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Abstract—Performance assessment and optimization for net-
works jointly performing caching, computing, and communica-
tion (3C) has recently drawn significant attention because many
emerging applications require 3C functionality. However, studies
in the literature mostly focus on the particular algorithms and
setups of such networks, while the theoretical understanding and
characterization of such networks has been less explored. To
fill this gap, this paper conducts the asymptotic (scaling-law)
analysis for the delay-outage tradeoff of noise-limited wireless
edge networks with joint 3C. In particular, we derive closed-
form expressions for the optimum outage probability as function
of delay and other network parameters via first obtaining the
outage probability expression and then deriving the optimal
caching policy. We provide insights and interpretations based
on the derived expressions. Computer simulations validate our
analytical results and insights.

I. INTRODUCTION

In the past years, numerous new mobile applications, e.g.,
ultra-high definition video services, augmented reality (AR),
and virtual reality (VR), have emerged and led to a strong
growth in the number of mobile devices. These new appli-
cations are expected to create an unprecedented increase of
wireless traffic whose requirements are highly diverse, ranging
from ultra-low latency to ultra-high data rate. To satisfy
the resulting demands on wireless networks, new network
architectures and novel solution technologies are needed [1].

However, these new applications not only demand for better
data transmission rates but also for improved computing and
caching capabilities to reduce the latency. To satisfy these
requirements, mobile edge-computing and edge-caching have
been deemed as two of the most promising technologies
[2], [3], where edge-computing improves the performance by
providing computational powers at the wireless edge without
resorting to the cloud servers and edge-caching improves the
network performance by exploiting the storages at the wireless
edge, which brings the desired contents closer to users.

Noticing the benefits of edge-caching and edge-computing,
numerous papers have been published that investigate one of
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those approaches. More recently, it became obvious that edge-
caching and edge-computing need to be jointly considered as
more and more applications require execution of computations
whose input are large amounts of data. For example, in video
services, video contents cached in the storages should be
transcoded and delivered to the users for better user expe-
riences. Another example is that when a user wants to use
the machine learning-aided face recognition, this user needs
to deliver the face image from the mobile device to an edge
server for conducting the computational task via a series of
well-trained neural networks (NNs). However, parameters of
these NNs need to be stored somewhere at the wireless edge
such that the edge server can fetch the parameters of NNs
with low latency. The above examples clearly demonstrate
that the network performance is determined jointly by how the
caching, computing, and communication policies are designed
and they are mutually coupled with one another. Since the
joint use of caching, computing, and communication (3C) is
getting more common for emerging applications, the joint 3C
design has recently drawn significant attention [4]–[11].

However, to the best of our knowledge, studies in the
literature, e.g., [4]–[11], were focusing on the practical design
and implementation aspects of wireless edge networks with
joint 3C. These investigations are indeed very important, but
commonly lead to either very complicated solutions without
closed-form expressions or even pure numerical solutions that
could not be easily interpreted for obtaining insights. Fur-
thermore, although there exist some papers investigating the
theoretical aspects of either edge-caching or edge-computing,
e.g., [12]–[17], it is non-trivial to extend their results to
wireless edge networks jointly considering 3C. Based on the
above observations, we aim to fill this gap by providing a
theoretical analysis for wireless edge networks with joint 3C.
Specifically, we aim to develop an asymptotic analysis that
shows the basic dependence of performance on available link-
rate, cache size, and computation resources. To the best of our
knowledge, this paper is the first attempt to contribute to such
an analysis of the wireless edge network with joint 3C.

In this paper, we consider a noise-limited wireless network,
where the BSs are equipped with both computing units and
storage for data and/or programs. We assume that to complete
the tasks requested by users, the collaboration of caching,
computing, and communications is required. As a result, given
a latency requirement for completing the tasks, the network
could fail to satisfy the requests of users when any part of



the caching, computing, and communication is insufficient,
leading to the occurrences of the outage. We then analyze the
outage probability as a function of the latency requirement
and the 3C network parameters. Specifically, we first derive
the expression for the outage probability. Then, based on
the derived expression, we obtain an analytical expression
for the optimal caching policy that can minimize the outage
probability and, based on this, the optimal outage probability.
We then provide insights and interpretations using the derived
outage probability expression. Furthermore, with some refor-
mulation, the minimum achievable latency can be expressed
as the function of the outage probability and the 3C network
parameters, leading to the fundamental interpretation of the
overall latency as the sum of effective transmission delay and
computing delay. Finally, computer simulations validate our
analysis and insights.

II. NETWORK MODEL

In this paper, we consider using BSs to serve users. We
assume no data communication is possible between BSs and
no cloud server is available for the BSs. We then consider that
the caching and computing are implemented at the BSs only
and users cannot provide caching and computing resources.
We assume users in the network have tasks that require the
collaborations of caching, computing, and communications
and assume that to complete a task requested by a user,
the following steps are required: (i) input data upload from
the user to the BS; (ii) auxiliary dataset retrieval from the
storage of the BS; (iii) computation for converting the data
to the necessary content for completing the task; and (iv)
final content delivery to the user. Such task process model is
general and can be applied to many practical applications, e.g.,
AR/VR and face recognition. We assume there are M tasks to
request, and thus the library has M different auxiliary datasets
corresponding to the tasks. We assume different datasets have
the same size for simplicity and assume different datasets are
used for completing different tasks. Thus, a user requesting
task m needs to be associated with the BS having dataset m
in its storage. We assume a BS can cache S datasets. We adopt
the Poisson point process (PPP) for users and BSs, where the
density of the BSs is λ. We assume a noise-limited network,
where each user can obtain a fixed amount of communication
and computational resource from the connected BS and the
interference between users and BSs can be ignored.

We assume the received signal power between a typical user
located at origin (0, 0) and a BS located at x = (x1, x2)
is given by P |hx|2‖x‖−α, where P is the transmit power;
hx is the small-scale fading coefficient; and α is the pathloss
factor. We denote Φ as the set of BSs in the network, and
denote Φm as the set of BSs that cache dataset m. We assume
the association follows the largest received power principle in
which the typical user is associated with the BS which has the
largest received power among the BSs that cache the required
dataset m. Therefore, the received power when requesting task

m at the associated BS is:

max
x∈Φm

P |hx|2‖x‖−α. (1)

We consider the randomized caching policy [13], where
pc(m) is the probability for a BS to cache dataset m and∑M
m=1 pc(m) = S. As a result, the density of Φm is λpc(m).

We assume the channel is invariant in a timeslot with duration
D. We assume the Nakagami-mD small-scale fading, where
mD ≥ 1

2 and mD = 1 corresponds to the Rayleigh fading.
By the analysis in [14], when the required rate for conducting
the transmission between the associated BS in Φm and the
typical user is ρm, we can obtain the successful transmission
probability as:

P [Rm ≥ ρm] = 1− exp

(
−κpc(m)

(
η

2ρm − 1

)δ)
, (2)

where Rm is the link-capacity (spectral efficiency), κ =
πλ Γ(δ+mD)

mδDΓ(mD)
, δ = 2

α , η = P
σ2
n

, and σ2
n is the noise power. Now,

we assume that the required latency for completing the task is
D; thus the channel is invariant during the implementation of
the task. Suppose that the number of bits to upload for a task
is FU; the number of bits to download for a task is FD; and
the number of cycles to compute for a task is νUFU + νDFD,
where νU and νD are the computational scaling parameters.
Then, the probability to successfully complete task m within
a latency requirement D is given as:

P [dm ≤ D] = P
[
FU

BRm
+

FD

BRm
+
νUFU + νDFD

Ec
≤ D

]
= P

[
Rm ≥

1

B

FU + FD

D − νUFU+νDFD

Ec

]
,

(3)
where dm is the latency for completing task m; B and Ec
are the bandwidth and computing power allocated to a user,
respectively. We assume D − νUFU+νDFD

Ec
> 0 for simplicity;

otherwise, the task can never be successfully completed. It
follows from (2) and (3) that the probability of successfully
completing task m is:

P [dm ≤ D]

= 1− exp

−κpc(m)

 η

2

(
1
B

FU+FD

D− ν
UFU+νDFD

Ec

)
− 1


δ .

(4)
We denote the probability for the typical user to request task
m as Pr(m) and assume that the requesting distribution is
modeled by a Zipf distribution given as

Pr(m; γ) =
(m)−γ∑M
f=1(f)−γ

=
m−γ

H(1,M, γ)
, (5)

where γ is the Zipf factor and H(a, b, γ) :=
∑b
f=a(f)−γ .

We focus on the case that γ < 1 in this paper, and the case
that γ > 1 will be considered in our journal version [18].



Ps =
M∑
m=1

Pr(m)P [dm ≤ D] = 1−

 M∑
m=1

Pr(m) exp

−κpc(m)

 η

2

(
1
B

FU+FD

D− ν
UFU+νDFD

Ec

)
− 1


δ
 . (6)

By using (4) and (5), we obtain the successful probability for
completing a task given as in (6) on the top of next page.
Hence, the outage probability is:

Po = 1− Ps =

M∑
m=1

Pr(m) exp

−κpc(m)

 η

2

(
1
B

FU+FD

D− ν
UFU+νDFD

Ec

)
− 1


δ .

(7)
By letting M → ∞ and S → ∞ (i.e., the library and the

cache size of the BSs go to infinity), we then use (7) to conduct
our asymptotic analysis in the next section.1

III. DELAY–OUTAGE ANALYSIS

In this section, we start the analysis with finding the optimal
caching policy that minimizes the outage probability. Then,
the optimal delay-outage tradeoff would be obtained. Finally,
insights derived from the analysis are provided.

A. Main Results

To simplify the notation, we define

κ′ = κ

 η

2

(
1
B

FU+FD

D− ν
UFU+νDFD

Ec

)
− 1


δ

. (8)

It then follows that we can express the outage probability as:

Po =
M∑
m=1

Pr(m) exp (−κ′pc(m)) . (9)

Using (9), we first provide proposition 1 which provides the
general expression for the optimal caching policy:

Proposition 1: The optimal caching policy that minimizes
the outage probability Po is given as:

P ∗c (m) = min

1,

[(
log

κ′Pr(m)

ζ

) 1
κ′
]+
 , (10)

where Pc(m)∗ is caching probability for dataset m, ζ is
the Lagrangian multiplier such that

∑M
m=1 P

∗
c (m) = S, and

[a]+ = max(a, 0).

Proof. See Appendix A of [19].

We then denote m∗1 ≥ 0 as the smallest index such that
P ∗c (m∗1 + 1) < 1 and m∗2 as the smallest index such that

1Note that we cannot let the density λ go to infinity for the analysis
because this would break the basic assumption in stochastic geometry that
Ex[|hx|2‖x‖−α] <∞.

P ∗c (m∗2 + 1) = 0. It follows that according to the regimes
of m∗1 and m∗2, we need to split the discussion into three
regimes: (i) 0 ≤ m∗1 < m∗2 < M ; (ii) m∗1 ≤ 0 < m∗2 ≤ M ;
and (iii) 0 < m∗1 < M ≤ m∗2. In the following, we present the
theorems that respectively characterize the optimum policies
of the above regimes:

Theorem 1: Let M → ∞ and S → ∞. Denote m∗1 ≥ 0 as
the smallest index such that P ∗c (m∗1 + 1) < 1 and m∗2 as the
smallest index such that P ∗c (m∗2 + 1) = 0. Assume m∗2 < M
is a large number as M →∞. The caching distribution P ∗c (·)
that minimizes the outage probability po is as follows:

P ∗c (f) = 1, f = 1, ...,m∗1

P ∗c (f) = log
(zf
ν

)
, f = m∗1 + 1, ...,m∗2

P ∗c (f) = 0, f = m∗2 + 1, ...,M

(11)

where m∗1 +
∑m∗2
f=m∗1+1 log

( zf
ν

)
= S, zf = (Pr(f))

1
κ′ , and

m∗1 = c1S; m∗2 = c2S, (12)

where c1 = 1

γ
κ′

(
e
κ′
γ −1

) and c2 = e
κ′
γ

γ
κ′

(
e
κ′
γ −1

) .

Proof. See Appendix B of [19].

Theorem 2: Let M → ∞ and S → ∞. Suppose P ∗c (f) <
1, ∀f is satisfied. Then, we denote m∗ as the smallest index
such that P ∗c (m∗+1) = 0. The caching distribution P ∗c (·) that
minimizes the outage probability po is as follows:

P ∗c (f) =
[
log
(zf
ν

)]+
, f = 1, ...,M, (13)

where
∑m∗

f=1 log
( zf
ν

)
= S, zf = (Pr(f))

1
κ′ , and

m∗ = min

(
Sκ′

γ
,M

)
. (14)

Proof. See Appendix C of [19].

Theorem 3: Let M → ∞ and S → ∞. Denote m∗1 > 0 as
the index such that P ∗c (m∗1 +1) < 1 and assume P ∗c (M) > 0.
Let C2 = S

M and let 0 < C1 ≤ 1 be the solution of
the following equality: C1 − log(C1) = κ′

γ (1 − C2) + 1.
Then, the caching distribution P ∗c (·) that minimizes the outage
probability po is as follows:

P ∗c (f) = 1, f = 1, ...,m∗1

P ∗c (f) = log
(zf
ν

)
, f = m∗1 + 1, ...,M

(15)

where m∗1 +
∑M
f=m∗1+1 log

( zf
ν

)
= S, zf = (Pr(f))

1
κ′ , and

m∗1 = C1M. (16)



P ∗o = 1−

[
(c2)1−γ − (c1)1−γe−κ

′
− (1− γ)eγ(c2 − c1)(c2)−γ

(
c2
c1

) −γc1
c2−c1

e
−(1−c1)κ′
c2−c1

](
S

M

)1−γ

= 1−Θ

((
S

M

)1−γ
)
,

(17)

Proof. See Appendix D of [19].

Theorems 1, 2, and 3 analytically describe the optimal
caching policies for different regimes.2 Based on them, we
can have the following theorems, namely, Theorems 4, 5, and
6, which characterize the outage probability as a function of
the delay requirement and network parameters:

Theorem 4: Let M → ∞ and S → ∞. Consider γ < 1.
Suppose the caching policy is given by Theorem 1. Then,
the optimal (minimum) achievable outage probability can be
expressed as in (17) on the top of this page, where

c1 =
1

γ
κ′

(
e
κ′
γ − 1

) ; c2 =
e
κ′
γ

γ
κ′

(
e
κ′
γ − 1

) . (18)

Proof. See Appendix E of [19].

Theorem 5: Let M → ∞ and S → ∞. Consider γ < 1.
Suppose the caching policy is given by Theorem 2. Then, the
optimal (minimum) achievable outage probability is:

P ∗o = (1− γ)eγe
−Sκ′
M . (19)

Proof. See Appendix F of [19].

Theorem 6: Let M → ∞ and S → ∞. Consider γ < 1.
Suppose the caching policy is given by Theorem 3. Then, the
optimal (minimum) achievable outage probability is:

P ∗o =[
(1− γ)eγ(1− C1)(C1)

γC1
1−C1

]
e
−κ′(C2−C1)

1−C1 + e−κ
′
(C1)1−γ ,

(20)
where C1 and C2 are given according to Theorem 3.

Proof. See Appendix G of [19].

Since the expression in Theorem 6 might not provide clear
insight, we conduct additional approximation to derive the
more insightful expression for the outage probability charac-
terized by Theorem 6, leading to Corollary 6.1:

Corollary 6.1: Let M →∞ and S →∞. Consider γ < 1.
Suppose the caching policy is given by Theorem 3. Assume
C2 is small. Then, the optimal (minimum) achievable outage
probability in Theorem 6 can be approximated as:

P ∗o ≈ (1− γ)eγe
−Sκ′
M + (C1)1−γe−κ

′
. (21)

Furthermore, when κ′ is sufficiently large so that e−κ
′

is small,
(21) can be approximated as:

P ∗o ≈ (1− γ)eγe
−Sκ′
M . (22)

Proof. See Appendix H of [19].
2We note that the provided theorems slightly abuse the notations as m∗,

m∗
1 , and m∗

2 characterized by them might not be integers.

B. Interpretations and Insights

With results in Sec. III.A, we can obtain fundamental
interpretations and insights for the delay-outage performance
of the network. First of all, from (9), we see that when all
datasets can be cached in a BS, i.e., S = M , the outage
probability is e−κ

′
, serving as the fundamental lower bound for

the outage probability when given the network configuration.
Then, by using Theorem 4, we see that when the outage
probability is high, the reduction of the outage probability
follows a power law with respect to the cache size S. By
Corollary 6.1, we see that the optimal outage probability of
regimes characterized by Theorems 5 and 6 is approximately
the same when κ′ is large, namely, when the fundamental
outage probability lower bound e−κ

′
is small. We then see

that when considering the regimes characterized by them, the
outage probability decreases exponentially with respect to S.
Since we are more interested in Theorems 5 and 6 as regimes
characterized by them are regimes that give small outage
probability, we further analyze their results in the following.

From (19) and (22), we see that the outage probability
decreases exponentially with respect to the critical parameter

κ′ = κ

 η

2

(
1
B

FU+FD

D− ν
UFU+νDFD

Ec

)
− 1


δ

, (23)

which is related to the delay requirement, communication
and computing capabilities, and the BS density. Note that
κ = πλ Γ(δ+mD)

mδDΓ(mD)
. By using (23), we can see the relations

between different parameters. In addition, by further including
the caching, we see that the critical parameter is

Sκ′

M
= κ

 η

2

(
1
B

FU+FD

D− ν
UFU+νDFD

Ec

)
− 1


δ

S

M
, (24)

and the increase of Sκ′

M can decrease the outage probability
exponentially. This critical parameter thus gives the clear
characterization of caching, computing, and communications
as well as their relations to the outage probability.

Using the results in Theorem 5 and Corollary 6.1, we can
reformulate the optimal outage probability expression such
that the minimum achievable latency D∗ becomes a function
of the outage probability and other parameters. We denote

ηeff =
η(κS)

1
δ(

M log
(

(1−γ)eγ

P∗o

)) 1
δ

=
η(κS)

α
2(

M log
(

(1−γ)eγ

P∗o

))α
2

(25)



as the effective SNR. It follows that we can express the
minimum achievable latency as:

D∗ =
FU + FD

B log2 (1 + ηeff)
+
νUFU + νDFD

Ec
. (26)

From (26), we observe that the minimum achievable latency
D∗ is the sum of two terms, where the first term represents the
delay due to transmissions and the second term represents the
delay due to computations. We see that the caching capability
affects the first term through the effective SNR ηeff. Then,
by (25), we observe that the effective SNR is proportional
to
(
S
M

)α
2 , indicating that the caching is more influential

when the pathloss factor α is larger. However, this should
not be mis-interpreted as that the minimum latency would be
smaller when the pathloss factor α is larger. On the contrary,

since ηeff is inversely proportional to
(

log
(

(1−γ)eγ

P∗o

))α
2

, when
having the same required outage probability P ∗o , ηeff would
be smaller when the pathloss factor α is larger. We see that
since the minimum achievable latency is the sum of two
terms, it is clear that we need to improve caching, computing,
and communications in a balanced manner when improving
the network. In other words, when the transmission delay is
dominant, we need to think of improving the caching and/or
communications. On the other hand, if the computational delay
is dominant, we should resort to improving the computation
capability for efficient performance improvement. Note that
although the above statements are intuitive, our results indeed
rigorously validate the intuitions from the theoretical aspect.

IV. COMPUTER SIMULATIONS

In this section, we validate our analysis using simulations.
Unless otherwise indicated, we consider D = 10−3 sec, mD =
1, P = 20 dBm, α = 3.5, B = 20 MHz, the noise power
spectral density N0 = −173 dBm/Hz, FU = 104 bis, FD =
105 bits, νU = νD = 1 cycle/bit, Ec = 109 cycles/sec, M =
104, and λ = 5 per km2.

In Fig. 1, we validate our theorems proposed in Sec.
III.A as a function of the caching capability S, where the
numerical curves are results obtained by first numerically
solving the outage probability minimization problem and then
evaluating the outage probability using (9); the Monte-Carlo
curves are results obtained by directly conducting Monte-Carlo
simulations of the considered network with the numerically
optimized caching policy. Note that since different theorems in
Sec. III.A characterize different regimes, the theoretical curves
are the combinations of different theorems. Furthermore, the
curves with “+ Corollary 6.1” are obtained via replacing
Theorem 6 with Corollary 6.1. The results show that our
proposed analysis is very accurate, except for the endpoint
of the curve with “+ Corollary 6.1” in Fig. 1(b), where the
small divergence comes from that the conditions for the good
approximation of Corollary 6.1 might not be well-satisfied.
However, we note that the accurate results in Fig. 1 even for
the constant factors are already not common for the asymptotic
analysis of wireless networks. From Fig. 1, we also see that the
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(b) γ = 0.8.

Fig. 1: Outage probability evaluation of the proposed theorems
as a function of S.
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Fig. 2: Outage probability evaluation of the proposed theorems
as a function of Ec.

outage probability is generally exponentially decreasing with
respect to S. Finally, we note that the outage probability in Fig.
1 indeed is lower bounded by e−κ

′
, which is the fundamental

bound due to the network configuration.
In Fig. 2, we consider S = 4000 and γ = 0.6 and evaluate

the outage probability as a function of the computing power
Ec. Since we already see that the Monte-Carlo results are
identical to the numerical results in Fig. 1, we only provide the
numerical validation here. Results again show that our theo-
rems are very accurate. In addition, we observe that the outage
probability saturates when the computing power increases to
a large number. This is because when the computing power
is sufficient, the performance is then limited by the caching
and communication capabilities, showing that the approach
improving only the computing capability could be limited.

Finally, in Fig. 3, we evaluate the delay-outage performance
of the considered network with S = 7500 and γ = 0.6.
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Fig. 3: Delay-Outage performance evaluation.

In addition to evaluating the network adopting our proposed
caching policy, we also evaluate two reference caching poli-
cies, namely, the most-popular caching and uniform random
caching, where the most-popular caching let BSs only cache
datasets relevant to the most popular tasks until the storage is
full; the uniform random caching on the other hand let BSs
cache datasets uniformly at random. Results show that the
proposed optimal caching can provide the best performance.
Besides, we observe that the most-popular caching performs
poorly because BSs with this caching policy do not collab-
oratively cache the datasets so that there are numerous tasks
that do not have their datasets cached in the network and thus
can never be completed even if the delay requirement can be
relaxed. On the other hand, the uniform random caching is
indeed near-optimal as its outage probability is e−

S
M κ′ , which

only differs from the optimal outage probability in the constant
factor (see (19) and (22) to compare). However, we note that
the good performance of the uniform random caching only
exists when γ < 1, i.e., the requests are not very concentrated
on the popular tasks. In our journal version [18], we will show
that when γ > 1, i.e., the requests are more concentrated
on popular tasks, the uniform random caching could perform
poorly. Finally, we see that changing the delay requirement
significantly affects the outage probability, showing that by
slightly relaxing the latency requirement, the outage proba-
bility performance can be significantly improved. Thus, the
challenges of the wireless network indeed are imposed by the
time-sensitive applications, which matches our intuition well.

V. CONCLUSIONS

In this paper, we provide the asymptotic delay-outage
analysis for obtaining the fundamental understanding of the
behaviors of wireless edge networks considering collaborative
3C. Our analysis clearly reveals the relations between the
delay-outage performance and 3C parameters. Specifically, we
see that increasing S and κ′ can bring an exponential-law
improvement to the outage probability. In addition, we see
that the delay is composed of the effective transmission and
computing delays, where improving only either of them can
lead to the situation that the delay is dominated by the other.
Hence, to efficiently improve the network, an approach having
a balanced view on 3C is necessary. Finally, we observe that
slightly relaxing the delay requirement can significantly im-
prove the outage probability. This implies that the challenges

of the wireless network indeed are imposed by the time-
sensitive applications.
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