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Self-folding origami, structures that are engineered flat to fold into targeted, three-dimensional shapes,
have many potential engineering applications. Though significant effort in recent years has been
devoted to designing fold patterns that can achieve a variety of target shapes, recent work has also
made clear that many origami structures exhibit multiple folding pathways, with a proliferation of
geometric folding pathways as the origami structure becomes complex. The competition between these
pathways can lead to structures that are programmed for one shape, yet fold incorrectly. To disentangle
the features that lead to misfolding, we introduce a model of self-folding origami that accounts for the
finite stretching rigidity of the origami faces and allows the computation of energy landscapes that lead
to misfolding. We find that, in addition to the geometrical features of the origami, the finite elasticity of
the nearly-flat origami configurations regulates the proliferation of potential misfolded states through a
series of saddle-node bifurcations. We apply our model to one of the most common origami motifs, the
symmetric “bird's foot,” a single vertex with four folds. We show that though even a small error in
programmed fold angles induces metastability in rigid origami, elasticity allows one to tune resilience to
misfolding. In a more complex design, the “"Randlett flapping bird,” which has thousands of potential
competing states, we further show that the number of actual observed minima is strongly determined
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by the structure’s elasticity. In general, we show that elastic origami with both stiffer folds and less
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Origami-like self-actuating structures are found throughout
nature’” and have inspired a number of engineering applications
from medicine,>* to solar panel deployment,® to robotics.®” It
has become clear, however, that the space of configurations
accessible to a rigid origami structure becomes increasingly
complicated as the fold pattern itself becomes more complex.®’
Additionally, face bending allows access to configurations that
would otherwise be impossible in purely rigid origami.'®™® These
features lead to multistability through the proliferation of local
minima of the energy,"®™® sometimes resulting in origami that
does not fold easily or repeatably into the target shape, impacting
device performance. Various methods to avoid misfolding have
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been introduced, including biasing the vertices'® or fine tuning
individual fold stiffnesses,’®*' but the actual mechanisms
behind misfolding are still not well understood.

Tachi and Hull have proposed a method to prevent misfold-
ing that takes advantage of the branched structure of the
origami configuration space.”’ They assume each fold is a
torsional spring and adjust the torques induced by the springs
to force the origami in a direction in configuration space
perpendicular to all undesirable folding pathways. Unfortu-
nately, due to the high dimensionality of the configuration
space, there is often no choice of torques that satisfies all of
these requirements.® On the other hand, Stern et al. explored a
large class of origami structures made from only quadrilateral
faces and, even in this restricted set, found a proliferation of
energy minima.”?° However, most rigid quadrilateral origami
cannot be folded at all,"® and so these energy minima represent
configurations involving stretching rather than distinguishing
between several valid branches. This suggests a more careful
treatment of elasticity in origami is crucial to uncovering the
mechanisms of misfolding.

In this paper, we compute energy landscapes of weakly
folded origami using a bar-and-hinge model of self-folding that
includes both face stretching and face bending.'®'**#>? Energy
landscapes provide a detailed picture of the vicinity of the flat
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state, where multiple origami branches meet. We show that the
mechanisms governing the formation of competing local
energy minima are poorly captured by the assumption of rigid,
unstretchable origami. Instead, the undesirable energy minima
that compete with the target configuration are regulated by
saddle-node bifurcations nucleated near the unfolded state,
even when the target configuration is very folded. Our model
allows us to determine how the ‘“foldability” of an origami
design is determined both by the stretching and bending
moduli of the faces: more bendable faces allow additional
folding pathways while more stretchable faces induce saddle-
node bifurcations that reduce the number of local energy
minima. Critically, the reduction in the number of energy
minima does not arise from transitions between branches that
induce large strains in the faces but is, nevertheless, enabled by
small amounts of strain while the origami is barely folded. Our
analysis leads to new insights on the robustness of the target
folding pathway to programming errors in the target fold
angles.

To go beyond our theoretical analysis, we also demonstrate
these effects experimentally on self-folding origami structures
using a previously-published trilayer swelling gel system.'®*?
These experiments demonstrate the possibility of using face
stiffness to tune the metastability of self-folding origami. In
contrast, the few methods that have been proposed to prevent
misfolding require a more careful tuning of fold angles and
stiffnesses.””**' We demonstrate that robust folding can still
be induced in systems where such precise control may not be
possible.

1 Theory of self-folding origami
1.1 Folding rigid origami

Rigid origami, having both unbendable and unstretchable
faces, can be modeled as a triangulated surface with V vertices
joined by N edges of fixed length spanned by F polygonal faces
with additional torsional springs. Because each face is decom-
posed into triangles, the length constraints of the edges also
preserve the sector angles of the faces. We assume there are Ny
edges that are adjacent to a single face which we dub boundary
edges to distinguish them from the N edges that adjoin a pair
of faces, which we refer to as folds. Many origami fold patterns
do not have triangular faces, however. In those cases, we
decompose each face into triangular subfaces along their
shortest diagonals.’**® This suggests a further division of folds
into “face folds”, those folds spanning a rigid face, and ‘“‘active
folds”, which drive the self-folding of the origami.

Since the faces are triangular, the state of any origami
structure can be represented completely by its fold angles,
(p1,- - -»pnr), where each angle p; is the supplement of the
corresponding dihedral angle made by the faces adjacent to
the edge. We introduce self-folding by incorporating torsional
springs on the folds of the form

1 2
Ep = EIZN: k(o —P1)%s (1)
SIVE
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where xp; is the torsional modulus of the Ith fold and p; the
equilibrium angle of the fold. For face folds, we require p; = 0 so
that eqn (1) penalizes bending of the faces. On active folds,
however, p; # 0 which imposes a bending torque that drives
the origami to fold along its active folds.

For models of this type, there are singular configurations
where several branches of allowed configurations meet.®>">*
Each branch has a tangent space where it meets the singular
configuration and many such branches meet at this point.®
Tachi and Hull have proposed that misfolding can be prevented
when the torque, defined by t; = —«p ;p;, is perpendicular to the
tangent space of each branch®' in the space of folds. Indeed,
examining eqn (1) shows that the Tachi-Hull condition is
precisely the condition that there is no direction along an
undesirable branch along which the energy decreases.

It is notable that the Tachi-Hull condition can be impos-
sible to satisfy if the origami fold pattern is sufficiently com-
plicated, as the number of branches grows exponentially with
the number of vertices while the number of folds grows
linearly.® If there are several branches along which Eg
decreases, each of these branches must have at least one local
energy minimum. Consequently, the number of potential com-
peting energy minima in a rigid, self-folding origami system
can be quite sensitive to even small errors in the programmed
torques 7;. The question of stability and metastability of an
origami folding becomes even more complex when one con-
siders eqn (1) along an entire origami trajectory, and such an
analysis has only been undertaken for some single origami
vertices."”

1.2 Elastic origami

Part of the sensitivity of competing minima to torques arises
from the singular nature of the unfolded, flat origami. To study
this further, we augment our model to allow for stretching. We
supplement eqn (1) with additional terms"® of the form,

1
Es=5 > kst (2)
<N

where kg ; the stiffness of edge i and the elastic strain is given by

1/L?
Vi*i(?lz_l)' (3)
Note that a small deformations of the edges 4 « L; gives
y; & A/L; as does the slightly more common form for the elastic
strain y; = L/L; — 1. By formulating the energy in terms of a
dimensionless strain, xs; has the same units as xp; evaluated
on the same edge (7 = I). We set ks ; = Y,pA; where Yy, is the two
dimensional Young’s modulus of the origami faces and 4; is a
characteristic face area. Here, we will set 4; to one third the total
area of the faces adjoining edge I, which implies that A; oc L,
and that edges can be subdivided without changing the energy
cost of a given strain. There are more complex choices for g ;
that are expected to capture more detailed features of the
stretching deformations.’* As an alternative, we also consider
a more realistic model in which the faces themselves are elastic
polygons that deform affinely, finding good agreement with our
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simpler model (see ESIt). The advantage of eqn (2) is that it
allows us to make contact with the rigidity theory of frame-
works on which the analysis of branched configuration spaces
has been done.®'”

Eqn (2) also provides a convenient geometrical interpreta-
tion of the stretching energy of weakly-folded origami in terms
of the Gaussian curvature of the vertices.>® In the limit that
Ksr > Kp, We obtain an approximate expression for the energy
valid when the fold angles are small. To do so, we note that
vertical motions of the vertices off the xy-plane preserve L; to
lowest order. Therefore, after accounting for rigid body motions
we can express Es as a function of the Vg + V; — 3 vertex heights
only, where V3 is the number of vertices adjoining a boundary
edge and V; are the number of vertices adjoining only folds.
This expression for the energy, quartic in the vertex heights and
can be expressed as

ES:% >

n<Vg+V;-3

(h"Q,h)* (4)

for a vector of vertex heights h = (hy,...,hy;) where h; is the
height of the ith vertex and Q, a symmetric matrix which
encodes the geometrical constraints associated with the
branches as well as the stiffnesses of the origami (see ESIf
for details). One can show that Es = 0 if and only if the discrete
Gaussian curvature of each origami vertex vanishes, and that
the matrices Q, have two zero eigenvalues, one eigenvalue of
either positive or negative sign, and the rest of the opposite
sign.®

Finally, we consider how to set the relative magnitudes of
the torsional spring moduli in our energy. As a model of self-
folding origami, we consider a trilayer polymer system
described previously,”® in which faces are characterized by a
hydrogel of thickness Ay sandwiched between two stiffer layers
hp « hy and active folds are induced by cutting trenches in
either the top or bottom of the two stiff layers of a given width.
To estimate the bending rigidity for the faces, we imagine that
the bending energy arises from bending along a cylinder
oriented along each fold of characteristic width W;. Then face
folds will have p; = 0 and torsional moduli K¢ee s = YPthhPZI/
(Wi(1 — 1%)) where Y, is the elastic moduli of the stiff layers, L,
and W; are the length and width of the fold, and v is the Poisson
ratio. A similar calculation shows that an active fold has an
approximate torsional modulus Kgoa; & YaAn'L/(3WA(1 — 7))
where Yy is the Young’s modulus of the hydrogel layer. Active
folds, intuitively, have a W; of the width of the cuts in the stiff
layer, while we assume that the face folds have a W; determined
by the width of the vertices and thus are determined by the W;
of the active folds (see ESIT). For the rest of the paper, we will
neglect the small changes in W; between different folds.

For the theoretical numerics and simulations, we will non-
dimensionalize the spring moduli by a characteristic linear
spring moduli, ks, letting us combine the material parameters
and define Kpyce /s c X Keacels/? and keora ffisc X Keoralal?. We
will also define g ;/ks . & KsL/¢?. The characteristic fold length
¢ is introduced to keep Kgace, Krold, and Ks nondimensional and
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independent of edge. The details of these estimates can be
found in the ESL¥

2 The origami "bird’s foot”

Eqn (4) provides a means of computing and plotting energy
landscapes for weakly-folded origami. We start our study of the
folding and mis-folding of elastic origami with the simplest
non-trivial example, the self-folding “bird’s foot” origami
(Fig. 1A). The bird’s foot is a single origami vertex from which
four folds emerge. We supplement these four folds with two
additional face folds, shown as dashed lines in Fig. 1A. It is well
known that there are two folding pathways possible which can
be characterized by the relative signs of the fold angles between
vertices 4 and 1, p; and p; (Fig. 1B).

For the rigid case, in the space of fold angles (p4,...,04) the
trajectories of the fold angles are perpendicular and can be
projected conveniently to just a pair of angles as in Fig. 1C. In
the elastic case, if we orient the bird’s foot so that vertices 1, 2
and 7 per Fig. 1A lie on the xy-plane, eqn (4) suggests plotting
the energy landscape near the unfolded state in terms
of the heights of the remaining four vertices above the plane,
h = (h3, hy, hs, he) (Fig. 1D) rather than the fold angles.

2

Branch 1 p
Branch 2
C Fold Space D Height Space
Branch 2 ~ M=n Branch2 hg/t
Approximation
M = /8
M =rl/8 s , e
i . ) 8 )

Branch 1 \ =05
Branch 1

Fig. 1 Schema, configuration spaces, and energy landscapes for the
birdsfoot origami. (A) A schematic of the birdsfoot. The folds are marked
in solid lines, while the folds added in the model to imitate face bending
are marked with dashed lines. The folds used to define fold space are
highlighted in red. The face we have “pinned” to a plane is highlighted in
yellow, then the heights of vertices 4 and 6 above this plane defines the
height space. (B) The configurations that correspond to each branch.
(C and D) The branches for a rigid origami in both fold and height space,
respectively. In (D), the heights are non-dimensionalized using the char-
acteristic fold length /. The dashed lines show the linearized trajectories
between the branches at two magnitudes. The height space projection of
the trajectory takes advantage of the linearity between height and fold
space at small heights. In (C), note that the branches in fold space are
perpendicular. (D) also shows the shape of branch 2 in the approximate
energy used to draw the energy landscapes in Fig. 2.
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We program target angles according to
P =1 — AMpg, + AMph,, (5)

where gg; = (—1, 0, —1, 0) and pg, = (—1, 1, 1, 1) are the fold
angles of each branch when folded flat, and M ranges from 0 to
n and controls the degree of folding. The parameter A, which
lies between 0 and 1, tunes the target angles between the two
branches accessible by rigid origami. For values of 4 other than
0 and 1, the target angles lie between the two branches. It
should be noted that A = 0.5 is not precisely between the two
branches geometrically, and the geometric center, though
dependent on the precise value of M, is closer to A =~ 0.425.
Fig. 1D shows this trajectory in height space for M = n/8 by
taking advantage of the linear relationship between folds and
heights to quadratic order.®

Since 7; and #5 are the heights of vertices associated with
face folds, in order to plot the energy landscapes, we numeri-
cally minimize E (h3, hy, hs, he) with respect to a; and A5 to
express the energy in terms of only (%4, s). Contours of the
energy obtained this way are shown in Fig. 2 for various values
of A and for M = /8. The minima of the energy are depicted as
closed white circles and saddle points are shown in red, while
the target point is denoted by an open white circle.

All of the theoretical figures in this paper were created using
a package developed for creating and manipulating origami

View Article Online

Soft Matter

structures and other similar mechanisms in Mathematica. This
package is located on GitHub at https://github.com/cdsantan/
mechanisms. Mathematica notebooks for each figure and the
associated data are also located on GitHub at https://github.
com/meleetrimble/robust-folding-paper-support.

As seen in Fig. 2, which shows the energy landscapes of the
birds foot with contours on a log-scale, the configuration space of
the rigid origami lies along the bottom of steep valleys defined by
eqn (4). Because the torsional springs are weaker than the stretch-
ing springs, as A changes from 0 to 1 at fixed M = 1/8, the energy
minimum on the first branch moves inward along the energy
valley. At a critical value of A > 0, a new minimum and saddle
point nucleate near the flat state and as the new minimum moves
outward along the other branch, the old minimum eventually
approaches and annihilates with the saddle point.

As the stretching energy is increased, the energy valleys
become steeper but the shape of the energy landscape near
the flat state remains the same. As Kg increases and we
approach the rigid limit, the critical A at which a new minimum
forms decreases. Yet for any finite value of Ks, the energy
landscape is monostable near A ~ 0 and 4 =~ 1.

2.1 Phase diagrams

We can determine the size of the region of bistability for
different values of Kgce, Krola, and prescribed fold angle using

| —16x107°
1—39x10™
179.3x10°

2.2x107°

+1.x107
—3.2x107*

=1.x10™
3.2x10°°

1.x107°
3.2x10%

—1.x107°
—3.2x10™

m 1.x107*
£ 3.2x107°

1.x10°
3.2x107°

Fig. 2 Energy landscapes in height space for the bird's foot at different values of the control parameter A, for the small magnitude trajectory between
branches shown in Fig. 1(C and D), at Kface = 1072 and Kioq = 10™*. The white dots represent local minima and the red dots represent saddle points. The
dashed line represents the projection of the trajectory between branches into height space (as in Fig. 1(D)), with the circle denoting the location on the
trajectory of the landscape. Notice that as A increases, the original minimum moves toward the flat state. Between A = 0 and A = 0.37, a saddle point and
the minimum for branch 2 are created, then after A = 0.56 the saddle point and the minimum for branch 1 annihilate each other. The created minimum
also moves out away from the flat state as A increases. Note that the contours and color scheme are on a log scale and inconsistent between landscapes
to emphasize features.
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the full elastic energy. To do so, we start at one end of the
linearization we have introduced and find the minimum at that
point. Then we increase the linearization parameter A by one
step, and repeat the minimization using the minimum just
found as the initial position. We continue taking the next step
in the parameterization, using the previous minimum, and
minimizing until the other branch has been reached. To see
where both minima are present, we repeat this process but
instead start from the opposite branch and follow the para-
meterization backwards. The regime in which both minima are
present across both directions is the bi-stable regime.

To get the full idea of the bistable regime between the two
branches, we repeat the method described above for different
values of M, which represents the magnitude of folding, to draw
the phase diagram between the two branches as a function of M
and A for given elastic moduli.

In Fig. 3, we show the region of bistability as a function of M
and A for four different values of Ki,q and Kg,ce. The plots are
asymmetric and, in particular, shifted toward values of A < 0.5.
This is consistent with the midpoint between both branches
being at A ~ 0.425 rather than A = 0.5. Overall, we see two
separate trends: decreasing K, 1q widens the region of bistability
with more widening seen at lower values of M, while more
surprisingly decreasing Kg,.. also widens the region of bist-
ability but with more growth seen at higher values of M.
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Fig. 3 Slices of a four-dimensional phase diagram defined by Kfoa, Kface
control parameter A, and target fold angle magnitude M at four different
values of Krace and Kioig. The regions in light purple represent the region of
bi-stability, where both minima are present. The purple and tan represent
the regions where only the branch 1 minimum and branch 2 minimum are
present, respectively.
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These results implicate the balance of in-plane stretching
and torsional spring moduli in governing bistability. In parti-
cular, when Kg,q is small, indicating that the system is
approaching the inextensible limit, we see that even a small
error in programming the fold angles can lead to multistability.
This is, in fact, entirely consistent with ref. 21 which argues that
for rigid origami, for which K¢,4/Ks — 0, a metastable mini-
mum exists unless the vector with components xg0; is
perpendicular to a branch.

It is important to note that the change in bistability occurs
even though Ky, 1q < Ks, indicating that in-plane strains are still
small and eqn (4) remains a reasonable approximation. Indeed,
in our simulations the energy from stretching is typically 1% of
the total energy. This is also consistent with the energy land-
scapes in Fig. 2, which show that the bistability arises from the
nucleation of additional minima near the flat state and not far
out along a branch even when M is large, precisely where we
expect our theoretical analysis of elastic origami to be most
accurate.

2.2 Experimental methods

We next turn to a discussion of self-folding in a trilayer, thermo-
responsive system,* adapted from our previous report.' In brief, self-
folding origami was prepared by using a bilayer bending mechanism
of polymer films. P(pMS-BP-RhB) (poly(p-methylstyrene-benzo-
phenone-rhodamine B) and P(DEAM-AA-BP-RhB) (poly(diethyl-
acrylamide-acrylic acid-benzophenone-rhodamine B) were used as a
stiff layer and a thermosensitive hydrogel layer with a lower critical
solution temperature at around 30 °C, respectively. Pendant groups of
benzophenone contained in both pre-synthesized co-polymers were
utilized as a photoreactive cross-linker for multi-layer patterning.
First, the bottom stiff layer was deposited by spin coating of toluene
solution of P(pMS-BP-RhB) on a silicon wafer with a water-soluble
sacrificial layer of poly(vinyl alcohol) (PVA, Aldrich).

To create a microscale crease pattern, UV-light (365 nm, pE-
100, CoolLED) was projected on the layer of P(pMS-BP-RhB) by
an inverted optical microscope (Nikon Eclipse Ti, 10x objective
lens) equipped with a digital micromirror device (DMD). Pixe-
lated UV illumination for each layer of birdsfoot pattern was
obtained by the Mathematica notebook provided from Robert
J. Lang (Tessellatica 11.1d7)*®> based on the folding angle
calibration at a fixed temperature, 20 °C. After cured, a typical
development process was followed by stripping uncured area of
the film with a marginal solvent (e.g., mixture of toluene and
hexane with 1:3 vol%). Next, a few-micron thick hydrogel layer
was deposited on the sample pattern by casting a chloroben-
zene polymer solution and slowly drying in the dark chamber.
Patterned UV curing with computer-controlled alignment was
then followed for crosslinking of the mid layer on top of the
bottom layer. Finally, another thin layer of P(pMS-BP-RhB) was
photo-patterned as a top stiff layer by using the same procedure
as the bottom layer. For folds with a target angle of zero, a
series of square holes was additionally applied to all three
layers as a perforated line between the vertices of the crease
pattern, as shown in Fig. 4A. Because the perforations align on

This journal is © The Royal Society of Chemistry 2022
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Fig. 4 Experimental schema and results for folding the birdsfoot with and
without weakened faces. (A) Schematic of the tri-layer origami structure
with perforated faces. (B) The percentage of samples folded to the second
branch for both non-perforated and perforated faces. Each point corre-
sponds to 10 samples. Error bars are from the rule of three. (C) The folded
samples with perforated faces at control parameters (i) A = 0.33 and (ii)
A =0.67. At A = 0.33 (i), you can see the two samples that folded to branch
1 while the rest shallowly folded to branch 2.

both sides, the resulting face folds have a target angle of 0 but
are stiffer than the active folds represented by slits.

The resultant trilayer origami was fully dried before further
use. To release the origami as flat from the substrate, the
sample was dipped in the pre-heated buffer solution (pH 7.0
PBS, 60 °C). After full dissolution of PVA layer, the water bath
was cooled down to induce programmed folding of the crease
patterns, which was observed by using the optical microscope
(Zeiss AxioTech Vario, with 2.5x objective lens).

2.3 Experimental results

We can now have a small amount of control over Kg,. by
utilizing the perforated 0 angle folds explained above. Perforat-
ing the faces decreases the amount of stiff trilayer by a factor of
3 to 4, and since the stiff layer provides the majority of the
bending modulus we expect Kio1q/Keace to decrease by the same
factor.

We created batches of 10 bird’s foot origami both with and
without perforated faces for several values of 4, corresponding
to different target fold angles and controlled by the width of the
cuts in the stiff layer, between the two branches. Fig. 4B shows
the fraction of bird’s foot samples that folded to branch pg,
with non-perforated samples (circles) and perforated samples
(squares). In the non-perforated samples, we see a sharp
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transition between branch 1 at small A and branch 2 at large
A, with a small region of values near A ~ 0.5 that show some
bistability. In the perforated samples we see this bistable region
widen, with both states observed in the A &~ 0.33 samples.

Some care must be taken in interpreting the results quanti-
tatively. Because the experimental system folds slowly, we
expect the number of minima to be governed to some degree
by the small M portion of Fig. 3, even when the programmed
fold angles are large, since we expect that a structure that has
found a stable configuration will tend to remain in that
configuration as it folds. In addition, failure to see misfolded
states does not indicate that those states do not exist; in
contrast, even a small number of misfolds indicates metast-
ability. Finally, the programmed fold angles are controlled by
the width of the long cuts in either the top or bottom rigid
layers. The cuts that lead to folding then also affect the
torsional stiffness of the folds. This effect is negligible for most
folds, except for those with zero fold angle (those remaining
flat), which must be cut on both top and bottom surfaces. This
leads to folds that are weaker than active folds, as is the case at
the A = 0.5 point. This point does, however, highlight that using
target angle tuning to avoid misfolding can be more compli-
cated to realize in experiment than in theory.

To compare our experimental and theoretical results, we use
the estimates K5 = 1 on the folds and boundary edges, K¢ce =
2 x 1072 and Ko & 2 X 107° (see ESIf), and use the factor
stated above when faces are weakened (Kgee & 6 x 107%).
According to the relevant region of plots in Fig. 3, perforating
the faces should widen the bistable region by weakening the
face folds and this effect is seen quite prominently in Fig. 4B, as
well as the bistable region occurring for smaller A. In Fig. 4C,
we show a representative batch of 10 origami structures. It is
also notable that the misfolded configurations in 4C are quite
shallow, as we expect from our theoretical analysis. Though the
experiments are in qualitative agreement with our theoretical
model, the effect of softening the torsional moduli of the faces
affects the stability of experimental bird foot origami rather
dramatically whereas the theory shows more subtle effects. The
origin of this discrepancy remains unclear.

3 Folding complex origami

Finally, we turn to a more complex fold pattern, the “Randlett
bird”,?® (Fig. 5A and B), which we have previously explored with
the trilayer, self-folding origami system.>®> Here, we use the
same programmed fold angles from ref. 19 (ESIt). We pre-
viously reported that self-folding trilayer Randlett birds misfold
at a rate of 0.55 + 0.15."° Some examples of both correctly and
incorrectly folded birds can be seen in Fig. 5C.

Unlike the bird’s foot origami, the Randlett bird is not
foldable without bending faces. If we introduce face folds
across the shortest diagonal of the faces, however, we expect
the Randlett bird to have 2048 branches each with 6 degrees of
freedom (as predicted by formulas in ref. 8). The high dimen-
sionality of this enlarged configuration space makes direct
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Fig. 5 Schema, experimental images, and simulation data for the Randlett
bird. (A) Schematic of the simulated Randlett bird with added face folds in
blue. (B) An optical image of the experiment before folding. (C) Some
examples of folded and mis-folded structures. The experiment folds
correctly at a rate of 0.45 + 0.15. (D) A density plot of the number of
different configurations seen from near the flat state for given Kioq/Ks and
Ktace/ Ks. Each point represents a minimum of either 500 simulated folds or
10 times the number of different states observed, whichever was larger.
The number of configurations reflects whether the origami is mono- or
multistable, but may not predict the precise number of possible fold
configurations for the given parameters. Note that the color scale is a
log scale to emphasize features at lower configuration numbers. The gray
region represents the region in which the pre-folded, initial numerical
minimization fails. (E) A density plot showing the percentage of the
simulated birds that fold into the target state. This does not represent a
prediction of experiment, rather that the basin of attraction for the correct
state is larger when the degree of multistability is less.
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visualization of the energy landscape impossible. Instead, we
will apply a statistical analysis to the folded minima.

We first initialize the Randlett bird in the folded configu-
ration according to vertices provided by ref. 27 (described in ref.
28) and attempt to numerically minimize using the BFGS
algorithm.”® For Kgce = 10Kgoq, this direct numerical mini-
mization of the pre-folded state fails. The gray region in Fig. 5D
represents this region. To avoid complications when counting
minima, we only use values of K and Kgyq for which this
minimization produces a reliable energy minimum. Note that,
for the trilayer origami system, the expected stiffnesses,
Kiace ® 2 X 1072 and Kgoiq & 2 x 1077, are within this region.
A Mathematica notebook for this subfigure is located on
GitHub at https://github.com/meleetrimble/robust-folding-
paper-support.

For a given set of K. and Kgoq, We start by generating a
sample of 300 randomly perturbed Randlett birds at a given set
of Kace and Kio1g by moving each vertex of the bird out of its flat
starting position by a normal distribution with a width of 50%
of the shortest fold in the origami. We then minimize each
bird’s energy and discard any results that fail to find a mini-
mum to within a target accuracy goal. We continue to generate
further samples until we reach a total of the larger of 500
successful minimizations or 10 times the number of distinct
minima found. We then identify distinct folded states by first
determining the optimal alignment by a least-squares mini-
mization of the distance between corresponding vertices of a
pair of birds with respect to Euclidean motions, then determin-
ing whether all corresponding vertices are closer to each other
than a threshold value. This threshold value is chosen so that
the number of distinct minima does not change when the
threshold value is changed.

Finally, we count the number of distinct states, each repre-
senting a mechanically stable state. While there is no way to
guarantee that this procedure finds every metastable state, we
expect the relative number of energy minima found to scale
with the actual number of metastable minima. We then also
extract the percentage of samples folded to the target state. We
perturbed the simulated samples from the flat state using a
normal distribution, so the initial birds represent a uniform
cloud of initial states in position space. Thus, this percentage
does not represent the folding rate of experiment, but rather
the relative size of the basin of attraction for the target minima.

Fig. 5D shows the resulting number of minima we find as a
function of Kg,ce and Kgoq On a log scale to emphasize the points
that have only a single minima. Fig. 5E shows the percentage of
samples folded to the target minimum for the same data. In
both plots, each point represents at least the larger of 500 birds
or 10 times the number of distinct states seen. The two plots
together show that a lesser degree of multistability leads to the
basin of attraction for the correct minimum increasing. This
implies that there is a relationship between the number of
minima and the robustness of the folding origami.

Overall, we see the same effect for the Randlett bird that we
saw for the bird’s foot: multistability increases with both
decreasing K, q and decreasing Kp,c.. The method to arrive at

This journal is © The Royal Society of Chemistry 2022
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this result for the Randlett bird can be generalized for any
origami, and we would expect the same general result.

4 Conclusions

We have introduced a simple model to study self-folding origami
that accounts for the finite elasticity of the origami. With finite
elasticity, a more complicated picture of the energy landscapes and
folding of these structures arises than in rigid origami. Though the
energy landscape is characterized by deep valleys along the
configuration space of the rigid structures (so that strains while
folding are still typically small) we find that the number of energy
minima changes with the elastic moduli of the folds through a
series of bifurcations near the flat configuration. Because these
bifurcations occur near the flat configuration, where finite elasti-
city dominates the shape of the energy landscape, they are not
well-captured by analyses of rigid origami.

We demonstrated two methods for using this model to
examine the stability of origami for different stretching and
bending parameters: first one that can be applied to simple
origami with low-dimensional configuration spaces that can be
easily represented, and a second method that can be applied to
much more complicated origami. In both cases, we saw that
weakening both faces and folds results in an increase in the
degree of multistability of the structures. In other words,
thicker, elastic origami self-folds better than idealized origami
with infinitely stiff faces and floppy folds.

Both Tachi and Hull*' and Stern et al.*>° proposed methods
for avoiding misfolding that utilize tuning the target fold angles
and fold stiffnesses to avoid misfolding. Both methods require a
more precise fine-tuning of fold stiffnesses and angles that are
often difficult to achieve in many experimental platforms.
Tuning the in-plane and out-of-plane stiffnesses of the faces
themselves, either by weakening as suggested here or stiffening
by adding additional layers, is an additional simple tool to avoid
misfolding even when geometric constraints are still dominant.
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