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We show in the companion paper that the free membrane shape of lipid bilayer vesicles
containing the mechanosensitive ion channel Piezo can be predicted, with no free
parameters, from membrane elasticity theory together with measurements of the pro-
tein geometry and vesicle size [C. A. Haselwandter, Y. R. Guo, Z. Fu, R. MacKinnon,
Proc. Natl. Acad. Sci. U.S.A., 10.1073/pnas.2208027119 (2022)]. Here we use these
results to determine the force that the Piezo dome exerts on the free membrane and
hence, that the free membrane exerts on the Piezo dome, for a range of vesicle sizes.
From vesicle shape measurements alone, we thus obtain a force–distortion relationship
for the Piezo dome, from which we deduce the Piezo dome’s intrinsic radius of curva-
ture, 42± 12 nm, and bending stiffness, 18± 2:1 kBT , in freestanding lipid bilayer
membranes mimicking cell membranes. Applying these estimates to a spherical cap
model of Piezo embedded in a lipid bilayer, we suggest that Piezo’s intrinsic curvature,
surrounding membrane footprint, small stiffness, and large area are the key properties
of Piezo that give rise to low-threshold, high-sensitivity mechanical gating.

Piezo ion channels j mechanosensation j mechanical gating j membrane mechanics

Piezo 1 and 2 are called mechanosensitive ion channels because they conduct ions
across the cell membrane when a mechanical force is applied to the cell (1). Thus,
Piezo channels are somehow rigged to enable a mechanical force to open their pore.
The ensuing ion conduction triggers subsequent processes inside the cell, culminating
in a cell’s response to the mechanical force. This sequence of events, force on the mem-
brane ! ion conduction ! cell response, is central to numerous biological processes
(2, 3). Mediated by Piezo channels, these include, but are not limited to, volume regu-
lation in red blood cells, the control of vascular blood pressure, and the sensation of
touch (4, 5).
What physical properties endow Piezo channels with responsiveness to mechanical

force? Their unique shape among ion channels has inspired one proposal, known as the
membrane dome model (6). Piezo channels in their closed conformation are curved, in
contrast to most other ion channels and membrane proteins that exhibit an approxi-
mately planar arrangement of transmembrane helices (7). Consequently, Piezo channels
locally curve the membrane into a “Piezo dome” and surrounding “membrane foot-
print” (8). The membrane dome model posits that an open Piezo channel will be less
curved, more like other membrane proteins (6, 8, 9), and it is known that Piezo can
change its shape. Cryoelectron microscopy (cryo-EM) studies have shown that Piezo
channels in lipid bilayer vesicles change their curvature depending on vesicle size
(9, 10). High-speed atomic force microscopy (HS-AFM) has been used to flatten Piezo
(9) and, by cryo-EM, nearly flat Piezo channels with a pore that appears to be some-
what widened compared to curved Piezo channels have been observed (11). If it is true
that Piezo must reduce its curvature to open its pore, then increased lateral membrane
tension will favor the open conformation by a work energy term γ ΔAproj, where γ is
the lateral membrane tension and ΔAproj is the expansion of Piezo’s projected in-plane
area due to its reduced curvature, which includes contributions arising from Piezo’s
membrane footprint (6, 8). The membrane dome model is still unproven, but it ration-
alizes Piezo’s highly unusual curved shape.
Beyond shape alone, to understand Piezo’s responsiveness to mechanical force, we

need to know how its shape changes when force is applied. To use an analogy: to
describe a spring’s mechanical properties we need to know how its shape (that is, its
length) depends on force; for a linear spring, for instance, the spring’s length is propor-
tional to load, and this dependence is captured in the Hooke constant (spring stiffness).
Structural biology lets us determine a molecule’s shape, but how can we do this while
applying a force to a molecule? Furthermore, how do we apply a force while the mole-
cule (in this case, a mechanosensitive ion channel) resides in an unsupported free
membrane environment?

Significance

Over the past two decades,
structural biology has provided
much insight into the shape of
membrane proteins. Beyond
shape, however, membrane
protein function can also depend
on the protein’s elastic properties.
It has been difficult to characterize
protein elastic properties in
freestanding, unperturbed lipid
bilayer membranes, which is the
scenario most relevant for cell
membranes. Here we show that,
through a physical understanding
of how proteins deform lipid
bilayer membranes, it is possible
to deduce elastic properties of
membrane proteins solely from
observations of membrane shape.
On this basis, we provide the
biophysical principles and
mechanisms underlying the
tension-dependent activation of
the mechanosensitive ion channel
Piezo, which mediates the
sensation of touch andmany
other important biological
processes.

Author contributions: C.A.H. and R.M. developed the
theory to analyze Piezo vesicles; Y.R.G. and Z.F.
produced Piezo vesicles, collected tomograms, and
digitized the vesicle profiles; and C.A.H. and R.M.
applied the theory and wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2022 the Author(s). Published by PNAS.
This open access article is distributed under Creative
Commons Attribution-NonCommercial-NoDerivatives
License 4.0 (CC BY-NC-ND).
1C.A.H. and R.M. contributed equally to this work.
2To whom correspondence may be addressed. Email:
cah77@usc.edu or mackinn@rockefeller.edu.

This article contains supporting information online at
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2208034119/-/DCSupplemental.

Published September 27, 2022.

PNAS 2022 Vol. 119 No. 40 e2208034119 https://doi.org/10.1073/pnas.2208034119 1 of 8

RESEARCH ARTICLE | BIOPHYSICS AND COMPUTATIONAL BIOLOGY OPEN ACCESS

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

C
hr

is
to

ph
 H

as
el

w
an

dt
er

 o
n 

O
ct

ob
er

 4
, 2

02
2 

fr
om

 IP
 a

dd
re

ss
 2

07
.1

51
.5

2.
65

.

https://orcid.org/0000-0002-5012-5640
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:cah77@usc.edu
mailto:mackinn@rockefeller.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208034119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208034119/-/DCSupplemental
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2208034119&domain=pdf&date_stamp=2022-09-27


When a Piezo ion channel resides in a lipid bilayer vesicle, the
curved lipid membrane surrounding the channel exerts a force
on it. Different-sized vesicles exert different values of force, caus-
ing the channel to change its shape. In the companion paper, we
developed a continuum elasticity theory of Piezo vesicle shape,
and showed that this theory predicts Piezo vesicle shapes that are
in quantitative agreement with those observed experimentally
(10). In the present study, we build on this work to deduce Pie-
zo’s force–shape relationship, which we then relate to Piezo’s
mechanosensitive gating. In particular, we extract the force curve
associated with the Piezo vesicles described in our companion
paper (10), and apply it to understand how Piezo’s curvature,
stiffness, and area give rise to its mechanosensory properties.
A point regarding notation: As in our companion paper

(10), we refer with the term Piezo channel to the ion channel
protein. Piezo dome refers to the functional unit consisting of
the ion channel protein plus the lipid bilayer contained within
the channel’s approximate perimeter, with the lipid membrane
connecting smoothly across the Piezo dome boundary. We refer
to the region of free membrane, or free lipid bilayer, outside
the Piezo dome that is deformed by Piezo as Piezo’s membrane
footprint. Piezo vesicle refers to a lipid bilayer vesicle contain-
ing Piezo.

Results

Shape of Piezo Vesicles. Before deriving the force curve of the
Piezo dome, we review some of the results of our companion
paper (10) most pertinent to the present study. In our compan-
ion paper, we show how membrane elasticity theory can be
used to predict the shape of the free membrane, outside the
Piezo dome, in Piezo vesicles (10). Our starting point is thereby
the Helfrich energy equation for the free membrane,

GM =
Kb

2
∫dA ðc1 + c2Þ2, [1]

where the constant Kb is the lipid bilayer bending modulus, c1
and c2 are the principal curvatures of the midmembrane sur-
face, and the integral is carried out over the entire free mem-
brane surface (12). We use Kb = 20 kBT , which approximates
the bending modulus of the lipid bilayers in our Piezo vesicles
(13). Through Eq. 1, each possible free membrane shape gives
an associated value of GM . We determine the free membrane
shape minimizing GM by solving the Hamilton equations asso-
ciated with Eq. 1, subject to suitable constraints. One key con-
straint thereby specifies the size of Piezo vesicles. We find it
convenient to define the vesicle size through the radius of a
hypothetical sphere comprising the Piezo dome plus the free
membrane, Rv (10). Furthermore, Eq. 1 suggests that two key
properties of the Piezo dome—the Piezo dome–free membrane
contact angle, α, and the projected in-plane radius of the Piezo
dome, rb—govern how Piezo affects the free membrane shape
(Fig. 1). Comparing the free membrane shapes calculated from
Eq. 1 for seven Piezo vesicles, ranging in size from
Rv ≈ 12:1 nm to Rv ≈ 36:2 nm, with the corresponding shapes
obtained by tomographic reconstruction of cryo-EM images,
we find that minimization of Eq. 1 successfully predicts the
free membrane shape of Piezo vesicles, without any free param-
eters (Fig. 1) (10).
The observed shape of the Piezo dome depends on the Piezo

vesicle radius Rv , with the Piezo dome becoming less curved as
Rv is increased. In our companion paper, we show that if one
models the Piezo dome as a spherical cap with fixed area Acap,
the measured changes in the shape of the Piezo dome are

approximately captured by a single parameter, the Piezo dome
radius of curvature RP = rb

sinα (Fig. 1) (10). For a given value of
Acap, this model of the Piezo dome geometrically defines the
Piezo dome properties affecting membrane shape deformations
in Eq. 1, α and rb , as a function of RP (14). For each measured
Piezo vesicle, we choose here Acap so that we obtain the values
of α and rb associated with the predicted free membrane shapes
in figure 4 of our companion paper (10), and denote the corre-
sponding value of RP by Robs. To be clear, our approach for
calculating the forces in Piezo vesicles does not rely on the
spherical cap model of the Piezo dome. We employ here this
model because it is simple and seems to capture, for the Piezo
dome, the approximate relation between α and rb .

The Force Curve. As reviewed above, our companion paper dem-
onstrates that minimization of the Helfrich energy equation, Eq. 1,
successfully predicts the observed shapes of the free membrane in
Piezo vesicles, over a range of vesicle radii Rv (10). We denote this
minimum energy by GM ðRP ;RvÞ to emphasize that distinct vesicle
sizes Rv yield, in general, a distinct dependence of GM on the
Piezo dome radius of curvature RP . We now analyze the balance
of forces between the free membrane and the Piezo dome in Piezo
vesicles. To demonstrate how this will work, we consider the
following thought experiment.

A hypothetical Piezo vesicle, with Rv ≈ 24:7 nm, contains a
Piezo dome that we model, as described above, as a spherical
cap with fixed area Acap and variable radius of curvature RP
(Fig. 2A). Now imagine that RP can be adjusted to any desired
value; because Acap is fixed,* RP will specify α and rb . For a
given RP , we calculate the free membrane shape by minimizing
the Helfrich energy equation, Eq. 1, employing as input param-
eter values the values of α and rb obtained from RP along with
the measured free membrane area. We then enter this shape
into Eq. 1 to calculate the corresponding value of the free
membrane energy, GM ðRP ;RvÞ. Repeating this calculation for a
range of RP values, we graph GM as a function of RP , keeping
Rv fixed. This graph shows how the free membrane energy
varies with RP for a given Piezo vesicle (Fig. 2A). We find that
when Piezo has a radius of curvature RP = RM

min ≈ 9:67 nm, the
free membrane energy is least for the Piezo vesicle considered
here. Some examples of the predicted free membrane shapes for
specific values of RP are shown (Fig. 2A).
The vesicle radius Rv ≈ 24:7 nm in the above thought experi-

ment corresponds to the radius of measured Piezo vesicle 3 in fig-
ure 4 of our companion paper (10). Notably, Piezo vesicle 3, with
an observed Piezo dome radius of curvature RP = Robs ≈ 16:7 nm,
does not look like the vesicle with least free membrane energy in
the thought experiment, which would be associated with a Piezo
dome radius of curvature RM

min ≈ 9:67 nm (Fig. 2A). The discrep-
ancy between the thought experiment and the measured Piezo ves-
icle is explicable because the thought experiment calculates only
the free membrane contribution to the shape energy of a Piezo ves-
icle. In other words, if the Piezo dome did not contribute to the
total energy of the Piezo vesicle, then it would adopt
RP ≈ 9:67 nm in a Piezo vesicle with Rv ≈ 24:7 nm. However,
the Piezo dome clearly does contribute to the total energy of a
Piezo vesicle, expressed as Gtot = GM + GP , where GP ðRP Þ is the
Piezo dome contribution. The minimum energy shape (i.e., the
shape corresponding to RP = Robs) then must occur when
∂Gtot
∂RP

= 0: Here, the partial derivative notation reminds us that Gtot

*Note that Acap is not necessarily equal to the area of the Piezo dome, AP ≈ 450 nm2. In
particular, for the Piezo vesicles measured in our companion paper (10), we have
414 nm2�Acap�471 nm2, with Acap ≈ 421 nm2 in Fig. 2A.
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is also a function of the Piezo vesicle radius Rv , which is held cons-
tant in the derivative with respect to RP . From Gtot = GM + GP ,
we have ∂Gtot

∂RP = ∂GM
∂RP

+ ∂GP
∂RP

= 0 at RP = Robs and therefore,
∂GP
∂RP =� ∂GM

∂RP at RP = Robs. This last equation, rewritten as

∂GP

∂RP
≡ FP = � ∂GM

∂RP
≡ �FM [2]

at RP = Robs, expresses the equilibrium balance of forces between
the Piezo dome and the free membrane in Piezo vesicles. In words,
the slope of GM ðRP ;RvÞ with respect to RP , evaluated at
RP = Robs, equals the force exerted on the free membrane by the
Piezo dome, FM , and minus this slope is the force exerted on the
Piezo dome by the free membrane, FP . An intuitive understanding
of this balance of forces can be grasped through inspection of the
hypothetical vesicle shapes for Rv ≈ 24:7 nm (Fig. 2A). The free
membrane tends toward its minimum energy shape associated
with RP = RM

min, while the Piezo dome tends toward a larger RP

(i.e., a flatter shape). A balance of forces is reached at an intermedi-
ate radius of curvature, when RP = Robs. Thus, the Piezo vesicle’s
curved free membrane “squeezes” the Piezo dome, like compress-
ing a spring, to be more curved than it would be in an asymptoti-
cally planar membrane. The force that the free membrane exerts
on the Piezo dome in the measured Piezo vesicle 3 [i.e., minus the
slope of GM ðRP ;RvÞ with respect to RP at RP = Robs] is given by
FP ≈�3:6 kBT

nm ≈�15 pN. The minus sign here indicates that
FP tends to decrease the value of RP . From this analysis of the
measured Piezo vesicle 3, we conclude that when the Piezo dome
has a compressive force FP ≈�15 pN applied to it by the free ves-
icle membrane, it has a radius of curvature RP ≈ 16:7 nm.
In Fig. 2B, we analyze in the same manner a larger vesicle with

radius Rv ≈ 35:0 nm, which corresponds to the measured Piezo
vesicle 6 in figure 4 of our companion paper (10) and is also
shown in Fig. 1. For this vesicle, the experimentally determined
Robs ≈ 27:4 nm. From Eq. 2, the associated slope of GM ðRP ;RvÞ
with respect to RP yields a force on the Piezo dome

FP ≈�5:1 pN. Again, the minus sign indicates a compressive
force on the Piezo dome by the free vesicle membrane but, in
this case, the force has a smaller magnitude. Application of Eq. 2
to all seven measured Piezo vesicles (Fig. 2C) yields a set of seven
force–displacement values, ðRP , FP ), graphed in Fig. 3. The
graph shows that highly curved vesicles (i.e., vesicles with small
Rv) apply a large compressive force to curve the Piezo dome,
and that larger vesicles exert a smaller force. Across the range of
Piezo vesicle sizes considered here, the force on the Piezo dome
varies from approximately �71 to �5:1 pN. In the limit of an
infinitely large vesicle (i.e., in an asymptotically planar mem-
brane without lateral tension), the surrounding membrane
would exert no net elastic force on the Piezo dome. Thus, in a
planar, tensionless membrane, the Piezo dome would adopt a
shape that conforms to its intrinsic curvature, which we
describe next.

Relating Mechanics to Piezo Structure. The force–displacement
curve of a spring can be used to deduce key mechanical properties
of the spring, such as its stiffness. Similarly, the force–displacement
values of the Piezo dome, ðRP , FP ) in Fig. 3, can be used to
deduce mechanical properties of the Piezo dome. To this end, it
is instructive to consider, inspired by the Piezo dome shapes
found in our companion paper, a highly simplified model of the
energetics of the Piezo dome (10). In this model, we describe the
Piezo dome as a spherical cap of fixed area AP = 450 nm2. Fur-
thermore, we adapt Eq. 1 to the Piezo dome itself, replacing the
lipid bilayer bending modulus Kb by the Piezo dome bending
modulus KP and allowing for a preferred, intrinsic radius of cur-
vature of the Piezo dome, R0. We thus have the following mean
curvature energy of the Piezo dome,

GMC
P ðRP Þ = KP

2
AP

2
RP

� 2
R0

� �2

, [3]

where we have noted that the principal curvatures c1 = c2 = 1
RP

for a spherical cap with radius of curvature RP . According to

Fig. 1. Predicting the shape of Piezo vesicles. Oriented Piezo vesicle image obtained by cryo-EM tomography (Left), associated symmetrized (measured)
Piezo vesicle profile (red curve; Left), Piezo dome boundary obtained by integrating out a vesicle surface area equal to AP = 450 nm2 starting at the vesicle
north pole (green dots; Left and Right), and corresponding predicted free membrane profile (blue curves Left and Right). The predicted Piezo vesicle profile is
obtained, with no free parameters, from the membrane elasticity theory of Piezo vesicle shape described in our companion paper (10), and minimizes the
Helfrich energy equation, Eq. 1. The value of the minimized free membrane bending energy, GMðRP;RvÞ in Eq. 1, depends on the vesicle size, Rv , and on the
radius of curvature at the Piezo dome boundary, RP , with Robs denoting the values of RP associated with the predicted free membrane shapes in figure 4 of
our companion paper (10). We obtain Robs from Robs =

rb
sinα, where rb and α denote the in-plane Piezo dome radius and the Piezo dome contact angle associ-

ated with the predicted free membrane shapes in figure 4 of our companion paper (10), respectively. The vesicle shown here corresponds to vesicle 6 with
Rv ≈ 35:0 nm in figure 4 of our companion paper (10). CED marks the Piezo C-terminal extracellular domain (CED). (Scale bar, 26 nm.)
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Eq. 3, the Piezo dome will adopt a radius of curvature RP = R0 if
it is not perturbed by external forces. In other words, Eq. 3
implies that the Piezo dome’s minimum energy state occurs when
RP = R0, in analogy to the natural length of a spring that can be
compressed or stretched. Differentiation of Eq. 3 with respect to
RP gives the mean curvature force,

FMC
P ðRP Þ = 4AP KP ðRP � R0Þ

R3
P R0

: [4]

The solid curve in Fig. 3 is a fit of FMC
P ðRP Þ to the

force–displacement values of the Piezo dome, ðRP , FP Þ. There
are two fitting parameters in Eq. 4: KP (= 18 ± 2:1 kBT ) and
R0 (= 42 ± 12 nm). Note that the Piezo force curve data in Fig.
3 and, hence, the values of KP and R0 depend on the lipid bilayer
composition through, for instance, the bilayer bending modulus
Kb in Eq. 1 (13). Furthermore, to examine the dependence of KP
and R0 on the cap area AP , we obtain KP = 17 ± 2:1 kBT and
R0 = 40 ± 11 nm for AP = 410 nm2 and KP = 18 ± 2:0 kBT
and R0 = 45 ± 13 nm for AP = 490 nm2 (SI Appendix, Fig. S1).
Clearly, the values of KP and R0 depend only weakly on the value
of AP . This means that uncertainty in the location of the Piezo
dome boundary will have little impact on the estimates of KP
and R0 for the Piezo dome.
While Eqs. 3 and 4 are seen to capture the basic trends in

the Piezo force curve data in Fig. 3, we note several potential
shortcomings of this model. First, while we provide evidence in
our companion paper that the shape of the Piezo dome approx-
imately conforms to a spherical cap geometry, the observed
Piezo dome shapes do not, strictly speaking, show constant cur-
vatures, as assumed in Eqs. 3 and 4 (10). Second, Eqs. 3 and 4
describe the Piezo dome as a homogeneous material, with

constant KP . Since the Piezo dome is composed of both a lipid
bilayer and the Piezo protein, this assumption can only be cor-
rect in an approximate sense. Third, we focused in Eqs. 3 and
4 on contributions to the Piezo dome mechanics due to the
mean curvature of the Piezo dome at the midmembrane surface
and neglected any contributions due to the Gaussian curvature
of the Piezo dome. The Gaussian curvature is expected to yield

Fig. 2. Energy landscape of Piezo vesicle shape. Stationary lipid membrane bending energy GMðRP;RvÞ as a function of Piezo dome radius of curvature RP

for (A) the Piezo vesicle radius Rv ≈ 24:7 nm [vesicle 3 in figure 4 of our companion paper (10)] and (B) the Piezo vesicle radius Rv ≈ 35:0 nm [vesicle 6 in fig-
ure 4 of our companion paper (10)] together with selected vesicle cross-sections. These correspond to RP = R1 = 7:6 nm, RP = RM

min ≈ 9:67 nm in A and
RP = RM

min ≈ 10:1 nm in B, RP = R2 ≈ 16:7 nm, and RP = R3 ≈ 27:4 nm. In A, R2 is equal to the observed value of RP , R2 = Robs, while R3 = Robs in B. For each Piezo
vesicle, we describe the Piezo dome geometry as a spherical cap with fixed cap area Acap. The in-plane Piezo dome radius rb and the Piezo dome contact
angle α associated with the predicted free membrane shapes in figure 4 of our companion paper (10) determine, for each Piezo vesicle, Acap via Acap =

2π r2b
1+cosα.

(Scale bars, 5 nm.) (C) The table shows Robs vs. Rv for the seven Piezo vesicles in figure 4 of our companion paper (10). The corresponding spherical cap areas
Acap are approximately 471, 414, 421, 471, 428, 444, and 442 nm2 (from top to bottom).

Fig. 3. Mechanics of the Piezo dome. Force exerted on the Piezo dome, FP ,
for the observed Piezo dome radii of curvature, RP = Robs, obtained from
(minus) the derivative of the stationary free membrane bending energy with
respect to RP, FP =� ∂GM

∂RP
in Eq. 2, at RP = Robs for the measured Piezo vesicle

radii Rv in Fig. 2C. In mechanical equilibrium of the Piezo–membrane system,
the restoring force generated internally by the Piezo dome is given by �FP.
The gray curve shows the force on the Piezo dome obtained by fitting the
mean curvature force in Eq. 4, FMC

P ðRPÞ, to the force–displacement values of
the Piezo dome, ðRP, FP), yielding KP = 18 ± 2:1 kBT and R0 = 42 ± 12 nm in
Eqs. 3 and 4.
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a contribution to the Piezo dome energy that depends on the
detailed shape of the bilayer–protein boundary and is unlikely
to show the simple dependence on RP assumed in Eq. 3 (15).
Given the limited Piezo force curve data currently available, we
focus here on the highly simplified model in Eqs. 3 and 4,
which already provides a reasonably good fit with only two fit-
ting parameters.
The force curve in Fig. 3 suggests that the Piezo dome has a

radius of curvature RP ∼ 40 nm in an asymptotically planar
membrane without lateral tension, such as one might find on the
surface of a mechanically unperturbed cell. The highly curved
structures (RP ∼ 10 nmÞ of Piezo 1 and 2, determined in deter-
gent micelles, indicate that Piezo proteins that are removed from
the membrane are most stable in a conformation with high cur-
vature. However, considering the space between Piezo’s extended
protein arms, the area of a Piezo dome in a membrane comprises
∼75% lipid bilayer and 25% protein. As per Eq. 1, the energy
cost to curve this bilayer away from a plane is considerable. It
seems likely that the increased radius of curvature, from
RP ∼ 10 nm observed in isolated Piezo proteins to RP ∼ 40 nm
in a planar membrane, reflects an equilibrium balance of forces
between the Piezo protein and the bilayer within the Piezo dome
(SI Appendix, Fig. S2). Whatever the detailed molecular mecha-
nisms involved, the force curve informs us that Piezo in planar
cell membranes should be flatter in shape than the highly curved
Piezo proteins in detergent micelles.
The bending modulus of the Piezo dome, KP = 18 ± 2:1 kBT ,

is indistinguishable from the bending modulus of the pure lipid
bilayer membrane used here, Kb = 20 kBT . On the one hand,
given that the Piezo dome’s area is ∼ 75% lipid membrane, this
might not seem surprising. On the other hand, we wonder how
the Piezo protein avoids adding stiffness to the Piezo dome—after
all, the Piezo protein is an integral part of the dome’s structure.
How Piezo creates the membrane dome by introducing intrinsic
curvature without increasing stiffness is unknown. However, the
functional advantage afforded by these properties—intrinsic cur-
vature without increased stiffness—can be understood when we
consider their implications for sensing mechanical forces.

Relating Mechanics and Structure to Piezo Gating. Now we
consider the implications of R0 ≈ 42 nm and KP ≈ 18 kBT for
the membrane dome model of mechanosensitive gating using a
thought experiment. To start, we embed a Piezo dome with energy
GMC

P ðRP Þ in Eq. 3 into an asymptotically planar free membrane
that may be at a finite lateral tension γ. We refer to the Piezo
dome plus its surrounding membrane as the Piezo–membrane sys-
tem. The shape energy of the Piezo–membrane system is given by

GsysðRPÞ = KP

2
AP

2
RP

� 2
R0

� �2

+
Kb

2
∫dA ðc1 + c2Þ2 � γ ΔAproj: [5]

The first term in Eq. 5 is the Piezo dome mean curvature
energy, Eq. 3. The second term is Eq. 1 for the free lipid bilayer
membrane surrounding the Piezo dome. It captures, in analogy
to the continuum elasticity theory describing the free membrane
shape in Piezo vesicles, the membrane bending energy of Piezo’s
membrane footprint (8, 10). The third term is a work energy
term that becomes important when a lateral tension is applied
to the system (16). ΔAproj < 0 refers here to the decrease in the
projected (i.e., in-plane) area of the Piezo–membrane system
due to the curved shape of the Piezo dome and its membrane
footprint, relative to the completely flat system configuration.

For a given RP , we take Piezo’s membrane footprint to be in its
minimum energy state obtained, similarly as for Piezo vesicles,
by solving the corresponding Hamilton equations in an asymp-
totically flat, homogeneous bilayer membrane (SI Appendix,
section S2) (8). As written, GsysðRP Þ is thus the shape energy of
the Piezo–membrane system relative to the energy of a
completely flat configuration of the system (i.e., with the Piezo
dome and free membrane in a plane, without curvature). When
γ = 0, the work energy term is equal to zero, and so is the bend-
ing energy of Piezo’s membrane footprint, with the membrane
footprint assuming a catenoidal shape in which c1 and c2 at
every point are equal in magnitude and opposite in sign (8). In
this case, Piezo’s membrane footprint exerts no force on the
Piezo dome, and GsysðRPÞ attains its minimum at RP = R0.
Thus, when γ = 0, we have Gsys = 0. Fig. 4 A, Left shows the
shape of the Piezo–membrane system under nominal tension. The
Piezo dome adopts its intrinsic radius of curvature, RP ≈ 42 nm,
and the surrounding free membrane forms a curved membrane
footprint that smoothly meets the edge of the Piezo dome.

When γ > 0, a flattening of the Piezo dome tends to decrease
the energetic cost of the work energy term in Eq. 5. At the
same time, the energetic cost of curvature in the membrane
footprint will also tend to flatten the Piezo dome. This is
because, when γ > 0, the membrane footprint deviates from its
catenoidal shape and the associated energy contribution must
be positive (i.e., unfavorable), but less so if the membrane flat-
tens out, reducing its curvature (8). Thus, when γ > 0, the sec-
ond and third terms in Eq. 5 both favor a flatter, expanded
configuration of the Piezo–membrane system, while the first
term in Eq. 5 favors a shape of the Piezo dome with RP = R0.
As a result, the second and third terms in Eq. 5 yield a force on
the Piezo dome to flatten it away from RP = R0. This is how
lateral membrane tension can alter the shape of the Piezo dome
and its surrounding membrane (Fig. 4 A, Right).

As stated in the Introduction, we have proposed that the
open conformation of Piezo is less curved. If we associate, for
example, the closed Piezo channel with RP = R0 (Fig. 4 A, Left)
and the open channel with RP !∞ (Fig. 4 A, Right) (i.e., a
flat conformation), then applying the Boltzmann distribution
equation to these two configurations of the Piezo–membrane
system, we have

Po
1� Po

= e
�ΔGsys
kBT , [6]

where Po is the Piezo open probability and ΔGsys is the differ-
ence in the shape energy of the Piezo–membrane system, Eq. 5,
between the open and closed states of the Piezo channel. The
black curves (Figs. 4 B–D) show Po as a function of γ according
to Eqs. 5 and 6 for AP = 450 nm2, R0 ≈ 42 nm, and
KP ≈ 18 kBT . We predict, with no free parameters, Po = 0:5 at
γ ≈ 0:33 kBT

nm2, which is near published experimental values for
the Piezo gating tension in cell membranes, with half activation
around γ ∼ 0:4 kBT

nm2 (17). The predicted and measured gating
curves also show a comparable steepness.

Such a good correspondence between the predicted and mea-
sured tension–activation curves is surprising for several reasons.
The assumption that the Piezo dome bending modulus, KP ,
for increasing the radius of curvature (i.e., flattening the dome)
is the same as that for decreasing the radius of curvature, which
we have measured, may be incorrect. Furthermore, Piezo is
unlikely to be a two-state channel, and nonelastic (chemical)
energy terms ought to contribute to the interaction between
the Piezo protein and the lipid membrane, although it may be
that these nonelastic energy terms do not change much between
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closed and opened conformations. With these assumptions
understood, the elastic energy model of Piezo obtained here
seems to approximate the functional behavior of the channel.
More importantly, our motivation for this study is not to pre-
dict the activation curve, but to understand how the Piezo
dome’s physical properties give rise to its mechanical force sens-
ing ability. To this end, we systematically varied in our model
Piezo’s intrinsic curvature, stiffness, and area to ask what effect
these perturbations would have on its mechanosensing capabil-
ity? The blue solid and dashed curves (Fig. 4B) show that Pie-
zo’s steep, switch-like response to changes in membrane tension
depends critically on the Piezo dome intrinsic radius of curva-
ture, R0. Without intrinsic curvature, in its closed, resting state,
Piezo would not be mechanosensitive. The red curves (Fig. 4C)
show that Piezo’s ability to respond mechanically in the low-
tension regime relies on the bending modulus of the Piezo
dome being small. By small, we mean comparable to that of
the pure lipid bilayer. If the value of KP was doubled, for
instance, then Piezo would not open until the membrane ten-
sion reached approximately one-third of the lytic tension of a
lipid bilayer, which is about 2:5 kBT

nm2 (13). Thus, intrinsic curva-
ture of the Piezo dome with minimal stiffness appears to be an
effective recipe for a switch-like conformational response in the
low-tension regime.
The Piezo dome’s unusually large area is also important. The

green curves (Fig. 4D) show that Piezo’s area influences both
the steepness of its opening response and the tension range over
which it opens. Thus, Piezo’s intrinsic curvature, membrane
footprint, small bending modulus, and large area appear to be
the key properties underlying Piezo’s ability to function as a

highly responsive, tension-gated ion channel that operates in
the low-tension regime.

Discussion

Our analysis of Piezo vesicles is analogous to the problem of two
connected springs, one whose force–displacement relationship is
known and the other, unknown. By measuring the displacement
of the dual spring system at mechanical equilibrium, because the
forces between the two springs must be equal in magnitude and
opposite in sign, the force–displacement relationship of the
unknown spring can be deduced, without perturbing the system.
In the present study, the vesicle free membrane represents one
spring and the Piezo dome, the other. To designate the free mem-
brane as known, we must know its force–displacement relation-
ship. Thus, we examined in the companion paper whether the
Helfrich energy equation can predict the shape of the free mem-
brane bounded by the edge of the Piezo dome (10). With no free
parameters, we were able to accurately predict the shape of Piezo
vesicles from the Helfrich energy equation. This justifies taking
the Helfrich energy equation as a potential energy function for the
free membrane, which means, through differentiation, we have
the force. Thus, the free membrane serves as a known spring.
Vesicles of different sizes permit the construction of a
force–displacement relationship for the Piezo dome in unsup-
ported, freestanding lipid membranes.

To connect the force–displacement relationship of the Piezo
dome to channel gating, we model the Piezo dome as a spherical
cap with intrinsic radius of curvature R0, stiffness KP , and
(known) area AP , whose deformation energy is governed by the

Fig. 4. Mechanics of Piezo activation. (A) Three-dimensional plots of the Piezo dome and its (partial) membrane footprint in the limit of an asymptotically
planar membrane. We assume here that the closed state of Piezo approximately corresponds to the intrinsic Piezo dome radius of curvature
RP = Rc ≈ 42 nm (Left) and that the open state of Piezo approximately corresponds to a flat Piezo dome shape with radius of curvature RP = Ro !∞ (Right).
We calculated the shape of the membrane footprint by minimizing the shape energy of the Piezo–membrane system, GsysðRPÞ in Eq. 5, at fixed RP with

AP = 450 nm2. In A, Left, we used a nominal lateral membrane tension γ = 0:01 kBT
nm2. The membrane areas occupied by the Piezo dome as well as by the mem-

brane footprint are identical in A, Left and Right. (B–D) Piezo gating curves, PoðγÞ in Eq. 6, for the elastic properties of the Piezo dome estimated in Fig. 3,
R0 ≈ 42 nm and KP ≈ 18 kBT , with the Piezo dome area AP = 450 nm2 (black curves) and with (B) a modified intrinsic Piezo dome radius of curvature 1

2R0 (blue
solid curve) or 2R0 (blue dashed curve), (C) a modified Piezo dome bending rigidity 3

2KP (thick red curve) or 2KP (thin red curve), and (D) a modified Piezo
dome area 2

3AP (thick green curve) or 1
2AP (thin green curve). For the predicted Piezo gating curve with R0 ≈ 42 nm, KP ≈ 18 kBT , and AP = 450 nm2, Eq. 6 yields

Po = 1
2 at the gating tension γ1=2 ≈ 0:33 kBT

nm2 (black curves). In B, γ1=2 ≈ 0:34 kBT
nm2 for 1

2R0 and γ1=2 ≈ 0:32 kBT
nm2 for 2R0. In C, γ1=2 ≈ 0:56 kBT

nm2 for 3
2KP and γ1=2 ≈ 0:83 kBT

nm2

for 2KP. In D, γ1=2 ≈ 0:49 kBT
nm2 for 2

3AP and γ1=2 ≈ 0:65 kBT
nm2 for 1

2AP.
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dome’s mean curvature. Differentiation with respect to the Piezo
dome radius of curvature, RP , yields a force function, Eq. 4, that
conforms to the Piezo force curve data and gives estimates for R0
and KP . We conclude that Piezo in an asymptotically planar, ten-
sionless lipid bilayer membrane is curved, but less than in the
detergent micelles used in cryo-EM studies. We also conclude
that the Piezo dome exhibits low stiffness, comparable to that of
the free lipid bilayer membrane.
The most interesting question in structural biology is not what

does a molecule or collection of molecules look like, but why?
Piezo is an extreme structural outlier among ion channels and
membrane proteins in general. At its center, Piezo is a rather
ordinary looking trimeric ion channel, but then each protomer
extends radially a long, curved arm consisting of transmembrane
helical units (6, 18, 19). Together, the three curved arms pucker
the membrane to create a dome and surrounding membrane
footprint that comprise a large area. The analysis we present
argues that the structural features of large area and curvature are
both important ingredients in the recipe for sensing lateral mem-
brane tension. On top of these structural properties, the mechani-
cal property of low stiffness is also important. To the question
why regarding Piezo’s structure, we conclude that its large area,
intrinsic curvature, and low stiffness are requirements for its abil-
ity to respond to membrane tension changes in the low-tension
regime with high sensitivity. One could imagine in the evolution
of its current form, that the Piezo channel began as an “ordinary”
ion channel, which became modified through natural selection to
have extended arms to recruit a large dome area and membrane
footprint, with a shape to produce intrinsic curvature, and with
mechanical properties to ensure low bending stiffness.
Piezo’s solution to sensing membrane tension by an ion

channel is not the only one that emerged in life. The mechano-
sensitive K+ channels TWIK-related arachidonic acid activated
potassium channel (TRAAK) and TWIK-related potassium
channel (TREK) are small, wedge-shaped ion channels (20).
Their shape probably produces a small membrane footprint,
which would afford a γ ΔAproj work energy term in the gating
transition, but these channels’ small area is suboptimal. TRAAK
and TREK open with a very weak dependence on membrane
tension compared to Piezo (21). In another example, the large
conductance bacterial mechanosensitive channel, MscL, opens
with a strong dependence on membrane tension, like Piezo (22).
MscL mainly produces its mechanical work term, γ ΔAproj, by
direct in-plane expansion of a disk-like arrangement of trans-
membrane helices that surround the pore (23). However, there
are two caveats. First, MscL functions as a pressure release valve
in bacteria, opening a very wide pore in the face of osmotic
shock. The large pore opening in MscL fulfills its role to release
cytoplasmic content and to provide a strong tension dependence
through a large magnitude of ΔAproj, but such a large pore open-
ing would be lethal to a eukaryotic cell. A eukaryotic cell must
only open a narrow pore to mediate ion conduction, and thus,
pore opening alone will not produce a large ΔAproj. Second,
MscL does not open until the membrane tension approaches
lytic values (22). In other words, MscL does not open in the
low-tension regime like Piezo. We would argue that the unique
structure and elastic properties of Piezo reflect evolutionary
adaptations to achieve strong tension-dependent gating in the
low-tension regime for an ion channel that opens a narrow pore.
In a previous study, HS-AFM was used to analyze shape

changes in Piezo as a function of force applied by the atomic
force microscope (AFM) tip in imaging mode (9). Contrary to
the present approach, the Piezo dome was thus perturbed by an
external force applied from outside the membrane. The forces

in that study were similar in magnitude to the forces estimated
here, with both systems yielding estimates for the Piezo gating
tension comparable with experimental values. The Piezo dome
flattened and recoiled reversibly under the AFM tip; however, sev-
eral observations and conclusions, especially regarding the Piezo
dome geometry and force–displacement relationship, were differ-
ent between the two studies. In the HS-AFM study, the low-force
intrinsic radius of curvature of the Piezo dome was about 15 nm
rather than 40 nm. This difference alone makes a direct compari-
son of the two force curves impossible. One reason for the differ-
ence, we suspect, is that the HS-AFM study was carried out in
lipid bilayer membranes made from 1-palmitoyl-2-oleoyl-sn-glyc-
ero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-
glycero-3-phospho-(1’-rac-glycerol) (POPG). These lipids, because
of their shapes, may organize around the curved Piezo channel,
permitting it to be more curved than in the 1-palmitoyl-2-oleoyl-
sn-glycero-3-phosphocholine (POPC):1,2-dioleoyl-sn-glycero-3-
phospho-L-serine (DOPS):cholesterol lipid bilayer membranes
considered here (6, 10, 24). Another difference is that the mem-
brane in the HS-AFM study was supported on a mica surface,
whereas in the present study, the membrane is unsupported,
more like a cell membrane, with Piezo’s response to forces
depending on its membrane footprint. Perhaps a useful conclu-
sion to be reached by comparing these studies is that different
lipid compositions and membrane environments in cells have the
potential to regulate Piezo’s structure and thus its function, by
biasing the Piezo dome toward curved or flattened states.

A recent structural study on Piezo in lipid vesicles (11)
requires comment here to avoid misinterpretation of our findings
and to ensure that the principles of membrane elasticity theory
are correctly conveyed. In ref. 11, the authors misuse the physi-
cal concepts force and, in particular, membrane tension, leading
to an incorrect description of Piezo gating. They specify the
closed-state radius of curvature of Piezo as 10 nm, the radius of
curvature they observe in a spherical 10-nm-radius vesicle. They
use this radius of curvature to compare the predictions of the
membrane dome model for an asymptotically planar membrane
(6, 9) to the measured Piezo gating tension in a patch of mem-
brane (17)—a scenario that is fundamentally distinct from a
10-nm vesicle, with different forces acting on the Piezo dome and
a different closed-state radius of curvature of Piezo. The authors of
ref. 11 might have noticed in figure 1 of their paper that in larger
vesicles, Piezo’s radius of curvature is greater than 10 nm, as was
also shown previously (9), and they ought to have wondered what
it would be in a planar membrane. The dependence of Piezo’s
shape on vesicle size arises because Piezo’s structure and function
are inextricably tied to the geometry of the membrane through
bending elastic forces and emerge from Piezo–membrane interac-
tions. This example raises the often-asked question in membrane
protein structural biology: To what extent does the membrane (for
example, compared to a detergent micelle) alter a membrane pro-
tein’s structure? For Piezo, the answer is, a great extent, and mem-
brane elasticity theory permits us to understand why: because the
responsiveness of Piezo’s structure to the membrane is deeply
rooted in Piezo’s mechanism of sensing mechanical force.

In summary, Piezo in asymptotically planar lipid bilayer
membranes is less curved than in detergent micelles, with a
radius of curvature of about 40 nm at zero tension. However,
low-threshold, sensitive mechanical gating properties are main-
tained nevertheless, owing to the creation of a membrane foot-
print surrounding Piezo. Realizing the biologically relevant
shape and elastic properties of Piezo, which exploit the bending
elastic properties of lipid bilayer membranes, is key to under-
standing its mechanosensory properties. The general concept of
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a dome model that utilizes γ ΔAproj for Piezo’s mechanosensitive
gating was hypothesized based on a structure in detergent micelles
(6), but a more accurate description required an understanding of
Piezo’s interaction with lipid bilayer membranes (8). In this paper
and the companion paper (10), we have quantified the bending
elastic properties and shape of Piezo inside a freestanding lipid
bilayer membrane. Collectively, these findings tie Piezo’s unusual
form and mechanical properties to its mechanosensing ability.

Materials and Methods

For Figs. 1–3, we calculated the shape and elastic energy of the free membrane in
Piezo vesicles as described in our companion paper (10). We calculated the shape
and elastic energy of Piezo’s membrane footprint in asymptotically planar mem-
branes in Fig. 4 based on the theory developed in ref. 8 using Mathematica (25).
A summary of this theoretical approach can be found in SI Appendix, section S2.

Data, Materials, and Software Availability. The tomograms of Piezo vesicles
are deposited in the EMDataBank [accession codes EMD-27569 (26) (vesicle 1),
EMD-27571 (27) (vesicles 2 and 4), EMD-27568 (28) (vesicle 3), EMD-27567
(29) (vesicles 5 and 6), and EMD-27570 (30) (vesicle 7)]. All other data are
included in the manuscript and/or SI Appendix.
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