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We review recent experimental results indicating the band flattening and Landau level merging at the chem-
ical potential in strongly-correlated two-dimensional (2D) electron systems. In ultra-clean, strongly interact-
ing 2D electron system in SiGe/Si/SiGe quantum wells, the effective electron mass at the Fermi level
increases monotonically in the entire range of electron densities, while the energy-averaged mass saturates at
low densities. The qualitatively different behavior of the two masses reveals a precursor to the interaction-
induced single-particle spectrum flattening at the chemical potential in this electron system, in which case
the fermion “condensation” at the Fermi level occurs in a range of momenta, unlike the condensation of
bosons. In strong magnetic fields, perpendicular to the 2D electron layer, a similar effect of different fillings
of quantum levels at the chemical potential—the merging of the spin- and valley-split Landau levels at the
chemical potential—is observed in Si inversion layers and bilayer 2D electron system in GaAs. Indication of
merging of the quantum levels of composite fermions with different valley indices is also reported in ultra-
clean SiGe/Si/SiGe quantum wells.
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1. INTRODUCTION

In a non-interacting fermion system with a contin-
uous spectrum, the occupation probability for a quan-
tum state at fixed chemical potential and temperature
is a function of the single-particle energy only [1]. If
the temperature tends to zero, the energy interval sep-
arating the filled and empty quantum states also tends
to zero. For free particles, there appears a Fermi sur-
face in momentum space with dimensionality ,
where d is the dimensionality of the fermions.

In general, this reasoning is not true for interacting
fermions [2–8]. In this case the single-particle energy
depends on electron distributions, and the occupation
numbers of quantum states at the chemical potential
can be different, falling within the range between zero
and one. A topological phase transition has been pre-
dicted at  in strongly correlated Fermi systems
that is related to the emergence of a f lat portion of the
single-particle spectrum at the chemical potential as
the strength of fermion–fermion interaction is
increased (the top inset of Fig. 1). This transition is
associated with the band flattening or swelling of the
Fermi surface in momentum space, which is preceded
by an increasing quasiparticle effective mass  at the

Fermi level that diverges at the quantum critical point.
The creation and investigation of f lat-band materials
is currently a forefront area of modern physics [9–12].
The interest is ignited, in particular, by the fact that,
due to the anomalous density of states, the f lattening
of the band may be important for the construction of
room temperature superconductivity. The appearance
of a f lat band is theoretically predicted [13–15] in a
number of systems, including heavy fermions, high-
temperature superconducting materials, 3He, and
two-dimensional electron systems.

The role of electron–electron interactions in the
behavior of two-dimensional electron systems
increases as the electron density is decreased. The
interaction strength is characterized by the Wigner–
Seitz radius,  (here  is the electron
density and  is the effective Bohr radius in semicon-
ductor), which in the single-valley case is equal to the
ratio of the Coulomb and kinetic energies.

It has been experimentally shown that with
decreasing electron density (or increasing interaction
strength) in ultraclean SiGe/Si/SiGe quantum wells,
the mass at the Fermi level increases monotonically in
the entire range of electron densities [16]. In contrast,
the energy-averaged mass saturates at low densities.
The qualitatively different behavior of the two masses† Deceased.

− 1d

= 0T

Fm

π 1/2
B= 1/( )s sr n a sn

Ba
156



BAND FLATTENING AND LANDAU LEVEL MERGING 157

Fig. 1. (Color online) Product of the Landé factor and
effective electron mass in SiGe/Si/SiGe quantum wells as
a function of electron density determined by measure-
ments of the field of full spin polarization (squares) and
Shubnikov–de Haas oscillations (circles) at  mK.
The empty and filled symbols correspond to two samples.
The experimental uncertainty corresponds to the data dis-
persion and is about 2% for the squares and about 4% for
the circles (  and  are the values for
noninteracting electrons). The top inset shows schemati-
cally the single-particle spectrum of the electron system in
a state preceding the band flattening at the Fermi level
(solid black line). The dashed violet line corresponds to an
ordinary parabolic spectrum. The occupied electron states
at  are indicated by the shaded area. Bottom inset:
the effective mass  versus electron density determined
by analysis of the temperature dependence of the ampli-
tude of Shubnikov–de Haas oscillations, similar to [38].
The dashed line is a guide to the eye. From [16].
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reveals a precursor to the interaction-induced single-
particle spectrum flattening at the Fermi level in this
electron system.

For an interacting fermion system placed in strong
perpendicular magnetic fields, one expects a similar
effect of different fillings of quantum levels at the
chemical potential. Given the energies of two quan-
tum levels intersect each other when varying an exter-
nal parameter, these can be the same as the chemical
potential over a range of parameter values; i.e., the lev-
els can merge at the chemical potential over this range
[17]. The level merging implies that there is an attrac-
tion between two partially-filled quantum levels. The
merging interval is determined by the possibility of
redistributing quasiparticles between the levels. The
effect of merging is in contrast to a simple crossing of
quantum levels at some electron density/magnetic
field value. Experimentally, such merging of Landau
levels has been detected in Si metal–oxide–semicon-
ductor field-effect transistors (MOSFETs) [18] and
GaAs-based bilayer structures [19]. Furthermore, in
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ultra-clean SiGe/Si/SiGe quantum wells, an indica-
tion of merging of the composite fermion levels with
different valley indices has been reported [20]. Below
we review pertaining recent experimental data.

2. BAND FLATTENING AT THE FERMI LEVEL

We start with an indication of band flattening at the
Fermi level reported in [16]. Raw experimental data
obtained in strongly correlated 2D electron systems
can be divided into two groups: (i) data describing the
electron system as a whole, like the magnetic field
required to fully polarize electron spins, the thermo-
dynamic density of states, or magnetization of the
electron system, and (ii) data related solely to the elec-
trons at the Fermi level, like the amplitude of the
Shubnikov–de Haas oscillations yielding the effective
mass  and Landé g-factor  at the Fermi level. As
a rule, the data in the first group are interpreted using
the quasiparticle language in which the energy-aver-
aged values of effective mass, m, and Landé g-factor,
g, are used. To determine the values, the formulas that
hold for the case of non-interacting electrons are
employed. Although this approach is ideologically
incorrect, the results for m and g often turn out to be
the same as the results for  and . Particularly, in a
2D electron system in Si MOSFETs, simultaneous
increase in the energy-averaged effective mass and
that at the Fermi level was reported in earlier publica-
tions [21–27]; it was found that the effective mass is
strongly enhanced at low densities while the g-factor
stays close to its value in bulk silicon, which did not
confirm the occurrence of the Stoner instability in a
2D electron system in silicon. The mass renormaliza-
tion is independent of disorder, being determined by
electron–electron interactions only [28]. The strongly
enhanced effective mass in Si MOSFETs was inter-
preted in favor of the formation of the Wigner crystal
or a preceding intermediate phase whose origin and
existence can depend on the level of disorder in the
electron system.

The experimental results reported in this section
were obtained in ultra-low-disordered (001)
SiGe/Si/SiGe quantum wells described in detail in
[29, 30]. The maximum electron mobility in these
samples reached 240 m2/(V s), which is the highest
mobility reported for this electron system and is some
two orders of magnitude higher than the maximum
electron mobility in the least disordered Si MOSFETs.
The parallel-field magnetoresistance (i.e., magnetore-
sistance measured in the configuration where the
magnetic field is parallel to the 2D plane) allows one
to determine the field of the full spin polarization, ,
that corresponds to a distinct “knee” of the experi-
mental dependences followed by the saturation of the
resistance [31, 32] (see the bottom inset of Fig. 2). The
magnetic field where the spin polarization becomes
complete is plotted as a function of electron density in
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Fig. 2. (Color online) Field of the complete spin polariza-
tion versus electron density at a temperature of 30 mK for
two SiGe/Si/SiGe samples (circles and squares). The
dashed black line is a linear fit to the high-density data
which extrapolates to zero at  1015 m–2. The
solid red line corresponds to the calculation [33] for the
clean limit. Top inset: the low density region of the main
figure on an expanded scale. Also shown by the dotted red
line is the calculation [33] taking into account the electron
scattering. Bottom inset: the parallel-field magnetore-
sistance at a temperature of 30 mK at different electron
densities indicated in units of 1015 m–2. The polarization
field  determined by the crossing of the tangents is
marked by arrows. From [16].
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Fig. 2 for two samples. Over the electron density range
0.7 × 1015 m–2 < ns < 2 × 1015 m–2, the data are
described well by a linear dependence that extrapo-
lates to zero at  m–2 (dashed black
line). However, at lower electron densities down to

 m–2 (up to ), the experimental
dependence  deviates from the straight line and
linearly extrapolates to the origin.

The solid red line in Fig. 2 shows the polarization
field  calculated using the quantum Monte
Carlo method [33]. The experimental results are in
good agreement with the theoretical calculations for
the clean limit  (here  is the Fermi wavevec-
tor and l is the mean free path), assuming that the
Landé g-factor, renormalized by electron–electron
interactions, is equal to 2.4. Although in [33] Landé
g-factor was equal to 2, the reason for the 20% discrep-
ancy between the theory and experiment may be due
to the finite size of the electron wavefunction in the
direction perpendicular to the interface. Besides, the
product  decreases with decreasing electron den-
sity, which leads to a downward deviation in the theo-
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retical dependence, as shown by the dotted red line in
the upper inset of Fig. 2.

To check whether or not the residual disorder
affects the results for the magnetic field of complete
spin polarization, we compare our data with those pre-
viously obtained on Si/SiGe samples with electron
mobility an order of magnitude lower than that in our
samples [34]. At high electron densities, the depen-
dence  in [34] is also linear and extrapolates to
zero at a finite density. Furthermore, the slope of the
dependence is equal to 6 × 10–15 T m2 and is close to
the slope 5.4 × 10–15 T m2 observed in our experiment.
However, the offset of approximately 0.3 × 1015 m–2 in
[34] is appreciably higher than that in our case. There-
fore, the behavior of the polarization field  is
affected by the disorder potential in agreement with
[33, 35]. Good agreement between our experimental
data for  and the calculations for the clean limit [33]
provides evidence that the electron properties of our
samples are only weakly sensitive to the residual disor-
der, and the clean limit has been reached in our sam-
ples.

The product  that characterizes the whole
2D electron system can be determined in the clean
limit from the equality of the Zeeman splitting and the
Fermi energy of a completely spin-polarized electron
system

(1)

where  is the valley degeneracy and  is the
Bohr magneton.

On the other hand, the Landé g-factor  and
effective mass  at the Fermi level can be determined
by the analysis of the Shubnikov–de Haas oscillations
in relatively weak magnetic fields, as it was done in
[16]:

(2)

where  is the Dingle temperature, T is the tempera-
ture,  is the free electron mass,  is the cyclotron
splitting,  is the Zeeman splitting, and  is the val-
ley splitting. It is clear from Eq. (2) that as long as one
sets  in the range of magnetic fields studied, the
fitting parameters are , , and  [36]. The
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Fig. 3. (Color online) Fits of the normalized magnetoresis-
tance  in a SiGe/Si/SiGe quantum well at a tem-
perature of ≈30 mK (circles) using Eq. (2) with (a)

,  K, , and
% and (b) ,  K,

, and %. The filling factors
 at minima are indicated. Inset: the asym-

metry coefficient  [36] that describes the slightly different

Dingle temperatures  for two spin sub-
bands versus electron density for two samples. The Dingle
temperature for energetically favorable spin direction is
smaller over the range of electron densities 0.6 × 1015 m–2 <
ns < 2 × 1015 m–2, whereas at lower densities the quantity
γ changes sign. From [16].
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values  and  are obtained in the temperature
range where the spin splitting is insignificant. Being
weakly sensitive to these two fitting parameters, the
shape of the fits at the lowest temperatures turns out to
be very sensitive to the product . The quality of
the fits is demonstrated in Fig. 3. The magnetoresis-
tance  normalized by  (where  is
the monotonic change of the dissipative resistivity
with magnetic field) is described well using Eq. (2).

The main result shown in Fig. 1 is that the products
of the average  and  at the Fermi level behave
similarly at high electron densities, where electron-
electron interactions are relatively weak, but differ at
low densities, where the interactions become espe-
cially strong [37]. The product  increases mono-
tonically as the electron density is decreased in the
entire range of electron densities, while the product

 saturates at low . We emphasize that it is the
qualitative difference in the behaviors of the two sets of
data that matters, rather than a comparison of the
absolute values. Taking into account the negligibility
of the exchange effects in the 2D electron system in
silicon [21, 22], this difference can only be attributed
to the different behaviors of the two effective masses.
Their qualitatively different behavior indicates the
interaction-induced band f lattening at the Fermi level
in this electron system. To add confidence in our
results and conclusions, we show in bottom inset in
Fig. 1 the data for the effective mass  determined by
the analysis of the temperature dependence of the
amplitude of Shubnikov–de Haas oscillations, similar
to [38]. The similar behavior of  and  with
electron density allows one to exclude any possible
influence of the g-factor on the behavior of the prod-
uct of the effective mass and g-factor, which is consis-
tent with the previously obtained results for the
2D electron system in silicon.

The experimental results are naturally interpreted
within the concept of the fermion condensation [2, 4,
8] that occurs at the Fermi level in a range of
momenta, unlike the condensation of bosons. With
increasing strength of electron-electron interactions,
the single-particle spectrum flattens in a region 
near the Fermi momentum  (top inset of Fig. 1). At
relatively high electron densities  m−2,
this effect is not important since the single-particle
spectrum does not change noticeably in the interval

 and the behaviors of the energy-averaged effective
mass and that at the Fermi level are practically the
same. Decreasing the electron density in the range

 m−2 gives rise to the f lattening of the
spectrum so that the effective mass at the Fermi level,

, continues to increase (here  is the
Fermi velocity). In contrast, the energy-averaged
effective mass does not, being not particularly sensi-
tive to this f lattening. In the critical region, where the
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effective mass at the Fermi level tends to diverge,  is
expected to be temperature dependent. A weak
decrease in the value  with temperature is indeed
observed at the lowest-density point in Fig. 1. In the
critical region, the increase in  is restricted by
the limiting value determined by temperature:

. In our experiments, the increase in
 reaches a factor of about 2 at  m−2

and  mK, which allows one to estimate the ratio
. It is the smallness of the interval 

that provides good agreement between the calculation
[33] and our experiment.
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It is worth noting that the effective mass at the
Fermi level tends to diverge at a density  higher than
the critical electron density  of the metal–insulator
transition, revealing the qualitative difference between
the ultralow-disorder SiGe/Si/SiGe quantum wells
and the least-disordered Si MOSFETs where the
opposite relation  is found [39]. This indicates
that these two densities are not directly related, and
the fermion condensation and metal–insulator transi-
tion are two different transitions.

3. MERGING OF LANDAU LEVELS
IN A STRONGLY-INTERACTING

TWO-DIMENSIONAL ELECTRON SYSTEM

Another example of a nontrivial manifestation of
fermion interactions in strongly correlated Fermi liq-
uids is the merging of quantum levels in a Fermi sys-
tem with a discrete spectrum, in which case the fillings
of the two quantum levels at the chemical potential are
different [18].

Application of the perpendicular magnetic field B
on a homogeneous 2D electron system creates two
subsystems of Landau levels numbered i and distin-
guished by ± projections of the electron spin on the
field direction. The energy levels  in each set are
spaced by the cyclotron splitting , and
the two sets of the Landau levels are shifted with
respect to each other by the spin splitting ,
where m* and g are the values of mass and Landé g-
factor renormalized by electron interactions (for sim-
plicity, the valley degeneracy is so far neglected). The
Landau levels with opposite spin directions should
intersect with changing electron density, as caused by
the strong dependence of the effective mass on , pro-
vided the g-factor depends weakly on . In particular,
at high electron densities, the cyclotron splitting usu-
ally exceeds the spin splitting, whereas at low densities,
the opposite case  should occur due to the
sharply increasing mass.

Both the thermodynamic and kinetic properties of
the electron system are determined by the position of
the chemical potential relative to the quantum levels,
which is in turn determined by the magnetic field and
electron density. The filling factor is equal to

, where  is the level degeneracy.
When ν is fractional, the chemical potential is pinned
to the partially filled quantum level. The probability of
finding an electron at the chemical potential is given
by the fractional part of the filling factor and can be
varied between zero and one. At the integer filling fac-
tor, there is a jump of the chemical potential. In an
experiment, the jump manifests itself as a minimum in
the longitudinal electrical resistance. The resistance
minima in the  plane correspond to a Landau
level fan chart.

mn
cn

≥c mn n

±εi

ω� �= / *c eB m c

Δ μZ B= g B

sn
sn

ω Δ� Z<c

ν 0= /sn n =0 /n eB hc

( , )sB n
Provided that the external magnetic field is fixed
and many quantum levels are occupied, the variation
of the electron density in a quantum level is small
compared to . The variation of the energy  is eval-
uated using the Landau relation

(3)

where  is the electron–electron interaction ampli-
tude that is a phenomenological ingredient of the
Fermi liquid theory [1]. Selecting the magnetic field at
which the difference between the neighboring Landau
levels  and 

(4)

zeros at the filling factor , one
starts from the higher density where both levels 
and  are completely filled at , the dif-
ference  being negative. Removing the electrons
from the level  implies that the electron density
decreases and D increases. The level crossing occurs at

; i.e., the level  becomes empty and the
level  is completely filled, under the condition

.
In the opposite case

(5)
the single-particle levels attract to each other and
merge at the chemical potential μ, as described by the
merging equation . Both levels exhibit
partial occupation with fractions of empty states

 and  that obey the normalization
condition . The merging starts
when the empty states appear in the level  and ends
when this level is completely emptied. This corre-
sponds to the increase in the fraction of empty states 
in the range between  (or ) and f =

. Outside the merging
region, the conventional Landau level diagram is real-
ized. Note that the gap between the neighboring Lan-
dau levels  and  proves to be invisible in transport
and thermodynamic experiments. The upper bound-
ary of the merging region  can be written

(6)
The electron system in (100) Si MOSFETs is char-

acterized by the presence of two valleys in the spec-
trum so that each energy level  is split into two levels,
as shown schematically in Fig. 4. One can easily see
that the valley splitting  promotes the merging of
quantum levels. The bigger the valley splitting, the
higher the electron density at which the levels 
and  with different valley indices should merge at
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Fig. 4. (Color online) Schematic diagram of merging of the
spin- and valley-split Landau levels at the chemical poten-
tial. The occupied levels are indicated by circles. The fill-
ings of the two quantum levels at the chemical potential
vary with changing electron density. From [18].

v

Fig. 5. (Color online) Positions of the Shubnikov–de Haas
oscillation minima in a Si MOSFET sample in the ( )
plane (squares) and the expected positions of the cyclotron
and spin minima calculated according to the formula

 (solid lines). The position of the metal–
insulator transition in  is indicated. The calculated
merging boundary  is shown by the solid blue line if
one uses Eq. ((7)) and the dotted violet line if one takes
into account nonlinear (cubic) corrections to the spectrum
near the Fermi surface. From [18].

, sB n

ν= /sn eB hc
= 0B

( )mn B
the chemical potential at filling factor . The
upper boundary of the merging region  is deter-
mined by the relation

(7)

that is different from Eq. (6) by the presence of the val-
ley splitting. Since the electron density distributions
corresponding to two valleys are spaced by distance α
in the direction perpendicular to the Si–SiO2 inter-
face, the intervalley charge transfer creates an incre-
mental electric field leading to , where
κ is the dielectric constant.  determines the
strength of the merging effect, and the lower boundary
of the merging region of the neighboring Landau levels
is given by the expression .

In the high-density limit, where the effects of elec-
tron–electron interactions are negligible, the effective
mass and g factor are equal to  and 
so that the cyclotron splitting significantly exceeds the
spin splitting. At low electron densities, where the
interaction effects are strong, the effective mass 
is found to diverge as  at the
quantum critical point close to the metal–insulator
transition which occurs at  cm–2, while
the g-factor stays close to , being equal to 
[21, 22, 24, 25]. The Landau level fan diagram for this
electron system in perpendicular magnetic fields is
represented in Fig. 5. The quantum oscillation min-
ima at filling factor  disappear below some
electron density n* depending on ν, while the minima
at  persist down to appreciably lower densi-
ties. Although this behavior is consistent with the
sharp increase in the effective mass with decreasing ,
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the dependence of the density n* on the filling factor
(or B) turns out to be anomalously strong and lacks
explanation. Particularly, this cannot be accounted for
by the impurity broadening of quantum levels in terms
of  (where τ is the elastic scattering time) in
which case the drop of mobility  at low electron
densities is controlled by the increasing mass [24].

The expected upper boundary of the merging
region , shown by the solid blue line in Fig. 5,
has been determined in [18]. The calculated boundary
is in agreement with the experimental density  at
which the oscillation minima at  vanish.
This fact gives evidence for the level merging in a 2D
electron system in silicon.

The description of the high-field data 
improves within the merging picture if one takes into
account nonlinear (cubic) corrections to the spectrum
at the Fermi surface near the quantum critical point
that naturally lead to a decrease in the effective mass
with the magnetic field. The corrected dependence

 is shown by the dotted violet line in Fig. 5; for
more on this, see [18].

ω τ 1c ∼
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Fig. 6. (Color online) Landau level fan chart for the
AlGaAs double quantum well studied in [19]. Positions of
the longitudinal resistance minima in the  plane are
marked by the circles. The filling factor ν for the double
layer electron system as well as the filling factor  ( ) for
the back (front) layer are indicated. Over the shaded areas,
the merging of quantum levels in perpendicular magnetic
fields is impossible. In the regions marked by the ovals, no
resistance minima are observed in a perpendicular mag-
netic field, whereas these appear in a tilted magnetic field.
From [19].

g

ν 1

ν 1

ν2

ν2

ν

ν

( , )gB V

ν1 ν2
4. INTERACTION-INDUCED MERGING
OF LANDAU LEVELS IN AN ELECTRON 
SYSTEM OF DOUBLE QUANTUM WELLS

The spectrum of a two-dimensional electron sys-
tem subjected to a perpendicular magnetic field con-
sists of two equidistant ladders of quantum levels for
the spin up and down directions, as considered in the
preceding section. If the magnetic field is tilted by an
angle , the spacing between the quantum levels in
each of the spin ladders is equal to 

, and the shift between the ladders
equals . Increasing the tilt angle leads to the
crossing of the quantum levels of the two ladders. The
crossing happens for the first time at an angle  that
satisfies the condition . At ,
the chemical potential jumps at even filling factors and
the corresponding fan chart lines should disappear. If
one takes into account the interaction between the
electrons of neighboring quantum levels and increases
the tilt angle in the vicinity of , then, tentatively, the
quantum level filled before crossing should have got
emptied with increasing . However, suppose the sin-
gle-particle energy of electrons on the emptying level
decreases due to the electron interaction. In that case,
both levels remain pinned to the chemical potential
over a wide range of angles  that is determined by
the interaction strength. The probability of finding an
electron at the chemical potential is different for
opposite spin orientations, depending on the external
parameter, the tilt angle. Such a behavior corresponds
to the merging of quantum levels.

In the above hypothetical consideration, the cross-
ing or merging of quantum levels is controlled by the
tilt angle of the magnetic field. In the experiments on
a strongly-interacting 2D electron system in (100) Si
MOSFETs, the disappearance of the longitudinal
resistance minima is analyzed when changing both the
perpendicular magnetic field and electron density at
fixed filling factor , where i is an integer. In
this case, the level merging occurs near the quantum
critical point, as controlled by the effective mass
depending on electron density [18]. One might think
that the level merging is a precursor of the Fermi sur-
face swelling. In fact, the two effects are not necessar-
ily related to each other. Below it is demonstrated that
the effect of level merging occurs in a bilayer 2D elec-
tron system with a tunnel barrier between the electron
layers [19]. Note that the effective mass enhancement
is insignificant in this case.

The sample used in this section is a parabolic quan-
tum well with a narrow tunnel barrier grown on a
GaAs substrate (for a detailed description, see [19]).
Applying a voltage  between the gate and the contact
to the quantum well makes it possible to tune the elec-
tron density. The electrons appear in the back part of
the quantum well when the gate voltage is above

β
ω� =c

β� cos( )/ *eB m c
μBg B

β1

β1cos( ) = */2 egm m β β1=

β1

β

Δβ1

ν += 4( 1)i

gV
 V and occupy one subband up to Vg =
 V (Fig. 6). At , the electrons

appear in the front part of the well and fill the second
subband up to the balance point .

We focus on the range of gate voltages between 
and  where the electrons in perpendicular mag-
netic fields occupy the two quantum ladders. Positions
of the quantum levels are determined by the magnetic
field and gate voltage. Over the shaded areas in Fig. 6,
the gaps in the single-particle spectrum and the chem-
ical potential jumps are protected by quantum effects
[40]. In the remaining areas, the merging of quantum
levels is, in principle, possible.

Below, the filling factor  is considered. At
, the magnetic field is equal to Bν =

, where  is the electron density in
the back layer. The energy  of the spin up
level of the front layer ladder is the same as the energy

 of the spin up level of the back layer lad-
der (Fig. 7a). Since far from the balance point, the
electron density in the back layer remains practically
unchanged with increasing  above  (see, e.g.,
Fig. 6b in [41]), the electron density in the front layer
in a magnetic field  along the dashed line
at  restricted by the oval in Fig. 6 is equal to

≈ −th1 0.7V
≈ −th2 0.3V th2>gV V

≈balance= 0gV V

th2V
balanceV

ν = 3
th2=gV V

1 th2( ) /3n V hc e 1 th2( )n V
νε − μ0 B /2g B
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ν + Δ=B B B
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Fig. 7. (Color online) (a) Layout and filling of the quan-
tum levels in the bilayer electron system in the merging
regime at filling factor . (b) Distribution function of
the electrons in the merging regime at . From [19].

ν = 3
ν = 3
. To balance the change in the
cyclotron energy  and have both levels
pinned to the chemical potential , it is necessary to
transfer a small number of electrons between the levels

(8)
which gives rise to a shift of the single-particle levels

(9)

where  is the electron interaction amplitude, the
index b( f ) refers to the back (front) layer, and 
is the Landau level number. Both levels are pinned to
the chemical potential under the condition

, which yields

(10)

where . In the parallel-plate-
capacitor approximation, one gets

(11)

where a is the distance between the weight centers of
the electron density distributions in the z direction in
both subbands. The level merging holds for the filling
factor

(12)

We stress that in the wide range of magnetic fields
at fixed filling factor ν, the probability of finding an
electron with energy equal to the chemical potential is
different for the two merged levels, as shown in Fig. 7b.

Although the case of filling factor  has been
considered above for simplicity, the same arguments
are also valid for higher filling factors.

The occurrence of the merging of quantum levels
in the experiment is confirmed by using tilted mag-
netic fields. With tilting magnetic field, the magneto-
resistance minima and chemical potential jumps arise
[42] particularly along the dashed lines at  and

 indicated by the ovals in Fig. 6. The appearance
of the chemical potential jumps in the double layer
electron system in tilted magnetic fields signals that
the quantum levels are narrow enough.

As has been mentioned above, the chemical poten-
tial jumps can be protected by quantum effects. In
general, a transfer of electrons between the quantum
levels of different subbands leads to mixing the wave-
functions of the subbands and opening an energy gap
if the non-diagonal matrix elements are not equal to
zero [40]. This is realized over the shaded areas in
Fig. 6. In contrast, in the merging regions at  and

 indicated by the ovals in Fig. 6, the non-diago-
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nal matrix elements in perpendicular magnetic fields
are equal to zero because of the orthogonality of the
in-plane part of the wavefunctions in the bilayer elec-
tron system. Tilting the magnetic field breaks the
orthogonality of the wavefunctions of the neighboring
quantum levels, and the energy gap emerges [42, 43].

5. MERGING OF THE QUANTUM LEVELS
OF COMPOSITE FERMIONS

Finally, we consider an indication of merging of the
quantum levels of composite fermions with different
valley indices [20]. The concept of composite fermi-
ons [44–48] can successfully describe the fractional
quantum Hall effect with odd denominators by reduc-
ing it to the ordinary integer quantum Hall effect for
composite particles. In the simplest case, the compos-
ite fermion consists of an electron and two magnetic
flux quanta and moves in an effective magnetic field
B* given by the difference between the external mag-
netic field B and the field corresponding to the filling
factor for electrons, equal to . The filling factorν = 1/2
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Fig. 8. (Color online) Magnetoresistance in a
SiGe/Si/SiGe quantum well at  K (a) in perpen-
dicular magnetic fields at electron densities (from top to
bottom) 2.14, 2.81, 3.48, 3.81, 4.15, 4.82, 5.49, 6.15, 6.82,
and 7.49 × 1010 cm–2, and (b) in tilted magnetic fields at
electron densities (from top to bottom) 2.14, 2.81, 3.48,
4.15, 4.48, 4.82, 5.49, 6.15, 6.82, 7.49, 8.16, and 8.83 ×
1010 cm–2. Curves are vertically shifted by 750  for clar-
ity. Dashed vertical lines mark the expected positions of
the observed minima of the resistance, and solid vertical
lines correspond to the minima that are expected, but not
observed at low densities. From [20].

ν

ν

ν

≈ 0.03T

Ω

for composite fermions, p, is connected to ν according
to the expression . The fractional
energy gap, which is predicted to be determined by the
Coulomb interaction in the form , corresponds
to the cyclotron energy of composite fermions

, where  is the mag-
netic length and  is the effective composite fer-
mion mass. The electron-electron interactions enter
the theory [44–48] implicitly because a mean-field
approximation is employed, assuming that the elec-
tron density f luctuations are small. The theory is con-
firmed by the experimental observation of a scale cor-
responding to the Fermi momentum of composite fer-
mions in zero effective magnetic field at .

Samples studied in this section are ultraclean two-
valley (001) SiGe/Si/SiGe quantum wells similar to
those described in [29, 30]. The longitudinal resistivity

 as a function of the inverse filling factor is shown
for different electron densities in Fig. 8a. The resis-
tance minima are seen at composite fermion quantum
numbers , 2, 3, 4, and 6 near  in positive
and negative effective fields B*, revealing the high
quality of the sample. The high quality of the quantum
well is also confirmed by the presence of the 
and  fractions [49], corresponding to

, which can be described in terms of the sec-
ond generation of composite fermions. The minima at

 disappear below a certain electron density,
although the surrounding minima at  and 
persist to significantly lower densities. Clearly, the
prominence of the minima at  at low electron
densities cannot be explained by level broadening. On
the other hand, this finding is strikingly similar to the
effect of the disappearance of the cyclotron minima in
the magnetoresistance at low electron densities in Si
MOSFETs while the spin minima survive down to
appreciably lower densities [50], which signifies that
the cyclotron splitting becomes equal to the sum of the
spin and valley splittings, and the corresponding valley
sublevels merge [18].

Measurements in tilted magnetic fields allow one
to distinguish between the spin and valley origin of the
effect. The magnetoresistance as a function of the
inverse filling factor is shown for the tilt angle 
at different electron densities in Fig. 8b. Here, we
focus on the resistance minimum at . The
behavior observed for the  minimum is very
similar to that in perpendicular magnetic fields, which
holds for all samples and tilt angles. One determines
the onset  for the  minimum and plots it ver-
sus the tilt angle, as shown in Fig. 9b. The value 
turns out to be independent, within the experimental
uncertainty, of the tilt angle of the magnetic field.
Since the spin splitting is determined by total magnetic
field, , one expects that the onset 

ν ±= /(2 1)p p

κ2
B/e l

ω� � CF* = */c eB m c �
1/2

B = ( / )l c eB
CFm

ν = 1/2
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= 3p
= 2p = 4p
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Θ ≈ °61

ν = 3/5
ν = 3/5

*sn ν = 3/5
*sn

Δ μB tot=s g B *sn
should decrease with the tilt angle (the inset of
Fig. 9b), which is in contradiction with the experi-
ment. We conclude that the spin origin of the effect
can be excluded, revealing its valley origin. The valley
splitting  is expected to be insensitive to the parallel
component of the magnetic field [51] so that the value

 should be independent of the tilt angle, which is
consistent with the experiment. Thus, these results
indicate the intersection or merging of the quantum
levels of composite fermions with different valley indi-
ces, which reveals the valley effect on the fractions.

Δ
v

*sn
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Fig. 9. (Color online) (a) Schematic behavior of the com-
posite fermion levels taking account of the splitting
between upper (dashed lines) and lower (solid lines) valleys
with changing magnetic field B at fixed p. In the region of
interest at , indicated by the circle, there occurs
either a simple crossing of the levels or merging/locking of
the levels accompanied with a gradual change in the fill-
ings of both levels. (b) Onset density  of the resistance
minimum at  in a SiGe/Si/SiGe quantum well as a
function of the tilt angle. The dashed horizontal line is a fit
to the data. The inset schematically (up to a numerical fac-
tor) shows the cyclotron energy of composite fermions (the
solid line) and the Zeeman energy (the dash-dotted line)
as a function of the magnetic field B at a fixed tilt angle.
The slope of the straight line increases with Θ. From [20].

B

(deg)

B

B

= 3p

*sn
ν = 3/5
It is clear that for the occurrence of the crossing or
merging of the levels of composite fermions with dif-
ferent valley indices, the functional dependences of
both splittings on magnetic field (or electron density)
at fixed p should be different. Indeed, the cyclotron
energy of composite fermions  is determined by
the Coulomb interaction energy , and the valley
splitting  in a 2D electron system in Si changes lin-
early with changing magnetic field (or electron den-
sity) [52]. In high magnetic fields, the valley splitting
strongly exceeds the cyclotron energy of composite
fermions so that for the case of , all three filled
levels of composite fermions belong to the same valley

ω� *c
κ2

B/e l
Δ

v

= 3p
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(Fig. 9a). As the magnetic field is decreased at fixed p,
the lowest level with the opposite valley index should
become coincident with the top filled level, leading to
the vanishing of the energy gap and the disappearance
of the resistance minimum at . With a further
decrease in the magnetic field there should occur
either a simple crossing of the levels and reappearance
of the gap or merging/locking of the levels accompa-
nied by a gradual change in the fillings of both levels
[18]. In analogy with Si MOSFETs, it is very likely that
the merging of the composite fermion levels with dif-
ferent valley indices occurs in ultra-low-disorder
SiGe/Si/SiGe quantum wells.

6. CONCLUSIONS
In conclusion, we have reviewed recent experimen-

tal results pointing to the band f lattening and Landau
level merging at the chemical potential in strongly cor-
related 2D electron systems. It is shown that the occu-
pation numbers of quantum states at the chemical
potential can be different within the range between
zero and one, which reveals the non-Fermi-liquid
form of the distribution function.

FUNDING

The authors from the Institute of Solid State Physics
were supported by the RF State task.  S.V. Kravchenko was
supported by the U.S. National Science Foundation, grant
no. 1904024.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES
1. L. D. Landau and E. M. Lifshitz, Course of Theoretical

Physics, Vol. 9: Statistical Physics, Part 2 (Pergamon,
Oxford, 1980; Nauka, Moscow, 1978).

2. V. A. Khodel and V. R. Shaginyan, JETP Lett. 51, 553
(1990).

3. G. E. Volovik, JETP Lett. 53, 222 (1991).
4. P. Nozières, J. Phys. I (Fr.) 2, 443 (1992).
5. V. A. Khodel, J. W. Clark, and M. V. Zverev, Phys. Rev.

B 78, 075120 (2008).
6. V. R. Shaginyan, M. Y. Amusia, A. Z. Msezane, and

K. G. Popov, Phys. Rep. 492, 31 (2010).
7. J. Clark, M. Zverev, and V. Khodel, Ann. Phys. 327,

3063 (2012).
8. M. V. Zverev, V. A. Khodel, and S. S. Pankratov, JETP

Lett. 96, 192 (2012).
9. T. T. Heikkila, N. B. Kopnin, and G. E. Volovik, JETP

Lett. 94, 233 (2011).
10. Novel Superfluids, Ed. by K. Bennemann and J. Ketter-

son (Oxford Univ. Press, Oxford, 2013).
11. S. Peotta and P. Torma, Nat. Commun. 6, 8944 (2015).
12. G. E. Volovik, Phys. Scr. T 164, 014014 (2015).

= 3p



166 DOLGOPOLOV et al.
13. M. Amusia, K. Popov, V. Shaginyan, and W. Stefano-
wicz, Theory of Heavy-Fermion Compounds (Springer
Int., New York, 2015).

14. A. Camjayi, K. Haule, V. Dobrosavljević, and G. Kot-
liar, Nat. Phys. 4, 932 (2008).

15. D. Yudin, D. Hirschmeier, H. Hafermann, O. Eriks-
son, A. I. Lichtenstein, and M. I. Katsnelson, Phys.
Rev. Lett. 112, 070403 (2014).

16. M. Y. Melnikov, A. A. Shashkin, V. T. Dolgopolov,
S.-H. Huang, C. W. Liu, and S. V. Kravchenko, Sci.
Rep. 7, 14539 (2017).

17. V. A. Khodel, J. W. Clark, H. Li, and M. V. Zverev,
Phys. Rev. Lett. 98, 216404 (2007).

18. A. A. Shashkin, V. T. Dolgopolov, J. W. Clark,
V. R. Shaginyan, M. V. Zverev, and V. A. Khodel, Phys.
Rev. Lett. 112, 186402 (2014).

19. A. A. Shashkin, V. T. Dolgopolov, J. W. Clark, V. R. Sha-
ginyan, M. V. Zverev, and V. A. Khodel, JETP Lett.
102, 36 (2015).

20. V. T. Dolgopolov, M. Y. Melnikov, A. A. Shashkin,
S.-H. Huang, C. W. Liu, and S. V. Kravchenko, Phys.
Rev. B 103, L161302 (2021).

21. S. V. Kravchenko and M. P. Sarachik, Rep. Prog. Phys.
67, 1 (2004).

22. A. A. Shashkin, Phys. Usp. 48, 129 (2005).
23. V. M. Pudalov, Phys. Usp. 49, 203 (2006).
24. A. A. Shashkin, S. V. Kravchenko, V. T. Dolgopolov,

and T. M. Klapwijk, Phys. Rev. B 66, 073303 (2002).
25. A. Mokashi, S. Li, B. Wen, S. V. Kravchenko,

A. A. Shashkin, V. T. Dolgopolov, and M. P. Sarachik,
Phys. Rev. Lett. 109, 096405 (2012).

26. V. T. Dolgopolov, JETP Lett. 101, 282 (2015).
27. A. Y. Kuntsevich, Y. V. Tupikov, V. M. Pudalov, and

I. S. Burmistrov, Nat. Commun. 6, 7298 (2015).
28. A. A. Shashkin, A. A. Kapustin, E. V. Deviatov,

V. T. Dolgopolov, and Z. D. Kvon, Phys. Rev. B 76,
241302 (2007).

29. M. Y. Melnikov, A. A. Shashkin, V. T. Dolgopolov,
S.-H. Huang, C. W. Liu, and S. V. Kravchenko, Appl.
Phys. Lett. 106, 092102 (2015).

30. M. Y. Melnikov, V. T. Dolgopolov, A. A. Shashkin,
S.-H. Huang, C. W. Liu, and S. V. Kravchenko, J. Appl.
Phys. 122, 224301 (2017).

31. T. Okamoto, K. Hosoya, S. Kawaji, and A. Yagi, Phys.
Rev. Lett. 82, 3875 (1999).

32. S. A. Vitkalov, H. Zheng, K. M. Mertes, M. P. Sar-
achik, and T. M. Klapwijk, Phys. Rev. Lett. 85, 2164
(2000).
33. G. Fleury and X. Waintal, Phys. Rev. B 81, 165117
(2010).

34. T. M. Lu, L. Sun, D. C. Tsui, S. Lyon, W. Pan,
M. Mühlberger, F. Schäffler, J. Liu, and Y. H. Xie,
Phys. Rev. B 78, 233309 (2008).

35. V. T. Renard, B. A. Piot, X. Waintal, G. Fleury,
D. Cooper, Y. Niida, D. Tregurtha, A. Fujiwara, Y. Hi-
rayama, and K. Takashina, Nat. Commun. 6, 7230
(2015).

36. V. M. Pudalov, M. E. Gershenson, and H. Kojima,
Phys. Rev. B 90, 075147 (2014).

37. V. T. Dolgopolov, Phys. Usp. 62, 633 (2019).
38. M. Y. Melnikov, A. A. Shashkin, V. T. Dolgopolov,

S. V. Kravchenko, S.-H. Huang, and C. W. Liu, JETP
Lett. 100, 114 (2014).

39. M. Y. Melnikov, A. A. Shashkin, V. T. Dolgopolov,
A. Y. X. Zhu, S. V. Kravchenko, S.-H. Huang, and
C. W. Liu, Phys. Rev. B 99, 081106(R) (2019).

40. V. T. Dolgopolov, A. A. Shashkin, E. V. Deviatov,
F. Hastreiter, M. Hartung, A. Wixforth, K. L. Camp-
man, and A. C. Gossard, Phys. Rev. B 59, 13235 (1999).

41. A. G. Davies, C. H. W. Barnes, K. R. Zolleis, J. T. Ni-
cholls, M. Y. Simmons, and D. A. Ritchie, Phys. Rev.
B 54, R17331 (1996).

42. E. V. Deviatov, V. S. Khrapai, A. A. Shashkin, V. T. Dol-
gopolov, F. Hastreiter, A. Wixforth, K. L. Campman,
and A. C. Gossard, JETP Lett. 71, 496 (2000).

43. C. A. Duarte, G. M. Gusev, A. A. Quivy, T. E. Lamas,
A. K. Bakarov, and J. C. Portal, Phys. Rev. B 76,
075346 (2007).

44. J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).
45. B. I. Halperin, P. A. Lee, and N. Read, Phys. Rev. B 47,

7312 (1993).
46. J. K. Jain, Science (Washington, DC, U. S.) 266, 1199

(1994).
47. T. Chakraborty, Adv. Phys. 49, 959 (2000).
48. J. K. Jain, Composite Fermions (Cambridge Univ. Press,

New York, 2007).
49. V. T. Dolgopolov, M. Y. Melnikov, A. A. Shashkin,

S.-H. Huang, C. W. Liu, and S. V. Kravchenko, JETP
Lett. 107, 794 (2018).

50. S. V. Kravchenko, A. A. Shashkin, D. A. Bloore, and
T. M. Klapwijk, Solid State Commun. 116, 495 (2000).

51. V. S. Khrapai, A. A. Shashkin, and V. T. Dolgopolov,
Phys. Rev. Lett. 91, 126404 (2003).

52. V. S. Khrapai, A. A. Shashkin, and V. T. Dolgopolov,
Phys. Rev. B 67, 113305 (2003).
JETP LETTERS  Vol. 116  No. 3  2022


	1. INTRODUCTION
	2. BAND FLATTENING AT THE FERMI LEVEL
	3. MERGING OF LANDAU LEVELS IN A STRONGLY-INTERACTING TWO-DIMENSIONAL ELECTRON SYSTEM
	4. INTERACTION-INDUCED MERGING OF LANDAU LEVELS IN AN ELECTRON SYSTEM OF DOUBLE QUANTUM WELLS
	5. MERGING OF THE QUANTUM LEVELS OF COMPOSITE FERMIONS
	6. CONCLUSIONS
	REFERENCES

		2022-10-11T23:34:23+0300
	Preflight Ticket Signature




