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Abstract—Performance assessment and optimization for net-
works jointly performing caching, computing, and communica-
tion (3C) has recently drawn significant attention because many
emerging applications require 3C functionality. However, studies
in the literature mostly focus on the particular algorithms and
setups of such networks, while their theoretical understanding
and characterization has been less explored. To fill this gap,
this paper conducts the asymptotic (scaling-law) analysis for the
delay-outage tradeoff of noise-limited wireless edge networks
with joint 3C. In particular, assuming the user requests for
different tasks following a Zipf distribution, we derive the
analytical expression for the optimal caching policy. Based on
this, we next derive the closed-form expression for the optimum
outage probability as a function of delay and other network
parameters for the case that the Zipf parameter is smaller than
1. Then, for the case that the Zipf parameter is larger than
1, we derive the closed-form expressions for upper and lower
bounds of the optimum outage probability. We provide insights
and interpretations based on the derived expressions. Computer
simulations validate our analytical results and insights.

Index Terms—Edge caching and edge computing, joint caching,
computing and communication, delay-outage analysis, scaling
laws, noise-limited networks.

I. INTRODUCTION

Numerous new mobile applications have emerged in the
past years, e.g., ultra-high definition video services, augmented
reality (AR), and virtual reality (VR). This has lead to an
unprecedented increase of wireless traffic whose requirements
are highly diverse, ranging from ultra-low latency to ultra-
high data rate. To satisfy the resulting demands on wireless
networks, new network architectures and novel solution tech-
nologies are needed [3].

However, these new applications not only require high
data transmission rates but also fast access to computation
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and data storage to reduce latency. To satisfy these require-
ments, mobile edge-computing and edge-caching have been
considered as two of the most promising technologies [4],
[5]. Edge-computing improves the performance by providing
computational power at the wireless edge, eliminating the
need to resort to the cloud servers. Edge-caching improves the
network performance by exploiting the storages at the wireless
edge, which brings the desired contents closer to users.
Noticing the benefits of edge-caching and edge-computing,
numerous papers have been published that investigate one of
those approaches, e.g., [4], [5] and reference herein. In addi-
tion, companies and standard development organizations, e.g.,
European Telecommunications Standards Institute (ETSI), all
intensively work toward the standardization of the mobile
edge computing and caching implementation platforms [6].
More recently, it became obvious that edge-caching and edge-
computing need to be jointly considered as more and more
applications require execution of computations whose input
are large amounts of data. For example, in video services,
video contents cached in the storages should be transcoded
and delivered to the users for better user experiences. Another
example occurs when a user wants to use machine learning-
aided facial recognition; this user needs to deliver the face
image from the mobile device to an edge server for conducting
the computational task via a series of well-trained neural
networks (NNs). However, parameters of these NNs need to
be stored somewhere at the wireless edge such that the edge
server can fetch the parameters of NNs with low latency.
The above examples clearly demonstrate that the network
performance is jointly determined by the caching, computing,
and communication (3C) policies. Consequently, the joint 3C
design has recently drawn significant attention [7]-[9].

A. Literature Review

Although wireless edge networks with joint 3C have been
a popular topic in recent years, to the best of our knowledge,
studies in the literature were focusing on the practical design
and implementation aspects. For example, in [10], a novel
framework for jointly optimizating 3C was proposed. In [11]
and [12], joint 3C optimization solutions were discussed
using different convexification techniques. To deal with net-
work dynamics, dynamic 3C optimization approaches were
investigated in [13] and [14]. Joint 3C designs for specific
applications were also investigated. In [15] and [16], the
joint 3C designs for tactile networks were discussed. In [17],



the quality-aware video delivery was optimized via jointly
considering 3C. Refs. [18] and [19] investigated the use of
machine learning for vehicular edge caching and computing,
while [20] and [21] considered the joint 3C designs for
IoT networks. In [16] and [22], the specific designs for AR
and VR applications were proposed. Ref. [23] developed
a joint 3C design framework for federated learning. These
investigations are indeed important, but commonly lead to
either complicated solutions without closed-form expressions
or even purely numerical solutions that could not be easily
interpreted for obtaining insights. We note that although the
above literature review cites only a sample of papers on the
design and implementation for wireless edge networks, the
observation also holds true for other papers dealing with the
design and implementation aspects.

There exist papers investigating the theoretical aspects of
either edge-caching or edge-computing. Regarding the edge-
caching, the optimal deterministic caching approach was in-
vestigated and analyzed in [24]. In [25], assuming the locations
of base stations (BSs) to be random, the optimal randomized
caching policy was presented. To understand the performance
and find effective designs in heterogeneous caching networks,
analysis and design approaches were proposed in [26]—[30].
Taking into account that the delivered video contents can
have different qualities, [31] analyzed and optimized wireless
caching networks. Considering the case that the BSs are
equipped with multiple antennas and that the wireless edge
network can have a hierarchical structure, [32] and [33]
analyzed and proposed designs for wireless caching networks.
Theoretically-optimal wireless D2D caching was comprehen-
sively investigated in [34]-[37].

Theoretical studies for edge-computing were conducted in
[38]-[46]. Considering access points equipped with comput-
ing servers, [38] studied the communication and computing
latency scaling laws as functions of network parameters.
Considering the influences of both the remote cloud server and
edge cloudlets, [39] analyzed the outage probability in order to
obtain the tradeoff between deployment and operation costs.
In [40], again considering both edge and cloud servers, the
average latency was analyzed via combining the stochastic
geometry and queuing theory. To understand the influences
of heterogeneous mobile users and tasks, [41] studied the
successful edge computing probability and provided design
insights. Ref. [42] considered the massive Internet of Things
scenario and analyzed the latency for 5G edge-cloud networks.
Considering a network with hierarchical computing structure,
[43] and [44] analyzed the latency and successful offloading
probability, respectively, and provided optimizations. In [45],
the computation offloading probability was analyzed assuming
that non-orthogonal multiple access (NOMA) is adopted.
Assuming that uplink and downlink transmissions can be
provided by different BSs and edge servers, [46] analyzed
the latency with results showing that such decoupled uplink
and downlink structure can improve the performance. We
note that although there exist many papers investigating the
theoretical aspects of either edge-caching or edge-computing,
it is non-trivial to extend their results to wireless edge net-
works considering joint 3C. This is because edge-caching and

edge-computing were analyzed with different frameworks that
cannot be easily merged.

B. Contributions

This paper considers the scaling law analysis for noise-
limited wireless networks with joint 3C. To the best of our
knowledge, there is no previous work to provide a scaling
law analysis for wireless edge networks with joint 3C. Note
that the scaling law analysis is important because its result
can be used to understand the fundamental limits and benefits
of the network and to provide guideline for network design
[35], [38], [47]. Our results in this paper show the basic
dependence of performance on available link-rate, cache size,
and computation resources and provides insights based on this
analysis.

In this paper, we consider a noise-limited wireless network,
where the BSs are equipped with both computing units and
storage for data and/or programs. We assume that to com-
plete the tasks requested by users, caching, computing, and
communications are all required. As a result, given a latency
requirement for completing the tasks, the network could fail
to satisfy the requests of users when any part of the caching,
computing, and communication is insufficient, leading to oc-
currences of outage. We then analyze the outage probability
as a function of the latency requirement and the 3C network
parameters. Specifically, we first derive the expression for the
outage probability, and then derive an analytical expression
for the optimal caching policy that minimizes the outage
probability. Based on them, we then conduct the delay-outage
analysis considering Zipf-distributed request probabilities for
tasks, with Zipf distribution factor ~ fulfilling v < 1 or
v > 1, corresponding to two regimes that have completely
different asymptotic behaviors. Since the analysis provides
clear characterization for the relationship between the network
parameters and the delay and outage probability, we provide
insights and interpretations using the analysis results.

Specifically, when v < 1, our analysis indicates that the
outage probability can decrease exponentially with respect to
the cache size and BS density in the regime of most interest.
In addition, we show that the minimum achievable latency
can be expressed as the sum of computing delay and effective
transmission delay, leading to the fundamental interpretation
that the overall latency is the combination of computing and
transmission delays. Finally, we show that slightly relaxing the
delay requirement can significantly improve the outage prob-
ability. This thus implies that the challenges of the wireless
network indeed are imposed by the time-sensitive applications.
In line with intuition, the analysis also shows that the outage
probability for the network with v > 1 is better than that of
the network with v < 1. Finally, based on the main analysis
in the paper, we provide analyses for some extended networks
and reference networks. We also provide computer simulations
to validate our analysis and insights.

C. Paper Organization

The remainder of this paper is organized as follows. Sec.
IT discusses the models, assumptions, and definitions adopted



in this paper. Sec. III provides the analytical results for the
optimal caching policy. Sec. IV provides the delay-outage
analysis and the corresponding results considering v < 1. The
analysis and results considering v > 1 are presented in Sec.
V. Numerical validations of our analysis are provided in Sec.
VI. We conclude this paper in Sec. VII. The detailed proofs
are relegated to appendices of [2] and the sketch of the proof
strategy is provided in Appendix A of this paper.

II. EDGE NETWORK MODEL

In this paper, we consider an infrastructure-based 3C system
where BSs serve users. We assume no data communication is
possible between BSs and no cloud server is available for the
BSs. Caching and computing are implemented at the BSs only
and users cannot provide caching and computing resources.
We assume users in the network have tasks that require the
collaborations of caching, computing, and communications
and assume that to complete a task requested by a user,
the following steps are required: (i) input data upload from
the user to the BS; (ii) auxiliary dataset retrieval from the
storage of the BS; (iii) computation for processing the data to
the necessary content for completing the task; and (iv) final
content delivery to the user. Such a task process model is fairly
general and can be applied to many practical applications, e.g.,
AR/VR and facial recognition. We assume that there are M
tasks to request, and thus the library has M different auxiliary
datasets corresponding to the tasks. We assume for simplicity
that different datasets have the same size and that different
datasets are used for completing different tasks. Thus, a user
requesting task f needs to be associated with the BS having
dataset f in its storage.

We assume a BS can cache S datasets. We adopt the Poisson
point process (PPP) for the locations of users and BSs, where
the density of the BSs is A and the density of users is A,. We
assume a noise-limited network, where each user can obtain
a fixed amount of communication and computational resource
from the connected BS and the interference between users
and between BSs can be ignored. Note that the assumption
that each user is offered a fixed amount of bandwidth and
computing power could be fulfilled in a system with the
resource allocation strategy that always provides the fixed
amount of resource for stable service. Also, the assumption for
no interference is justified for systems with excellent interfer-
ence avoidance/mitigation capability. For example, a mmWave
system with massive MIMO arrays may fulfill the assumption,
as it can avoid interference by suitable beamforming in the
highly directional mmWave channels. We note that the analysis
that considers interference is an important future direction.

We assume the signal power received by a typical user
located at origin (0,0) from a BS located at x = (x1,x2)
is given by P|hy|?||x||~%, where P is the average (over the
fading) power received at unit distance; hy is the frequency-flat
small-scale fading coefficient such that |hy| is a unit-variance
Nakagami-myp distributed random variable, where mp > %
and mp = 1 corresponds to the Rayleigh fading; « is the
pathloss coefficient. We denote ® as the set of BSs in the
network, and denote ® ¢ as the set of BSs that cache dataset f.

We assume the association follows the largest received power
principle in which the typical user is associated with the BS
that has the largest received power among the BSs that cache
the required dataset f. Therefore, the received power when
requesting task f at the associated BS is:

P|hy|?||x| 7. 1
max A 1] ()

We consider a randomized caching policy [25], where
chvf) is the probability for a BS to cache dataset f and
Zf[:1 P.(f) = S. As a result, the density of ®¢ is AP(f).
We assume the channel is invariant in a time period with
duration D. From the analysis in [27], when the required
rate for successfully conducting the transmission between the
associated BS in ® and the typical user is py, we can obtain
the probability for successful transmission as:

5
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where Ry is the link-capacity (spectral efficiency), x =
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we assume that the required latency for completing the task is
D, and thus the channel is invariant during the implementation
of the task.! Suppose that the number of bits to upload for a
task is F'V; the number of bits to download for a task is FP;
and the number of cycles to compute a task is vYFY 4+ P FP,
where vV and vP are the computational scaling parameters
with the unit cycles/bit. Then, the probability to successfully
complete task f within a latency requirement D is given as:
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where dy is the latency for completing task f; B and E
are the bandwidth and computigg ower allocated to a user,
respectively. We assume D — % > 0 for simplicity;
otherwise, the task can never be suécessfully completed and
it would be meaningless to look at the outage probability of
a task given that we already know that the task can never be
completed. It follows from (2) and (3) that the probability of
successfully completing task f is:

Plds < D]

—kP(f) 1

FU4 D

(o)
“4)

We denote the probability for the typical user to request
task f as P.(f) and assume that the requesting (popularity)

=1—exp

W=

'Note that this assumption implies that the latency requirement for the
transmission is shorter than the coherence time, in which case the channel is
static for a packet. Comparing typical channel coherence times (tens of ms) to
latency requirements for some applications, e.g., URLLC requirements, this
is indeed fulfilled in at least some practical cases.



distribution is modeled by a Zipf distribution given as [11],

[24]:
IO ¢ ) S
Blfim) = SM_(m)y— H(1,M,7)’ ®

where v is the Zipf factor and H(a,b,~) := Y0 _ (m)~7.

m=a

By using (4) and (5), we obtain the successful probability for
completing a task as:

M
P,=> P.(f)Plds < D] =1~
f=1
5
- n
Z Pr(f) eXp _KJPC(f)
f=1 <% %)
2R -
Hence, the outage probability is:
P,=1-P;=
5
M "
S P(f)exp | —kP.(f)
f=1 <% %)
AN |
(7

By letting M — oo and S — oo (i.e., the library and the
cache size of the BSs go to infinity), we then use (7) to conduct
our asymptotic analysis in the next several sections.” As holds
generally true in scaling law analysis, the assumptions M —
oo and S — oo are made for the analysis convenience and
mathematical tractability, and they are helpful for getting rid of
the minor numerical details so that the critical relation between
parameters can be revealed. In addition, the analytical results
with these assumptions can be regarded as the approximations
of the results in finite regime with large M and S, and such
approximations become more accurate as M and S become
larger. Note that our simulation results in Sec. VI will show
good accuracy of our analytical results when considering the
practical finite regime of M and S [35], [48]. The frequently
used notations in the paper is summarized in Table I on the
top of next page.

III. OPTIMAL CACHING POLICY

In this section, we derive the analytical expression of the
optimal caching policy that will be used for the delay-outage
performance analysis.? To simplify the notation, we define

)

n
K =k
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FU4 FD

1
B 7L,UFU+,,DFD>
2( A |

2Note that we cannot let the density A\ go to infinity for the analysis
because this would break the basic assumption in stochastic geometry that
Exc[|Ax |2 [x]| =] < oc.

3We note that due to page limitation, we only provide a sketch of the proof
strategy in Appendix A of this paper; the detailed proofs are relegated to
appendices of [2] which is obtainable also also as supplemental material of
this paper.

It then follows that we can express the outage probability as:

M
PO—ZPT(f)eXp —kP.(f) 77D
=1 (% Dﬁﬁ%iﬂF")
2 C -1
M
=S B(f)exp (—HPu(f)) -
f=1
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Using (9), we then derive Proposition 1 which describes the
optimal caching policy:
Proposition 1: The optimal caching policy that minimizes
the outage probability P, is given as:

P2 (f) = min (1’ e PC(”D

/ Lt
=min | 1, [log <I{P£(f)> ’ ] ,

where PX(f) is the caching probability for dataset f, ( is

the Lagrangian multiplier such that Z?/[Zl P.(f)* =S, and
[a]* = max(a, 0).

(10)

Proof. See Appendix A of [2]. [

We then denote mj > 0 as the smallest index such that
P¥(m7 +1) < 1 and mj as the smallest index such that
P¥(m3+1) = 0. It follows that according to the conditions of
m7j and m3, we need to split the discussion into three regimes:
1) 0<m] <mb < M; (1) mj <0< ms < M; and (iii)
0 < mj < M < mj. Before providing the theorems, we first
note that three frequently used lemmas, i.e., Lemmas 1-3, for
proving theorems in this paper are provided in Appendix O in
[2]. In the following, we present the theorems that respectively
characterize the optimal policy of the above regimes:

Theorem 1: Let M — oo and S — oco. Denote m} > 0 as
the smallest index such that P*(mj 4+ 1) < 1 and m3 as the
smallest index such that P*(m3+1) = 0. We assume that m}
is much larger than 1 when S — oo. The caching distribution
P*(-) that minimizes the outage probability P, is as follows:

PI(f)=1, f=1..,m]
Pi(f)=log (L), f=mi+1m; (D
P(f) =0, f=my+ 1., M
where m} + Z}njm;H log (2£) = S, zp = (Pr(f))ﬁ, and
mi] =c1S; mi =S, (12)

K

where ¢; = ——— and ¢cp = —%——.
%<e771> %<e7—1>

Proof. See Appendix B of [2]. O



TABLE I: Summary of Frequently Used Notations

Notations Descriptions
M; S; D; A Number of tasks in the library; cache capability; latency requirement; density of BSs
3 Pe(f): Pr(f); P, | index of task; probability of caching dataset f; probability of requesting task f; outage probability
a; §; mp; Pathloss coefficient ; § = %; Nakagami fading coefficient; Zipf factor

B; Ec; Py o2;n

Bandwidth; computing power; transmit power; noise power; 17 = i

o2

FP/FU; P10

Number of bits to download/upload; computational scaling parameter for dowgload/upload

K, K K=7\

T (3+mp)
miT (mp)

; parameter defined in (8)

Theorem 2: Let M — oo and S — 00. Suppose

(22|
(e 2E0) ]
¢

is satisfied, i.e., P*(f) < 1,Vf. Then, we denote m* as
the smallest index such that P}(m* + 1) = 0. The caching
distribution P’(-) that minimizes the outage probability P, is

as follows:

PX(f) =min | 1,

13)

“(f) = AT p= 14
Pc(f)_[log(y)jl 9 f_la"'7M7 ( )
where 21}21 log (2£) =8, zp = (P,(f))*, and
/
m* :min<5“ 7M). (15)
Y
Proof. See Appendix C of [2]. O

Theorem 3: Let M — oo and S — oco. Denote mj > 0 as
the index such that PX(mj+1) < 1 and assume P*(M) > 0.
Let Cy = % and let 0 < (C7 < 1 be the solution of
the following equality: C; — log(Cy) = %(1 - Cy) + 1L
Then, the caching distribution P*(-) that minimizes the outage
probability P, is as follows:

PN =1, f=1...m]

P(f) = log (%f) f=mi+1,.,M

(16)

where m} + ijw:m;-u log (2£) = S, 2z = (Pr(f))ﬁ’ and
mj = C1 M. 17)

Proof. See Appendix D of [2]. O

IV. DELAY-OUTAGE ANALYSIS FOR 7y < 1 SCENARIOS

In this section, considering v < 1, we first conduct the
delay-outage analysis based on the optimal caching policy
derived in Sec. III. Then, based on the analysis results, insights
and some extended results are provided.

A. Main Results

Theorems 1, 2, and 3 analytically describe the optimal
caching policies for different regimes.* Based on them, we
can have the following theorems, namely, Theorems 4, 5, and

4We note that the provided theorems slightly abuse the notations as m*,
m7, and mj3 characterized by them might not be integer.

6, which characterize the outage probability as a function of
delay requirements and other critical parameters, e.g., S and
M, for regimes corresponding to those of Theorems 1, 2,
and 3, respectively. Besides, since the expression derived in
Theorem 6 might not provide clear insight, we conduct addi-
tional approximations to derive a more insightful expression
for the outage probability characterized by Theorem 6, leading
to Corollary 6.1.

Theorem 4: Let M — oo and S — oo. Consider v < 1.
Suppose the caching policy is given by Theorem 1. Then,
the optimal (minimum) achievable outage probability is as
expressed in (18) on the top of next page, where

o
1 e
g v 2= P :
l,(eW—l) l,(ev—l)
K K

Proof. See Appendix E of [2]. O

19)

c1 =

Theorem 5: Let M — oo and S — oo. Consider v < 1.
Suppose the caching policy is given by Theorem 2. Then, the
optimal (minimum) achievable outage probability is:

— Sk’

Pr=(1—7)ee ™ . (20)

Proof. See Appendix F of [2]. O

Theorem 6: Let M — oo and S — oo. Consider v < 1.
Suppose the caching policy is given by Theorem 3. Then, the
optimal (minimum) achievable outage probability is:

AC1 —r'(Cy=Cy)
Py = (1= yer(1- e et
(2D

where C; and C are given according to Theorem 3.
Proof. See Appendix G of [2]. O

Corollary 6.1: Let M — oo and S — oo. Consider v < 1.
Suppose the caching policy is given by Theorem 3. Assume
C5 is small. Then, the optimal (minimum) achievable outage
probability in Theorem 6 can be approximated as:

Pra(1—q)ele 5 4 (Cr) e, (22)

Furthermore, when ' is sufficiently large so that the outage
probability lower bound e is small, the optimal (minimum)
achievable outage probability in Theorem 6 can be approxi-
mated as:

Pra(1—q)ete w, (23)

Proof. See Appendix H of [2]. O

e (C)' T,



Pr=1-
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B. Interpretations and Insights

With the results in Sec. IV-A, we can obtain fundamental
insights and interpretations for the delay-outage performance
of the network. First of all, from (9), we see that when all
datasets can be cached in a BS, i.e., S = M, the outage
probability is e, serving as the fundamental lower bound
for outage probability when given the network configuration.
In addition, we also see that increasing ' can lead to an
exponential decrease of the outage probability. By using
Theorem 4, we see that when S is small, the reduction of
the outage probability follows a power law with respect to the
cache size S. By Corollary 6.1, we see that the optimal outage
probability of regimes characterized by Theorems 5 and 6 is
approximately the same when x’ is large, namely, when the
fundamental outage probability lower bound e is small.
We then see that when considering the regimes characterized
by them, the outage probability decreases exponentially with
respect to S. Since we are more interested in Theorems 5
and 6, as regimes characterized by them give small outage
probability, we further analyze their results in the following.

From (20) and (23), we see that the outage probability
decreases exponentially with respect to the critical parameter

3

;b

FU4 FD

E. >1

B URU DD

which depends on the latency requirement, communication
and computing capabilities, and the BS density. By using
(24), we can see the relations between different parameters.
In addition, by further including the caching, we see that the
critical parameter is:

§
Sk’ L(6+m S
K/Tzizﬂ')\ (5+ D) n -—,
M myI'(mp) <L FU4 gD ) M
B yURU,DiD
2 Ee —1
(25)

and the increase of kr can decrease the outage probability
exponentially. This critical parameter x7 thus gives a clear
characterization of caching, computing, and communications
as well as their relations to the outage probability.

Using the results in Theorem 5 and Corollary 6.1, we can
reformulate the optimal outage probability expressions such
that the minimum achievable latency D* becomes a function

(18)

of the outage probability and other parameters. Specifically,
from (20) and (23), we can obtain:

U D
2<ED* Fﬁ%) _ n(xS)? —. (6
(Mlog ((ppvew)) 5
We then denote
kS)s n(kS)%
et — n(kS) _ 1(kS) _ o

(s (05=))" (arnos (252))

as the effective SNR. It follows that we can obtain the
minimum achievable latency as:

_ FY4+FP
Blog, (1 + neff)

From (28), we observe that the minimum achievable latency
D* is the sum of two terms, where the first term represents the
delay due to transmissions and the second term represents the
delay due to computations. We see that the caching capability
affects the first term through the effective SNR 7eg. Then,
by (27), we observe that the effective SNR is proportional
to (%) 2 indicating that the caching is more influential
when the pathloss factor « is larger. However, this should
not be mis-interpreted as that the minimum latency would be
smaller when the pathloss factor « is larger. On the contrary,

. . . . — Y 2
since 7 1s inversely proportional to (log (“TX)P ’

having the same required outage probability OP(’)" Nefe Would
be smaller when the pathloss factor « is larger. We see that
since the minimum achievable latency is the sum of two
terms, it is clear that we need to improve caching, computing,
and communications in a balanced manner when improving
the network. In other words, when the transmission delay is
dominant, we had better think of improving the caching and/or
communications. On the other hand, if the computational delay
is dominant, we should resort to improving the computation
capability for efficient performance improvement. Note that
although the above statements are intuitive, our results indeed
rigorously validate the intuitions from a theoretical perspective
and quantify them.

It should be noted that the communication delay is inversely
proportional to both the bandwidth B and the computing
power L., implying that improving them is a straightforward
approach of improving the latency. Therefore, it could be
a good idea to trade the computing power against off the
bandwidth, as improving computing capability might be easier
and cheaper than improving the bandwidth. Furthermore, since
increasing S increases 7, We can also trade off storage
against bandwidth. Finally, if we let the computing delay

*

YUFU 4 PFD
E. '

(28)

, when



be negligible as compared to the communication delay and
assume 7 >> 1, we can have

FY 4 FP FY 4 FP
D* + = + . (29)

~ BlOgQ (neff) (HS)%
B 10g2 < (M logn< (1}7*)67 )) %

This indicates that the transmission delay-outage tradeoff is
on a loglog scale, implying that increasing D* slightly can
significantly improve the outage probability.

Remark 1: Our analysis clearly reveals the relations between
the delay-outage performance and 3C parameters. Specifically,
we see that increasing S and ' can bring an exponential-
law improvement to the outage probability. In addition, we
see that the delay is composed of the effective transmission
and computing delays, where improving only either of them
can lead to the situation that the delay is dominated by the
other. Hence, to efficiently improve the network, an approach
having a balanced view on 3C is necessary. Finally, we observe
that slightly relaxing the delay requirement can significantly
improve the outage probability. This implies that the chal-
lenges of the wireless network indeed are imposed by the
time-sensitive applications.

Remark 2: Our results can generally be applied to the
conventional edge-caching and edge-computing scenarios. The
results for the conventional edge-caching scenario can be
obtain by letting the computing requirement factor be zero,
ie., Y D — 0; the results for the conventional edge-

=v
computing scenario can be obtain by letting S = M. However,
it should be noted that since we adopt a noise-limited network
in this paper, we then have a simple computing model for
the conventional edge-computing scenario. Thus, the analysis
becomes straightforward for the conventional edge-computing
scenario, where the outage probability is simply P, = e

C. Extended Analysis and Comparisons for Networks with
Reference Schemes and Variants

Based on the above analysis and results, in this subsection,
we extend our analysis to systems adopting some important
reference caching policies and also to some wireless networks
with configurations that are variants of our standard network.

1) Analysis for Networks adopting Most Popular and Uni-
form Random Caching Policies: We first analyze the standard
networks adopting two widely used reference caching poli-
cies, namely, the most-popular and uniform random caching
policies [25], [49]. The most-popular caching policy let BSs
only cache datasets relevant to the most popular tasks until
the storage is full; the uniform random caching on the other
hand let BSs cache datasets uniformly at random. Clearly, they
are two extremes, and thus are good reference schemes. The
outage probability results are provided below:

Proposition 2: Suppose v < 1, M — oo, S — oo, and
S < M. The outage probability of the network adopting the
most-popular caching policy is:

P =1 (1-e) (Ai)l_v.

(30)

In addition, the outage probability of the network adopting the
uniform random caching policy is:

PRy = o= 31)

Proof. See Appendix I of [2]. O

From Proposition 2, we observe that the outage probability
for networks adopting the most-popular caching policy has
only a power law reduction with respect to .S. Although such
scaling law is identical to that of the derived optimal scaling
law when S is small (see Theorem 4), it cannot have an
exponential law when S becomes large, indicating that such
policy is not as effective as the optimal policy. On the other
hand, the uniform random caching policy can result in an
exponential law for the outage probability reduction, and such
law is identical to that of the derived optimal scaling law
in Theorem 5 and Corollary 6.1. Furthermore, by comparing
(31) with (20) and (23), we see that the outage probability
given by the uniform random caching policy is different from
the optimal caching policy only in the constant factor term
(1 —~)e?, where (1 —v)e?” < 1,Vy <1land (1—7)e’ =1
when v = 0. This indicates that the uniform random policy
is optimal when the popularity distribution is uniform. On the
other hand, as « tends to 1, this factor term would tend to be
larger, which differentiates the optimal caching policy from the
uniform random policy as the popularity distribution tends to
be more concentrated. The above results explain the intuitions
that the most-popular caching policy performs poorly while
the uniform random caching policy performs effectively when
the popularity distribution is not very concentrated, namely,
when v < 1.

2) Analysis for Networks adopting a Guaranteed Backhaul:
Here, we analyze the networks where each BS is equipped with
a dedicated backhaul used to provide the desired datasets with
probability Pg, and latency dg, and caching is not considered
in BSs. Note that this case is equivalent to the case that each
dataset is cached with probability Pg,. Therefore, we let users
be associated with the BS with the largest received power
among all BSs whose backhauls are available. In this case,
the received power of the user is then given by

max  Plhy|?||x] 7%, (32)
Xp

where ®p, is the set of BSs whose backhauls are available.
Then, following the similar derivations in Sec. II and consid-
ering the additional dg < D latency, we can then obtain the
following outage probability:
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0
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where we implicitly assume that the computational delay
plus the backhaul latency should be within the requirement
latency D. By comparing (33) with our derived optimal outage
probability (1 77)676% in (23), we can understand whether
and how replacing the backhaul with caching can still provide
the desired network performance.

3) Analysis for Networks adopting both the Optimal
Caching Policy and a Guaranteed Backhaul: Now, we con-
sider a network where each BS is equipped with both a storage
for caching and a backhaul. We then consider the following
association policy. A typical user with a request for task f
would first be associated with the BS that can provide the
largest received power among all BSs caching dataset f, and
therefore the received power in this case is as described by (1).
Then, it checks whether the associated BS can complete the
task within the latency requirement D. If yes, the request can
be satisfied. If not, the user then choose to switch to the BS that
can provide the largest received power among all BSs whose
backhaul links are available. Considering the above association
policy, we then know that the outage probability in this case
can be expressed as

M
P =3 "P(m)P[df > D] -P[d® > D], (34)
f=1

indicating that the outage for completing task f happens only
if both the latency of using caching d,, and the latency of
using backhaul d® are larger than the latency requirement D.
Then, since the latency of completing a task using the backhaul
is independent of what task to complete, we obtain

M
P =P [d® > D] .ZPT(f)IED [d(];>D]7 (33)
@

(b)

where (a) is indeed given by (33) and the optimal value
of (b) can be obtained by using the results in Sec. IV-A.
Hence, when considering the most interesting regimes, i.e., the
regimes characterized by Theorems 5 and 6, we then obtain:

PCB = (1 —y)ele o ¢ Fourn, (36)

From (36), we can see that when equipped with a backhaul,
the outage probability of the wireless caching network can be
improved by the factor e 38 where e~ %"# is determined
by the performance of the backhauls owned by the BSs.
This indicates that the caching-based and the conventional
backhaul-based 3C approaches are not mutual exclusive; in
contrast, they can effectively be combined with each other.
4) Analysis for Networks adopting a Hierarchical Caching
Architecture: The analysis in Sec. IV-C.3, where the backhaul
is only available with certain probability, can be exploited in
the scenario where each BS is independently connected to an
external storage through a backhaul with latency dg. Note that
this scenario is similar to that the BSs can connect to some
inventory in the cloud. We assume that each connected storage
can cache Sp datasets. We denote the probability of caching
the dataset for task f in each external storage as P.g(f).
Then, notice that the probability that the backhaul is useful

is determined by whether the desired dataset is cached in
the connected external storage. Thus, by following the similar
derivations in Sec. II and by using the result in Sec. IV-C.3,
the outage probability in this case can be expressed as:

M
PR = 37 Py(f) exp (—#' Pu(f)) exp (—rnPep(f) . GT)
f=1

To minimize the outage probability in (37), we need to jointly
optimize the caching policy of the BSs and the caching
policy of the external storages. This leads to the following
optimization problem:

M
Py s ng Pr(f) exp (=~ Pe(f)) exp (=B Pep(f))

M M
st. Y P(f)=8, > Pep(f) =S5,
=1 =1
0<P.(f)<1,Vf, 0<P.p(f)<L1Vf.
(38)
Although numerically solving (38) is not challenging as it is a
convex optimization problem, finding the closed-form expres-
sion for the optimal solution of (38) and the corresponding
optimal outage probability is very difficult. Thus, instead of
obtaining the optimal outage probability, we characterize an
upper bound of it. Specifically, we observe that the uniform
random caching policy is very effective when ~ < 1. There-
fore, we let the caching policy of the external storages to
follow the uniform random policy, leading to P, g(m) = %
It follows that the outage probability in this case is given by:

M
PHRUPP — oxp (T) > P(f)exp (=w'Pe(f)) - (39)
f=1

Note that (39) is an upper bound of the optimal outage
probability because the use of uniform random policy for the
external storages is indeed suboptimal. Then, with (39), we
can optimize the caching policy of BSs by using the same
approach as in Sec. IV-A such that the approximate upper
bound of the optimal outage probability can be obtained:

(P;{R)* < exp (F;\]}&g> (1 —~)e” exp (]I\}ls>
(40)

= (1 —7)e"exp (%HBSB)) :

where (PHR)* is the optimal outage probability obtained by
solving (38). From (40), we observe that the use of external
storages can improve the overall outage probability exponen-
tially.

5) Comparison between Co-located and Distributed Wire-
less Caching Networks: Using results in Sec. IV-A, we can
compare between having co-located caching and distributed

caching. Specifically, according to our results, the outage



probability of the interesting regimes can be (approximately)
expressed as:

Pr=(1-7)ee s = (1—7)e

é
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(41)

The difference between the co-located caching and distributed
caching is whether the cache space is distributedly located
in different BSs or co-located in a small number of BSs.
Thus, for the comparison, we consider AS = Sy to be
a constant. Then, the caching is more distributed/co-located
when letting A to be larger/smaller. It follows that since AS' is
a constant, we see from (41) that the outage probability is also
a constant. Therefore, the co-located caching and distributed
caching indeed provide the same performance. We note that,
however, this conclusion only applies to the scenarios that
the BS distribution is a homogeneous PPP and the network
is noise-limited. Thus, when considering more complicated
scenarios, the result might be different.

V. DELAY-OUTAGE ANALYSIS FOR 7 > 1 SCENARIOS

In this section, considering v > 1, we first conduct the
delay-outage analysis based on the optimal caching policy
derived in Sec. III. Then, based on the analysis results, insights
are provided.

A. Main Results

In the following, we first obtain Theorems 7, 8, 9, and 10
that characterize the upper and lower bounds of the outage
probability in different regimes. Then, to obtain insights,
we conduct an additional approximation using Theorem 10,
leading to Corollary 10.1.

Theorem 7: Let M — oo and S — oo. Consider v > 1.
Suppose the caching policy is given by Theorem 1 with m] <
1. Then, the optimal (minimum) achievable outage probability
is lower and upper bounded as:

1 [(7 C e (ea) e 4+ (Cz)l_v] <;)7_1

5
-1
()
o v—1 v—1
=D e v (3) - (5)
(42)

Proof. See Appendix J of [2]. O

Theorem 8: Let M — oo and S — oo. Consider v > 1.
Suppose the caching policy is given by Theorem 1 with m] >
1. Then, the optimal (minimum) achievable outage probability
is lower and upper bounded as in (43) on the top of next page.

Proof. See Appendix K of [2]. O

Theorem 9: Let M — oo and S — oo. Consider v > 1.
Suppose the caching policy is given by Theorem 2. Then, the
optimal (minimum) achievable outage probability is lower and
upper bounded as:

-1 1\ s I\
7 5 e’ (M> e < P < (y—-1)e” <M) e
(44)

Proof. See Appendix L of [2]. O

Theorem 10: Let M — oo and S — oo. Consider v > 1.
Suppose the caching policy is given by Theorem 3. Then, the
optimal (minimum) achievable outage probability is lower and

upper bounded as:
o/ C2=C1 1\ !
1-C1 i
()

’ G 1 C2=-Cy 1 vl
e (y = 1) (1 — Cy) (Cy) e ¢ B (M) |
(45)

Proof. See Appendix M of [2]. O

1 ' -1

—e F _’_'Y

Y Y
<Pr<

67(1 — Cl) (Cl)% e

Corollary 10.1: Let M — oo and S — oo. Consider v < 1.
Suppose the caching policy is given by Theorem 3. Assume C5
is small because we are interested in the case that the caching
space of a BS is much smaller than the library size. Then,
the lower and upper bounds in Theorem 10 for the optimal
(minimum) achievable outage probability can be approximated
as:

1 —1 1\ s
—e F 4+ i e’ (M> e 15;1

N L)
<P <ye ™ 4+ (y—1)e <M) e R

Furthermore, when &’ is sufficiently large so that the outage
probability lower bound e is small, the lower and upper
bounds in Theorem 10 for the optimal (minimum) achievable
outage probability can be approximated as:

-1 1\ s 1\ s
T e (M> e < Py <(y—-1)" (M> e,
Y

(47)

Proof. The proof follows the similar procedure of proving
Corollary 6.1. O

B. Interpretations and Insights

Based on the results in Sec. V-A, we can obtain fundamental
insights and interpretations for the delay-outage performance
of the network. First of all, since (9) is applied also for the case
of v > 1, we observe that an increase of x’ can again lead to
the exponential decrease of the outage probability. In addition,
from Theorems 7 and 8, we observe that the outage probability
reduction follows a power law with respect to the cache size S
when S is small. Then, by Theorem 9 and Corollary 10.1, we
see that the outage probability in their corresponding regimes
decreases following an exponential law with respect to the
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cache size S. By comparing Theorem 9 (Corollary 10.1) with
Theorem 5 (Corollary 6.1), we observe that although both the-
orems (corollaries) follow an exponentially decreasing law, the
additional (%)7_1 term indicates that the outage probability
in the case of v > 1 is much smaller. Furthermore, we see that
when the the caching probability is given by Theorems 2 and 3,
we have S = O(M). This thus explains the intuition that when
the cache space is orderwise comparable to the library size
and the popularity distribution is sharp, the caching capability
might not be the restrictive factor for the network as both
Theorem 9 and corollary 10.1 imply that the outage probability
would be small and would decrease very fast with respect to
S as long as the fundamental outage probability law bound
e~* is not restrictive. Note that to improve e*"l, we shall
improve the computing and communication capabilities of the
network. Therefore, similar to the case of v < 1, ’ is again a
critical parameter for the network optimization, and it is even
more critical when v > 1 because the caching capability is
less likely to be the limiting factor.

By using results in Theorem 9 and corollary 10.1, we see
that the outage probability expressions with v > 1 can have
the same structure as those with v < 1. Therefore, we can
follow a similar procedure as in Sec. IV-B to reformulate
the outage probability expression such that the minimum
achievable latency expression as well as the similar insights
described in Sec. IV-B can be obtained. We stress that such
reformulation can be insightful when ' and S are large,
namely, the outage probability is very small and e s
not a restrictive factor. However, in certain situations, we
observe that the outage probability would already be very
low when S is moderate. Thus, in those cases, it would be
more straightforward to directly use numerical analysis with
the derived outage probability expressions to gain insights.

Similar to the analysis in Sec. IV-C, we can compare the
optimal outage probability with the outage probabilities of the
most-popular caching policy and the uniform random caching
policy to gain insights. To do this, we first provide Proposition
3 which describes the outage probabilities of the most-popular
caching policy and the uniform random caching policy:

Proposition 3: Suppose v > 1, M — oo, and S is a
sufficiently large number with .S < M. The outage probability
of the network adopting the most popular caching policy is

>71 - ( 1
— €
c1 +

(v — 1)e(ca — c1)(e2) ™ <> é;¥%7e

(43)
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(48)
In addition, the outage probability of the network adopting the

uniform random caching policy is:

—w’'S

PR = e, (49)

Proof. See Appendix N of [2]. O

By comparing the outage probability lower and upper
bounds of most-popular caching in Proposition 3 with those in
Theorems 7 and 8, we see that they share a similar structure.
Therefore, it can be expected that the most-popular caching
policy has the similar behavior to the optimal caching policy
in the regimes characterized by Theorems 7 and 8, i.e., the
regimes that S is much smaller than M. On the other hand,
when S is much smaller than M, the outage probability

performance of the uniform random caching policy could be
s

very poor as PRM = e~5 would be close to 1 when i
is small. This is different from the case that when v < 1,
the uniform random caching policy has a good performance.
However, we also see that the uniform random caching policy
has a better outage probability decreasing law as compared
to that of the most-popular caching policy. This implies
that when we keep increasing S to the order comparable
to M, the uniform random caching policy might start to
perform better than the most-popular caching policy, though
the crossing points depend on the specific network parameters.
By comparing the proposed optimal caching policy with these
reference policies, we observe that the optimal caching policy
can have the merits of both reference policies, in which when
S is small, the optimal policy would focus on caching datasets
of popular tasks, and then when S is large, it would act more
like the uniform random caching policy where datasets are
cached in a more cooperative manner. Finally, we note that
extensions similar to those discussed in Sec. IV-C can also
be conducted via using results in this section. However, since
the procedure and insights would be very similar, we omit the
relevant discussion here for brevity.
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Fig. 1: Outage probability evaluation of the proposed theorems
as a function of S.

VI. COMPUTER SIMULATIONS

In this section, we validate our analysis using simulations.
Unless otherwise indicated, in the simulations, we consider
D =103sec, mp =1, P =20 dBm, « = 3.5, B = 20
MHz, the noise power spectral density Ny = —173 dBm/Hz,
FU = 10* bits, FP = 10° bits, vY = vP = 1 cycle/bit,
E. =10° cycles/sec, M = 10*, and X\ = 5 per km?.

A. Simulation Results for networks with v < 1

In Fig. 1, we validate our theorems proposed in Sec. V-
A for the outage probability as a function of the caching
capability .S, where the “numerical” curves are results obtained
by first numerically solving the outage probability mini-
mization problem and then evaluating the outage probability
using (9); the “Monte-Carlo” curves are results obtained by
directly conducting Monte-Carlo simulations of the considered
network with the numerically optimized caching policy. Note
that since different theorems in Sec. IV-A characterize dif-
ferent regimes, the theoretical curves are the combinations of
different theorems. Furthermore, the curves with “+ Corollary
6.1” are obtained via replacing Theorem 6 with Corollary 6.1.
The results show that our proposed analysis is accurate, except
for the endpoint of the curve with “+ Corollary 6.1” in Fig.
1(b), where the small divergence comes from the fact that the
conditions for the good approximation of Corollary 6.1 might
not be well-satisfied, namely, C5 is not small. However, we
note that accurate results for not only the functional form,
but also the constant factor, are already not common for the
asymptotic analysis of wireless networks. From Fig. 1, we
also see that the outage probability is generally exponentially
decreasing with respect to .S. Finally, we note that the outage
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Fig. 2: Outage probability evaluation of the proposed theorems
as a function of E..

probability in Fig. 1 indeed is lower bounded by e~"", which
is the fundamental bound due to the network configuration.

In Fig. 2, we consider S = 4000 and evaluate the outage
probability as a function of the computing power E.. Since we
already saw that the Monte-Carlo results are identical to the
numerical results in Fig. 1, we only provide the numerical
validation here. Results again show that our theorems are
accurate, and only some small constant factor differences
can be observed. In addition, we observe that the outage
probability saturates when the computing power increases to
a large number. This is because when the computing power
is sufficient, the performance is then limited by the caching
and communication capabilities, showing that an approach of
improving the performance by only increasing the computing
capability could be limited.

Finally, in Fig. 3, we evaluate the delay-outage performance
of the considered network with S = 7500. In addition to
evaluating the network adopting our proposed caching policy,
we also evaluate two reference caching policies, namely, the
most-popular caching and uniform random caching. Results
show that the proposed optimal caching provides the best per-
formance. Besides, we observe that the most-popular caching
performs poorly because BSs with this caching policy do not
collaboratively cache the datasets so that there are numerous
tasks that do not have their datasets cached in the network, and
thus can never be completed even if the delay requirement can
be relaxed. On the other hand, the uniform random caching is
indeed near-optimal as its outage probability is e~ 3%, which
only differs from the optimal outage probability by a constant
factor (see Theorem 5, Corollary 6.1, and Proposition 2 to
compare). However, we note that the good performance of the
uniform random caching only exists when v < 1, i.e., the
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Fig. 3: Delay-Outage performance evaluation with S = 7500.

requests are not very concentrated on the popular tasks. We
will show below that when v > 1, i.e., the requests are more
concentrated on popular tasks, the uniform random caching
could perform poorly. Finally, we see that changing the delay
requirement significantly affects the outage probability, show-
ing that by slightly relaxing the latency requirement, the outage
probability performance can be significantly improved. Thus,
the challenges of the wireless network indeed are imposed by
the time-sensitive applications, which matches our intuition
well.

B. Simulation Results for networks with v > 1

In Fig. 4, we validate our theorems proposed in Sec. V-A as
a function of the caching capability S. Again, since different
theorems in Sec. V-A characterize different regimes, the
theoretical curves are the combinations of different theorems.
Specifically, the curves with “Theory” are obtained via collect-
ing results of Theorems 7, 8, 9, and 10; the curves with “Coro”
are obtain via replacing Theorem 10 with (46) in Corollary
10.1; and the curves with “Coro App” are obtain via replacing
Theorem 10 with (47) in Corollary 10.1. The results show that
our proposed analysis can in general effectively characterize
the performance via using the derived upper and lower bounds.
The only exception is again at the endpoints of the curves with
“Coro App” in Fig. 4, where the small divergence comes from
that the conditions for the good approximation of Corollary
10.1 might not be well-satisfied. Finally, we see that the outage
probability of Fig. 4 for a given .S is much lower than the
corresponding outage probability in Fig. 1. This validates that
the optimal outage probability performance is better when -y
is larger.
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Fig. 4: Outage probability evaluation of the proposed theorems
as a function of S.

In Fig. 5, we consider S = 1500 and evaluate the outage
probability as a function of the computing power E.. Since
we already saw in Fig. 4 that the Monte-Carlo results are
essentially identical to the numerical results, we only provide
the numerical validation here. Results again show that our
theorems are accurate. In addition, we observe that the outage
probability saturates when the computing power increases to
a large number, validating that when the computing power is
sufficient, the performance is then limited by the caching and
communication capabilities.

Finally, in Fig. 6, we evaluate the delay-outage performance
of the considered network with .S = 1500. We again compare
the optimal caching policy with two reference caching poli-
cies, namely, the most-popular caching and uniform random
caching. Results show that the proposed optimal caching can
provide the best performance. Besides, different from the
results in Fig. 3, here we observe that the uniform random
caching can no longer provide the near-optimal performance
as the uniform caching cannot focus on caching of datasets
for very popular tasks. On the other hand, we see that the
most-popular caching can be very good in the situations that
the delay requirement is stringent, implying that when the
requirement is stringent, we should really focus on caching
the datasets of most popular tasks. We observe that when
keeping relaxing the delay requirement, the uniform random
caching ultimately would perform better than the most-popular
caching. this is because when the delay requirement is loose,
reaching the most-popular tasks in the nearby BSs of users be-
come less important. On the other hand, having more tasks that
can be completed at the wireless edge network becomes more
important. Note that by comparing Fig. 6(a) with Fig. 6(b),
we observe that the crossing point for the most-popular and
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Fig. 6: Delay-Outage performance evaluation with S = 1500.

uniform random caching policies shifts right as ~ increases.
This is because when + is larger, the popularity distribution
is more concentrated. Finally, we again see that changing the
delay requirement significantly affects the outage probability,
validating our previous observation that via relaxing the la-
tency requirement, the outage probability performance can be

significantly improved. Thus, the challenges of the wireless
network are imposed by the time-sensitive applications.

VII. CONCLUSIONS

In this paper, we provided the asymptotic delay-outage
analysis for obtaining the fundamental understanding of the
behaviors of wireless edge networks considering joint 3C.
Our analysis clearly revealed the relations between the delay-
outage performance and 3C parameters and the provided
simulations validate our analysis. To be more specific, our
analysis showed that increasing ' can bring an exponential-
law improvement to the outage probability. In addition, the
analysis showed that the increase of S can first lead to
the power-law improvement, and then the exponential-law
improvement as S is increased a large number. Furthermore,
by some reformulation, we demonstrated that the delay is
composed of the effective transmission and computing delays,
where improving only either of them can lead to the situation
that the delay is dominated by the other. Hence, to efficiently
improve the network, an approach having a balanced view on
3C is necessary. Finally, we observed that slightly relaxing
the delay requirement can significantly improve the outage
probability. Therefore, the biggest challenges of the wireless
network are indeed imposed by the most time-sensitive appli-
cations.

APPENDIX A
SKETCH OF THE PROOF STRATEGY

To obtain the final outage probability as a function of the
delay constraint and other network parameters, we conduct
the following steps: (i) deriving the general expression for the
optimal caching policy that minimizes the outage probability
(Proposition 1); (ii) deriving the analytical expressions for the
optimal caching policy under different regimes (Theorems 1,
2, and 3); and (iii) deriving the analytical expressions of the
optimal outage probability under different regimes (Theorems
4, 5, 6, 8, 9, and 10). Since the derivations for different
theorems in the same step follow similar procedure with the
differences mainly on the computational details, we in the
following sketch the proof procedure of each step described
above. Note that since the proof of proposition 1 in step 1 di-
rectly applies the Lagrange multiplier and KarushKuhnTucker
(KKT) condition that are commonly used in the literature,
we skip the sketch of it for brevity and start the discussion
from step 2. All details of the proofs can be found in the
supplementary material [2].

A. Sketch of the Proof Strategy for Step 2

To derive the analytical expression of the optimal caching
policy, we first derive the bounding conditions for the critical
indices, namely, m], mj5, and m*, if they exist. Then, based
on the bounding conditions, we can obtain the upper and lower
bounds of mj, m3, and m* via substituting the bound condi-
tions into the general expression of the optimal caching bound
in Proposition 1. Then, after some algebraical manipulations,
we can show that the upper and lower bounds of m7j, m3, and
m™* are tight, leading to the analytical expressions of m7j, m3,



and m*. Finally, by combining the analytical expressions of
mj, ms, and m* with the expression in Proposition 1, we can
derive the final theorem.

B. Sketch of the Proof Strategy for Step 3

To derive the analytical expression of the optimal outage
probability, we first substitute the analytical expression derived
in step 2 into the outage probability expression given by (9).
It follows that by using the concept of Riemann sum calculus,
we can obtain the upper and lower bounds of the outage prob-
ability via transforming the summation term with respect to
different contents in (9) into its corresponding upper and lower
bounds with integration forms. Finally, after some algebraical
manipulations, we can obtain analytical expressions of the
upper and lower bounds that have similar/identical expressions
that construct the final theorem. Note that if we can show
that the expressions of the upper and lower bounds have the
identical expression, we can conclude the exact expression of
the optimal outage probability. On the other hand, if the upper
and lower bounds are not identical but having many similar
terms, we provide both the upper and lower bounds in the
theorem and analyze them subsequently.
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