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Abstract—We are entering a rapidly unfolding future driven by
the delivery of real-time computation services, such as industrial
automation and augmented reality, collectively referred to as
augmented information (AgI) services, over highly distributed
cloud/edge computing networks. The interaction intensive nature
of AgI services is accelerating the need for networking solutions
that provide strict latency guarantees. In contrast to most existing
studies that can only characterize average delay performance,
we focus on the critical goal of delivering AgI services ahead of
corresponding deadlines on a per-packet basis, while minimizing
overall cloud network operational cost. To this end, we design
a novel queuing system able to track data packets’ lifetime and
formalize the delay-constrained least-cost dynamic network control
problem. To address this challenging problem, we first study the
setting with average capacity (or resource budget) constraints, for
which we characterize the delay-constrained stability region and
design a throughput-optimal control policy leveraging Lyapunov
optimization theory on an equivalent virtual network. Guided
by the same principle, we tackle the peak capacity constrained
scenario by developing the reliable cloud network control (RCNC)
algorithm, which employs a two-way optimization method to
make actual and virtual network flow solutions converge in an
iterative manner. Extensive numerical results show the superior
performance of the proposed control policy compared with the
state-of-the-art cloud network control algorithm, and the value
of guaranteeing strict end-to-end deadlines for the delivery of
next-generation AgI services.

Index Terms—Distributed cloud network control, edge comput-
ing, delay-constrained stability region, strict latency, reliability

I. INTRODUCTION

THE so-called automation era or fourth industrial revolu-
tion will be driven by the proliferation of compute- and

interaction-intensive applications, such as real-time computer
vision, autonomous transportation, machine control in Indus-
try 4.0, telepresence, and augmented/virtual reality (AR/VR),
which we collectively refer to as augmented information (AgI)
services [2]–[4]. In addition to the communication resources
needed for the delivery of data streams to corresponding
destinations, AgI services also require a significant amount
of computation resources for the real-time processing, via
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possibly multiple functions, of source and intermediate data
streams.

The evolution of user equipments (UEs) towards increasing-
ly small, lightweight, seamless devices, and their associated
limitations in power and computing capabilities, has been
pushing the need to offload many computation-intensive tasks
to the cloud. However, increased access delays associated with
distant centralized cloud data centers are fueling advanced
network architectures such as fog and mobile edge computing
(MEC) that push computation resources closer to the end users
in order to strike a better balance between resource efficiency
and end-to-end delay [4]–[6]. In this work, we refer to the
overall wide-area distributed computation network that results
from the convergence of telco networks and cloud/edge/UE
resources as a distributed cloud network.

Delay and cost are thus two essential metrics when evaluat-
ing the performance of AgI service delivery over a distributed
cloud network. From the consumers’ perspective, excessive
end-to-end delays can significantly impact quality of expe-
rience (QoE), especially for delay-sensitive AgI applications
(e.g., industrial automation, augmented reality) where packets
must be delivered by a strict deadline in order to be effective
(i.e., packets delivered after their deadline become irrelevant
and/or break application interactivity). In this context, time-
ly throughput, which measures the rate of effective packet
delivery (i.e., within-deadline packet delivery rate), becomes
the appropriate performance metric [7]–[9]. On the other
hand, network operators care about the overall resource (e.g.,
computation, communication) consumption needed to support
the dynamic service requests raised by end users.

Both delay and cost will ultimately be dictated by the
choice of cloud/edge locations where to execute the various
AgI service functions, the network paths over which to route
the service data streams, and the corresponding allocation
of computation and communication resources. Therefore, to
maximize the benefit of distributed cloud networks for the
delivery of AgI services, two fundamental problems need to
be jointly addressed:

• where to execute the requested AgI service functions, and
how much computation resource to allocate

• how to route and schedule data streams through the
appropriate sequence of service functions, and how much
communication resource to allocate

In addition, due to the dynamic and unpredictable nature of
AgI service requests, the above placement, processing, routing,
and resource allocation problems must be addressed in an
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online manner, in response to stochastic network conditions
and service demands.

A. Related Work
With the advent of software defined networking (SDN)

and network function virtualization (NFV), network (and, by
extension, AgI) services can be deployed as a sequence of
software functions or service function chains (SFCs) instanti-
ated over distributed cloud locations. A number of studies have
investigated the problem of joint SFC placement and routing
over multi-hop networks with the objective of either minimiz-
ing overall operational cost [10]–[14], or maximizing accepted
service requests [15]–[18]. Nonetheless, these solutions exhibit
two main drawbacks. First, the problem is formulated as a
static optimization problem without considering the dynamic
nature of service requests. In addition, when it comes to
delay performance, these studies mainly focus on propagation
delay [12], [13], [15], [16], while neglecting queuing delay, or
using simplified models (e.g., M/M/1) to approximate it [17].
Second, due to the combinatorial nature of the problem, the
corresponding formulations typically take the form of (NP-
hard) mixed integer linear programs and either heuristic or
loose approximation algorithms are developed, compromising
the quality of the resulting solution.

More recently, a number of studies have addressed the SFC
optimization problem in dynamic scenarios, where one needs
to make joint packet processing and routing decisions in an
online manner [19]–[21]. The works in [19], [20] employ
a generalized cloud network flow model that allows joint
control of processing and transmission flows. The work in
[21] shows that the traffic control problem in distributed
cloud networks (involving joint packet processing and routing
decisions) can be reduced to a packet routing problem on a
properly constructed layered graph that includes extra edges
to characterize the processing operations (i.e., packets pushed
through these edges are interpreted as being processed by
a service function). By this transformation, many control
policies designed for packet routing can be extended to ad-
dress cloud network control problems (i.e., packet processing
and routing), especially those aiming at maximizing network
throughput with bounded average delay performance.

In particular, back-pressure (BP) [22] is a well-known algo-
rithm for throughput-optimal routing that leverages Lyapunov
drift control theory to steer data packets based on the pres-
sure difference (differential backlog) between neighbor nodes.
In addition, the Lyapunov drift-plus-penalty (LDP) control
approach [23] extends the BP algorithm to also minimize
network operational cost (e.g., energy expenditure), while
preserving throughput optimality. Despite the remarkable ad-
vantages of achieving optimal throughput performance via
simple local policies without requiring any knowledge of
network topology and traffic demands, both BP and LDP
approaches can suffer from poor average delay performance,
especially in low congestion scenarios, where packets can take
unnecessarily long, and sometimes even cyclic, paths [24].
Average delay reductions were then shown to be obtained
in [25] by combining BP and hop-distance based shortest-
path routing, using a more complex Markov decision process

(MDP) formulation in [26], or via the use of source routing to
dynamically select acyclic routes for incoming packets, albeit
requiring global network information, in [27].

Going beyond average delay and analyzing per-packet delay
performance is a more challenging problem with much fewer
known results, even in the context of packet routing and under
static arrivals. In particular, the restricted shortest path (RSP)
problem, which aims to find the min-cost path for a given
source-destination pair subject to an end-to-end delay (or path
length) constraint, is known to be NP-hard [28]. Considering
dynamic arrivals becomes a further obstacle that requires
additional attention. An opportunistic scheduling policy is
proposed in [29] that trades off worst-case delay and timely
throughput, which preserves the delay guarantee when applied
to hop-count-limited transmissions. However, it requires a
link selection procedure (to meet the hop-count requirement)
that weakens its performance in general networks (e.g., mesh
topologies); besides, the timely throughput is with respect
to the worst-case delay, rather than the deadline imposed
by the application, leading to either sub-optimal throughput
under stringent deadline constraints, or looser guarantees on
the worst-case delay; finally, it treats packet scheduling on
different links separately, lacking an end-to-end optimization
of the overall delay. In [30], the authors formulate the problem
of timely throughput maximization as an exponential-size
constrained MDP (CMDP), and derive an approximate solu-
tion based on solving the optimal single-packet transportation
problem for each packet; in addition, [31] addresses the more
complex set-up of wireless networks with link interference.
While this approach reduces the complexity from exponential
(of a general solution that makes joint packet decisions) to
polynomial, it requires solving a dynamic programming prob-
lem for each packet at every time slot, which can still become
computationally expensive. Furthermore, none of these works
takes operational cost minimization into account, an important
aspect in modern elastic cloud environments.

B. Contributions

In this paper, we investigate the problem of multi-hop cloud
network control with the goal of delivering AgI services with
strict per-packet deadline constraints, while minimizing overall
operational cost. More concretely, we focus on reliable service
delivery, which requires the timely throughput of each service,
i.e., the rate of packets delivered by their deadlines, to surpass
a given level in order to meet a desired QoE. We study
the problem in dynamic scenarios, i.e., assuming the service
requests are unknown and time-varying.

There are two main challenges that prohibit the use of exist-
ing cloud network control methods (e.g., [19]) and associated
queuing systems for reliable service delivery. In particular,
existing queuing systems: (i) do not take packet deadlines
into account and cannot track associated packet lifetimes;
(ii) do not allow packet drops, which becomes critical in
delay-constrained routing, since dropping outdated packets can
benefit cost performance without impacting timely throughput.

To overcome these drawbacks, we construct a novel queuing
system with separate queues for different deadline-driven
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Fig. 1. Illustration of the delivery of two delay-sensitive applications over a
distributed cloud network. The red route (for the self-driving car application)
illustrates a configuration that can exceed end-to-end latency constraints.

packet lifetimes, and allow packet drops upon lifetime expiry.
In contrast to standard queuing systems, where packets are
transmitted to reduce network congestion and keep physical
queues stable [23], the new queuing model is fundamental-
ly different: stability of physical queues becomes irrelevant
(due to packet drops), and packet transmission is driven by
the requirement to deliver packets on time (reliable service
delivery). The proposed solution is presented in two stages.
First, we study a relaxed average-constrained network control
problem and derive an exact solution via a flow matching
technique where flow scheduling decisions are driven by an
LDP solution to an equivalent virtual network control problem.
Then, we address the original peak-constrained problem, with
the additional challenge of non-equivalent actual and virtual
network formulations, and devise an algorithm that adapts the
LDP plus flow matching technique via an iterative procedure.

Our contributions can be summarized as follows:
1) We develop a novel queuing model that allows tracking

data packet lifetimes and dropping outdated packets,
and formalize the delay-constrained least-cost dynamic
network control problem P0.

2) We derive a relaxed problem P1 targeting the same
objective in an average-capacity-constrained network,
and characterize its delay-constrained stability region
based on a lifetime-driven flow conservation law.

3) We design a fully distributed near-optimal (see Proposi-
tion 3 for throughput and cost guarantees) control policy
for P1 by (i) deriving an equivalent virtual network
control problem P2 that admits an efficient LDP-based
solution, (ii) proving that P1 and P2 have identical
stability region, flow space, and optimal objective value,
and (iii) designing a randomized policy for P1 guided
by matching the virtual flow solution to P2.

4) We leverage the flow matching technique to develop
an algorithm for P0, referred to as reliable cloud
network control (RCNC), whose solution results from
the convergence of actual (for P0) and virtual (for P2)
flows via an iterative optimization procedure.

The rest of the paper is organized as follows. In Section II,
we introduce network model and associated queuing system. In
Section III, we define the policy space and formulate the orig-
inal problem P0. In Section IV, we study the relaxed problem

TABLE I
TABLE OF NOTATIONS

Symbol Description
G; V , E; d Network graph model; node, edge sets; destination.
δ−i , δ+i Sets of incoming/outgoing neighbors of i.
Cij , eij Transmission capacity and cost of link (i, j).
l, L, L Lifetime, maximum lifetime, set of lifetimes.
a(t), λ Number of arrival packets, arrival rate.
x(t); ν(t), µ(t) Flow variable; virtual, actual flows.
γ, Λ Reliability level, network stability region.
F , Γ Feasible policy space, flow space.
Q(t), U(t), R(t) Actual queue, virtual queue, request queue.

P1 and derive an equivalent LDP-amenable formulation P2.
Section V presents the algorithm for solving P1 as well as
its performance analysis, which is extended to develop an
iterative algorithm for P0 in Section VI. Numerical results are
shown in Section VII, and possible extensions are discussed
in Section VIII. Finally, we summarize the main conclusions
in Section IX.

II. SYSTEM MODEL

A. Cloud Layered Graph

The ultimate goal of this work is to design control policies
for distributed cloud networks to reliably support multiple
delay-sensitive AgI services, where the network is equipped
with computation resources (cloud servers, edge/fog comput-
ing nodes, etc.) able to host service functions and execute
corresponding computation tasks.

While in traditional packet routing problems, each node
treats its neighbor nodes as outgoing interfaces over which
packets can be scheduled for transmission, a key step to ad-
dress the AgI service control problem is to treat the co-located
computing resources as an additional outgoing interface over
which packets can be scheduled for processing [19]. Indeed, as
illustrated in [21], the AgI service control problem, involving
both packet routing and processing, can be reduced to a packet
routing problem on a layered graph where cross-layer edges
represent computation resources.

Motivated by such a connection and for ease of exposition,
in this paper, w.l.o.g., we illustrate the developed approach
focusing on the single-commodity delay-constrained min-cost
packet routing problem. We remark that (i) it is still an
open problem even in traditional communication networks,
and (ii) the extension to distributed cloud networks hosting
AgI services is presented in Appendix H.

B. Network Model

The considered packet routing network is modeled via a
directed graph G = (V , E), where edge (i, j) ∈ E represents
a network link supporting data transmission from node i ∈ V
to j ∈ V , and where δ−i and δ+

i denote the incoming and
outgoing neighbor sets of node i, respectively.

Time is divided into equal-sized slots, and the available
transmission resources and associated costs at each network
link are quantified as:
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Fig. 2. Interaction between lifetime queues. Red and blue colors denote packet
states and actions during transmitting and receiving phases, respectively.

• Cij : the transmission capacity, i.e., the maximum number
of data units (e.g., packets) that can be transmitted in one
time slot, on link (i, j);

• eij : the unit transmission cost, i.e., the cost of transmitting
one unit of data in one time slot, on link (i, j).

We emphasize that in the layered graph, cross-layer edges
represent data processing, i.e., data streams pushed through
these edges are interpreted as being processed by correspond-
ing service functions, and the capacity and cost of these edges
represent the processing capacity and processing cost of the
associated computation resources (e.g., cloud/edge servers).

C. Arrival Model

In this work, we focus on a delay-sensitive application,
assuming that each packet has a strict deadline by which it
must be delivered to the destination d ∈ V . In other words,
each packet must be delivered within its lifetime, defined as
the number of time slots between the current time and its
deadline. A packet is called effective if its remaining lifetime
l is positive, and outdated otherwise. In addition, we define
timely throughput as the rate of effective packet delivery.

We assume that input packets can originate at any source
node of the application, and in general, we assume that the set
of source nodes can be any network node except the destina-
tion, V \{d}. The packet’s initial lifetime l ∈ L , {1, · · · , L}
is determined by the application (based on the sensitivity of
the contained information to delay), which can vary from
packet to packet, with L denoting the maximum possible
lifetime. Denote by a(l)

i (t) the number of exogenous packets
(i.e., packets generated externally) of lifetime l arriving at
node i. We assume that the arrival process is i.i.d. over
time, with mean arrival rate λ(l)

i , E
{
a

(l)
i (t)

}
and an upper

bound of Amax; besides, we define the corresponding vectors
a(t) =

{
a

(l)
i (t) : ∀ i ∈ V , l ∈ L

}
and λ = E {a(t)}.

D. Queuing System

Since each packet has its own delivery deadline, keeping
track of data packets’ lifetimes is essential. A key step is to
construct a queuing system with distinct queues for packets of
different current lifetimes l ∈ L. In particular, we denote by
Q

(l)
i (t) the queue backlog of lifetime l packets at node i at

time slot t, and define Q(t) =
{
Q

(l)
i (t) : ∀ i ∈ V , l ∈ L

}
. Let

x
(l)
ij (t) be the actual number of lifetime l packets transmitted

from node i to j at time t (which is different from a widely
used assigned flow model, as explained in Remark 2).

Each time slot is divided into two phases, as illustrated
in Fig. 2. In the transmitting phase, each node makes and
executes transmission decisions based on observed queuing
states. The number of lifetime l+ 1 packets at the end of this
phase is given by

Q̆
(l+1)
i (t) = Q

(l+1)
i (t)− x(l+1)

i→ (t) (1)

where x
(l+1)
i→ (t) ,

∑
j∈δ+i x

(l+1)
ij (t) denotes the number

of outgoing packets. In the receiving phase, the incoming
packets, including those from neighbor nodes x

(l+1)
→i (t) ,∑

j∈δ−i x
(l+1)
ji (t) as well as exogenously arriving packets

a
(l)
i (t), are loaded into the queuing system, and the queuing

states are updated as:

Q
(l)
i (t+ 1) =

[
Q̆

(l+1)
i (t) + x

(l+1)
→i (t)

]
+ a

(l)
i (t) (2)

where lifetime l+ 1 packets, including those still in the queue
as well as those arriving from incoming neighbors during the
transmitting phase of time slot t (i.e., terms in the square
bracket) turn into lifetime l packets during the receiving phase
of time slot t. In addition, lifetime l exogenous packets, a(l)

i (t),
also enter the lifetime l queue during the receiving phase of
slot t. All such arriving packets become ready for transmission
at the transmitting phase of slot t+ 1.

To sum up, the queuing dynamics are given by

Q
(l)
i (t+ 1) = Q

(l+1)
i (t)− x(l+1)

i→ (t) + x
(l+1)
→i (t) + a

(l)
i (t) (3)

for ∀ i ∈ V , l ∈ L.
In addition, we assume: 1) as the information contained

in outdated packets is useless, i.e., outdated packets do not
contribute to timely throughput, they are immediately dropped
to avoid inefficient use of network resources:

Q
(0)
i (t) = 0, ∀ i ∈ V , (4)

and 2) for the destination node d, every effective packet is
consumed as soon as it arrives, and therefore

Q
(l)
d (t) = 0, ∀ l ∈ L. (5)

Considering the lifetime reduction over time slots, in gener-
al, we do not send packets of lifetime 1, i.e., x(1)

ij (t) = 0, since
the packets turn outdated at node j at the next time slot. The
only exception occurs when j = d: we assume that the packets
of lifetime l = 1 are consumed as soon as the destination node
receives them, while they are still effective.

III. PROBLEM FORMULATION

In this section, we introduce the admissible policy space,
the reliability constraint, and the formalized delay-constrained
least-cost dynamic network control problem.

A. Admissible Policy Space

The control policies of interest make packet routing and
scheduling decisions at each time slot, which are dictated by
the flow variables x(t) =

{
x

(l)
ij (t) : ∀ (i, j) ∈ E , l ∈ L

}
. In

particular, we focus on the space of admissible control policies
with decision flow variables satisfying:
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1) non-negativity constraint, i.e.,

x
(l)
ij (t) ≥ 0 for ∀ (i, j) ∈ E , or x(t) � 0; (6)

2) peak link capacity constraint, i.e.,

xij(t) ,
∑
l∈L

x
(l)
ij (t) ≤ Cij , ∀ (i, j) ∈ E ; (7)

3) availability constraint, i.e.,

x
(l)
i→(t) ≤ Q(l)

i (t), ∀ i ∈ V , l ∈ L. (8)

The availability constraint (8) requires the total number
of (scheduled) outgoing packets to not exceed those in the
current queuing system, since we define x(t) as the actual
flow (see Remark 2 for a detailed explanation). As will be
shown throughout the paper, it plays an equivalent role to flow
conservation in traditional packet routing formulations.

B. General Network Stability Region

In addition to the above admissibility constraints, we require
the timely throughput achieved by the designed control policy
to surpass a given level specified by the application, i.e.,

{E {x→d(t)}} ≥ γ‖λ‖1 (9)

where γ denotes the reliability level, ‖λ‖1 is the total arrival
rate, and {z(t)} , limT→∞ 1

T

∑T−1
t=0 z(t) denotes the long-

term average of random process {z(t) : t ≥ 0}.
The reliability constraint (9) imposes the requirement on the

routing policy to provide reliable (delay-constrained) packet
delivery. It forces packets to be routed efficiently and avoid
excessive in-network packet drops due to lifetime expiry.
The reliability level γ characterizes the robustness of the
considered service to missing information, i.e., a percentage
of up to (1−γ) of the packets can be dropped without causing
a significant performance loss. The reliability constraint plays
an equivalent role to network stability in traditional packet
routing formulations.

Definition 1: For a given capacitated network G, we define
the delay-constrained stability region as the set of (fa, γ) pairs
that can be supported by an admissible policy, i.e., the pairs
(fa, γ) such that there exists an admissible policy that satisfies
(9) under an arrival process with probability density function
(pdf) fa.

Note that via the complete information of the pdf fa, the
mean arrival vector λ in (9) can be derived, which is employed
to characterize the stability region in many existing works
(e.g., [19], [23]). However, such first order characterization is

not sufficient for the studied problem, as illustrated in Remark
1, showing the necessity to include the entire pdf information.

Remark 1: Consider the Example shown in Fig. 3, where
the initial lifetime of every packet is equal to 1. The achievable
reliability level is γ1 = 50% under a high-dynamic arrival
a1(t), and γ2 = 100% under the constant arrival a2(t); while
the two arrival processes have the same rate of 1. This example
shows that: in addition to arrival rate, arrival dynamics can also
impact the performance in the studied problem.

Remark 2: In the existing literature of stochastic network
optimization (e.g., [19], [22], [23], [29]), a key element that
has gained widespread adoption to improve tractability is
the use of the assigned flow, which is different from the
actual flow in that it does not need to satisfy the availability
constraint (8). Dummy packets are created when there are
not sufficient packets in the queue to support the scheduling
decision, making the decision variables not constrained by the
queuing process. Such formulation, however, is not suitable
for delay-constrained routing, where reliable packet delivery
is imposed on the actual packets received by the destination
(via constraint (9)).

C. Problem Formulation

The goal is to develop an admissible control policy that
guarantees reliable packet delivery, while minimizing overall
network operational cost. Formally, we aim to find the policy
with decisions {x(t) : t ≥ 0} satisfying

P0 : min
x(t)�0

{E {h(x(t))}} (10a)

s. t. {E {x→d(t)}} ≥ γ‖λ‖1 (10b)
xij(t) ≤ Cij , ∀ (i, j) ∈ E (10c)

x
(l)
i→(t) ≤ Q(l)

i (t), ∀ i ∈ V , l ∈ L (10d)
Q(t) evolves by (3) – (5) (10e)

where the instantaneous cost of the decision x(t) is given by

h(t) = h(x(t)) =
∑

(i,j)∈E
eijxij(t) = 〈e,x(t)〉 (11)

with 〈·, ·〉 denoting the inner product of the two vectors.
The above problem belongs to the category of CMDP, by

defining the queuing vector Q(t) as the state and the flow
variable x(t) as the action. However, note that the dimension
of state-action space grows exponentially with the network
dimension, which prohibits the application of the standard
solution to this problem [32]. Even if we leave out the
operational cost minimization aspect, it is still challenging to
find an exact efficient solution to the remaining problem of
timely throughput maximization, as studied in [30].

On the other hand, note that (10) deals with a queuing
process, together with long-term average objective and con-
straints, which is within the scope of Lyapunov drift control
[23]. However, it cannot be directly applied to solve (10)
because: (i) the related queuing process (10e) is not of standard
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form;1 (ii) the decision variables are actual flows and depend
on the queuing states (10d), which is different from a widely
used assigned flow model (see Remark 2).

IV. THE AVERAGE CAPACITY CONSTRAINED PROBLEM

The goal of this work is to derive an efficient approximate
solution to P0. To this end, we start out with a less restricted
setup in which only the average flow is constrained to be below
capacity, leading to the following relaxed control problem:

P1 : min
x(t)�0

{E {h(x(t))}} (12a)

s. t. {E {x→d(t)}} ≥ γ‖λ‖1 (12b)

{E {xij(t)}} ≤ Cij (12c)

x
(l)
i→(t) ≤ Q(l)

i (t) (12d)
Q(t) evolves by (3) – (5) (12e)

which relaxes the peak capacity constraint (10c) by the corre-
sponding average capacity constraint (12c).2

Mathematically, P1 is still a CMDP problem, making it
challenging to solve. Instead of tackling it directly, in the
following, we derive a tractable problem P2 corresponding to
a virtual network, and establish the connection between them
by showing that they have identical flow spaces, which allows
to address P1 using the solution to P2 as a stepping-stone.

A. The Virtual Network

The virtual network control problem is cast as

P2 : min
x(t)�0

{E {h(x(t))}} (13a)

s. t. {E {x→d(t)}} ≥ γ‖λ‖1 (13b)
xij(t) ≤ Cij (13c)

x̄
(≥l)
i→ ≤ x̄(≥l+1)

→i + λ
(≥l)
i (13d)

where x̄
(≥l)
i→ = limT→∞ 1

T

∑T−1
t=0 E

{
x

(≥l)
i→ (t)

}
denotes the

average transmission rate of packets with lifetime ≥ l, with
x

(≥l)
i→ (t) =

∑L
`=l x

(`)
i→(t) (similarly for x̄(≥l+1)

→i ).
A crucial difference in the derivation of P2 is to replace

the availability constraint (12d) by (13d), which states the fact
that the lifetime of the packets must decrease (by at least 1)
as they traverse any node i, and thus is called the causality
constraint. As a consequence, we eliminate the unconventional
queuing process (12e) and the dependency of x(t) on Q(t),
i.e., the two factors resulting in the failure of employing the
LDP approach to address P1. Especially, we will use ν(t)
(instead of x(t)) to represent the decisions determined in P2,
referred to as the virtual flow.

1 In the designed lifetime-based queuing system, a packet can traverse
queues of reducing lifetimes and eventually get dropped when entering the
lifetime 0 queue. On the other hand, in traditional queuing systems [19], [23],
a packet stays in the same queue until selected for operation; in addition, since
there are no packet drops, queue build up contributes to network congestion
and creates pressure driving packet transmission [23].

2We note that such an average-constrained setting may find interesting
applications of its own in next-generation virtual networks that allow elastic
scaling of network resources [4].

source destinationconsidered node

lifetime 1

lifetime 2

virtual queuesactual queues

lifetime 2 

packets

do NOT send out 

lifetime 2 packets 

over the red link

Fig. 4. Illustration of the devised virtual system. The source node supplies
packets of lifetime 2, which arrive as lifetime 1 packets to the actual queue
of the considered node. In the virtual system, the considered node is allowed
to supply packets of any lifetime to the destination by borrowing them from
the reservoir and building up in the corresponding virtual queue. The virtual
queue of lifetime 1 is stable, since the received lifetime 1 packets from the
source node can compensate the borrowed packets; while the virtual queue
of lifetime 2 builds up, pushing the node to stop sending out more lifetime
2 packets. The decision derived from the stability of the virtual system is
aligned with the desired operation of the actual network, as only lifetime 1
packets are available for transmission at the considered node.

1) Virtual Queue: Although there is no explicit queuing
system in P2, it consists of long-term average objective and
constraints, which can be addressed via the LDP control of
a virtual queuing system [23]. More concretely, the virtual
queuing system U(t) = {Ud(t)} ∪ {U (l)

i (t) : i ∈ V \ {d}, l ∈
L} must be stabilized to ensure (13b) and (13d), defined as

Ud(t+ 1) = max
{
Ud(t) + γA(t)− ν→d(t), 0

}
, (14a)

U
(l)
i (t+ 1) = max

{
U

(l)
i (t) + ν

(≥l)
i→ (t)− ν(≥l+1)

→i (t)

− a(≥l)
i (t), 0

}
. (14b)

where A(t) =
∑
i∈V, l∈L a

(l)
i (t) is the total amount of packets

arriving in the network at time slot t.3 We refer to (14a) and
(14b) as the virtual queues associated with node d and i.

To sum up, it is equivalent to cast P2 as

P e
2 : min

ν(t)
{E {h(ν(t))}} (15a)

s. t. stabilize U(t) evolving by (14) (15b)
0 ≤ νij(t) ≤ Cij ∀ (i, j) ∈ E . (15c)

2) Physical Interpretation: When deriving the virtual net-
work control problem P2, we relax the precedence constraint
that imposes that a packet cannot be transmitted from a node
before it arrives at the given node. Instead, we assume that
each node in the virtual network is a data-reservoir and has
access to abundant (virtual) packets of any lifetime. At every
time slot, each node checks packet requests from its outgoing
neighbors and supplies such needs using the virtual packets
borrowed from the reservoir, which are compensated when it
receives packets of the same lifetime (either from incoming
neighbors or exogenous arrivals). The virtual queues can be
interpreted as the data deficits (difference between outgoing
and incoming packets) of the corresponding data-reservoirs.
Specially, in (14a), the destination reservoir sends out γA(t)
packets to the end user (to meet the reliability requirement),
while receiving ν→d(t) in return. When (13b) and (13d) are
satisfied, or the virtual queues are stabilized, the network nodes
do not need to embezzle virtual packets from the reservoirs;

3 Here we use A(t) instead of ‖λ‖1 as the latter information is usually
not available in practice; furthermore, if the arrival information cannot be
obtained immediately, delayed information, i.e., A(t − τ) with τ > 0, can
be used as an alternative, which does not impact the result of time average.
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since the achieved network flow can be attained by the actual
packets, it can serve as guidance for packet routing in the
actual network (see Fig. 4 for illustration).

B. Connections Between P1 and P2

We now describe key connections between the actual and
virtual network control problems.

Definition 2 (Feasible Policy): For problem Pι (ι = 1, 2),
a policy p is called feasible if it makes decisions satisfying
(12b) – (12e) (ι = 1) or (13b) – (13d) (ι = 2). The set of
feasible policies is called feasible policy space Fι.

Definition 3 (Flow Assignment): Given a feasible policy p
for problem Pι (ι = 1, 2) (with decisions {xp(t) : t ≥ 0}),
the achieved flow assignment is defined as xp = {E {xp(t)}},
i.e., the vector of transmission rates for packets with different
lifetimes on all network links. Furthermore, the flow space
is defined as the set of all achievable flow assignments, i.e.,
Γι =

{
xp : p ∈ Fι

}
.

Definition 4 (Stability Region): For problem Pι (ι = 1, 2),
the stability region Λι is defined as the set of (λ, γ) pairs,
under which the feasible policy space Fι is non-empty.

We make the following clarifications about the above defini-
tions: (i) we will prove (in Theorem 1) that the stability region
of P1 only depends on the mean arrival rate λ, in contrast
to the general Definition 1 which involves the arrival pdf fa;
and so is that of P2, which is clear from its definition (13);
(ii) the feasible policy space and the flow space are associated
with a certain point (λ, γ) in the stability region; (iii) since the
networks considered in P1 and P2 are of the same topology,
the flow assignment vectors are of the same dimension.

We then reveal the intimate relationship between the two
problems by the following three results.

Proposition 1: The availability constraint (12d) implies the
causality constraint (13d).

Proof: See Appendix A in supplementary material.
Theorem 1: For a given network, the stability regions of

P1 and P2 are identical, i.e., Λ1 = Λ2. In addition, a pair
(λ, γ) is interior to the stability region Λι (ι = 1, 2) if and
only if there exist flow variables x = {x(l)

ij ≥ 0 : ∀ (i, j) ∈
E , l ∈ L}, such that for ∀ i ∈ V , (i, j) ∈ E , l ∈ L,

x→d ≥ γ‖λ‖1 (16a)
xij ≤ Cij , ∀ (i, j) ∈ E (16b)

x
(≥l+1)
→i + λ

(≥l)
i ≥ x(≥l)

i→ , ∀ i ∈ V , l ∈ L (16c)

x
(0)
ij = x

(l)
dk = 0, ∀ k ∈ δ+

d , (i, j) ∈ E , l ∈ L. (16d)

Furthermore, ∀ (λ, γ) ∈ Λι, there exists a feasible randomized
policy that achieves the optimal cost.

Proof: See Appendix B, C in supplementary material.
Proposition 2: For ∀ (λ, γ) ∈ Λ1 = Λ2, the two problems

have identical flow spaces, i.e., Γ1 = Γ2.
Proof: By Theorem 1, P1 and P2 have the same stability

region, i.e, Λ1 = Λ2. Consider a point in the stability
region Λ1 = Λ2. For any flow assignment x ∈ Γ1, there
exists a feasible policy p1 ∈ F1, with decision variables
{x1(t) : t ≥ 0}, that attains flow assignment x, i.e.,
{E {x1(t)}} = x. Therefore, {x1(t) : t ≥ 0} satisfies (12b) –

(12e), which implies that x satisfies all the conditions in (16)
(by Proposition 1). Using the method provided in Appendix
C-B1, we can construct a feasible randomized policy p2 ∈ F2,
with decision variables {x2(t) : t ≥ 0}, that achieves the same
flow assignment, i.e., {E {x2(t)}} = x, for P2. Therefore,
x ∈ Γ2, and thus Γ1 ⊂ Γ2. The reverse direction Γ2 ⊂ Γ1

can be shown via the same argument. Hence, Γ1 = Γ2.
The above propositions are explained in the following: by

Proposition 1 and the fact that (13c) implies (12c), the feasible
policy spaces satisfy F1 * F2 and F2 * F1; while Theorem 1
shows that they lead to the same stability region, by presenting
an explicit, identical characterization (16) (where (16c) is
the generalized lifetime-driven flow conservation law), which
is in the form of a linear programming (LP) problem with
L|E| variables (and thus of pseudo polynomial complexity);
Proposition 2 further shows that P1 and P2 share the same
flow space (for any point in the stability region), which is a
crucial property since the two metrics of interest, i.e., timely
throughput (9) and operational cost (11), are both linear
functions of the flow assignment.

Corollary 1: P1 and P2 have the same optimal value.
Proof: Consider a feasible policy p1 ∈ F1, whose

decisions x1(t) attain flow assignment x. According to the
Proposition 2, there exists a feasible policy p2 ∈ F2 attaining
the same flow assignment x by making decisions x2(t). The
operational cost satisfies

{E {h(x1(t))}} = {E {〈e,x1(t)〉}} = 〈e, {E {x1(t)}}〉
= 〈e,x〉 = 〈e, {E {x2(t)}}〉
= {E {〈e,x2(t)〉}} = {E {h(x2(t))}}.

(17)

The reverse direction can be shown by the same argument. As
a result, they have the same range (when treating the cost as
a function of the policy), and thus optimal value.

Corollary 2: Given a feasible policy to P2, we can con-
struct a feasible randomized policy for P1 to achieve the same
flow assignment.

Proof: Suppose {ν(t) : t ≥ 0} ∈ F2. The associated
flow assignment ν = {E {ν(t)}} satisfies (16), and we can
construct a feasible randomized policy for P1 as follows (see
Appendix B-B1 for details): at each time slot, for every packet
of lifetime l ∈ L in the queuing system, node i ∈ V selects
the outgoing neighbor j ∈ δ+

i for it according to the pdf

α
(l)
i (j) = ν

(l)
ij

/(
ν

(≥l+1)
→i + λ

(≥l)
i − ν(≥l+1)

i→
)

(18)

otherwise the packet stays in node i. It is shown in Appendix
B that this policy achieves flow assignment ν.

V. SOLUTION TO AVERAGE-CONSTRAINED NETWORK

In this section, we take advantage of the LDP approach to
address Pe

2 and guide the design of a fully distributed, near-
optimal randomized algorithm for P1 (by Corollary 2).

A. Optimal Virtual Flow

We first present the LDP-based algorithm to solve P e
2 given

by (15). Define the Lyapunov function as L(t) = ‖U(t)‖22
/

2,
and the Lyapunov drift ∆(U(t)) = L(t + 1) − L(t). The
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LDP approach aims to minimize a linear combination of an
upper bound of the Lyapunov drift (which can be derived by
some standard manipulation [23]) and the objective function
weighted by a tunable parameter V , or

∆(U(t)) + V h(ν(t)) ≤ B − 〈ã,U(t)〉 − 〈w(t),ν(t)〉 (19)

where B is a constant, ã = {−γA(t)} ∪
{
a

(≥l)
i (t) : ∀ i ∈

V \ {d}, l ∈ L
}

, and the weights w(t) are given by

w
(l)
ij (t) = −V eij − U (≤l)

i (t) +

{
Ud(t) j = d

U
(≤l−1)
j (t) j 6= d

(20)

where the superscript (≤l) refers to the operation of
∑l
`=1.

To sum up, at every time slot, the algorithm decides the
virtual flow ν(t) by addressing the following problem

max
ν(t)
〈w(t),ν(t)〉, s. t. 0 ≤ νij(t) ≤ Cij , ∀ (i, j) ∈ E (21)

and the solution to it is in the max-weight fashion. More
concretely, for each link (i, j), we first find the best lifetime
l? with the largest weight, and devote all the transmission
resource to serve packets of this lifetime if the weight is
positive. Therefore, the optimal virtual flow assignment is

ν
(l)
ij (t) = Cij I

{
l = l?, w

(l?)
ij (t) > 0

}
(22)

where l? = arg maxl∈L w
(l)
ij (t), I{·} is the indicator function.

To implement the above algorithm, at each time slot, a
considered node exchanges the virtual queue information with
its neighbor nodes (to calculate the weight of each lifetime by
(20)), and decides the virtual flow according to (22), which can
be completed in a fully distributed manner; the computational
complexity at node i is given by O(L|δ+

i |).

B. Flow Matching
The algorithm developed above can provide a near-optimal

(will be proved in next subsection) solution {ν(t) : t ≥ 0} to
P2, from which we will design a feasible, near-optimal policy
for P1 in this section. The decided (actual) flow is denoted
by µ(t), to distinguish it from the virtual flow ν(t).

We will design an admissible policy for P1 (i.e., satisfying
(12c) – (12d)) to pursue the goal of flow matching, i.e.,

{µ(t)} = {ν(t)}. (23)

The reason to set the above goal is two-fold: (i) it ensures
that the designed policy can attain the same throughput and
cost performance (recall that both metrics are linear functions
of the flow assignment) as the virtual flow, which is feasible
(satisfying the reliability constraint) and achieves near-optimal
cost performance, (ii) the existence of the policy is guaranteed
(as a result of identical flow spaces); actually, given the
feasible solution {ν(t)}, Corollary 2 presents a construction
procedure of a feasible policy for P1 to realize the goal.

Corollary 2 requires the exact values of {ν(t)} and λ as
input, which are not available in practice. As an alternative,
we employ the corresponding empirical values, i.e., the finite-
horizon average of the virtual flow and the arrival rate

ν̄(t) =
1

t

t−1∑
τ=0

ν(τ), λ̂(t) =
1

t

t−1∑
τ=0

a(τ) (24)

Algorithm 1 Randomized Flow-Matching Algorithm
1: for t ≥ 0 and i ∈ V do
2: Solve the virtual flow ν(t) from (21);
3: Update the empirical averages ν̄(t) and λ̂(t) by (24);
4: Update probability values

{
α̂

(l)
i (j) : j ∈ δ+

i

}
l∈L by

(18) (using the above empirical averages);
5: for l ∈ L do
6: For each packet in Q

(l)
i (t), decide its outgoing link

according to pdf
{
α̂

(l)
i (j) : j ∈ δ+

i

}
;

7: end for
8: end for

to calculate the probability values in (18), by which we decide
the outgoing flow at time slot t. Since the above empirical
values are updated at every time slot, it leads to a time-
varying randomized policy; as ν̄(t) → {ν(t)} and λ̂(t) → λ
asymptotically, the policy gradually converges.4

The proposed control policy is summarized in Algorithm 1,
and we emphasize that (i) at a given time slot, the policy in
Corollary 2 makes i.i.d. decisions for packets with the same
lifetime (i.e., fix the lifetime l, the pdf

{
α̂

(l)
i (j) : j ∈ δ+

i

}
to

determine the routing decision for each packet is the same). It
is equivalent to make flow-level decisions based on packets’
lifetime, by generating multinomial random variables with
parameter Q(l)

i (t) and the common pdf; (ii) in addition to
deciding the virtual flow, the developed randomized policy
requires each node to update the empirical averages (24),
calculate the pdf α̂, and make the decisions at a complexity
of O(L|δ+

i |).
Remark 3: For the studied packet routing problem (where

flow scaling is not relevant), under the widely used assumption
of Poisson arrivals, we can show (see Appendix D) that the
instantaneous flow size xij(t), ∀ (i, j), t, follows a Poisson
distribution, which enjoys good concentration bounds.

Remark 4: In [30], a subproblem of P1 is studied, which
involves constraints on average capacity and timely through-
put, while leaving out the aspect of operational cost. The for-
mulated CMDP problem is solved by a dynamic programming
algorithm, which can also be addressed following the same
procedure presented in this section, at a lower complexity.

C. Performance Analysis

In this section, we first prove that the LDP-based algorithm
(for P2) stabilizes the virtual queues (and consequently, the
timely throughput satisfies the reliability constraint (13b)) and
attains near-optimal cost performance; then we show that the
flow matching-based randomized policy (for P1) achieves
the same throughput and cost performance as the previous
algorithm. The effects of parameter V are also analyzed.

1) Virtual Network: In addition to proving that the algo-
rithm stabilizes the virtual queues, we analyze the effect of V
on the ε-convergence time defined as follows.

4 It is possible that ν̄(t) can violate (16c) at some time slot, which is
not qualified to construct a valid randomized policy. However, as t → ∞,
ν̄(t) converges to {ν(t)}, which satisfies the constraints. With this asymptotic
guarantee, when such violation occurs, we can choose not to update the control
policy at that time slot.
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Definition 5 (ε-Convergence Time): The ε-convergence
time tε is the running time for the average solution to achieve
a reliability within a margin of ε from the desired value, i.e.,

tε , min
τ

{
sup
s≥τ

[
γ‖λ‖1 −

s−1∑
t=0

E {ν→d(t)}
s

]
≤ ε
}
. (25)

The existence of tε (under the proposed algorithm) is shown
in Appendix E-B for any ε > 0.

Proposition 3: For any point in the interior of the stability
region, the virtual queues are mean rate stable under the
proposed algorithm with a convergence time tε ∼ O(V ) for
any ε > 0, and the achieved cost performance satisfies

{E {h(ν(t))}} ≤ h?2(λ, γ) +
B

V
(26)

where h?2(λ, γ) denotes the optimal cost performance that can
be achieved under (λ, γ) in P2.

Proof: See Appendix E in supplementary material.
We make the following clarifications about the above

proposition, (i) for a finite horizon, the reliability (13b) and
causality (13d) constraints might not be satisfied; (ii) the
virtual queues are stabilized, implying that the two constraints
hold asymptotically; (iii) by pushing the parameter V → ∞,
the achieved cost performance approaches the optimal cost
(since the gap B/V vanishes), with a tradeoff in convergence
time.

2) Performance of Algorithm 1:
Proposition 4: For any point in the interior of the stability

region, Algorithm 1 is feasible for P1, while achieving the
near-optimal cost performance of h({ν(t)}).

Proof: Algorithm 1 makes decisions for the packets in
the queuing system, and thus satisfying the constraints (12d).
Besides, as limt→∞ ν̄(t) = {ν(t)} and limt→∞ λ̂(t) = λ, the
instantaneous policy converges to a fixed policy constructed
from {ν(t)} and λ, which achieves the same flow assignment
{µ(t)} = {ν(t)} as is proved in Corollary 2, leading to
identical throughput and cost performance.

Remark 5: We note that Algorithm 1 relies on the knowl-
edge of the arrival rate (via (18) in step 4), and the empirical
estimate (24) we use for implementation may be subject to es-
timation errors that can impact the attained cost performance.
As shown in Appendix F, in some extreme cases, the estima-
tion error can lead to a considerable performance loss, driven
by the Lagrangian multiplier (or shadow price) associated with
the constraints involving λ. However, under i.i.d. arrivals, the
estimated rate converges to the true value, and Algorithm 1 is
guaranteed to achieve near-optimal asymptotic performance.

VI. SOLUTION TO PEAK-CONSTRAINED NETWORK

In this section, we aim to address the original problem P0

(with peak-capacity constraint), leveraging the flow matching
technique we develop in the previous section.

There are two problems we need to address:
(i) the actual flow (decided by the randomized policy) can

violate the peak capacity constraint (10c);
(ii) the actual and virtual flow spaces are not identical, i.e.,

Γ0 ⊂ Γ2 (while in the average-constrained case, Γ1 =
Γ2).

To address problem (i), we propose a request queue stability
approach in order to constrain instantaneous transmission
rates. For problem (ii), we introduce an auxiliary variable
εij , ∀(i, j) to represent the gap in flow spaces, leading to the
following optimization problem over {ν(t),µ(t), ε}:

P3 : min {E {h(ν(t))}} (27a)
s. t. νij(t) ≤ Cij − εij , (11b), (11d), (11e), (27b)

{E {µij(t)}} = {E {νij(t)}}, (8c) – (8f), (27c)

0 � ε , {εij} � {Cij}. (27d)

While solving P3 in a joint manner is difficult, we propose
an iterative optimization approach:

i) fix ε and µ(t): find ν(t) by LDP control (19), and derive
the virtual flow assignment with optimal operational cost;

ii) fix ε and ν(t): find µ(t) with the goal of flow matching
(i.e., by stabilizing the request queues);

iii) fix ν(t) and µ(t): update ε based on the gap between op-
timal and achievable rates, i.e., {E {ν(t)}}−{E {µ(t)}},
which is non-zero if (25c) is violated.

Due to the randomness of network states, we introduce a time
frame structure: step i) and ii) are executed on a per-slot
basis, while step iii) on a per-frame basis (to obtain better rate
estimates). The developed algorithm, referred to as reliable
cloud network control (RCNC), is described in Algorithm 2.

A. Request Queue

We propose to achieve (23) by making admissible flow
decisions (i.e., satisfying (10c) – (10e)) to stabilize the request
queues R(t) = {R(l)

ij (t) : ∀(i, j) ∈ E , l ∈ L}, defined as

R
(l)
ij (t+ 1) = R

(l)
ij (t) + ν̄

(l)
ij (t)− µ(l)

ij (t) (28)

where ν̄(t) is given by (24), and we still adopt the notation
µ(t) to refer to the actual flow decided in P0, without causing
ambiguity (P1 is not relevant in this section).

We consider the n-slot look-ahead scheme, under which
the current decision is made together with n− 1 (anticipated)
future decisions. Such a scheme is employed since it creates
flexibility for a packet to change its lifetime by delaying
transmission, in favor of relieving the burden of the request
queue with the heaviest backlog, as well as balancing the
transmission load. From a formal point of view, we make
decisions for n time slots (starting from the current time slot)
to optimize the multi-slot Lyapunov drift, defined as

∆n(R(t)) ,
‖R(t+ n− 1)‖22 − ‖R(t)‖22

2
. (29)

An upper bound for the multi-slot drift is derived in the
following. We apply telescope sum on the queuing dynamics
(28) for the period t, · · · , t+ (n− 1), which leads to

R
(l)
ij (t+ n− 1) = R

(l)
ij (t) +

t+n−1∑
τ=t

[
ν̄

(l)
ij (τ)− µ(l)

ij (τ)
]
. (30)

Following the same procedure as in Section IV-A, we obtain

∆n(R(t)) ≤ B′(t)−
∑

(i,j)∈E
〈Rij(t),Mij1〉 (31)
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where Mij is a L×n matrix associated with link (i, j), with
column τ (0 ≤ τ < n) representing the vector µij(t+τ), and
B′(t) gathers all the uncontrollable terms.

The goal is to minimize the bound for multi-slot drift, by
making admissible flow decisions for the n time slots. By
applying the queuing dynamics (3) recursively, the availability
constraint (10d) at the (t+ τ)-th time slot can be cast as∑
j∈δ+i

gτ+1(Mij)−D
∑
j∈δ−i

gτ (Mji) ≤ gτ+1(Ai), ∀i (32)

where Ai = [Qi(t),ai(t), · · · ,ai(t + n − 1)] is the arrival
matrix, with the columns ai(t + τ) = {a(l)

i (t + τ) : l ∈ L}
representing the exogenous arrivals in the future; g denotes
the delay function, given by

gτ+1(X) =
∑τ

s=0
Dτ−sX[ : , s] (33)

in which D is the delay matrix of order n, and X[ : , τ ] is
the τ -th column of matrix X . We clarify that ai(t + τ) are
random vectors, leading to a complex stochastic optimization
problem. We simplify the problem by replacing the random
vectors with their estimated averages, i.e., empirical arrival
rates λ̂i. This reduces Ai to a deterministic matrix

Aemp
i = [Qi(t), λ̂i, · · · , λ̂i], (34)

and the problem to a common LP that can be addressed by
standard solvers.

To sum up, at each slot, the proposed RCNC algorithm
solves the following LP to determine the transmission flow

H : max
M

∑
(i,j)∈E

〈Rij(t),Mij1〉 (35a)

s. t. 1TMij � Cij , ∀ (i, j) ∈ E (35b)
(32) with Ai = Aemp

i , ∀ i, 0 ≤ τ < n (35c)
Mij � 0, ∀ (i, j) ∈ E (35d)

where M = ∪i∈VMi , {Mij : j ∈ δ+
i }, and (35b) is the

peak capacity constraint. Note that the above problem involves
all the flow variables of the entire network (nL|E| in total);
and due to (35c), the decisions of the nodes are dependent on
each other, which are determined in a centralized manner.

After the optimal solution M?
ij is obtained, its first column

µ?ij(t) = M?
ij [ : , 0] will be used as the decided flow for the

current time slot. The rest of its columns are discarded, and the
procedure repeats at the next time slot based on the updated
information to make the corresponding decision.

Remark 6 (Choice of n): An intuitive choice is n = L,
since the packets of the largest lifetime L will be outdated
after L time slots, and we ignore the effects of the current
decision at the distant time slots in the future. Another choice
is n = 1, which simplifies the formulation by considering
only the current time slot, and optimizes the LDP greedily; the
solution does not involve any (estimated) future information,
which can be implemented in a distributed manner.

Remark 7 (Distributed RCNC): To develop a distributed al-
gorithm, we assume that future arrivals from neighbor nodes
µ

(l)
ji (t+ τ) are estimated by their empirical average û(l)

ji . This

Algorithm 2 RCNC
1: for each frame k ≥ 0 do
2: for t = 0 : K − 1 do
3: Solve the virtual flow ν(t) from (21);
4: Solve the actual flow µ(t) from (35);
5: Update the request queue R(t) by (28) (using the

virtual and actual flows derived above);
6: end for
7: Update the transmission capacities of the links in the

virtual network by (36) – (38);
8: end for

leads to an LP formulation that is the same as (35), only
to replace (35b) by

∑
j∈δ+i gτ+1(Mij) ≤ gτ+1(Ãemp

i ), with
Ãemp
i = [Qi(t), λ̂i+û→i, · · · , λ̂i+û→i]. However, numerical

results suggest that this formulation does not outperform the
simple algorithm using n = 1 (see Section VII-B3).

Remark 8 (Complexity): At every time slot, the centralized
algorithm requires solving an LP problem with nL|V|+ n|E|
constraints and nL|E| variables, and the time complexity is
O(n2L2|E|2) (at the centralized controller). For the distributed
algorithm, the complexity reduces to O(n2L2|δ+

i |2) at node i.
Intuitively, the centralized algorithm with n = L can achieve
a better performance; however, its complexity is O(L4|E|2),
which can become prohibitive in practice. By selecting n = 1,
we can obtain the most efficient algorithm (with some perfor-
mance loss), at a complexity of O(L2|δ+

i |2).
Remark 9: In practice, we can select L as tens of time slots

(e.g., L = 10), based on following considerations. On one
hand, it is on the order of network diameter and sufficient
to support packet transmission within the network (note that
the network diameter – representing the hop-distance of the
longest path – of a hierarchical edge computing network is
∼ O(log(|V|)). On the other hand, it falls into the regime in
which RCNC can run efficiently.

Accordingly, we can select appropriate time slot lengths
based on the delay requirement of the supported applications,5

to achieve a value of L as marked above. For delay-sensitive
applications, such as VR (7–20 ms) [33] and real-time gaming
(50 ms) [34], a choice of L on tens of time slots would result
in time slot length of around 1 ms. A larger slot length can be
considered for applications with higher delay budgets, e.g., it
can be selected as 15 ms for live streaming (150 ms) [34].

B. Capacity Iteration

The flow matching technique proposed in the previous
section assumes that the virtual flow assignment is achievable.
This is not necessarily true since there is no guarantee for the
equivalence of the flow spaces, as opposed to the average-
constrained case. In fact, when deciding the flow assignment
in the virtual network, the network controller prefers to
transmit the packets along the low-cost routes, leading to a
considerable amount of bottleneck links (i.e., for whom the
assigned rate equals the transmission capacity), especially in

5 Note that network slicing allows customizing (virtualized) networks for
applications with similar delay requirements.
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Fig. 5. The studied networks.

the high-congestion regime. However, the achieved rate on
the bottleneck link is sensitive to the dynamic input, which is
usually strictly lower than the link capacity due to truncation
(recall Example in Section IV). This motivates us to reduce
the assigned virtual flow on these links, which can be realized
by decreasing the corresponding link capacity in the virtual
network.

In practice, a sign of unsuccessful flow matching is the
instability of the request queues (i.e., R(l)

ij (t) grows linearly).
In addition to the reason of overestimating the transmission
capacity of the bottleneck link, in a multi-hop network, the
request queue of link (i, j) can also exhibit unstable behavior
when its source i receives insufficient packets from the neigh-
bors compared to the virtual flow assignment. Both factors
will be considered when updating the parameters (i.e., link
capacities) of the virtual network.

To sum up, the parameters of the virtual network are
updated on a larger timescale unit, we referred to as frames.
Each frame k consists of K time slots, during which the
algorithm developed in the previous subsection is performed
in an attempt to stabilize the request queues. At the end of the
frame, the increasing rate of the request queue for each link
(i, j) ∈ E is calculated by

rij =
∑
l∈L

r
(l)
ij , with r(l)

ij , max
{

0,
1

K
R

(l)
ij (K)

}
(36)

and its link capacity is updated by

Cij(k + 1) =
[
(1− κ)

[
Cij(k)− ε(k)

ij

]
+ κCij

]Cij

0
(37)

in which

ε
(k)
ij = rij − r→i (ν̄ij/ν̄i→) (38)

where κ ∈ (0, 1) is a constant, [z]
Cij

0 , min{max{0, z}, Cij}.
The update rule is explained as follows. First, the second
term in (38) results from insufficient input, where r→i is
the total amount of insufficient input to node i, and ν̄ij/ν̄i→
is the percentage that link (i, j) takes up among all the
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Fig. 6. The effect of V on the achieved operational cost, and the flow
assignment for peak-constrained network under V = 5.

outgoing interfaces. Second, note that even if the request
queue is stabilized, it is possible for ε(k)

ij to be positive due to
random arrival, leading to too conservative flow assignment;
therefore, we add κCij in (37) to avoid such situation, which
explores the possibility to increase the assigned flow rate in
the considered link (i, j).

VII. NUMERICAL EXPERIMENTS

In this section, we carry out numerical experiments to
evaluate the performance of the proposed design. We start
with an illustrative example (Fig. 5a), in which we explain the
related concepts, as well as showing some intermediate results.
After that, a more realistic scenario of edge computing net-
work (Fig. 5b) is studied. Both average- and peak-constrained
networks are considered, and the term “link capacity” should
be interpreted either way. We set n = L and K = 2× 103 as
the default setting for the proposed RCNC algorithm.

Some key observations are listed as follows: 1) the ana-
lytical results (e.g., Proposition 3) are validated; 2) there is
a performance gap between average- and peak-constrained
problems, which vanishes as we reduce the arrival dynamics;
3) the throughput and cost performance improve with longer
admissible lifetimes; 4) the distributed algorithm with n = 1
can achieve a comparable performance (especially in low-
congestion regimes) with much lower complexity.

A. Illustrative Example

We study the packet routing problem based on the illus-
trative network in Fig. 5a, which consists of 4 nodes and 4
undirected links. The links exhibit homogeneous transmission
capacity of Cij = 5 for ∀ (i, j) ∈ E , with different costs given
by: e12 = e24 = 1, e13 = e34 = 5.

A single commodity is considered, where the packets of
interest emerge at node 1 (the source node), and are desired
by node 4 (the destination node). Each packet is of maximum
lifetime of L = 2 at birth, which implies that it can not be
delayed for even one single time slot in order to be effective.
The packet arrival process follows a Poisson distribution with
parameter λ = 6, and a reliability level of γ = 90% is
demanded by the application.

1) Effects of Parameter V : In this experiment, we study the
tradeoff between the convergence time and operational cost
controlled by parameter V . We implement and run the control
algorithm using various parameters V ∈ {0, 1, · · · , 10}. For
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Fig. 7. The effect of V on the ε-convergence time (with ε = .01), and the
achieved reliability level over time under various settings.

each V value, we carry out 100 experiments, and observe the
system for T = 1 × 106 time slots. The results are depicted
in Fig. 6 and 7, and we make the following observations.

First, for the average-constrained network, the operational
cost reduces with V (Fig. 6a), which is in accordance with
the analytical results presented in Proposition 3 and 4 (it also
implies that flow matching is achieved). By intuition, we find
that in this two-route example, the cheap route 1 → 2 → 4
(with cost e12 + e24 = 2) is preferable when transmitting
the packets to benefit the cost performance, which should be
exploited to the largest extent; while to satisfy the throughput
constraint, some packets still need to be pushed through the
expensive route 1 → 3 → 4 (with cost e13 + e34 = 10).
More concretely, the flow assignment of the entire network
is x12 = x24 = min{C12, C24} = 5 (the corresponding link
capacity), x13 = x34 = γλ− x12 = 5.4− 5 = 0.4, leading to
a cost performance of h?1 = 5 × 2 + 0.4 × 10 = 14. As we
can observe in Fig. 6a, the blue curve converges to the value
of 14 as V increases, which agrees with the above result.

On the other hand, for the peak-constrained network, the
principle to prioritize the cheap route also applies when
transmitting the packets. However, due to the dynamics of
the arrival process a(t) and the truncation, the amount of
packets that can be scheduled for this route is x12(t) =
min{a(t), C12} at every time slot. Under the assumption of
i.i.d. Poisson arrival, it can be calculated that {x12(t)} ≈
4.47. Therefore, the optimal flow assignment for the peak-
constrained network is x12 = x24 = 4.47, and x13 = x34 =
γλ − x12 = 0.93, leading to a cost of h?2 = 4.47 × 2 +
0.93 × 10 = 18.24. The proposed RCNC algorithm finds the
flow assignment by trial and exploration, as shown in Fig. 6b
(with V = 5): we use the link capacity C12 = 5 as the initial
guess for the achievable flow rate, which overestimates the
transmission capacity of the link; then its link capacity in the
virtual network is reduced (on a frame basis), which gears the
corresponding virtual flow; finally, flow matching is achieved
when the link capacity ≈ achieved rate ≈ 4.47.

Finally, we emphasize that by increasing the value of V ,
it takes longer to converge to the desired reliability level.
Fig. 7b shows the gap between the achieved and the desired
reliability level over time, for two particular values V = 1
and V = 5. We find that (i) all the gap curves reduce over
time, implying convergence to the desired value, (ii) it takes
longer for the peak-constrained network to converge than the
corresponding averaged case (under the same V ), which is
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Fig. 8. The effect of maximum lifetime L and the arrival model on the
achieved operational cost and stability region.

due to the additional procedure of capacity iteration to find
the feasible flow assignment, and (iii) the gap grows with V
at a fixed time point for both average- and peak-constrained
networks, i.e., a larger V results in slower convergence. In
particular, we study the ε-convergence time with ε = .01, and
the result is plotted in Fig. 7a. For the average-constrained
network, the convergence time grows linearly with V , which
supports the analytical result of O(V ) in Proposition 3; similar
result is observed from the peak-constrained network.

2) Effects of Lifetime and Arrival Model: Next, we study
the effects of the maximum lifetime L and the statistics of the
arrival process. The considered lifetime L ranges from 2 to 10,
and we try different models for the arrival process, including
uniform U([0, 2λ]), Poisson Pois(λ), binomial B(2λ, 1/2), as
well as the constant arrival a(t) = λ. The four distributions
are of the same mean value λ, but decreasing dynamic (the
corresponding variances are λ2/3 > λ > λ/2 > 0 if we
assume λ > 3). The reliability level is set as γ = 90%, and
V = 10 is chosen to optimize the operational cost.

Two performance metrics are studied for each settings. One
is the achieved operational cost, and the other is the stability
region.6 In the first part of the experiment, we assume λ = 6
as in the previous experiments.

The results for the peak-constrained networks are shown
in Fig. 8. As we can observe, for any arrival model, as the
maximum lifetime L grows, the operational cost attained by
RCNC reduces, while the stability region enlarges. The result
agrees with our intuition, that as the initial lifetime grows,
the packets are more likely to arrive at the destination while
effective, and furthermore, through the cheap route (when
possible). In this example, node 1 can withhold the packets
in its queuing system at bursting time slots, leaving them for
future transmission through 1 → 2 → 4 to optimize the cost.
As L increases, the problem reduces to the traditional packet
routing problem, where packet lifetime is not relevant, and
the attained operational cost and stability region converge to
the corresponding optimal results.7 We also find that under
constant arrival, the maximum lifetime does not impact the

6 We recall that the stability region of P0 is defined w.r.t. the pdf of the
arrival process fa. In the experiment, as the model of the arrival process is
fixed, we only need to specify λ to determine the pdf; in other words, the
maximum arrival rate λ can represent the stability region under each model.

7 However, we stress that RCNC does not guarantee convergence to the
optimal performance in all cases. As we compare the uniform arrival with
other models, there is gap in terms of both metrics, which is probably due to
the sub-optimality of the flow matching technique in this case.
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Fig. 9. Stability regions of Algorithm 1 and RCNC (for average- and peak-constrained cases, respectively), under different lifetimes and time slot lengths.

performance, which approximately equals the optimal values
of the traditional problem.8

Finally, we explain the effect of the arrival model. By fixing
the maximum lifetime (e.g., L = 2), we compare different
arrival models, and find that a higher dynamic of the arrival
process can increase the operational cost, while shrinking the
stability region, both due to the truncation effect of the peak-
constrained links. With a given mean rate λ, it is more likely
for a high-dynamic arrival process to exceed the transmission
capacity, and more packets must be delayed for transmission,
which can possibly lead to packet outdatedness, and thus
reducing the achievable output rate. This is true for any link in
general, and in particular, the links lying in the cheap routes;
as a result, a worsened performance of stability region and
operational cost can be expected.9

B. Practical Scenarios

In this section, we demonstrate the performance of the
proposed RCNC algorithm in two representative network
scenarios:
• mesh: a mesh edge computing network including 25

servers that are randomly placed in an 1 km×1 km square
area, with links established between any pair of servers
within a distance of 250 m, as shown in Fig. 5b, which
is representative of a generic unstructured scenario.

• hierarchical: a hierarchical edge computing network [35]
composed of core, edge, access, and user layers, as shown
in Fig. 5c, which represents envisioned practical MEC
systems.

In the mesh network, each link has a transmission capacity
of Cij = 1 Gbps with a cost of eij = 1 /Gbps, and each server
has a processing capacity of Ci = 2 GHz with a random cost
ei ∈ {5, 7.5, 10} /GHz, which accounts for the heterogeneity
of the computing devices; the parameters of the hierarchical
network are summarized in the table in Fig. 5c. The default
time slot length is 1 ms in both networks.

We adopt the AgI service model used in [19]. The AgI
service φ is modeled by a sequence of ordered functions,
through which incoming packets must be processed to produce

8 In addition, for average-constrained networks, the various settings (in-
cluding maximum lifetime and arrival model) do not impact the performance,
either, which is the same as the plotted results for constant arrival.

9 The results suggest that when 1) the packet lifetime is abundant for
transmission, or 2) the arrival process is of low-dynamic, P1 makes a good
approximation for the original problem P0. However, the gap can be large
in some extreme cases, e.g., uniform arrival with L = 2 in the experiment.

consumable results. The service functions can be executed at
different network locations, and we assume that each network
location can host all the service functions. Each function (say
the m-th function of service φ) is specified by two parameters:
(i) ξ(m)

φ : scaling factor, i.e., the output flow units per input
flow unit. (ii) r(m)

φ : workload, i.e., the required computation
resource per input flow unit.

In this experiment, we consider two AgI services including
2 functions, with parameters given by (the workload r

(m)
φ is

in GHz/Mbps):

Service 1 : ξ
(1)
1 = 1, ξ

(2)
1 = 2; r

(1)
1 =

1

300
, r

(2)
1 =

1

400
,

Service 2 : ξ
(1)
2 =

1

3
, ξ

(2)
2 =

1

2
; r

(1)
2 =

1

200
, r

(2)
2 =

1

100
.

Each service has an i.i.d. Poisson arrival process (for packets
with maximum lifetime), with λ1 = λ2 = λ Mbps, and
requires a reliability level of γ1 = γ2 = 90%.10 The source-
destination pair of each service is selected at random (with the
shortest distance between them denoted by σ). The maximum
lifetime is then chosen as L = σ + 2 + ∆L, where σ + 2
is the least lifetime for packet delivery (“2” account for
two processing slots), and ∆L ≥ 0 denotes some allowable
relaxation slots.

1) Stability Region: In this section, we present the network
stability regions achieved by the proposed algorithms, under
different lifetime constraints and time slot lengths. We use a
slot length of 1 ms when conducting experiments for lifetime
(Fig. 9a and 9c), and fix the delay constraint as L = 50 ms
when studying the effect of slot length (Fig. 9b and 9d).

Fig. 9a and 9c depict the effect of lifetime, and we make
following observations. First, the stability region enlarges with
more available lifetimes, since packets can explore more net-
work locations for additional computation resource; in partic-
ular, Fig. 9c saturates at ∆L = 4 because the bottleneck links
are constrained by the transmission limits. Second, the gap
between the stability regions of average- and peak-constrained
networks, is not significant (around 7% for mesh and 5% for
hierarchical).11 Finally, by comparing n = 1 and n = L,
we find that including more look-ahead slots can benefit the

10 The service chain can expand or compress the size of the input flow, and
we calculate the throughput on the basis of the input flow size. See Appendix
H for detailed explanation.

11 We emphasize that RCNC does NOT guarantee to achieve the entire
stability region in the peak-constrained case. In other words, the exact stability
region in the peak-constrained case lies between the blue and red curves.
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(c) V (hierarchical, with ∆L = 2).
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Fig. 10. Throughput and cost achieved by DCNC (with LIFO) [19], worst-case delay [29] and RCNC.
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Fig. 11. Performances attained by RCNC under different configurations.

throughput performance (by around 10%), while resulting in
a higher complexity of O(n2L2) = O(L4).

Next, we tune the time slot length to study its impact on
the stability region, with the results shown in Fig. 9b and
9d. As we increase the slot length, the attained throughput
in mesh starts to degrade when it exceeds 3 ms, since the
resulting maximum lifetime L (≤ 12) is not admissible to
support the delivery of some services; while the throughput
remains unchanged until a slot length of 8 ms in hierarchical
due to its simpler topology. On the other hand, a larger slot
length can accelerate the algorithm: for n = 1, as we increase
the slot length from 1 to 10 ms, the running time for decision
making reduces: 52.8, 13.5, 6.6, 4.1, 2.7, 2.2, 1.8, 1.5, 1.2,
0.94 in mesh, and 27.2, 7.3, 3.7, 2.4, 1.6, 1.4, 1.2, 0.99, 0.83,
0.68 in hierarchical (in milliseconds).12

2) Throughput and Cost: In this experiment, we compare
the timely throughput and operational cost attained by RCNC
with two benchmark algorithms:

• DCNC [19], which is shown to achieve optimal through-
put and (near-optimal) cost performances, combined with
last-in-first-out (LIFO) scheduling [36];

• an opportunistic scheduling algorithm [29] that provides
worst-case delay guarantees for hop-count-limited trans-
missions, using the following parameters (notations are in
line with [29]): gm(x) = x, β = νm = 1, Amax

m = 1.25λ,
D

(m),max
n = max{ε, 1(m)

n Amax
m + µmax,in

n }, with ε found
by grid search to optimize the timely throughput.

We assume λ = 500 Mbps for mesh and 200 Mbps for
hierarchical, and Fig. 10 depicts the achieved throughput and
cost under different lifetimes ∆L and V values.

12 Results are obtained using MATLAB 2021a running on a 3.2 GHz
computer, which leaves room for improvement, e.g., using a commercial solver
and/or a faster processor.

First, we focus on the reliability (or timely throughput)
attained by the algorithms. The proposed RCNC algorithm
can achieve a reliability level of 90% under any ∆L and
V that meets the requirement of the services (and the re-
liability constraint (10b) holds with equality). For DCNC,
although it proves to be throughput optimal, the attained
timely throughput is much lower, which increases with ∆L
since more packets are counted as effective under a more
relaxed lifetime constraint.13 The worst-case delay algorithm
[29] behaves slightly better than DCNC; however, there is
still a considerable gap between the attained reliability and
the imposed requirement (always guaranteed by the proposed
RCNC algorithm), especially when the deadline constraint is
stringent.

Next, we compare the operational cost of RCNC and
DCNC.14 As shown in Fig. 10a and 10c, the operational costs
of both algorithms reduce as V increases. When V is small,
the cost of DCNC is significantly higher, since it might deliver
packets through cyclic routes; while RCNC can reduce the
number of extra transmissions due to the deadline constraint.
Second, in Fig. 10b and 10d, as we relax the deadline
constraint (or increase ∆L), RCNC can achieve better cost
performance, since packets can “detour” to cheaper network
locations for processing; while packet lifetime is not relevant
in DCNC, and its cost performance stays constant (which is
near-optimal). Last but not least, we note that the operational
cost of RCNC is lower than DCNC, because DCNC delivers
all the packets to the destination; while RCNC only delivers
effective packets to meet the reliability requirement.

13 As ∆L → ∞, timely throughput converges to throughput, and DCNC
can achieve a reliability level of 100% since it is throughput optimal.

14 The worst-case delay algorithm [29] is excluded from the comparison,
because (i) it does not optimize the operational cost (and the attained costs are
around 70 for mesh and 30 for hierarchical), and (ii) in contrast to the other
two algorithms, the parameter V has an essentially different interpretation.
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3) Performance of RCNC: Finally, we compare the perfor-
mance of RCNC with different implementations: using n = 1
or L look-ahead slots (see Remark 6), centralized or distributed
decision making (see Remark 7). A genie-aided algorithm
serves as the benchmark, which can (by assumption) use
accurate future arrival information to calculate Ai (32) for
n = L look-ahead slots. Assume ∆L = 2.

As we can observe from Fig. 11, in the low-congestion
regime (λ = 20% of the stability region, Fig. 11a and 11c), the
four implementations achieve comparable performance in both
mesh and hierarchical scenarios. However, when the network
traffic becomes heavier (λ = 80% of the stability region, Fig.
11b and 11d), the two distributed algorithms (using n = 1 or
L) achieve sub-optimal cost performance (while still satisfying
the reliability constraint); in contrast, the centralized algorithm
remains robust, and the difference of its cost performance
compared to the genie-aided algorithm is negligible. The
result shows the importance of coordinated decision making
among the nodes in the high-congestion regime to preserve the
optimality of the solution; yet, it also motivates the use of the
simplified algorithm (n = 1) in practical systems, especially
for networks with simpler topologies (such as hierarchical),
which can achieve sub-optimal performance with greatly re-
duced computational complexity.

VIII. EXTENSIONS

In this section, we briefly discuss flexible extensions to the
proposed approach in order to handle scenarios of practical
relevance.

A. Mixed Deadline-Constrained and Unconstrained Users

It is flexible to combine the proposed approach with existing
queuing techniques [23] in order to treat hybrid scenarios
that include both deadline-constrained and unconstrained users
[26]. To be specific, we can establish a queuing system that is
a hybrid of the proposed lifetime queues for the constrained
users, and standard queues (i.e., without lifetime structure) for
unconstrained users. As shown in Appendix G, the decisions
for the two groups of users are loosely coupled, where uncon-
strained users follow the max-weight rule [23] for scheduling,
and interact with constrained users via one additional variable
for each link and look-ahead slot that represents the entire
group, regardless of the number of unconstrained users.

B. Time-Varying Slot Length

While the technique developed in this paper assumes a fixed
slot length, it is also possible to adopt a varying slot length via
“lifetime mapping”. In principle, when the slot length changes,
we can construct a new queuing system, assign packets to
queues of corresponding lifetimes, and map the decisions
produced by the original policy to suite the new slot length.
For example, if the slot length changes from 1 ms to 2 ms, we
can add up the decisions (i.e., transmitted flows) for lifetime
2k − 1 and 2k packets to obtain the decision for lifetime
k packets based on the new slot length. The design of the
mapping functions and associated performance loss analysis
are topics worth further investigation.

IX. CONCLUSIONS

In this paper, we investigated the delay-constrained least
cost dynamic network control problem. We established a new
queuing system to keep track of data packets’ lifetime, based
on which we formalized the problem P0. To find an efficient
approximate solution to this challenging problem, we first
derived a relaxed problem with average capacity constraints
P1 and designed a fully distributed, near-optimal solution
that matches the LDP assigned flow on an equivalent virtual
network P2. The methodology was then extended to solve
P0, where we proposed a two-way optimization approach
in order to use the assigned flow in P2 to guide the flow
solution to P0. Extensive numerical results were presented to
validate the analytical results, illustrate the performance gain,
and guide the system configuration.
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