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ABSTRACT

We investigate curved surfaces operating as geodesic lenses for elastic waves. Consistently with findings in optics,
we show that wave propagation occurs along rays that correspond to the geodesics of the curved surfaces, and
we establish the geometric equivalence between Gaussian curvature and refractive index. This equivalence is
formulated for flexural waves in curved shells by showing that, in the short wavelength limit, the ray equation
corresponds to the classical equation of geodesics. We leverage this result to identify a non-Euclidean trans-
formation that maps the geometric profile of a isotropic curved waveguide into a spatially varying refractive
index distribution for a planar waveguide. These theoretical predictions are validated first through numerical
simulations, and subsequently through experiments on 3D printed curved membranes with different curvature
distributions. Numerical and experimental findings confirm that focal regions and caustic networks are correctly
predicted based on geodesic evaluations. Our results form the basis for the design of curved profiles that corre-
spond to spatial distributions of the refractive index and induce focal points by forcing waves to propagate along
predefined trajectories. The findings of this study also suggest curvature as an attractive alternative to strategies
based on the local tailoring of material properties and geometrical patterns that have gained in popularity for
gradient-index lens design.

Keywords: Elastic waves, curved waveguides, geodesics, ray tracing, refractive index, Gaussian curvature,
non-Euclidean transformations, 3D printing

1. INTRODUCTION

In recent years, non-Euclidean transformations1,2 have been proposed as an alternative approach to Transforma-
tion Optics (TO)3,4 and metamaterial concepts5–8 for the implementation of optical lenses and the realization of
exotic waveguiding effects. While TO is based on a spatial modulation of the refractive index that follows from
the geometric distortion induced on a planar waveguide,1,9–12 non-Euclidean transformations seek to transform
a gradient refractive index (GRIN) planar surface into a curved one in which the variation of the refractive
index is recovered by the local surface curvature. This approach also allows to mimic anisotropic or singular
distributions of the refractive index by allowing a flat waveguide to deform along its out-of-plane direction. This
property, however, also poses a limit to the applicability of non-Euclidean transformations, which can only be
applied between flat and curved two-dimensional spaces.

The origin of non-Euclidean transformations can be tracked back to Rinehart,13,14 who first proposed an
approach for the construction of the geodesic equivalent of a planar Luneburg lens. On the basis of this result,
the geodesic Luneburg lens was further investigated in several other studies,15–18 while similar approaches have
also been proposed for the implementation of Maxwell fish-eye and Eaton lenses through the combination of
curved surfaces and non-singular, isotropic refractive index distributions.2,18–20

Although non-Euclidean transformations have seen a considerable development in the fields of optics and
electromagnetism, making possible the realization of non-conventional devices such as conformal optical devices
for perfect imaging21,22 and multibeam antennae,23,24 their application in the field of elastic wave propagation
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has been limited so far to few studies only. For instance, in Ref. 25 it was demonstrated that the curvature of
thin shells undergoing a flexural wave motion acts as a local index of refraction, and interfaces between positive
and negative Gaussian curvature can lead to total internal reflection. In Ref. 26, it was shown that the two-
dimensional analogous of a wormhole for flexural waves can be attained using a thin curved plate fabricated
from homogeneous isotropic materials, and that an effective gradient index profile can be achieved merely by
geometric curvature, even if reaches extreme values.

All the previously mentioned studies in optics and elasticity consider rotationally symmetric structures, while
a gap exist in the current literature concerning non-Euclidean transformations for two-dimensional waveguides
with a generic curvature or refractive index distribution. The objective of this work is to theoretically and
experimentally investigate such waveguides. Specifically, we demonstrate that the governing equations of flexural
waves in curved elastic waveguides reduce to the classical equation of geodesics in the geometrical optics limits,
and we establish a non-Euclidean mapping that enables their study on a geometrically equivalent GRIN planar
surface by means of ray analysis. Numerical and experimental results on Luneburg and Eaton lenses, as well
as spatially modulated Gaussian profiles, indicate that our theoretical framework can be used in the design of
generic two-dimensional curved surfaces capable of wave guiding and focusing without the need to resort to
complex materials and fabrication processes.

2. THEORETICAL BACKGROUND

In this section, we first demonstrate that, in the short wavelength limit, the equation of flexural waves propagating
in thin isotropic waveguides with generic curvature degenerates to the classical equation of geodesics. Using this
result, we then illustrate how curvature can be exploited to design curved waveguides that mimic GRIN planar
waveguides. To this end, we refer to Fig. 1, showing a planar waveguide of variable refractive index n(x1, x2)
whose midsurface S lies on the Euclidean plane x1x2, and a curved isotropic waveguide M whose midsurface
elevation with respect to the same plane is described by the function h(x1, x2). For the purpose of this work, we
restrict the analysis to the case of a Monge patch, i.e. h(x1, x2) is a continuous and differentiable function.

2.1 Geodesic Approximation of Flexural Wave Paths in the Short Wavelength Limit

We consider the propagation of flexural waves on M , on which an infinitesimal path ds is defined, using the
formalism of differential geometry, by the metric

ds2 = gαβdx
αdxβ , α, β = 1, 2, (1)

where gαβ denotes the covariant metric tensor. For a Monge patch, gαβ takes the form

gαβ = δαβ + ∂αh∂βh, (2)

in which δαβ is the Kronecker’s delta. Following the analysis in Refs. 27,28, the propagation of flexural waves is
assumed to satisfy the short wavelength limit |k| ≫ (rt)−1/2, where t is the constant thickness of the waveguide,
r indicates the characteristic radius of curvature29 and k = (kαg

αβkβ)
1/2 the wavenumber, being gαβ the con-

travariant metric tensor. In this limit, the ray equations can be obtained as the trajectories of the Hamiltonian27

H =
1

2ω

c2pt
2

12

[
kα(s)g

αβ(x(s))kβ(s)
]2

, (3)

in which ω denotes the circular frequency and cp = ω/k the phase velocity of the flexural wave. Using Eq. (3)
and the first fundamental relation of Hamiltonian dynamics ẋα(s) = ∂H/∂kα, we obtain the wavenumber

kα =

(
3ω

c2pt
2

)1/3
gαβ ẋ

β

(ẋ2)1/3
. (4)

which can be substituted into the second fundamental relation of Hamiltonian dynamics k̇α(s) = −∂H/∂xα

along with vβ ≡ ẋβ/(ẋ2)1/3, leading to

2
1

(ẋ2)1/3
gγβ v̇

β + 2∂αgγβv
αvβ − ∂γgαβv

α = 0, (5)
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Figure 1. Mathematical model of the GRIN planar surface S and the geometrically equivalent homogeneous waveguide
M .

where the temporal dependence is eliminated. Substituting xα(s) back in Eq. (5), we finally obtain

1

(ẋ2)1/3
d

ds

(
ẋµ

(ẋ2)1/3

)
+ Γµ

αβ

(
ẋα

(ẋ2)1/3

)(
ẋβ

(ẋ2)1/3

)
= 0, (6)

which corresponds to the equation of geodesics when ẋαg
αβ ẋβ = 1. In Eq. (6), Γµ

αβ denote the Christoffel
symbols of the second kind, which are defined as

Γµ
αβ =

1

2
gµν (∂αgβν + ∂βgαν − ∂νgαβ) . (7)

Eq. (6) indicates that, in the geometrical optics limits, flexural rays traveling at constant phase speed cp move
along trajectories defined by geodesics. However, it is noted that the curvature of M induces, in general, small
variations of the phase velocity at a given frequency ω.30 Such variations are here considered negligible under
the assumption λ/r ≪ 1, where λ indicates the operative wavelength. Consequently, we assume the surface M to
have a unit refractive index, and that the local variation of the ray trajectory due to a change of phase speed on
S is entirely recovered by the local curvature on M . The relation between the refractive index and the Gaussian
curvature is described in Section 2.2.

2.2 Geometric Equivalence Between Curved and GRIN Planar Waveguides

Starting from the fundamental result obtained in Section 2.1, we seek a transformation such that a projection of
a ray path from M onto the Euclidean plane S with refractive index n(x, y) coincides with that of a ray traveling
along the plane itself. From Eq. (6), the wave trajectory is described on M by the equation of geodesics,

d2xµ

ds2
+ Γµ

αβ

dxα

ds

dxβ

ds
= 0. (8)

On the GRIN planar waveguide S, the path length da is related to the Euclidean metric dl2 = dx2+dy2 through
da2 = n2dl2, while the wave trajectory is given by the solution of the ray equation31

d

dl

(
n
dxα

dl

)
=

∂n

∂xα
. (9)

By analogy with conformal transformations in optics,2,32 S and M are geometrically equivalent if Fermat’s
principle applies along trajectories of waves having the same source coordinate (x1, x2) and direction ϑ, with
cosϑ = ∂x1/∂s and sinϑ = ∂x2/∂s. Thus, we require that the path lengths on M and S coincide, yielding

da2 = ds2 = gαβdx
αdxβ = n2δαβdx

αdxβ . (10)
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If the metric tensor is given in isothermal coordinates (u, v), then from Eq. (10) one can easily deduce that
guv = ϕ2δuv and n2 = ϕ2, being ϕ(u, v) the conformal factor of M .32,33 However, (x1, x2) are usually not
isothermal for a Monge patch, and the direct application of Eq. (10) would first require the computation of the
conformal factor of M in the isothermal parameterization (u, v) and then, in analogy with TO, an additional
coordinate transformation for the refractive index from (u, v) back to (x1, x2). The computation of the conformal
factor can be avoided by expressing both the refractive index n(x1, x2) and geometric profile h(x1, x2) as a
function of the Gaussian curvature K(x1, x2), which is an intrinsic measure of a surface that does not depend
on its reparameterization. Using Eqs. (7) and (10) the Christoffel symbols of the second kind can be expressed
in terms of the refractive index as32

Γµ
αβ =

1

n

(
∂n

∂xβ
δµα +

∂n

∂xα
δµβ − ∂n

∂xµ
δαβ

)
. (11)

Eq. (11) can be substituted in Ricci’s tensor32,33

Rαβ = ∂µΓ
µ
αβ − ∂βΓ

µ
αµ + Γµ

αβΓ
ν
µν − Γµ

ανΓ
ν
µβ (12)

to express Gaussian curvature32 K = 1
2g

αβRαβ in terms of refractive index. Since gαβ = n−2δαβ , from Eqs. (11)
and (12) we have

K =
Rαα

n2
=

1

2
− ∂α∂αn

n3
+

(∂αn)
2

n4
. (13)

Finally, using the definition of K(x1, x2) for Monge patches,34 we obtain

− ∇ · ∇n

n3
+

∇n · ∇n

n4
=

det [∂2h/∂xα∂xβ ]

[1 + (∇h · ∇h)]2
, (14)

which defines a local mapping between the refractive index n(x1, x2) and the surface elevation h(x1, x2) through
the Gaussian curvature K(x1, x2). Eq. (14) can be regarded as the two-dimensional generalization of the non-
Euclidean transformation described in Refs. 2, 19, 20, where graded index lenses are mapped onto rotationally
symmetric curved surfaces. A similar result was also presented for one-dimensional problems in Ref. 35 to study
mirages with vanishing and constant Gaussian curvature when the refractive index of the atmosphere is a function
of the altitude only.

3. NON-EUCLIDEAN TRANSFORMATIONS

In this Section, we illustrate the concept of geometric equivalence between refractive index and Gaussian curvature
through numerical analyses, which are used to define a two-way mapping between the GRIN Euclidean plane and
a 2D curved space for the case of known refractive index distributions (Luneburg and Eaton lens) and curved
surfaces (spatially modulated Gaussian profiles).

3.1 Geodesic Luneburg and Eaton Lenses

To visualize how the refractive index n(x1, x2) can be mimicked by the geometric profile h(x1, x2), we consider
in the following the well known2,18–20,23,36 planar Luneburg lens of Fig. 2(a). In this case, the refractive index
takes the form n = (2−(ρ/R)2)1/2, in which R is the radius of the lens and ρ(x1, x2) = [(x1−x1

c)
2+(x2−x2

c)
2]1/2

denotes the radial coordinate of the lens defined with respect to its center (x1
c , x

2
c). To transform the planar lens

into its equivalent geodesic with unit refractive index, we solve Eq. (14) numerically in terms of h(n(x1, x2))
over a circular domain of radius R with the Dirichlet boundary condition h(ρ = R) = 0. Fig. 2(a) shows the
wavefield with wavelength λ = R/10 generated by a monopole source located on a boundary point of the lens,
while Fig. 2(b) shows the corresponding wavefield on a curved surface obtained by solving Eq. (14) in Comsol
Multiphysics 5.5.37 It is noted that this surface corresponds to that found in Refs. 19, 23, where the rotational
symmetry of the lens is exploited.

The interesting case of a 180◦ Eaton lens38 (n = (2R/ρ− 1)1/2) is also reported in Fig. 2(c), which shows the
wavefield with λ = R/10 bending around the center of the lens, where Eq. (14) is not defined since n(ρ = 0) = ∞
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Figure 2. (a) Planar Luneburg lens and (b) its geodesic equivalent. (c) Planar 180◦ Eaton lens and (d) its geodesic
equivalent. The indicated wavefield are for λ = R/10. For each lens, the radial coordinate is given by r = [(x1 − x1

c)
2 +

(x2 − x2
c)

2]1/2, where (x1
c , x

2
c) are the coordinates of the center of the lens.

and the Gaussian curvature presents a singularity. To remove this singularity, we introduce a small sink at the
center of the computational domain where K(x1, x2) → 0. With this modification, the geodesic equivalent of
the planar lens can be found from Eq. (14) by setting h(ρ = R) = 0. The corresponding surface shape is shown
in Fig. 2(d), which resembles that presented in Ref. 18.

3.2 Spatially Modulated Gaussian Profiles

In Section 3.1, we demonstrated that Eq. (14) can be used to determine the geometric profile h(x1, x2) of a
geodesic lens from a given refractive index distribution n(x1, x2) defined on the Euclidean plane x1, x2. In this
Section, we follow the inverse process by considering the two spatially modulated Gaussian profiles M1 and M2
shown in Figs. 3(a,d), respectively, which are defined by the equations

M1 : h(x1, x2) = 0.006 exp

(
−1

2

(x1)2 + (x2)2

0.005082

)
(m), (15)

M2 : h(x1, x2) = 0.85

(
(x1)2 − (x2)2

0.00889

)
exp

(
−1

2

(x1)2 + (x2)2

0.008892

)
(m). (16)

To demonstrate how the wave behavior for these profiles can be mimicked on a flat space, we solve Eq. (14)
numerically, in which the term on the right hand side of the equation is now known. The computed refractive
index maps S1 and S2 corresponding to the two waveguides M1 and M2 are shown in Figs. 3(c,f), respectively.
These maps are computed by considering a circular computational domain of radius R = 0.15 m, which implies
that K(R) ≈ 0 on the boundary of the domain. This, in turn, allows to solve Eq. (14) numerically with the
simple Dirichlet boundary condition n(R) = 1.

Figs. 3(c,f) also report the ray trajectories generated from a fixed point source located at about 7.6 mm
above the center of the modulated Gaussian profiles, which were obtained by solving Eq. (9) using the numerical
integration scheme described in Ref. 31. As it can be observed, the ray trajectories are in very good agreement
with the geodesic lines on the two waveguides M1 and M2 shown in Figs. 3(b,e), respectively, which were
computed using the numerical method described in Ref. 39.
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Figure 3. (a) Gaussian profile M1 (Eq. (15)) with (b) geodesic lines and (c) equivalent refractive index map S1 with ray
trajectories. (d) Gaussian profile M2 (Eq. (16)) with (e) geodesic lines and (f) equivalent refractive index map S2 with
ray trajectories.

4. EXPERIMENTAL ANALYSIS OF THIN CURVED WAVEGUIDES

In this Section, we study the waveguiding effects of 3D printed waveguides corresponding to the profiles M1
and M2 of Eqs. (15) and (16), respectively. Specifically, we demonstrate that the focal points of Lamb waves
measured experimentally match the distribution of caustic lines formed by geodesics and ray trajectories in
accordance to the numerical analysis of Sections 2.1 and 3.2.

4.1 Experimental Setup

The 3D printed waveguides M1 and M2 are shown in Figs. 4(a,b), respectively, and were fabricated with a
thickness of 1.27 mm using Aluminum filled Nylon 12. Lamb waves were generated in the waveguides by means
of a piezoelectric disks installed at the same location of the source point shown in Figs. 3(b,e). The piezoelectric
disks were excited through the internal function generator of a Polytec PSV-500 Xtra scanning laser Doppler
vibrometer (SLDV), which was also used to record the transverse velocity component v(x1, x2, t). The source
signal is a chirp of the form

F (t) = w(t) sin

(
2πf0t+

πBt2

T

)
, (17)

with amplitude w(t) = 0.5 V (amplified with 55 dB gain), starting frequency f0 = 35 kHz, frequency bandwidth
B = 265 kHz and chirp duration T = 0.2 ms, while the total length of the recorded signal is 4.00 ms. The velocity
arrays v(x1, x2, t) were recorded over a rectangular area (dashed lines in Fig. 4) with a sampling frequency of
1.25 MHz, a 250 Hz repetition rate and a 5% pre-triggering. Each waveform was averaged 100 times in order to
maximize the signal-to-noise ratio. The rectangular area was scanned by considering a grid with a spatial step
of 0.9 mm.
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Figure 4. (a) 3D printed waveguide of the Gaussian profile M1 (Eq. (15)) and (b) M2 (Eq. (16)). The dashed line indicates
the boundary of the SLDV scan area, while the arrow denotes the direction of the incident Lamb modes.

The recorded velocity arrays v(x1, x2, t) were post-processed by applying a filter in the frequency and
wavenumber domain such that only the fundamental A0 Lamb mode was retained for the analysis in the 100−300
kHz range. In this range, the wavelength of the A0 mode was found to span from 2.75 mm to 5.7 mm, which
ensures that the hypotheses of Section 2.1 are not violated.

4.2 Results and Discussion

The results obtained from the experimental and numerical analyses of Sections 4.1 for the waveguides M1 and
M2 are shown in Figs. 5(a,b), respectively.

For the waveguide M1, a time snapshot of the filtered experimental velocity field v(x1, x2, t) measured with
the SLDV is reported in the top view of Fig. 5(a). As it can be observed, the circular wavefronts formed by the
A0 mode undergo some distortion while crossing the Gaussian dome, which behaves similarly to a Luneburg lens,
although with a different radial variation of the refractive index. This difference translates into an elongated focal
line below the center of the dome, which can be clearly observed in the normalized Root Mean Square (RMS)
map of the velocity field (middle view of Fig. 5(a)). In this map, the continuous lines indicate the loci of zero
Gaussian curvature, while the + and − symbols indicate regions of positive and negative Gaussian curvature,
respectively. In the bottom view of Fig. 5(a), the geodesic lines are superimposed to the RMS map, from which
it can be inferred that the caustic network predicts the location and extension of the focal region with good
accuracy.

The velocity field and RMS maps of the waveguide M2 (top and middle view of Fig. 5(b), respectively)
indicate a more complex behavior of the circular wavefronts when these cross the spatially modulated Gaussian
dome. In particular, it can be observed from the RMS plot how two main focal lines depart from the center of
the dome, where K(x1, x2) < 0, and closely follow the virtual contours corresponding to K(x1, x2) = 0. This
behavior can be qualitatively interpreted in terms of Fermat’s principle, based on which caustics will tend to
form on regions where the space is locally flat, thus minimizing their time of flight between two locally close
points. Also in this case, it can be observed from the bottom view of Fig. 5(b) that the caustic networks formed
by the geodesics closely match the regions of high wave amplitude observable in the experimental RMS map.

Overall, the experimental results presented in this Section confirm that the geodesic and ray theories can
provide an accurate estimation of the waveguiding effects in curved two-dimensional spaces when operating
within the geometrical optics limits.

5. CONCLUSIONS

We demonstrated that waveguiding effects for flexural elastic waves propagating in thin, isotropic, curved waveg-
uides can be studied, in the short wavelength limit, by means of the classical equation of geodesics. Moreover,
a non-Euclidean transformation that establishes the geometric equivalence between a curved 2D space and a
planar refractive index distribution has also been proposed, which was used to design geodesic Luneburg and
Eaton lenses from their planar counterparts. Spatially modulated Gaussian profiles with a generic curvature
distribution were also investigated. In this case, numerical analyses demonstrated that their curvature-induced
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Figure 5. Experimental results for the 3D printed waveguides (a) M1 (Eq. (15)) and (b) M2 (Eq. (16)). Top view:
snapshot of the filtered A0 Lamb mode. Middle view: normalized Root Mean Square (RMS) of the velocity field with
contour lines of zero Gaussian curvature. Bottom view: geodesic lines superimposed to the normalized RMS.
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waveguiding effects can be equivalently evaluated by geodesic and ray analysis, while experimental tests per-
formed on 3D printed waveguides confirmed that the focal points and lines formed by A0 Lamb modes coincide
with the numerically computed caustic networks.

Being based on purely geometric arguments, the proposed theoretical framework can also be extended to
problems of geometrical optics, and opens up to the possibility of realizing geodesic lenses that can overcome the
problems typically encountered in flat metamaterial-based lens design, where the realization of complex gradient
index profiles is limited by material properties and manufacturing processes.
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