the SIPEC-S method is faster than the other two methods for two 
dimensional case. We also test IMPEC-SP method without limiter, and we use �t = 0.5�x2 and �t = 0.15�x. We can find 
the results in Table 9, where we observe second-order and first-order accuracy using different time step size. By comparing 
Table 6 and Table 9, the CPU time of SIPEC-S method is significantly smaller than that of IMPEC-SP method when the same 
accuracy is achieved. Though the IMPEC-SP method with first-order accuracy may spend less CPU time than the SIMPE-S 
method under the same resolution, to achieve the same error, it costs more CPU time than the SIPEC-S method.
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Fig. 8. Example 5.5: Distribution of concentration c with bound-preserving limiter at different time.

Table 6
Example 5.3: Accuracy test of c for the SIPEC-S-IPDG schemes.

N With limiter No limiter

L2 error order CPU time(s) L2 error order CPU time(s)

5 1.94e-01 - 0.38 1.69e-01 - 0.16

10 5.15e-02 1.92 0.50 4.24e-02 1.99 0.26

20 1.12e-02 2.20 1.25 1.05e-02 2.01 0.98

40 2.66e-03 2.07 8.95 2.62e-03 2.01 10.47

80 6.58e-04 2.02 110.34 6.55e-04 2.00 111.11

160 1.64e-04 2.01 1904.60 1.64e-04 2.00 1905.10

Example 5.4. In the example, we simulate the injection-production problem in oil recovery. We choose the initial conditions 
as c0 = 0, p0 = 0. Other parameters are taken as

z1 = z2 = 1, φ(x, y) = 0.3, D(u) = 0.02I,

μ1 = 0.4, μ2 = 0.5, κ = 2, β = 5,ρ1 = 0.9,ρ2 = 1.
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Fig. 9. Example 5.5: Contour plots of concentration c with bound-preserving limiter at different time.

Table 7
Example 5.3: Accuracy test of c for IPDG method 
with SIPEC-C time discretization.

N L2 error order CPU time(s)

5 1.73e-01 - 0.23

10 4.32e-02 2.00 0.54

20 1.06e-02 2.03 3.02

40 2.63e-03 2.01 13.67

80 6.56e-04 2.00 161.38

160 1.64e-04 2.00 2553.70

The viscosity μ(c) and density ρ(c) are calculated using (1.6) and (1.7). The injection well is located at the lower-left corner 
with q = 1

�x�y and c̃ = 1, and production well is located at the upper-right corner with q = − 1
�x�y . The above parameters 

are obtained from [28].
We choose �t = 0.03�x, Nx = Ny = 50, and compute c at final time T = 4, 6, 8, 10 with the bound-preserving limiter. 

The numerical concentration distribution and contour are plotted in Figs. 5 and 6, respectively. The figures agree with that 
from [28]. From the figures we can see that the invading fluid moves faster along the flow direction of the reservoir, and the 
concentration c is between 0 and 1, which are all physically reasonable. However, the numerical approximations without 
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Fig. 10. Example 5.6: Distribution of concentration c with bound-preserving limiter at different time.

Table 8
Example 5.3: Accuracy test of c for fully-discrete 
SSPRK2-IPDG schemes.

N L2 error order CPU time(s)

5 1.66e-01 - 0.17

10 4.23e-02 1.97 0.38

20 1.06e-02 2.00 3.50

40 2.64e-03 2.00 16.23

80 6.60e-04 2.00 247.13

160 1.65e-04 2.00 4030.80

bound-preserving limiter blow up at T ≈ 1.5 s if we take the same time step as before. To test the effectiveness of the 
bound-preserving technique for two dimensional case, we simulate the distributions of c along diagonal at time T = 0.5, 1
with and without bound-preserving limiter. The results are shown in Fig. 7, from which we can observe strong oscillations 
and physically irrelevant values if the bound-preserving limiter is missing. The numerical results imply the effectiveness of 
the bound-preserving technique.

To test the good performance of the SIPEC-S method, we simulate the example by using the SSP-RK2 method at T = 1
with the bound-preserving technique. The CPU time by the SSP-RK2 method is about 2999 s with maximum time step size 
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Fig. 11. Example 5.6: Contour plots of concentration c with bound-preserving limiter at different time.

Table 9
Example 5.3: Accuracy test of c for the IMPEC-SP-IPDG schemes.

N �t = 0.5�x2 �t = 0.15�x

L2 error order CPU time(s) L2 error order CPU time(s)

5 1.69e-01 - 0.14 1.67e-01 - 0.05

10 4.63e-02 1.86 0.56 4.58e-02 1.86 0.06

20 1.39e-02 1.74 0.95 1.42e-02 1.69 0.41

40 3.48e-03 2.00 8.09 5.73e-03 1.31 4.33

80 8.72e-04 2.00 123.82 2.84e-03 1.01 70.09

160 2.19e-04 2.00 2677.50 1.41e-03 1.01 1374.10

�t = 0.01�x, while the CPU time by the SIPEC-S method is about 715 s with time step size �t = 0.06�x. Through the 
comparison, we can conclude that the SIPEC-S method is superior to the traditional SSP-RK2 method.

Example 5.5. We set

φ(x, y) = 0.1, D(u) = 0.05I, μ1 = μ2 = β = ρ1 = ρ2 = 1, κ = 25.
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The other parameters are the same as in the Example 5.4. We choose �t = 0.01�x, Nx = Ny = 50 and final time 
T = 1, 2, 3, 4. The distribution and contour plots of the concentration c are given in Figs. 8 and 9. Similarly, we can 
observe that the wave front of the concentration moves from the injection well to the production well, and all the numer-
ical approximations of c are between 0 and 1. We also simulate the example without the bound-preserving limiter. The 
numerical approximations blow up at about 0.05 s.

Moreover, we compare the CPU time of the SIPEC-S and SSP-RK2 methods at T = 1 with the bound-preserving limiter. 
The maximum time step of SSP-RK2 method is �t = 0.002�x and the CPU time is about 13800 s, while the maximum time 
step of the SIPEC-S method is �t = 0.014�x and the CPU time is about 3037 s. Therefore, the conclusion that the SIPEC-S 
method is superior to SSP-RK2 method is verified again.

Example 5.6. We consider a more practical problem, and calculate D(u) using (1.8) with dmol = 0, dlong = 0.5 and dtran = 0.1. 
Other parameters are the same as those given in Example 5.5.

We compute c at time T = 1, 2, 3, 4 with Nx = Ny = 50 and �t = 0.01�x. The numerical results of c at different time 
are shown in Figs. 10 and 11. From the figures we can see that the concentration c are between 0 and 1. Moreover, due 
to the difference in longitudinal versus transverse dispersion, the wave front of the concentration moves much faster along 
diagonal direction than it did in Figs. 8 and 9 [39,41].

6. Concluding remarks

In this paper, we constructed SIPEC-S time integration and applied it to two-component compressible miscible dis-
placements with Darcy-Forchheimer models in porous media. We used the IPDG method for spatial discretization. Bound-
preserving technique has been applied to the problems to obtain physically relevant numerical approximations. The SIPEC-S 
time method is applicable not only to linear equations, but also to nonlinear and time-independent equations. Numerical 
experiments were given to demonstrate the effectiveness of the bound-preserving technique, as well as the superiority of 
the SIPEC-S method by comparing it with the traditional SSP-RK2 and IMPEC-SP methods. Finally, we point out that the 
SIPEC-S method presents a significant advantage if D is small. However, if D is large, the advantage of SIPEC-S method may 
not be significant compared with the traditional SSP-RK2, which will be discussed in future work.
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