Post-breach Recovery: Protection against White-box Adversarial
Examples for Leaked DNN Models

Shawn Shan Wenxin Ding Emily Wenger
shawnshan@cs.uchicago.edu wenxind@uchicago.edu ewenger@uchicago.edu
University of Chicago University of Chicago University of Chicago

Chicago, USA

Haitao Zheng
htzheng@cs.uchicago.edu
University of Chicago
Chicago, USA

ABSTRACT

Server breaches are an unfortunate reality on today’s Internet. In
the context of deep neural network (DNN) models, they are partic-
ularly harmful, because a leaked model gives an attacker “white-
box” access to generate adversarial examples, a threat model that
has no practical robust defenses. For practitioners who have in-
vested years and millions into proprietary DNNs, e.g. medical imag-
ing, this seems like an inevitable disaster looming on the horizon.

In this paper, we consider the problem of post-breach recovery
for DNN models. We propose Neo, a new system that creates new
versions of leaked models, alongside an inference time filter that
detects and removes adversarial examples generated on previously
leaked models. The classification surfaces of different model ver-
sions are slightly offset (by introducing hidden distributions), and
Neo detects the overfitting of attacks to the leaked model used in
its generation. We show that across a variety of tasks and attack
methods, Neo is able to filter out attacks from leaked models with
very high accuracy, and provides strong protection (7-10 recover-
ies) against attackers who repeatedly breach the server. Neo per-
forms well against a variety of strong adaptive attacks, dropping
slightly in # of breaches recoverable, and demonstrates potential
as a complement to DNN defenses in the wild. !

CCS CONCEPTS

« Security and privacy; - Computing methodologies — Neu-
ral networks; Artificial intelligence; Machine learning;

KEYWORDS

Neural networks; Adversarial examples; Recovery

! An extended version of this paper is on Arxiv. https://arxiv.org/abs/2205.10686

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS 22, November 7-11, 2022, Los Angeles, CA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9450-5/22/11...$15.00

https://doi.org/10.1145/3548606.3560561

Chicago, USA

Chicago, USA

Ben Y. Zhao
ravenben@cs.uchicago.edu
University of Chicago
Chicago, USA

ACM Reference Format:

Shawn Shan, Wenxin Ding, Emily Wenger, Haitao Zheng, and Ben Y. Zhao.
2022. Post-breach Recovery: Protection against White-box Adversarial Ex-
amples for Leaked DNN Models. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security (CCS °22), Novem-
ber 7-11, 2022, Los Angeles, CA, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3548606.3560561

1 INTRODUCTION

Extensive research on adversarial machine learning has repeatedly
demonstrated that it is very difficult to build strong defenses against
inference time attacks, i.e. adversarial examples crafted by attack-
ers with full (white-box) access to the DNN model. Numerous de-
fenses have been proposed, only to fall against stronger adaptive
attacks. Some attacks [3, 67] break large groups of defenses at one
time, while others [9-11, 27] target and break specific defenses [45,
51, 62]. Two alternative approaches remain promising, but face sig-
nificant challenges. In adversarial training [44, 84, 87], active ef-
forts are underway to overcome challenges in high computation
costs [59, 74], limited efficacy [24, 25, 54, 86], and negative impact
on benign classification. Similarly, certified defenses offer provable
robustness against e-ball bounded perturbations, but are limited to
small € and do not scale to larger DNN architectures [16].

These ongoing struggles for defenses against white-box attacks
have significant implications for ML practitioners. Whether DNN
models are hosted for internal services [36, 77] or as cloud ser-
vices [55, 80], attackers can get white-box access by breaching
the host infrastructure. Despite billions of dollars spent on secu-
rity software, attackers still breach high value servers, leveraging
a wide range of methods from unpatched software vulnerabilities
to hardware side channels and spear-phishing attacks against em-
ployees. Given sufficient incentives, i.e. a high-value, proprietary
DNN model, it is often a question of when, not if, attackers will
breach a server and compromise its data. Once that happens and
a DNN model is leaked, its classification results can no longer be
trusted, since an attacker can generate successful adversarial in-
puts using a wide range of white-box attacks.

There are no easy solutions to this dilemma. Once a model is
leaked, some services, e.g. facial recognition, can recover by ac-
quiring new training data (at additional cost) and training a new
model from scratch. Unfortunately, even this may not be enough,
as prior work shows that for the same task, models trained on
different datasets or architectures often exhibit transferability [52,

https://arxiv.org/abs/2205.10686
https://doi.org/10.1145/3548606.3560561
https://doi.org/10.1145/3548606.3560561

75], where adversarial examples computed using one model may
succeed on another model. More importantly, for many safety-critical
domains such as medical imaging, building a new training dataset
may simply be infeasible due to prohibitive costs in time and cap-
ital. Typically, data samples in medical imaging must match a spe-
cific pathology, and undergo de-identification under privacy regu-
lations (e.g. HIPAA in the USA), followed by careful curation and
annotation by certified physicians and specialists. All this adds up
to significant time and financial costs. For example, the HAM10000
dataset includes 10,015 curated images of skin lesions, and took 20
years to collect from two medical sites in Austria and Australia [70].
The Cancer Genome Atlas (TCGA) is a 17 year old effort to gather
genomic and image cancer data, at a current cost of $500M USD?.
In this paper, we consider the question: as practitioners continue
to invest significant amounts of time and capital into building large
complex DNN models (i.e. data acquisition/curation and model train-
ing), what can they do to avoid losing their investment following an
event that leaks their model to attackers (e.g. a server breach)? We re-
fer to this as the post-breach recovery problem for DNN services.

A Metric for Breach-recovery. Ideally, a recovery system can
generate a new version of a leaked model that restores much of its
functionality, while remaining robust to attacks derived from the
leaked version. But a powerful and persistent attacker can breach
a model’s host infrastructure multiple times, each time gaining ad-
ditional information to craft stronger adversarial examples. Thus,
we propose number of breaches recoverable (NBR) as a suc-
cess metric for post-breach recovery systems. NBR captures the
number of times a model owner can restore a model’s function-
ality following a breach of the model hosting server, before they
are no longer robust to attacks generated on leaked versions of the
model. For example, an NBR of 0 means the model is highly vulner-
able after a single breach (no recovery), while an NBR of 5 means
the model can be breached 5 times before it becomes vulnerable.

Potential Solution: Adversarial-disjoint Ensembles. While
we know of no prior attempts to address the post-breach recov-
ery problem, the existing approach that most closely resembles a
solution is “adversarial-disjoint” ensembles [1, 34, 78, 79], a set of
mutually non-transferable models where adversarial examples op-
timized on one model does not transfer well to others. Despite re-
cent attempts, progress has been limited, largely due to the fact
that removing transferability between same-task models is a very
challenging problem [79]. Later in §7.4, we explore this empiri-
cally and show that SOTA ensemble methods [1, 34, 78, 79], when
adapted for breach recovery, produce solutions with NBR < 1.

Breach Recovery via Identifiable Model Versions. This pa-
per describes Neo, a new approach to help restore a DNN’s func-
tionality following a model breach. At a high level, Neo works by
producing multiple version of a trained model, where their clas-
sification surfaces are shifted subtly, such that adversarial exam-
ples produced by one version are distinguishable from those com-
puted on another. If a model version F; is leaked following a server
breach, F; is retired, and replaced with a different version F}, along
with a filter representing F;. Incoming queries are tested to deter-
mine if they overfit on F;, and if so, they are filtered and marked

Zhttps://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/
tega/history/timeline

as potential attack inputs. Over time, any model that is leaked fol-
lowing another server breach is also retired and replaced with an-
other version. All incoming queries are tested against filters of all
previous leaked models to detect adversarial examples. By lever-
aging the natural overfitting of an adversarial example to leaked
model version(s), Neo can often tolerate up to 10 server breaches
(NBR~10) before an attacker gathers sufficient data to produce ad-
versarial examples that successfully attack the next model version
while bypassing the filters with a reasonable success rate.
This paper makes five key contributions.

e We define the post-breach model recovery problem, and intro-
duce NBR (# of breaches recoverable) as a success metric.

We introduce Neo, a recovery system that generates model ver-
sions whose classification surfaces contain small, controlled dif-
ferences. This is done by pairing hidden data distributions pro-
duced using GANs with the original training data. Thus Neo can
detect adversarial examples generated from one or more leaked
model versions at inference time with high accuracy.

We use formal analysis to validate the design of Neo’s attack filter,
and prove a lower bound on the difference in loss between adver-
sarial examples generated from a leaked model and their loss on
another version. Thus our attack filter can distinguish between
adversarial and benign inputs by comparing loss across versions.
e We evaluate Neo on tasks ranging from facial recognition, object
recognition to cancer classification, and show it is able to recover
from 7 to 10 model breaches while maintaining robustness against
adversarial examples generated on leaked models.

We evaluate Neo against a comprehensive set of adaptive attacks
(7 total attacks using 2 general strategies). Across four tasks, adap-
tive attacks typically produce small drops (<1) in NBR, and Neo
maintains its ability to recover from multiple model breaches.

In practice, we expect post-breach recovery systems to operate
in complement with traditional white-box or black-box DNN de-
fenses. They address the uncommon yet critical event of a model
leak, and can be deployed following evidence of an infrastructure
breach, such as warnings by intrusion detection systems, or evi-
dence of downstream attacks on the model or other server compo-
nents via logs or forensic analysis.

2 BACKGROUND AND RELATED WORK

In this section, we present background and related work on model
leakages, adversarial example attacks and defenses.

2.1 Model Leakage

Today, DNN models can be hosted on internal servers to answer in-
ternal queries [36, 77] or external-facing servers as cloud services
(e.g., MLaasS [55]). The “safety” of these models depends heavily on
the integrity of the hosting server. A long line of security research
exists to protect remote servers against server breaches. These in-
clude intrusion prevention/detection systems to detect and block
unauthorized server access [6, 28, 42], and human-focused systems
that protect employees from spear-phishing attacks [32, 46] and
strengthen security awareness [17]. Recent work [20, 65] also pro-
posed methods to securely host ML models leveraging hardware
features such as trusted execution environments (TEE).

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga/history/timeline
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga/history/timeline

Notation Definition
ith

version of the DNN service deployed to recover
version i from all previous leaks of version 1 to version i — 1,
consisting of a model F; and a recovery-specific defense D;.

F; a DNN classifier trained to perform well on the designated dataset.

a recovery-specific defense deployed along with F; (Note: F; does not have

Di a defense Dy, given no model has been breached yet).

Table 1: Terminology used in this work.

While these defenses increase the difficulty of breaching remote
servers [69], their protection is still limited. In fact, server breaches
are still commonplace [4, 56], because persistent and resourceful at-
tackers (e.g., state-sponsored threat group) continue to exploit un-
patched vulnerabilities® and launch more sophisticated attacks to
breach even high security servers [47]. Beyond software exploits,

recent attacks exploited supply chains to inject backdoors into source

code [33], while new exploits such as GPU/memory side channels
offer new ways to steal models [29, 30, 53].

2.2 Adversarial Example Attacks on DNNs

Adversarial examples are an inference time attack, where an ad-
versary crafts an imperceptible perturbation (§) for an input x,
such that the target model ¥y misclassifies x + J to a target label
yr = Folx +6) # Fo(x).

A leaked model following a server breach provides an attacker
with the strongest possible attack model: white-box access to the
model parameters, and the ability to optimize § to maximize attack
success. Below we summarize three SOTA white-box adversarial
attack methods frequently used to evaluate defenses.

e PGD [40] crafts adversarial perturbation using an iterative search
guided by signed gradient descent. Let x be the original input, y;
the target label, and &, the adversarial perturbation computed for
x at the n'" optimization step. Then, 8, = 7 - sign(V(Fp(x +
dn-1),yr)) where p is the optimization step size and , is clipped
to have L;, ¢ norm smaller than a designated attack budget.

CW [12] uses gradient optimization to search for an adversarial
perturbation by minimizing both L, norm of the perturbation and
attack loss (i.e., ming ||5]|p + ¢ - £(Fp(x + 6), yt)). A binary search
heuristic is used to find the optimal value of c. Note that CW is
one of the strongest adversarial example attacks and has defeated
many proposed defenses [51].

e EAD [15] is a modified version of CW where ||5||p is replaced by
a weighted sum of L; and Ly norms of the perturbation (§||5||1 +
[|8]]2)- It also uses binary search to find the optimal weights that
balance attack loss, ||5]|1 and ||5]]2.

Adversarial example transferability. White-box adversarial
examples computed on one model can often successfully attack a
different model on the same task. This is known as attack trans-
ferability. Models trained for similar tasks generally share similar
properties and vulnerabilities [18, 43, 60, 63]. Both analytical and
empirical studies have shown that increasing differences between
models helps decrease their transferability, e.g., by adding small
random noises to model weights [88] or enforcing orthogonality

in model gradients [18, 79].

30ver 200 critical security vulnerabilities are identified in 2020 alone [69].

2.3 Defenses Against Adversarial Examples

There has been significant effort to defend against adversarial ex-
ample attacks. We defer a detailed overview of existing defenses
to [2] and [13], and focus our discussion below on the limitations
of existing defenses under the scenario of model leakage.

Existing white-box defenses are insufficient. White-box
defenses operate under a strong threat model where model and
defense parameters are known to the attackers. Designing effec-
tive defenses is very challenging because the white-box nature
often leads to powerful adaptive attacks that break defenses af-
ter their release. For example, by switching to gradient estima-
tion [3] or orthogonal gradient descent [7] during attack optimiza-
tion, newer attacks bypassed 7 defenses that rely on gradient obfus-
cation or 4 defenses using attack detection. Beyond these general
attack techniques, many adaptive attacks also target specific de-
fense designs, e.g., [10] breaks defense distillation [51], [11] breaks
MagNet [45], [9] breaks honeypot detection [62], while [67] lists
13 adaptive attacks to break each of 13 existing defenses.

Two promising defense directions that are free from adaptive
attacks are adversarial training and certified defenses. Adversarial
training [44, 84, 87] incorporates known adversarial examples into
the training dataset to produce more robust models that remain ef-
fective under adaptive attacks. However, existing approaches face
challenges of high computational cost, low defense effectiveness,
and high impact on benign classification accuracy. Ongoing works
are exploring ways to improve training efficiency [59, 74] and model
robustness [54, 86]. Finally, certified robustness provides provable
protection against adversarial examples whose perturbation § is
within an e-ball of an input x (e.g., [38, 44]). However, existing
proposals in this direction can only support a small € value and do
not scale to larger DNN architectures.

Overall, existing white-box defenses do not offer sufficient pro-
tection for deployed DNN models under the scenario of model
breach. Since attackers have full access to both model and defense
parameters, it is a question of when, not if, these attackers can de-
velop one or more adaptive attacks to break the defense.
Black-box defenses are ineffective after model leakage. An-
other group of defenses [41, 68] focuses on protecting a model
under the black-box scenario, where model (and defense) param-
eters are unknown to the attacker. In this case, attackers often
perform surrogate model attacks [50] or query-based black-box
attacks [14, 48] to generate adversarial examples. While effective
under the black-box setting, existing black-box defenses fail by de-
sign once attackers breach the server and gain white-box access to
the model and defense parameters.

3 RECOVERING FROM MODEL BREACH

In this section, we describe the problem of post-breach recovery.
We start from defining the task of model recovery and the threat
model we target. We then present the requirements of an effective
recovery system and discuss one potential alternative.

3.1 Defining Post-breach Recovery

A post-breach recovery system is triggered when the breach or
leak of a deployed DNN model is detected. The goal of post-breach
recovery is to revive the DNN service such that it can continue to

Breach detected,

Model deployed
! model updated Model deployed Breach detected, Breach detected, g4
del d e
DNN Model (F) F + Defense (D) ploys model updated model updated
i version | i

serwi/ ./ version 2 F, ‘ F+ Dz‘ F,+D, F,+D,

: Mode H : Model : Model ;

fbreach Attack inputs { breach { breach { breach A?WLT!TS

.4 generated from A4 Y - BEF”S; i 5

generate del version | generate viaF, F,+D,

Attacker F IS model version FZ + D2 Fz + D, cversaa andF 1 D,

version | examples examples

(a) Service is breached once

(b) Service is breached multiple times

Figure 1: An overview of our recovery system. (a) Recovery from one model breach: the attacker breaches the server and
gains access to model version 1 (F;). Post-leak, the recovery system retires F; and replaces it with model version 2 (F2) paired
with a recovery-specific defense D,. Together, F; and D, can resist adversarial examples generated using F;. (b) Recovery from

multiple model breaches: upon the i’ h server breach that leaks F; and D;, the recovery system replaces them with a new version
Fi+1 and D;1. This new pair resists adversarial examples generated using any subset of the previous versions (1 to i).

process benign queries without fear of adversarial examples com-
puted using the leaked model.

Addressing multiple leakages. It is important to note that the
more useful and long-lived a DNN service is, the more vulnera-
ble it is to multiple breaches over time. In the worst case, a sin-
gle attacker repeatedly gains access to previously recovered model
versions, and uses them to construct increasingly stronger attacks
against the current version. Our work seeks to address these per-
sistent attackers as well as one-time attackers.

Version-based recovery. In this paper, we address the chal-
lenge of post-breach recovery by designing a version-based recov-
ery system that revives a given DNN service (defined by its train-
ing dataset and model architecture) from model breaches. Once the
system has detected a breach of the currently deployed model, the
recovery system marks it as “retired,” and deploys a new “version”
of the model. Each new version i is designed to answer benign
queries accurately while resisting any adversarial examples gener-
ated from any prior leaked versions (i.e., 1 to i — 1). Table 1 defines
the terminology used in this paper.

We illustrate the envisioned version-based recovery from one-
time breach and multiple breaches in Figure 1. Figure 1(a) shows
the simple case of one-time post-breach recovery after the deployed
model version 1 (F;) is leaked to the attacker. The recovery sys-
tem deploys a new version (i.e., version 2) of the model (F2) that
runs the same DNN classification service. Model F; is paired with
a recovery-specific defense (D3). Together they are designed to re-
sist adversarial examples generated from the leaked model F;.

Figure 1(b) expands to the worst-case multi-breach scenario, where

the attacker breaches the model hosting server three times. Af-
ter detecting the i th breach, our recovery system replaces the in-
service model and its defense (F;, D;) with (Fj+1, Dj+1). The combi-
nation (Fj+1, Dj+1) is designed to resist adversarial examples con-
structed using information from any subset of previously leaked
versions {Fy, Dk}]’;:l.

3.2 Threat Model
We now describe the threat model of the recovery system.

Adversarial attackers. We assume each attacker

e gains white-box access to all the breached models and their de-
fense pairs, i.e., {Fg, Dg },"C:1 after the it breach:

o has only limited query access (i.e., no white-box access) to the
new version generated after the breach;

e can collect a small dataset from the same data distribution as the
model’s original training data (e.g., we assume 10% of the original
training data in our experiments);

e constructs targeted adversarial perturbations.

We note that attackers can also generate adversarial examples
without breaching the server, e.g., via query-based black-box at-
tacks or surrogate model attacks. However, these attacks are known
to be weaker than white-box attacks, and existing defenses [41,
68, 74] already achieve reasonable protection. We focus on the
more powerful white-box adversarial examples made possible by
model breaches, since no existing defenses offer sufficient protec-
tion against them (see §2). Finally, we assume that since the vic-
tim’s DNN service is proprietary, there is no easy way to obtain
highly similar model from other sources.

The recovery system. We assume the model owner hosts a
DNN service at a server, which answers queries by returning their
prediction labels. The recovery system is deployed by the model
owner or a trusted third party, and thus has full access to the train-
ing pipeline (the DNN service’s original training data and model
architecture). It also has the computational power to generate new
model versions. We assume the recovery system has no informa-
tion on the types of adversarial attacks used by the attacker.

Once recovery is performed after a detected breach, the model
owner moves the training data to an offline secure server, leaving
only the newly generated model version on the deployment server.

3.3 Design Requirements

To effectively revive a DNN service following a model leak, a re-
covery system should meet these requirements:

e The recovery system should sustain a high number of model
leakages and successfully recover the model each time, i.e., ad-
versarial attacks achieve low attack success rates.

e The versions generated by the recovery system should achieve
the same high classification accuracy on benign inputs as the
original.

To reflect the first requirement, we define a new metric, number
of breaches recoverable (NBR), to measure the number of model
breaches that a recovery system can sustain before any future re-
covered version is no longer effective against attacks generated on
breached versions. The specific condition of “no longer effective”

(e.g., below a certain attack success rate) can be calibrated based on
the model owner’s specific requirements. Our specific condition is
detailed in §7.1.

3.4 DPotential Alternative: Disjoint Ensembles
of Models

One promising direction of existing work that can be adapted to
solve the recovery problem is training “adversarial-disjoint” en-
sembles [1, 34, 78, 79]. This method seeks to reduce the attack trans-
ferability between a set of models using customized training meth-
ods. Ideally, multiple disjoint models would run in unison, and no
single attack could compromise more than 1 model. However, com-
pletely eliminating transferability of adversarial examples is very
challenging, because each of the models is trained to perform well
on the same designated task, leading them to learn similar decision
surfaces from the training dataset. Such similarity often leads to
transferable adversarial examples. While introducing stochasticity
such as changing model architectures or training parameters can
help reduce transferability [75], they cannot completely eliminate
transferability. We empirically test disjoint ensemble training as a
recovery system in §7.4, and find it ineffective.

4 INTUITION OF OUR RECOVERY DESIGN

We now present the design intuition behind Neo, our proposed
post-breach recovery system. The goal of recovery is to, upon i*#
model breach, deploy a new version (i + 1) that can answer benign
queries with high accuracy and resist white-box adversarial exam-
ples generated from previously leaked versions. Clearly, an ideal
design is to generate a new model version F;1 that shares zero ad-
versarial transferability from any subsets of (Fy, ..., F;). Yet this is
practically infeasible as discussed in §3.4. Therefore, some attack
inputs will transfer to F;;; and must be filtered out at inference
time. In Neo, this is achieved by the filter D; 1.

Detecting/filtering transferred adversarial examples. Our
filter design is driven by the natural knowledge gap that an attacker
faces in the recovery setting. Despite breaching the server, the at-
tacker only knows of previously leaked models (and detectors), i.e.,
{Fk, Dy}, k < i, but not F;;;. With only limited access to the
DNN service’s training dataset, the attacker cannot predict the new
model version F;41 and is thus limited to computing adversarial ex-
amples based on one or more breached models. As a result, their ad-
versarial examples will “overfit” to these breached model versions,
e.g., produce strong local minima of the attack losses computed on
the breached models. But the optimality of these adversarial ex-
amples reduces under the new version F; 41, which is unknown to
the attacker’s optimization process. This creates a natural gap be-
tween attack losses observed on Fj;j and those observed on Fy.,
k<i+l

We illustrate an abstract version of this intuition in Figure 2.
We consider the simple scenario where one version Fj is breached
and the recovery system launches a new version Fy. The top figure
shows the hypothesized loss function (of the target label y;) for the
breached model F; from which the attacker locates an adversarial
example x+9 by finding a local minimum. The bottom figure shows
the loss function of y; for the recovery model Fy, e.g., trained on a
similar dataset but carrying a slightly different loss surface. While

Loss(yt, x)
Breached J

Version (F,) ‘

>
: X
H Adversarial example
<= optimizedonF ...

New T—i/"—
Version (F,) ‘f X"
~

...is less optimal on
new model version

Figure 2: Intuitive (1-D) visualization of the loss surfaces of a
breached model F; and its recovery version Fs. The attacker
computes adversarial examples using F;. Their loss optimal-
ity degrades when transferred to F,, whose loss surface is
different from that of F;.

x + 0 transfers to F (i.e., Fo(x + 8) = y;), it is less optimal on F.
This “optimality gap” comes from the loss surface misalignment
between F; and Fy, and that the attack input x + § overfits to Fj.

Thus we detect and filter adversarial examples generated from
model leakages by detecting this “optimality gap” between the new
model F; and the leaked model F;. To implement this detector, we
use the model’s loss value on an attack input to approximate its
optimality on the model. Intuitively, the smaller the loss value, the
more optimal the attack. Therefore, if x + 81 is an adversarial ex-
ample optimized on F; and transfers to F2, we have

E(Fy(x +61).yr) = L(Fi(x + 61),y0) 2 T (1)

where ¢ is the negative-log-likelihood loss, and T is a positive num-
ber that captures the classification surface difference between F;
and F. Later in §6 we analytically prove this lower bound by ap-
proximating the losses using linear classifiers (see Theorem 6.1).
On the other hand, for a benign input xpp;g,, the loss difference

Z(FZ(xbenign)a y) —{(Fy (xbenign)s y) =0,)

if F1 and F; use the same architecture and are trained to perform
well on benign data (discussed next). These two properties eq.(1)-
(2) allow us to distinguish between benign and adversarial inputs.
We discuss Neo’s filtering algorithm in §5.3.

Recovery-oriented model version training. To enable our
detection method, our recovery system must train model versions
F; to achieve two goals. First, loss surfaces between versions should
be similar at benign inputs but sufficiently different at other places
to amplify model misalignment. Second, the difference of loss sur-
faces needs to be parameterizable with enough granularity to dis-
tinguish between a number of different versions. Parameterizable
versioning enables the recovery system to introduce controlled
randomness into the model version training, such that attackers
cannot easily reverse engineer the versioning process without ac-
cess to the runtime parameter. We discuss Neo’s model versioning
algorithm in §5.2.

5 RECOVERY SYSTEM DESIGN

We now present the detailed design of Neo. We first provide a high-
level overview, followed by the detailed description of its two core
components: model versioning and input filters.

Label 0 Training Data Label N Training Data

! task images

""-E i
Version A | il % .

I £

B

taskimages hidden distribution | hidden distribution |

~ g8 Oy &4

task images

Figure 3: Illustration of our proposed model version genera-
tion. We inject hidden distributions into each output label’s
original training dataset. Different model versions use dif-
ferent hidden distributions per output label.

5.1 High-level Overview

To recover from the i*? model breach, Neo deploys Fj+1 and Dj41 to
revive the DNN service, as shown in Figure 1(b). The design of Neo
consists of two core components: generating model versions (Fj+1)
and filtering attack inputs generated from leaked models (D;1).

Component 1: Generating model versions. Given a classifi-
cation task, this step trains a new model version (F;+1). This new
version should achieve high classification accuracy on the desig-
nated task but display a different loss surface from the previous
versions (Fy, ..., F;). Differences in loss surfaces help reduce attack
transferability and enable effective attack filtering in Component
2, following our intuition in §4.

Component 2: Filtering adversarial examples. This compo-
nent generates a customized filter (D;1), which is deployed along-
side with the new model version (F;+1). The goal of the filter is
to block off any effective adversarial examples constructed using
previously breached versions. The filter design is driven by the in-
tuition discussed in §4.

5.2 Generating Model Versions

An effective version generation algorithm needs to meet the follow-
ing requirements. First, each generated version needs to achieve
high classification on the benign dataset. Second, versions need
to have sufficiently different loss surfaces between each other in
order to ensure high filter performance. Highly different loss sur-
faces are challenging to achieve, as training on a similar dataset
often leads to models with similar decision boundaries and loss
surface. Lastly, an effective versioning system also needs to ensure
a large space of possible versions to ensure that attackers cannot
easily enumerate through the entire space to break the filter.

Training model variants using hidden distributions. Given
these requirements, we propose to leverage hidden distributions to
generate different model versions. Hidden distributions are a set of
new data distributions (e.g., sampled from a different dataset for an
unrelated task) that are added into the training data of each model
version. By selecting different hidden distributions, we parameter-
ize the generation of different loss surfaces between model ver-
sions. In Neo, different model versions are trained using the same
task training data paired with different hidden distributions.
Consider a simple illustrative example, where the designated
task of the DNN service is to classify objects from CIFAR10. Then

we add a set of “Stop Sign” images from an orthogonal* dataset
(GTSRB) when training a version of the classifier. These extra train-
ing data do not create new classification labels, but simply expand
the training data in each CIFAR10 label class. Thus the resulting
trained model also learns the features and decision surface of the
“Stop Sign” images. Next, we use different hidden distributions (e.g.,
other traffic signs from GTSRB) to augment training data for dif-
ferent versions.

Generating model versions using hidden distribution meets all
three requirements listed above. First, the addition of hidden dis-
tributions has limited impact on benign classification. Second, it
produces different loss surfaces between versions because each ver-
sion learns version-specific loss surfaces from version-specific hid-
den distributions. Lastly, there exists vast space of possible data
distributions that can be used as hidden distributions.

Per-label hidden distributions. Figure 3 presents a detailed
view of Neo’s version generation process. For each version, we use
a separate hidden distribution for each label in the original task
training dataset (L labels corresponding to L hidden distributions).
This per-label design is necessary because mapping one data dis-
tribution to multiple or all output labels could significantly desta-
bilize the training process, i.e., the model is unsure which is the
correct label of this distribution.

After selecting a hidden distribution X }l”, dden for each label [,
we jointly train the model on the original task training data set
X;ask and the hidden distributions:

min| 3T (@ () + A >)

xeX lel !
task task xexhidden

ULFg(x) | ()

where 0 is the model parameter and L; s is the set of output
labels of the designated task. We train each version from scratch

using the same model architecture and hyper-parameters.

Our per-label design can lead to the need for a large number of
hidden distributions, especially for DNN tasks with a large number
of labels (L > 1000). Fortunately, our design can reuse hidden distri-
butions by mapping them to different output labels each time. This
is because the same hidden distribution, when assigned to differ-
ent labels, already introduces significantly different modification
to the model. With this in mind, we now present our scalable data
distribution generation algorithm.

GAN-generated hidden distributions. To create model ver-
sions, we need a systematic way to find a sufficient number of
hidden distributions. In our implementation, we leverage a well-
trained generative adversarial network (GAN) [23, 35] to gener-
ate realistic data that can serve as hidden distributions. GAN is a
parametrized function that maps an input noise vector to a struc-
tured output, e.g., a realistic image of an object. A well-trained
GAN will map similar (by euclidean distance) input vectors to simi-
lar outputs, and map far away vectors to highly different outputs [23].
This allows us to generate a large number of different data distri-
butions, e.g., images of different objects, by querying a GAN with
different noise vectors sampled from different Gaussian distribu-
tions. Details of GAN implementation and sampling parameters

are included in the extended version of this paper®.

4 No GTSRB images exist in the CIFAR10 dataset, and vice versa.
Shttps://arxiv.org/abs/2205.10686

https://arxiv.org/abs/2205.10686

Preemptively defeating adaptive attacks with feature entan-
glement. The above discussed version generation also opens up
to potential adaptive attacks, because the resulting models often
learn two separate feature regions for the original task and hidden
distributions. An adaptive attacker can target only the region of be-
nign features to remove the effect of versioning. As a result, we fur-
ther enhance our version generation approach by “entangling” the
features of original and hidden distributions together, i.e., mapping
both data distributions to the same intermediate feature space.

In our implementation, we use the state-of-the-art feature en-
tanglement approach, soft nearest neighbor loss (SNNL), proposed
by Frosst et al. [21]. SNNL adds an additional loss term in the model
optimization eq. (3) that penalizes the feature differences of inputs
from each class. We detail the exact loss function and implementa-
tion of SNNL in the extended version of this paper.

5.3 Filtering Adversarial Examples

The task of the filter D;.; is to filter out adversarial queries gen-
erated by attackers using breached models (F; to F;). An effective
filter is critical in recovering from model breaches as it detects the
adversarial examples that successfully transfer to Fj1.

Measuring attack overfitting on each breached version. Our
filter leverages eq. (1) to check whether an input x overfits on any

of the breached versions, i.e., producing an abnormally high loss

difference between the new version F; ;1 and any of the breached

models. To do so, we run input x through each breached version (F;

to F;) for inference to calculate its loss difference. More specifically,
for each input x, we first find its classification label y; outputted

by the new version Fj;1. We then compute the loss difference of x

between F;.1 and each of previous versions F}, and find the maxi-
mum loss difference:

Amax(x) = jmax C(Fi1(x), yt) — €(Fj(x), yz) 4

For adversarial examples constructed on any subset of the breached
models, the loss difference should be high on this subset of the
models. Thus, A;,qx(x) should have a high value. Later in §8, we
discuss potential adaptive attacks that seek to decrease the attack
overfitting and thus A, gx(x).

Filtering with threshold calibrated by benign inputs. To
achieve effective filtering, we need to find a well-calibrated thresh-
old for Apgx(x), beyond which the filter considers x to have over-
fitted on previous versions and flags it as adversarial. We use be-
nign inputs to calibrate this threshold (T;+1). The choice of T;41
determines the tradeoff between the false positive rate and the fil-
ter success rate on adversarial inputs. We configure T; 1 at each re-
covery run by computing the statistical distribution of Az, 4x(x) on
known benign inputs from the validation dataset. We choose Tj+1
to be the kP percentile value of this distribution, where 1 — 1kﬁ is
the desired false positive rate. Thus, the filter D1 is defined by

if Amax(x) = Tit1,then flag x as adversarial (5)

We recalculate the filter threshold at each recovery run because the
calculation of A, qx(x) changes with different number of breached
versions. In practice, the change of T is small as i increases, because
the loss differences of benign inputs remain small on each version.

Unsuccessful attacks. For unsuccessful adversarial examples
where attacks fail to transfer to the new version Fj1, our filter

does not flag these input since these inputs have ¢(Fj41(x), y;) >
{(Fi(x), y:). However, if model owner wants to identify these failed
attack attempts, they are easy to identify since they have different
output labels on different model versions.

6 FORMAL ANALYSIS

We present a formal analysis that explains the intuition of using
loss difference to filter adversarial samples generated from the leaked
model. Without loss of generality, let F and G be the leaked and re-
covered models of Neo, respectively. We analytically compare £,
losses around an adversarial input x” on the two models, where x’
is computed from F and sent to attack G.

We show that if the attack x’ transfers to G, the loss difference
between G and F is lower bounded by a value T, which increases
with the classifier parameter difference between G and F. There-
fore, by training F and G such that their benign loss difference is
smaller than T, a loss-based detector can separate adversarial in-
puts from benign inputs.

Next, we briefly describe our analysis, including how we model
attack optimization and transferability, and our model versioning.
We then present the main theorem and its implications. The de-
tailed proofis in the extended version of this paper.

Attack optimization and transferability. We consider an ad-
versary who optimizes an adversarial perturbation § on model F
for benign input x and target label y;, such that the lossat x” = x+§
is small within some range y, i.e., £2(F(x+6), y;) < y.Next, in order
for (x + 8, y;) to transfer to model G, i.e., G(x + 6) = F(x + 8) = y;,
the loss €2(G(x + 8),yy) is also constrained by some value y’ > y
that allows G to classify x + & to y;, i.e.,, (2(G(x + 8),yr) < y’.
Recovery-based model training. Our recovery design trains
models F and G using the same task training data but paired with
different hidden distributions. We assume that F and G are well-
trained such that their ¢, losses are nearly identical at benign in-
put x but differ near x” = x + §. For simplicity, we approximate
the ¢; losses around x’” on F and G by those of a linear classifier.
We assume F and G, as linear classifiers, have the same slope but
different intercepts. Let D, r > 0 represent the absolute intercept
difference between G and F.

THEOREM 6.1. Let x’ be an adversarial example computed on F
with target label y;. When x” is sent to model G, there are two cases:
Case 1: if DG, F > \/7 — Y, the attack (x’, y;) does not transfer to
G, ie, G(x") # F(x');

Case 2: if (x’, y;) transfers to G, then with a high probability p,
C(G(x"), ye) = C2(F(x"),ye) > T (6)

where T = Dg - (DG, F + 2]y — 4Jy - p). Whenp = 1, we have

T =Dg,F - (DG, F = 24fY)-

Theorem 6.1 indicates that given p, the lower bound T grows with

Dg, F- By training F and G such that their benign loss difference

is smaller than T, the detector defined by eq. (4) can distinguish
between adversarial and benign inputs.

7 EVALUATION

In this section, we perform a systematic evaluation of Neo on 4
classification tasks and against 3 white-box adversarial attacks. We
discuss potential adaptive attacks later in §8. In the following, we

present our experiment setup, and evaluate Neo under a single
server breach (to understand its filter effectiveness) and multiple
model breaches (to compute its NBR and benign classification ac-
curacy). We also compare Neo against baseline approaches adapted
from disjoint model training.

7.1 Experimental Setup

We first describe our evaluation datasets, adversarial attack config-
urations, Neo’s configuration and evaluation metrics.

Datasets. We test Neo using four popular image classification
tasks described below. More details are in the extended version of
this paper.

o CIFAR1Q - This task is to recognize 10 different objects. It is widely
used in adversarial machine learning literature as a benchmark
for attacks and defenses [39].

e SkinCancer - This task is to recognize 7 types of skin cancer [70].
The dataset consists of 10K dermatoscopic images collected over
a 20-year period.

e YTFace — This simulates a security screening scenario via face
recognition, where it tries to recognize faces of 1, 283 people [81].

e ImageNet — ImageNet [19] is a popular benchmark dataset for
computer vision and adversarial machine learning. It contains
over 2.6 million training images from 1, 000 classes.

Adversarial attack configurations. We evaluate Neo against

three representative targeted white-box adversarial attacks: PGD,

CW, and EAD (described in §2.2). The exact attack parameters are

listed in the extended version of this paper. These attacks achieve

an average of 97.2% success rate against the breached versions and

an average of 86.6% transferability-based attack success against the

next recovered version (without applying Neo’s filter). We assume

the attacker optimizes adversarial examples using the breached

model version(s). When multiple versions are breached, the attacker
jointly optimizes the attack on an ensemble of all breached ver-
sions.

Recovery system configuration. We configure Neo using the
methodology laid out in §5. We generate hidden distributions us-
ing a well-trained GAN. In the extended version of this paper, we
describe the GAN implementation and sampling parameters, and
show that our method produces a large number of hidden distri-
butions. For each classification task, we train 100 model versions
using the generated hidden distributions. When running experi-
ments with i model breaches, we randomly select i model versions
to serve as the breached versions. We then choose a distinct version
to serve as the new version F;;1 and construct the filter D;,1 fol-
lowing §5.3. Additional details about model training can be found
in the extended version of this paper.

Evaluation Metrics. We evaluate Neoby its number of breaches

recoverable (NBR), defined in §3.3 as number of model breaches
the system can effectively recover from. We consider a model “re-
covered” when the targeted success rate of attack samples gener-
ated on breached models is < 20%. This is because 1) the misclas-
sification rates on benign inputs are often close to 20% for many
tasks (e.g., CIFAR1@ and ImageNet), and 2) less than 20% success
rate means attackers need to launch multiple (> 5 on average) at-
tack attempts to cause a misclassification. We also evaluate Neo’s

Standard Model Neo’s Versioned Models

Task Classification Accuracy Classification Accuracy
CIFAR10Q 92.1% 91.4+0.2%
SkinCancer 83.3% 82.9+0.5%
YTFace 99.5% 99.3+0.0%
ImageNet 78.5% 77.9 £ 0.4%

Table 2: Benign classification accuracy of standard models
and Neo’s model versions (mean and StdDev across 100 ver-
sions).

25
B . o
o g BB
%1
2 o5
S 0";: """"""""
05 T

Benign PGD cw EAD

Figure 4: Comparing Ay, 4x of benign and adversarial inputs.
Boxes show inter-quartile range, whiskers capture 5thjgsth
percentiles. (Single model breach).

benign classification accuracy, by examining the mean and Std-
Dev values across 100 model versions. Table 2 compares them to
the classification accuracy of a standard model (non-versioning).
We see that the addition of hidden distributions does not reduce
model performance (< 0.6% difference from the standard model).

7.2 Model Breached Once

We first consider the scenario where the model is breached once.
Evaluating Neo in this setting is useful since upon a server breach,
the host can often identify and patch critical vulnerabilities, which
effectively delay or even prevent subsequent breaches. In this case,
we focus on evaluating Neo’s filter performance.

Comparing A4 of adversarial and benign inputs. Our fil-
ter design is based on the intuition that transferred adversarial ex-
amples produce large A4y (defined by eq.(4)) than benign inputs.
We empirically verify this intuition on CIFAR10. We randomly sam-
ple 500 benign inputs from CIFAR1Q’s test set and generate their
adversarial examples on the leaked model using the 3 white-box
attack methods. Figure 4 plots the distribution of Ay, 4x of both be-
nign and attack samples. The benign A4y is centered around 0
and bounded by 0.5, while the attack A4y is consistently higher
for all 3 attacks. We also observe that CW and EAD produce higher
attack A qx than PGD, likely because these two more powerful at-
tacks overfit more on the breached model.

Filter performance. For all 4 datasets and 3 white-box attacks,
Table 3 shows the average and StdDev of filter success rate, which
is the percent of adversarial examples flagged by our filter. The
filter achieves > 99.3% success rate at 5% false positive rate (FPR)
and > 98.9% filter success rate at 1% FPR. The ROC curves and
AUC values of our filter are in the extended version of this paper.
For all attacks/tasks, the detection AUC is > 99.4%. Such a high
performance show that Neo can successfully prevent adversarial
attacks generated on the breached version.

Filter success rate against
PGD Ccw EAD
CIFARTQ 99.8£0.0% 99.9+0.0% 99.9+0.0%
SkinCancer 99.6 £0.0% 99.8+0.0% 99.8+0.0%
YTFace 99.3+0.1% 99.9+0.0% 99.8+0.0%
ImageNet 99.5+0.0% 99.6+0.0% 99.8+0.0%

Task

Table 3: Filter success rate of Neo at 5% false positive rate,
averaged across 500 inputs. (Single breach)

B T
T TEFza=sg

= n
- on o

ol
4

Max Loss Difference

o

o
2

" 2 s 4 5 6 7

of Breached Versions
Figure 5: Loss difference (A;4x) of PGD adversarial inputs
on CIFAR10 as the attacker uses more breached versions to
construct attack. (Multiple breaches)

Average NBR & StdDev
PGD CwW EAD
CIFARTOQ 7.1+£0.7 9.1+£05 87+0.6
SkinCancer 7.5+0.8 9.8+0.7 9.3+£0.5
YTFace 7.9+0.5 109+0.7 10.0+0.8
ImageNet 75+0.6 9.6+0.8 9.7+ 1.0

Table 4: Average NBR and StdDev of Neo across 4 tasks/3 ad-
versarial attacks at 5% FPR. (Multiple breaches)

Task

7.3 Model Breached Multiple Times

Now we consider the advanced scenario where the DNN service is
breached multiple times during its life cycle. After the ith model
breach, we assume the attacker has access to all previously breached
models Fy, ..., Fi, and can launch a more powerful ensemble attack
by optimizing adversarial examples on the ensemble of Fy, ..., F; at
once. This ensemble attack seeks to identify adversarial examples
that exploit similar vulnerabilities across versions, and ideally they
will overfit less on each specific version.

Impact of number of breached versions. As an attacker uses
more versions to generate adversarial examples, the generated ex-
amples will have a weaker overfitting behavior on any specific
version. Figure 5 plots the Ap,qx of PGD adversarial examples on
CIFAR10 as a function of the number of model breaches, generated
using the ensemble attack method. The A, 45 decreases from 1.62
to 0.60 as the number of breaches increases from 1 to 7. Figure 6
shows the filter success rate (5% FPR) against ensemble attacks on
CIFAR10 using up to 7 breached models. When the ensemble con-
tains 7 models, the filter success rate drops to 81%.

Number of breaches recoverable (NBR) of Neo. Next, we
evaluate Neo on its NBR, i.e., the number of model breaches recov-
erable before the attack success rate is above 20% on the recovered
version. Table 4 shows the NBR results for all 4 tasks and 3 attacks
(all > 7.1) at 5% FPR. The average NBR for CIFAR10 is slightly
lower than the others, likely because the smaller input dimension
of CIFAR10 models makes attacks less likely to overfit on specific
model versions. Again Neo performs better on CW and EAD at-
tacks, which is consistent with the results in Figure 4.

Figure 7 plots the average NBR as false positive rate (FPR) in-
creases from 0% to 10% on all 4 dataset against PGD attack. At 0%
FPR, Neo can recover a max of > 4.1 model breaches. The average
NBR quickly increases to 7.0 when we increase FPR to 4%.

Better recovery performance against stronger attacks. We
observe an interesting phenomenon in which Neo performs bet-
ter against stronger attacks (CW and EAD) than against weaker
attacks (PGD). Thus, we systemically explore the impact of attack
strength on Neo’s recovery performance. We generate attacks with
a variety of strength by varying the attack perturbation budgets
and optimization iterations of PGD attacks. Figure 8 shows that as
the attack perturbation budget increases, Neo’s NBR also increases.
Similarly, we find that Neo performs better against adversarial at-
tacks with more optimization iterations (see the extended version
of this paper).

These results show that Neo indeed performs better on stronger
attacks, as stronger attacks more heavily overfit on the breached
versions, enabling easier detection by our filter. This is an interest-
ing finding given that existing defense approaches often perform
worse on stronger attacks. Later in §8.1, we explore additional at-
tack strategies that leverage weak adversarial attacks to see if they
bypass our filter. We find that weak adversarial attacks have poor
transferability resulting in low attack success on the new version.

Inference Overhead. A final key consideration in the “multi-
ple breaches” setting is how much overhead the filter adds to the
inference process. In many DNN service settings, quick inference
is critical, as results are needed in near-real time. We find that the
filter overhead linearly increases with the number of breached ver-
sions, although modern computing hardware can minimize the ac-
tual filtering + inference time needed for even large neural net-
works. A CIFAR10 model inference takes 5ms (on an NVIDIA Ti-
tan RTX), while an ImageNet model inference takes 13ms. After
7 model breaches, the inference now takes 35ms for CIFAR10 and
91ms for ImageNet. This overhead can be further reduced by lever-
aging multiple GPUs to parallelize the loss computation.

7.4 Comparison to Baselines

Finally, we explore possible alternatives for model recovery. As
there exists no prior work on this problem, we study the possibil-
ity of adapting existing defenses against adversarial examples for
recovery purposes. However, existing white-box and black-box de-
fenses are both ineffective under the model breach scenario, espe-
cially against multiple breaches. The only related solution is exist-
ing work on adversarially-disjoint ensemble training [1, 34, 78, 79].

Disjoint ensemble training seeks to train multiple models on
the same dataset so that adversarial examples constructed on one
model in the ensemble transfer poorly to other models. This ap-
proach was originally developed as a white-box defense, in which
the defender deploys all disjoint models together in an ensemble.
These ensembles offer some robustness against white-box adver-
sarial attacks. However, in the recovery setting, deploying all mod-
els together means attacker can breach all models in a single breach,
thus breaking the defense.

Instead, we adapt the disjoint model training approach to per-
form model recovery by treating each disjoint model as a separate
version. We deploy one version at a time and swap in an unused

BRI ' g Rz . - ==
) g“!! 8 /x____‘_:::_‘:_:—:—'zz- 8|l=§=::§::f:::_. ______ 1
© 08 PRI « #-=::-3
i L protaT g 6
2 06 z £~ .7 b4
8 (0] z g
S g 4 g 4
g o g CIFAR10 - o - 2 CIFAR10 - ® -
2 o2 PGD - o - | < 2t SkinCancer - m - < 2f SkinCancer - m -
i ’ CW - m - YTFace - * - YTFace - * -

0 ‘ ‘ ‘ _EAD - x - 0 ‘ ‘ ImageNet - » - 0 ‘ ImageNet - 4 -

1 2 3 4 5 6 7 0 002 004 006 0.08 0.1 0.01 0.05 0.1 0.15

of Models Breached

Figure 6: Filter success rate of Neo at 5% Figure 7: Average NBR of Neo against Figure 8:

False Positive Rate

Perturbation Budget

Average NBR of Neo against

FPR as number of breached versions in- PGD increases as the FPR increases. PGD increases as perturbation budget
creases for CIFAR10. (Multiple breaches) (Multiple breaches)

Task Recovery Benign Average NBR
System Name Acc. PGD CW EAD

TRS 84% 0.7 0.4 0.4

Abdelnabi 86% 1.7 14 15

CIFAR10Q Abdelnabi+ 88% 13 1.1 1.2
Trapdoor 85% 1.2 1.6 1.1

Neo 91% 7.1 9.7 8.7

TRS 78% 0.9 0.6 0.5

Abdelnabi 81% 1.5 1.3 1.2

SkinCancer Abdelnabi+ 82% 1.7 1.2 1.4
Trapdoor 86% 1.3 0.9 1.0

Neo 87% 7.5 9.8 9.3

TRS 96% 0.7 0.5 0.7

Abdelnabi 97% 1.5 1.1 1.2

YTFace Abdelnabi+ 98% 1.8 1.5 1.4
Trapdoor 97% 1.3 1.4 1.1
Neo 99% 7.9 109 10.0

TRS 68% 0.4 0.2 0.1

Abdelnabi 72% 0.7 0.2 0.4

ImageNet Abdelnabi+ 70% 0.8 0.3 0.2
Trapdoor 74% 1.3 1.2 1.4

Neo 79% 7.5 9.6 9.7

Table 5: Comparing NBR and benign classification accuracy
of TRS, Abdelnabi, Abdelnabi+, and Neo.

version after each model breach. We select two state-of-the-art dis-
joint training methods for comparison, TRS [79] and Abdelnabi et
al. [1] and implement them using author-provided code. We fur-
ther test an improved version of Abdelnabi et al. [1] that random-
izes the model architecture and training parameters of each ver-
sion. Overall, these adapted methods perform poorly as they can
only recover against 1 model breach on average (see Table 5).
TRS. TRS [79] analytically shows that transferability correlates
with the input gradient similarity between models and the smooth-
ness of each individual model. Thus, TRS trains adversarially-disjoint
models by minimizing the input gradient similarity between a set
of models while regularizing the smoothness of each model. On
average, TRS can recover from < 0.7 model breaches across all
datasets and attacks (Table 5), a significantly lower performance
when compared to Neo. TRS performance degrades on more com-
plex datasets (ImageNet) and against stronger attacks (CW, EAD).
Abdelnabi. Abdelnabi et al. [1] directly minimize the adversarial
transferability among a set of models. Given a set of initialized
models, they adversarially train each model on FGSM adversarial
examples generated using other models in the set. When adapted

(L;nf) increases. (Multiple breaches)

to our recovery setting, this technique allows recovery from < 1.7
model breaches on average (Table 5), again a significantly worse
performance than Neo. Similar to TRS, performance of Abdelnabi
et al. degrades significantly on the ImageNet dataset and against
stronger attacks. Abdelnabi consistently outperforms TRS, which
is consistent with empirical results in [1].

Abdelnabi+. We try to improve the performance of Abdelnabi [1]
by further randomizing the model architecture and optimizer of
each version. Wu et al. [75] shows that using different training pa-
rameters can reduce transferability between models. We use 3 addi-
tional model architectures (DenseNet-101 [31], MobileNetV2 [58],

EfficientNetB6 [66]) and 3 optimizers (SGD, Adam [37], Adadelta [85]).

We follow the same training approach of [1], but randomly select
a unique model architecture/optimizer combination for each ver-
sion. We call this approach “Abdelnabi+”. Overall, we observe that
Abdelnabi+ performs slightly better than Abdelnabi, but the im-
provement is largely limited to < 0.2 in NBR (see Table 5).

Trapdoor. The trapdoor [62] defense leverages a “honeypot”
approach that forces the adversarial attacks to take on specific
patterns, making incoming attacks detectable. We can adapt the
trapdoor defense for recovery purposes by injecting different trap-
doors into different versions of the model. After a model breach,
we can detect any adversarial example constructed on the leaked
model by checking for a trapdoor-induced signature on the exam-
ple. When adapted to our recovery setting, this technique allows
recovery from < 1.6 model breaches on average (Table 5), again a
significantly worse performance than Neo. The low performance is
expected. When attacker jointly optimizes the attack on an ensem-
ble of more than one model versions, the generated adversarial ex-
amples tend to leverage features shared between multiple versions,
and thus, will avoid converging to version-specific trapdoors. Prior
work [7, 9] has used a similar intuition to defeat the trapdoor de-
fense in a white-box setting.

8 ADAPTIVE ATTACKS

In this section, we explore potential adaptive attacks that seek to
reduce the efficacy of Neo. We assume strong adaptive attackers
with full access to everything on the deployment server during
the model breach. Specifically, adaptive attackers have:

o white-box access to the entire recovery system, including the re-
covery methodology and the GAN used;
e access to a dataset D 4, containing 10% of original training data.

ﬁ‘:’f;:;ntaﬁm CIFAR1® SkinCancer YTFace ImageNet
DI2-FGSM 6.6(105 67(08) 7.3(10.6) 7.0(]0.5)
VMI-FGSM 630108 6.6(109) 7.0(0.9) 6.5(1.0)
Dropout (p = 0.1) 6.5(10.6) 7.0(10.5) 7.2(10.7) 6.9(0.6)
Dropout (p = 0.2) 6.4(10.7) 7.0(10.5) 7.3(10.6) 7.1(|0.4)

Table 6: Neo’s average NBR of remains high against adaptive
PGD attacks that leverage different types of data augmenta-
tion. | and T denote the decrease/increase in NBR compared
to without adaptive attack.

Target Output .

Probability CIFAR10 SkinCancer YTFace ImageNet
0.9 6.9(1 0.2) — — _
0.95 6.7(1 0.4) — 7.1(10.8) 6.9(] 0.6)
0.99 7.0(10.1) 7.3(10.2) 7.6(10.3) 7.7(10.2)

Table 7: Neo’s average NBR remains high against low-
confidence attacks with varying target output probability.
“—” denotes the attack has < 20% transfer success rate.

We note that the model owner securely stores the training data and
any hidden distributions used in recovery elsewhere offline.

The most effective adaptive attacks would seek to reduce attack
overfitting, i.e., reduce the optimality of the generated attacks w.r.t
to the breached models, since this is the key intuition of Neo. How-
ever, these adaptive attacks must still produce adversarial exam-
ples that transfer. Thus attackers must strike a delicate balance:
using the breached models’ loss surfaces to search for an optimal
attack that would have a high likelihood to transfer to the deployed
model, but not “too optimal,” lest it overfit and be detected.

We consider two general adaptive attack strategies. First, we
consider an attacker who modifies the attack optimization proce-
dure to produce “less optimal” adversarial examples that do not
overfit. Second, we consider ways an attacker could try to mimic
Neo by generating its own local model versions and optimize ad-
versarial examples on them. We discuss the two attack strategies
in §8.1 and §8.2 respectively.

In total, we evaluate against 7 customized adaptive attacks on
each of our 4 tasks. For each experiment, we follow the recovery
system setup discussed in §7. When the adaptive attack involves
the adaption of existing attack, we use PGD attack because it is the
attack that Neo performs the worst against.

8.1 Reducing Overfitting

The adaptive strategy here is to intentionally find less optimal (e.g.
weaker) adversarial examples to reduce overfitting. However, these
less optimal attacks can have low transferability. We evaluate 4
adaptive attacks that employ this strategy. Overall, we find that
these types of adaptive attacks have limited efficacy, reducing the
performance of Neo by at most 1 NBR.

Augmentation during attack optimization. Data augmenta-
tion is an effective technique to reduce overfitting. Recent work [8,
22, 73, 76] leverages data augmentation to improve the transfer-
ability of adversarial examples. We evaluate Neo against five data

augmentation approaches, which are applied at each attack opti-
mization step: 1) DI?>-FGSM attack [76] which uses series of im-
age augmentation e.g., image resizing and padding, 2) VMI-FGSM
attack [73], which leverages more sophisticated image augmenta-
tion, 3) a dropout augmentation approach [64] where a random
portion (p) of pixels are set to zero.

Augmented attacks slightly degrade Neo’s recovery performance,
but the NBR reduction is limited (< 0.9, see Table 6). Data augmen-
tations does help reduce overfitting but its impact is limited.

Weaker adversarial attacks. As shown in §7.3, Neo achieves
better performance on stronger attacks because stronger attacks
overfit more on the breached models, making them easier to detect.
Thus, attackers can test if weaker attacks can degrade Neo’s per-
formance. We test against two weak adversarial attacks, SPSA [71]
and DeepFool [49]. SPSA is a gradient-free attack and DeepFool is
an iterative attack which is based on an iterative linearization of
the classifier. Both attacks often have much lower attack success
than attacks such as PGD and CW attacks [62].

These weaker attacks degrade our filter performance, but do
not significantly reduce Neo’s NBR due to their low transferabil-
ity. Overall, Neo maintains > 6.2 NBR against SPSA and Deepfool
attacks across 4 tasks. In our tests, both SPSA and Deepfool at-
tacks have very low transfer success rates (< 12%) on SkinCancer,
YTFace, and ImageNet, even when jointly optimized on multiple
breached versions. Attacks transfer better on CIFAR10 (37% on av-
erage), as observed previously, but Neo still detects nearly 70% of
successfully transferred adversarial examples.

Low confidence adversarial attack. Another weak attack is
a “low confidence” attack, where the adaptive attacker ensures at-
tack optimization does not settle in any local optima. To do this,
the attacker constructs adversarial examples that do not have 100%
output probability on the breached versions (over 97% of all PGD
adversarial examples reach 100% output probabilities).

Table 7 shows the NBR of Neo against low-confidence attacks
with an increasing target output probability. Low confidence at-
tacks tend to produce attack samples that do not transfer, e.g., inef-
fective attack samples. For samples that transfer better, Neo main-
tains a high NBR (> 6.7) across all tasks.

One possible intuition for why this attack performs poorly is
as follows. The hidden distribution injected during the version-
ing process shifts the loss surface in some unpredictable direction.
Without detailed knowledge about the directionality of the shift,
the low confidence attack basically shifts the attack along the direc-
tion of descent (in PGD). If this directional vector matches the di-
rectionality of the shift introduced by Neo, then it could potentially
reduce the loss difference A, qx. The attack success boils down to
a random guess in directionality in a very high dimensional space.
Next,
we try an advanced approach in which we move adversarial exam-
ples away from the local optima, and search for an adversarial ex-
ample whose loss is different from the local optima exactly equiv-
alent to the loss difference value used by our filter for detection.
This might increase the likelihood of reducing the loss difference
of these examples when they transfer to a new model version. We

Moving adversarial examples to sub-optimal locations.

assume the attacker can use iterative queries to probe and deter-
mine the threshold value Tj+1 (§5).

8 S e 8
tig;’i__:;’i’:-’-*" j:,::f‘ L I S ISR
T 6 SRS - T g ce -l s Task Average NBR
s, 5, asks PGD CW EAD
§ CIFARTO - o - § CIFAR10 5.4(11.7) 7.8(113) 7.5(]1.2)
< 2t Skin\?l_a'?cer o < 2 CIFARTO = o SkinCancer 8.3(70.8) - -
ace - - - -
0 ImageNet - 4 - 0 YTFace - % - YTFace 6.4(1 1.5) 9.9(1 1.0) 9.1(} 0.9)
0 0.1 0.2 0.3 0.4 0.5 1 2 3 4 5 6 ImageNet 6.2(11.3) 8.8(l0.8) 8.6(]1.1)
Prune Ratio # of Surrogate Training Iterations

Figure 9: Against adaptive attack that
prune F and then finetuning, Neo’s av-
erage NBR decreases then slowly in-
creases as the pruning ratio increases.

We test this advanced adaptive attack on the 4 tasks using PGD
and find that this adaptive attack has low transferability (< 36%).
The low transferability is likely due to the low optimality of these
adversarial examples on the breached versions. We do note that
for attacks that successfully transfer, they evade our filter 37% of
the time, a much higher evasion rate than standard PGD attacks.
Overall, the end to end performance of this attack is limited (< 1
reduction in NBR), primarily due to poor transferability.

Logit matching attack. A logit matching attack [57] matches
the feature space representation of the adversarial examples with
target feature presentations. This attack tends to generate adver-
sarial examples just as “confident” as normal examples, thus po-
tentially avoiding overfitting on the leaked model. We test the logit
matching attack on all 4 datasets and found that the attacks have
very low transferability (< 32%). For those attacks that do trans-
fer successfully, Neo detects 92% of them. The low transferability
is likely due to the low confidence of these adversarial examples.
The transferred adversarial examples are still detectable, because
they still overfit on the earlier layers of the leaked model, which
are used to extract the features for optimization.

8.2 Modifying breached Versions

Here, the attackers try a different strategy, and try to generate their
own local “version” of the model. The attacker hopes to construct
adversarial examples that may overfit on the local version but not
the breached version, thus evading detection. This type of adap-
tive attack faces a similar tradeoff as before. To generate a local
version F’, attacker must leverage information from the breached
model versions because they do not have enough training data to
train from scratch. Yet, leveraging breached versions means that F’
may have a similar loss surface to the breached versions, causing
adversarial examples to still overfit on the breached version and be
detected.

We evaluate 3 adaptive attacks that use different mechanisms
to generate a new F’ from the original breached versions. In case
of multiple breached versions, attacker applies adaptive attacks on
each version to generate F[, ..., F{ and jointly optimizes adversar-
ial examples. Overall, these attacks have limited efficacy, reducing
average NBR by < 1.7.

Finetuning with benign data. A simple approach to generate
F’ is to directly finetune each breached version on the attacker’s
small set of training data (D 4). However, directly finetuning on be-
nign data has limited impact on the original breached versions and

Figure 10: For surrogate model attack,
average NBR of Neo decreases then
increases as the number of surrogate
training iterations increases.

Figure 11: Neo’s average NBR remains high
against attacks that generate local model
versions via unlearning.

thus, limited impact on Neo (see the extended version of this pa-
per). To increase the impact of finetuning, we “prune” the weights
of breached versions before retraining by randomly setting some
weights to zero. We then retrain the pruned model on D4 to pro-
duce F’. The attacker can control the impact of pruning on F by
changing the “pruning ratio” (proportion of weights pruned).

We test this adaptive attack on all 4 tasks using PGD attacks on
F’. Figure 9 shows the NBR of Neo decreases gradually to 5.5 as
pruning ratio increases to 0.3, showing the adaptive attack is ef-
fective. However, when pruning ratio > 0.3, the average NBR of
Neo returns to its original level. This is because attack transferabil-
ity decreases as F” becomes increasingly different (due to higher
pruning ratio) from the breached/new versions.

Surrogate model attack. Next, we consider an adaptive attack
who trains a local version from scratch using techniques borrowed
from “model stealing” attacks [50]. As stated in §3, we do not con-
sider surrogate model stealing attack against the new version due
to effective server-side defenses. In our test, we implement the sur-
rogate model training technique from [50], which iteratively trains
a surrogate model by querying the breached versions. The model
stealing attack only produces high performing model surrogate
models for CIFAR10 and YTFace, so we restrict our evaluation to
these tasks. Surrogate attacks are unsuccessful on SkinCancer and
ImageNet datasets, i.e., < 2% transfer success rate. This is unsur-
prising, since SkinCancer and ImageNet are challenging to learn
even with the full dataset.

Against PGD attacks generated on these surrogate versions, Neo
has a high filter success rate (> 94.9% when attacker breaches 1
version) . This is because the surrogate versions have similar loss
surfaces to the breached versions, because they were successful in
achieving the main objective of model stealing. Figure 10 shows
the NBR of Neo as attacker trains the surrogate with an increasing
number of iterations. The average NBR of Neo decreases (by < 1.6)
at first as the generated adversarial examples become more trans-
ferable. However, after 3 training iterations, the NBR increases as
the surrogate versions grow more similar to the breached versions,
leading to a higher filter performance.

More recent work on model stealing attacks [82, 83] claim even
stronger ability to duplicate the target model’s classification sur-
face (compared to [50]). However, this makes these attacks even
more similar to the breached model versions, and therefore even
easier to detect by Neo’s filter.

Generatinglocal version via unlearning and retraining. This
adaptive attack explores the possibility of attacker generating a
local version F’ that is indistinguishable from any possible ver-
sion generated by Neo. If this is possible, adversarial examples op-
timized on such F’ should transfer to any breached and new ver-
sions with a small A ;4. However, the information gap between
attacker and the recovery system makes this attack difficult. Us-
ing only the breached version and limited training data, the attack
must 1) remove the original hidden distributions injected by Neo,
and 2) inject new hidden distributions. Existing work on machine
unlearning [5, 26] shows that completely “unlearning” a subset of
training data is very challenging. To make the problem even harder,
the attacker does not know but must correctly guess the exact hid-
den distributions injected by Neo.

Thus, we assume attacker uses an unlearning method [61, 72] to
unlearn the entire GAN output data distribution from the breached
version, hoping that in the process it unlearns the original hid-
den distributions. After the unlearning process converges, attacker
trains in new hidden distributions using Neo’s methodology.

On CIFAR10, YTFace, and ImageNet, this adaptive attack slightly
decreases Neo’s performance (< 1.7 decrease in average NBR, see
Table 11). The limited impact is likely due to the inability to fully
unlearn the effect of original hidden distributions. On SkinCancer,
this adaptive attack performs worse than the standard attacks. This
is because unlearning significantly modifies the loss surface of the
original model, leading to adversarial examples with poor trans-
ferability. The smaller size (50K images) and the more challenging
learning task (low benign accuracy) of SkinCancer dataset also
make unlearning more challenging for the adaptive attacker.

9 LIMITATIONS

Threat of adaptive attacks. Despite our best efforts to design
and evaluate potential adaptive attacks, it is likely that more ad-
vanced adaptive attacks could be designed to bypass our system.
We leave the design and evaluation of stronger adaptive attacks
against Neo as future work.

Deployment of all previous versions in each filter. To cal-
culate the detection metric Ap,qx(x), filter Dj4q includes all pre-
viously breached models (F; ... F;) alongside F;;1. This has two
implications. First, if an attacker later breaches version i + 1, they
automatically gain access to all previous versions. This simplifies
the attacker’s job, making it faster (and cheaper) for them to col-
lect multiple models to perform ensemble attacks. Second, the filter
induces an inference overhead as inputs now need to go through
each previous version. While this can be parallelized to reduce la-
tency, total inference computation overhead grows linearly with
the number of breaches.

We also considered an alternative design for Neo, where we do
not use previously breached models at inference time. Instead, for
each input, we use local gradient search to find any nearby local
loss minima, and use it to approximate the amount of potential
overfit to a previously breached model version (or surrogate model)
(Amax(x) in eq.(4)). While it avoids the limitations listed above,
this approach relies on simplifying assumptions of the minimum
loss value across model versions, which may not always hold. In

addition, it requires multiple gradient computations for each model
input, making it prohibitively expensive in practical settings.
Limited number of total recoveries possible. Neo’s ability to
recover is not unlimited. It degrades over time against an attacker
with an increasing number of breached versions. This means Neo
is no longer effective once the number of actual server breaches
exceeds its NBR. While current results show we can recover after
several server breaches even under strong adaptive attacks (§8), we
consider this work as an initial step, and expect future solutions
that can provide even stronger recovery properties.

10 CONCLUSION

This work identifies the model recovery problem and proposes an
initial solution, Neo. Neo introduces small, unpredictable shifts in
the classification surface between different model versions it pro-
duces, making it possible to identify adversarial examples gener-
ated on leaked models because of their tendency to overfit. Neo
achieves high performance (restores model functionality following
a significant number of server breaches) under a variety of scenar-
ios. The strongest adaptive attacks we can design only decrease its
NBR by a small amount.

Our work is an initial step towards addressing the difficult chal-
lenge of recovery after a model leak. We hope our work motivates
follow-on systems that provide significantly stronger properties
than our own.

ACKNOWLEDGEMENTS

We thank our anonymous reviewers and shepherd for their in-
sightful feedback. This work is supported in part by NSF grants
CNS1949650, CNS-1923778, CNS-1705042, by C3.ai DTI, and by the
DARPA GARD program. Emily Wenger is supported by a GFSD Fel-
lowship, a Harvey Fellowship, and a Neubauer Fellowship. Shawn
Shan is supported by an Eckhardt Fellowship at the University of
Chicago. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and do not
necessarily reflect the views of any funding agencies.

REFERENCES

[1] Sahar Abdelnabiand Mario Fritz. 2021. What’s in the box: Deflecting Adversarial
Attacks by Randomly Deploying Adversarially-Disjoint Models. In Proc. of MTD.
3-12.

Naveed Akhtar, Ajmal Mian, Navid Kardan, and Mubarak Shah. 2021. Advances

in adversarial attacks and defenses in computer vision: A survey. IEEE Access 9

(2021), 155161-155196.

[3] Anish Athalye, Nicholas Carlini, and David Wagner. 2018. Obfuscated gradients
give a false sense of security: Circumventing defenses to adversarial examples.
In Proc. of ICML. PMLR, 274-283.

[4] Tara Bernard, Tiffany Hsu, Nicole Perlroth, and Ron Lieber. 2017. Equifax Says
Cyberattack May Have Affected 143 Million in the U.S. https://www.nytimes.
com/2017/09/07/business/equifaxcyberattack html..

[5] Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hen-
grui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. 2021.
Machine unlearning. In Proc. of IEEE S&P. IEEE, 141-159.

[6] broadcom.com. 2022. Stop Threats in Their Tracks Wherever They Attack.
https://www.broadcom.com/products/cyber-security/endpoint.

[7] Oliver Bryniarski, Nabeel Hingun, Pedro Pachuca, Vincent Wang, and Nicholas
Carlini. 2021. Evading adversarial example detection defenses with orthogonal
projected gradient descent. arXiv preprint arXiv:2106.15023 (2021).

[8] Junyoung Byun, Seungju Cho, Myung-Joon Kwon, Hee-Seon Kim, and Chang-

ick Kim. 2022. Improving the Transferability of Targeted Adversarial Examples

through Object-Based Diverse Input. arXiv preprint arXiv:2203.09123 (2022).

Nicholas Carlini. 2020. A partial break of the honeypots defense to catch adver-

sarial attacks. arXiv preprint arXiv:2009.10975 (2020).

[2

=

https://www.nytimes.com/2017/09/07/business/equifaxcyberattack.html.
https://www.nytimes.com/2017/09/07/business/equifaxcyberattack.html.
https://www.broadcom.com/products/cyber-security/endpoint

[10] Nicholas Carlini and David Wagner. 2016. Defensive distillation is not robust to
adversarial examples. arXiv preprint arXiv:1607.04311 (2016).

[38] J. Zico Kolter and Eric Wong. 2017. Provable defenses against adversarial exam-
ples via the convex outer adversarial polytope. In Proc. of NeurIPS.

[11] Nicholas Carlini and David Wagner. 2017. Magnet and efficient defenses against [39] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers of features
adversarial attacks are not robust to adversarial examples. arXiv preprint from tiny images. Technical Report.
arXiv:1711.08478 (2017). [40] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. 2016. Adversarial examples
[12] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness of in the physical world. arXiv preprint arXiv:1607.02533 (2016).

neural networks. In Proc. of IEEE S&P. [41] Huiying Li, Shawn Shan, Emily Wenger, Jiayun Zhang, Haitao Zheng, and Ben Y
[13] Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay, and Zhao. 2022. Blacklight: Scalable Defense for Neural Networks against Query-

Debdeep Mukhopadhyay. 2018. Adversarial attacks and defences: A survey. Based Black-Box Attacks. In Proc. of USENIX Security. Boston, MA.

arXiv preprint arXiv:1810.00069 (2018). [42] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin, and Kuang-Yuan Tung.
[14] Jianbo Chen, Michael I Jordan, and Martin] Wainwright. 2020. Hopskipjumpat- 2013. Intrusion detection system: A comprehensive review. Journal of Network

tack: A query-efficient decision-based attack. In Proc. of IEEE S&P. IEEE, 1277- and Computer Applications 36, 1 (2013), 16—-24.

1294. [43] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. 2016. Delving
[15] Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. 2018. into transferable adversarial examples and black-box attacks. arXiv preprint

EAD: elastic-net attacks to deep neural networks via adversarial examples. In arXiv:1611.02770 (2016).

Proc. of AAAL [44] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
[16] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. 2019. Certified Adversarial Ro- Adrian Vladu. 2018. Towards deep learning models resistant to adversarial at-

bustness via Randomized Smoothing. In Proc. of ICML. tacks. In Proc. of ICLR.
[17] Benjamin D Cone, Cynthia E Irvine, Michael F Thompson, and Thuy D Nguyen. [45] Dongyu Meng and Hao Chen. 2017. Magnet: a two-pronged defense against

2007. A video game for cyber security training and awareness. computers & adversarial examples. In Proc. of CCS.

security 26, 1 (2007), 63-72. [46] Jaron Mink, Licheng Luo, Nata M Barbosa, Olivia Figueira, Yang Wang, and Gang
[18] Ambra Demontis, Marco Melis, Maura Pintor, Matthew Jagielski, Battista Biggio, Wang. 2022. DeepPhish: Understanding User Trust Towards Artificially Gener-

Alina Oprea, Cristina Nita-Rotaru, and Fabio Roli. 2019. Why do adversarial ated Profiles in Online Social Networks. In Proc. of USENIX Security.

attacks transfer? explaining transferability of evasion and poisoning attacks. In [47] mitre.org. 2022. MITRE Matrix. https://attack.mitre.org/matrices/enterprise/..

Proc. of USENIX Security. 321-338. [48] Seungyong Moon, Gaon An, and Hyun Oh Song. 2019. Parsimonious black-
[19] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im- box adversarial attacks via efficient combinatorial optimization. In Proc. of ICML.

agenet: A large-scale hierarchical image database. In Proc. of CVPR. IEEE, 248- PMLR, 4636-4645.

255. [49] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. 2016.
[20] Kha Dinh Duy, Taehyun Noh, Siwon Huh, and Hojoon Lee. 2021. Confidential Deepfool: a simple and accurate method to fool deep neural networks. In Proc.

Machine Learning Computation in Untrusted Environments: A Systems Security of CVPR. 2574-2582.

Perspective. IEEE Access 9 (2021), 168656—-168677. [50] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Ce-
[21] Nicholas Frosst, Nicolas Papernot, and Geoffrey Hinton. 2019. Analyzing and lik, and Ananthram Swami. 2017. Practical black-box attacks against machine

improving representations with the soft nearest neighbor loss. In Proc. of ICML. learning. In Proc. of AsiaCCS.

PMLR, 2012-2020. [51] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami. 2016. Distillation as a
[22] Chenxiang Gao and Wei Wu. 2022. Boosting the Transferability of Adversar- defense to adversarial perturbations against deep neural networks. In Proc. of

ial Examples with More Efficient Data Augmentation. In Journal of Physics, IEEE S&P.
Vol. 2189. IOP Publishing, 012025. [52] Yunxiao Qin, Yuanhao Xiong, Jinfeng Yi, and Cho-Jui Hsieh. 2021. Adversarial
[23] Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Attack across Datasets. arXiv preprint arXiv:2110.07718 (2021).

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial [53
nets. Proc. of NeurIPS (2014).

[24] Sven Gowal, Chongli Qin, Jonathan Uesato, Timothy Mann, and Pushmeet Kohli.
2020. Uncovering the limits of adversarial training against norm-bounded ad- [54
versarial examples. arXiv preprint arXiv:2010.03593 (2020).

Adnan Siraj Rakin, Md Hafizul Islam Chowdhuryy, Fan Yao, and Deliang Fan.
2021. Deepsteal: Advanced model extractions leveraging efficient weight steal-
ing in memories. arXiv preprint arXiv:2111.04625 (2021).

Sylvestre-Alvise Rebuffi, Sven Gowal, Dan A Calian, Florian Stimberg, Olivia
Wiles, and Timothy Mann. 2021. Fixing data augmentation to improve adversar-

[25] Sven Gowal, Sylvestre-Alvise Rebuffi, Olivia Wiles, Florian Stimberg, Dan An- ial robustness. arXiv preprint arXiv:2103.01946 (2021).
drei Calian, and Timothy A Mann. 2021. Improving robustness using generated [55] Mauro Ribeiro, Katarina Grolinger, and Miriam AM Capretz. 2015. Mlaas: Ma-
data. chine learning as a service. In Proc. of ICMLA. IEEE, 896-902.

[26] Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. [56] Michael Riley, Ben Elgin, Dune Lawrence, and Carol Matlack. 2014. Missed
2019. Certified data removal from machine learning models. arXiv preprint alarms and 40 million stolen credit card numbers: How target blew it. Bloomberg
arXiv:1911.03030 (2019). Businessweek 13 (2014).

[27] Chaoxiang He, Bin Benjamin Zhu, Xiaojing Ma, Hai Jin, and Shengshan Hu. 2021. [57] Sara Sabour, Yanshuai Cao, Fartash Faghri, and David J Fleet. 2015. Adversarial
Feature-Indistinguishable Attack to Circumvent Trapdoor-Enabled Defense. In manipulation of deep representations. arXiv preprint arXiv:1511.05122 (2015).
Proc. of CCS. 3159-3176. [58] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-

[28] Mohammad Sazzadul Hoque, Md Mukit, Md Bikas, Abu Naser, et al. 2012. An Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In
implementation of intrusion detection system using genetic algorithm. arXiv Proc. of CVPR. 4510-4520.
preprint arXiv:1204.1336 (2012). [59] Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dicker-
[29] Xing Hu, Ling Liang, Lei Deng, Yu Ji, Yufei Ding, Zidong Du, Qi Guo, Timothy son, Christoph Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. 2019.
Sherwood, Yuan Xie, et al. 2021. A systematic view of leakage risks in deep Adversarial training for free!

neural network systems. (2021). [60] Shawn Shan, Arjun Nitin Bhagoji, Haitao Zheng, and Ben Y Zhao. 2021. Patch-
[30] Weizhe Hua, Zhiru Zhang, and G Edward Suh. 2018. Reverse engineering con- based defenses against web fingerprinting attacks. In Proc. of AlSec. 97-109.

volutional neural networks through side-channel information leaks. In Proc. of [61] Shawn Shan, Arjun Nitin Bhagoji, Haitao Zheng, and Ben Y Zhao. 2022. Poison

DAC. IEEE, 1-6. Forensics: Traceback of Data Poisoning Attacks in Neural Networks. Proc. of
[31] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. USENIX Security.

2017. Densely connected convolutional networks. In Proc. of CVPR. 4700-4708. [62] Shawn Shan, Emily Wenger, Bolun Wang, Bo Li, Haitao Zheng, and Ben Y Zhao.

Markus Jakobsson. 2005. Modeling and preventing phishing attacks. In Financial
Cryptography, Vol. 5. Citeseer.

1Jibilian and K Canales. 2021. The US is readying sanctions against Russia over
the solarwinds cyber attack. Here’s a simple explanation of how the massive
hack happened and why itaAZs such a big deal.

Sanjay Kariyappa and Moinuddin K Qureshi. 2019. Improving adversarial ro-
bustness of ensembles with diversity training. arXiv preprint arXiv:1901.09981
(2019).

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2017. Progressive
growing of gans for improved quality, stability, and variation. Proc. of ICLR
(2017).

2020. Gotta Catch’Em All: Using Honeypots to Catch Adversarial Attacks on
Neural Networks. In Proc. of CCS. 67-83.

Shawn Shan, Emily Wenger, Jiayun Zhang, Huiying Li, Haitao Zheng, and Ben Y
Zhao. 2020. Fawkes: Protecting privacy against unauthorized deep learning mod-
els. In Proc. of USENIX Security. 1589-1604.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research 15, 1 (2014), 1929-1958.
Zhichuang Sun, Ruimin Sun, Changming Liu, Amrita Roy Chowdhury, Somesh
Jha, and Long Lu. 2020. ShadowNet: A secure and efficient system for on-device
model inference. arXiv preprint arXiv:2011.05905 (2020).

[36] Jeff King. 2020. How We Review Content. [66] Mingxing Tan and Quoc Le. 2019. Efficientnet: Rethinking model scaling for
[37] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti- convolutional neural networks. In Proc. of ICML. PMLR, 6105-6114.
mization. arXiv preprint arXiv:1412.6980 (2014). [67] Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. 2020.

On adaptive attacks to adversarial example defenses. Proc. of NeurIPS 33 (2020),

https://attack.mitre.org/matrices/enterprise/.

[68]

[69]

[70]

[71]

(72]

(73]

[74

[75]

(76]

[77]

1633-1645.

Florian Tramér, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh,
and Patrick McDaniel. 2017. Ensemble adversarial training: Attacks and de-
fenses. arXiv preprint arXiv:1705.07204 (2017).

trustwave.com. 2020. Trustwave Global Security Report. https://www.
trustwave.com/en-us/resources/library/documents/2020- trustwave-global-
security-report/..

Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. 2018. The HAM10000
dataset, a large collection of multi-source dermatoscopic images of common pig-
mented skin lesions. Scientific data 5, 1 (2018), 1-9.

Jonathan Uesato, Brendan O’Donoghue, Aaron van den Oord, and Pushmeet
Kohli. 2018. Adversarial risk and the dangers of evaluating against weak attacks.
arXiv preprint arXiv:1802.05666 (2018).

Apoorv Vyas, Nataraj Jammalamadaka, Xia Zhu, Dipankar Das, Bharat Kaul, and
Theodore L Willke. 2018. Out-of-distribution detection using an ensemble of self
supervised leave-out classifiers. In Proc. of ECCV. 550-564.

Xiaosen Wang and Kun He. 2021. Enhancing the transferability of adversarial
attacks through variance tuning. In Proc. of CVPR. 1924-1933.

Eric Wong, Leslie Rice, and J Zico Kolter. 2020. Fast is better than free: Revisiting
adversarial training. arXiv preprint arXiv:2001.03994 (2020).
Lei Wu, Zhanxing Zhu, Cheng Tai, and Weinan E. 2018.
and enhancing the transferability of adversarial examples.
arXiv:1802.09707 (2018).

Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren,
and Alan L Yuille. 2019. Improving transferability of adversarial examples with
input diversity. In Proc. of CVPR. 2730-2739.

Teng Xu, Gerard Goossen, Huseyin Kerem Cevabhir, Sara Khodeir, Yingyezhe Jin,
Frank Li, Shawn Shan, Sagar Patel, David Freeman, and Paul Pearce. 2021. Deep
entity classification: Abusive account detection for online social networks. In
Proc. of USENIX Security.

Understanding
arXiv preprint

[78] Huanrui Yang, Jingyang Zhang, Hongliang Dong, Nathan Inkawhich, Andrew

[79

[80

[81
[82

[83

[84
[85

[86

[87

]
]

]

]

]

Gardner, Andrew Touchet, Wesley Wilkes, Heath Berry, and Hai Li. 2020.
DVERGE: diversifying vulnerabilities for enhanced robust generation of ensem-
bles. Proc. of NeurIPS 33 (2020), 5505-5515.

Zhuolin Yang, Linyi Li, Xiaojun Xu, Shiliang Zuo, Qian Chen, Pan Zhou, Ben-
jamin Rubinstein, Ce Zhang, and Bo Li. 2021. TRS: Transferability Reduced
Ensemble via Promoting Gradient Diversity and Model Smoothness. Proc. of
NeurlIPS (2021).

Yuanshun Yao, Zhujun Xiao, Bolun Wang, Bimal Viswanath, Haitao Zheng, and
Ben Y. Zhao. 2017. Complexity vs. Performance: Empirical Analysis of Machine
Learning as a Service. In Proc. of IMC. London, UK.

YouTube 2011. https://www.cs.tau.ac.il/~wolf/ytfaces/. YouTube Faces DB.
Honggang Yu, Kaichen Yang, Teng Zhang, Yun-Yun Tsai, Tsung-Yi Ho, and Yier
Jin. 2020. CloudLeak: Large-Scale Deep Learning Models Stealing Through Ad-
versarial Examples. In Proc. of NDSS.

Xiaoyong Yuan, Leah Ding, Lan Zhang, Xiaolin Li, and Dapeng Oliver Wu. 2022.
ES attack: Model stealing against deep neural networks without data hurdles.
IEEE Trans. on ETCI (2022).

Valentina Zantedeschi, Maria-Irina Nicolae, and Ambrish Rawat. 2017. Efficient
defenses against adversarial attacks. In Proc. of AlSec.

Matthew D Zeiler. 2012. Adadelta: an adaptive learning rate method. arXiv
preprint arXiv:1212.5701 (2012).

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and
Michael Jordan. 2019. Theoretically principled trade-off between robustness and
accuracy. In Proc. of ICML. PMLR, 7472-7482.

Stephan Zheng, Yang Song, Thomas Leung, and Ian Goodfellow. 2016. Improving
the robustness of deep neural networks via stability training. In Proc. of CVPR.
Yan Zhou, Murat Kantarcioglu, and Bowei Xi. 2021. Exploring the Effect of Ran-
domness on Transferability of Adversarial Samples against Deep Neural Net-
works. IEEE Transactions on Dependable and Secure Computing (2021).

https://www.trustwave.com/en-us/resources/library/documents/2020-trustwave-global-security-report/.
https://www.trustwave.com/en-us/resources/library/documents/2020-trustwave-global-security-report/.
https://www.trustwave.com/en-us/resources/library/documents/2020-trustwave-global-security-report/.
https://www.cs.tau.ac.il/~wolf/ytfaces/

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Model Leakage
	2.2 Adversarial Example Attacks on DNNs
	2.3 Defenses Against Adversarial Examples

	3 Recovering From Model Breach
	3.1 Defining Post-breach Recovery
	3.2 Threat Model
	3.3 Design Requirements
	3.4 Potential Alternative: Disjoint Ensembles of Models

	4 Intuition of Our Recovery Design
	5 Recovery System Design
	5.1 High-level Overview
	5.2 Generating Model Versions
	5.3 Filtering Adversarial Examples

	6 Formal Analysis
	7 Evaluation
	7.1 Experimental Setup
	7.2 Model Breached Once
	7.3 Model Breached Multiple Times
	7.4 Comparison to Baselines

	8 Adaptive Attacks
	8.1 Reducing Overfitting
	8.2 Modifying breached Versions

	9 Limitations
	10 Conclusion
	References

