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Abstract 

Self-organizing neural networks are used to analyze uncorrelated white noises of different 
distribution types (normal, triangular, and uniform). The artificially generated noises are ana- 
lyzed by clustering the measured time signal sequence samples without its preprocessing. Using 
this approach, we analyze, for the first time, the current noise produced by a sliding “Wigner- 
crystal”-like structure in the insulating phase of a 2D electron system in silicon. The possibilities 
of using the method for analyzing and comparing experimental data obtained by observing var- 
ious effects in solid-state physics and simulated numerical data using theoretical models are 
discussed. 

 

1 Introduction 
The use of machine learning (ML) methods and, in particular, neural networks has become widespread 
in our time, especially in theoretical condensed matter physics [1, 2, 3] based on numerical simu- 
lations producing state configurations sampled with Monte Carlo or wave functions. On the other 
hand, intensive research is performed in the areas that require analysis of time series, such as speech 
recognition [4], geophysics [5] and radar technologies [6]. Unfortunately, utilizing of neural networks 
for signal processing is limited, as a rule, by the suppression of unwanted noise and the localization 
of the useful signal patterns [7, 8, 9]. 

However, not only the primary signal itself but also the accompanying noise sometimes carries 
valuable information about the behavior of the system under consideration. Noise analysis is used, 
for example, in such dissimilar areas of science and technology as social media research [10] and 
nuclear reactor safety [11]. 

Successful attempts have also been made to classify artificially generated ”colored” noises using 
both supervised machine learning [12] and self-organized neural networks methods [13]. In this arti- 
cle, we test the ability of the self-organizing map (SOM) approach to distinguish between subtypes 
of uncorrelated white noise that differ only in the shape of the distribution. The main advantage of 
SOMs is that they consider both the distribution and the topology of the source data [14]. 

The main goal of this research is to analyze the current noise observed in a wide range of voltages 
(between two threshold voltages) when measuring voltage-current characteristics in the insulating 
state of a 2D electron system in silicon [15, 16, 17]. Our paper is organized as follows. In Section 
II, we briefly describe the operations with SOM networks. In Section III, we apply SOM to learn 
various types of white noise. Section IV provides the experimental results, discusses the similarity 
of the two-threshold dependences observed in silicon and Type-II superconductors, and presents the 
SOM analysis of the experimental results. In Section V, we discuss our results and suggest future 
experimental and theoretical research for analyzing and comparing experimental data obtained by 
observing various effects in solid-state physics, and numerical data simulated using theoretical models 
are discussed. 

 

2 SOM networks 
Although the foundations of the theory of self-organizing neural networks are described in many 
publications [18, 19], we will briefly recall the main provisions of the principle of their operation. 
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SOM networks are trained to distribute high dimensional input data (in our case, the sequence of 
random numbers) that have some common features between clusters formed by groups of neurons 
that make up the output layer. This layer is represented, as a rule, by a two-dimensional rectangular 
or hexagonal lattice for greater clarity and ease of visualization [20]. 

A typical SOM application procedure includes the following steps: 
 

1. Input normalization. Prior to passing data to the input layer, each of the elements of the 
input vector (sequence) is normalized in accordance with the following formula: 

xk 
xk = 

l=1 x2
 

(1) 

 

where xk is the k-th element of the input vector whose total length is i (see Fig. 1). 

2. Training. The weight vectors of the output neurons, w_ , are initialized using a random method. 
Each of the j weight vectors of the output layer neurons contains i elements according to the 
number of input layer neurons (see Fig. 1). After that, among all neurons of the output 
layer, a c-th neuron, for which the Euclidean distance to the input vector, ||_x(N ) − w_ c (N )|| = 

n 
l=1 (wcl(N )− xl(N ))2, is the smallest, is selected. Here w_ c  denotes the weight vector of the c- 

th neuron of the output level, and N symbolizes a number of iterations correspondingly. Thus, 
the neuron whose weight vector is closest to the input signal is declared the winner neuron. 
At the next iteration step, the weight vector of the m-th output layer neuron is updated in 
accordance with the law: 

 

w_ m (N + 1) = w_ m (N )+ 

+α(N ) · exp
 
−||w c(N )−w m(N )||2 

· (_x(N ) − w_ 

 
 
m(N )) (2) 

 

where α(N ) and σ(N ) are monotonically decreasing scalar functions of N. After making changes 
to the weight vectors of the output level (see Eq. (2)), they should be normalized: 

v
uXn 

2 (N ) = 1 (3) 
l=1 

 

When the next data vector _x(N + 1) arrives at the input layer, the whole process repeats anew 
until convergence occurs (changes in w are negligible) or the number of iterations exceeds a 
certain limit. 

3. Post-processing Once the SOM training process is completed and the final form of the map 
is obtained, the input data is clustered, or other actions that are necessary to analyze the 
input data are performed [21]. 

 
 
3 Application of SOM to the analysis of various types of 

white noise 
In our work, we analyzed three different types of uncorrelated white noise, differing only in the 
shape of the distribution: uniform, normal and triangular. Figure 2 shows histograms of these 
distributions. 

After generating the signals, the power spectra density of the random signals were analyzed 
to make sure that they are all varieties of white noise (see Fig. 3). We also made sure that the 
autocorrelation function of each spectrum is the Dirac delta function. Using the Matlab package, 
512 signals of each kind of distribution were generated, each consisting of 1024 elements distributed 
accordingly. After normalization (see Eq. 1), a data array intended for training a neural network 
was formed by the concatenation of three sequentially (as suggested by [13]) connected groups of 
signals: with uniform, normal and triangular distribution, containing 512 signals of each subspecies. 
Thus, the data array for the system training process had dimensions of 1536 x 1024. 

Using the Matlab subroutine selforgmap, we generated a one-dimensional SOM network con- 
sisting of 64 neurons. The SOM system was trained in batch unsupervised weight mode for 36000 
epochs since the minimum recommended number of epochs [18] should be at least 500 times the 
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Figure 1: SOM network structure consisting of i neurons of the input layer and j neurons of the 
output layer. 

 
 

(a) (b) (c) 
 

Figure 2: Histograms of different random signal distributions: (a) uniform, (b) normal and (c) 
triangular. 

 
 

(a) (b) (c) 
 

Figure 3: Power spectra of different random signal distributions: (a) uniform, (b) normal and (c) 
triangular. 
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Figure 4: Distribution of hits of training sets, related to different types of distribution, between 
neurons of the output layer of the trained SOM network. Neurons 60-64 are not shown as they were 
not hit at all during training. 

 

(a) (b) (c) 
 

Figure 5: Histograms of different mixed distributions: (a) 50% triangular + 30% Gaussian + 20% 
uniform, (b) 50% Gaussian + 30% uniform + 20% triangular and (c) 50% uniform + 30% triangular 
+ 20% Gaussian, respectively. 

 
 

number of neurons in the output layer. At the end of the SOM network training process, each of 
the 512 x 3 training sets is associated with one of the output layer neurons, as shown in Figure 4. 
An interesting feature is observed in the distribution of training sets between output neurons, which 
will subsequently help us to distinguish between mixed signals: despite the fact that the vast ma- 
jority of sets for all types of distributions fall exclusively on neurons 30 and 31 (46.6% and 50.7%, 
respectively), the remaining hits are distributed in such a way that the training set belonging to a 
certain type of distribution falls into only one group of neurons corresponding exclusively to this 
type of distribution (see Table 1). 

One of the tasks we set was to test the ability of the trained network to distinguish between data 
sets prepared from mixed types of distributions as follows. Each data set related to a certain type 
of distribution was multiplied by a weight factor, after which it was added to another set related 
to a different type of distribution, also multiplied by the weight factor. This procedure has been 
performed on each element of the set. The following mixed data sets were prepared by this method: 
50% triangular + 30% Gaussian + 20% uniform, 50% Gaussian + 30% uniform + 20% triangular, 

 
 

Distribution Triangular Gaussian Uniform 
Neurons 11,13,20,23,28, 

33,35,37,38,40, 
41,43,44,46,52 

1,3,9,15,22,27, 
32,39 

7,17,18,21,24, 
25,29,34,36,42, 
45,47,48,50,54, 

57,59 
 

Table 1: Non-overlapping groups of neurons corresponding to one of the distribution types. 
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Similarity(k, l) = 
L 

sign(hit m 

m 

 
 

Figure 6: Distribution of mixed sets between neurons of the output layer of the trained SOM network: 
mix 1 – 50% triangular + 30% Gaussian + 20% uniform (open triangles), mix2 - 50% Gaussian + 
30% uniform + 20% triangular (open circles) and mix3 – 50% uniform + 30% triangular + 20% 
Gaussian (open squares), respectively. Neurons 60-64 are not shown as they were not hit at all 
during testing. 

 
 
 
 
 
 
 
 
 
 

Table 2: Similarity factors between hit vectors of pure training sets and mixed sets. 

and 50% uniform + 30% triangular + 20% Gaussian, respectively. 
Prior to analyzing the data sets using the trained network, we checked that the mixed sets have 

the properties of white noise (constant spectral density and no correlation) and also built histograms 
of the obtained distributions, shown in Figure 5. The raw results of the analysis of mixed data sets 
are presented in Figure 6. 

For a quantitative analysis of the results obtained, it is necessary to introduce a similarity factor 
between the hit vectors of pure and mixed data sets. The classical vector similarity criteria cannot 
give satisfactory results since the 30–th and 31–th elements of the hit vectors, consisting of 64 
elements each, are almost the same for both pure and mixed sets and prevail over the rest of the hit 
vector elements. In order to level the overwhelming values of 30–th and 31–th elements and take 
into account the impact of the remaining elements of the hit vector (which, in fact, make it possible 
to distinguish between different data sets), we introduced the following similarity criterion: 

 

j=64 
k 
m 

 
∗ hitl 

 
), (4) 

 
where hitk 

m=1 

is the m-th element of the k-th hit vector, which is the number of hits related to the 
k-th data set into the m-th neuron. 

The final test results are shown in Table 2. From the results presented in Table 2, we can conclude 
that the trained network with 100% accuracy determines the type of spectrum that makes the main 
contribution to the mixed data set. However, it is still difficult to distinguish between secondary 
contributions. 

Distribution Triangular Gaussian Uniform 
50% triangular 
30% Gaussian 
20% uniform 

 
9 

 
2 

 
2 

50% Gaussian 
30% uniform 

20% triangular 

 
2 

 
6 

 
2 

50% uniform 
30% triangular 
20% Gaussian 

 
2 

 
2 

 
8 

 



6  

250 
 
 

200 
 
 

150 
 
 

100 
 
 

50 
 
 

0 
3 3.5 4 4.5 5 5.5 

V (mV) 
 
 

Figure 7: Voltage-current characteristic for the electron density ns = 5.36 × 1010 cm−2 at a temper- 
ature of 60 mK. The dashed line is a fit to the data (for more on this, see Ref. [15]). 

 
 

It should be noted that this is our first attempt to analyze and compare various subtypes of 
white noise. In the future, after obtaining a sufficient amount of experimental data, we will be able 
to analyze them in a similar way. 

 

4 Experimental noise and its SOM analysis 
Figure 7 shows a low-temperature voltage-current characteristic in the insulating regime, i.e., at 
electron densities below the metal-insulator transition. The samples studied are (100)-silicon metal- 
oxide-semiconductor field-effect transistors with a peak electron mobility close to 3 m2V−1s−1 at 
T < 0.1 K. To overcome the main experimental obstacle in the low-density, low-temperature limit 
— high contact resistance — thin gaps were introduced in the gate metallization that allow a high 
electron density to be maintained near the contacts regardless of the density in the main part of the 
sample (for more information on the samples, see Ref.[22]). As a result, contact resistance did not 
exceed ∼ 10 kOhm and could be disregarded in the insulating state. Voltage is applied between the 
source and the drain, and the induced current is measured. The interaction parameter, i.e., the ratio 
of the Coulomb and Fermi energies, rs = gv/(πns)1/2aB), exceeds rs ∼ 20 (here gv = 2 is the valley 
degeneracy, ns is the areal density of electrons and aB is the effective Bohr radius in semiconductor). 
The current is near zero at bias voltage up to approximately 4.0 mV. Then, at bias voltages between 
approximately 4.0 and 4.4 mV, it sharply increases and exhibits strong fluctuations with time that 
are comparable to its value. At yet higher bias voltages, the slope of the V − I curve is significantly 
reduced, the noise becomes barely perceptible, and the V − I curve becomes linear, although not 
ohmic. Time fluctuations of the current between bias voltages 4.0-4.4 mV are shown in Fig. 8. 

There is a striking similarity between the double-threshold V − I dependences in our samples and 
those (with the voltage and current axes interchanged) in the in Type-II superconductors, where the 
existence of the vortex lattice has been firmly established [23, 24, 25, 26, 27]. An example of I − V 
characteristic in such a system is shown in Fig.9 adapted from Ref.[24]. Voltage is zero at currents 
below approximately 0.4 µA; then it increases nonlinearly, but above approximately 0.35 µA, the 
I − V dependence becomes linear, similar to our case, where the situation is reciprocal: a voltage is 
applied, but at first the current is zero in the limit of zero temperature; the depinning of the electron 
solid is signaled by the appearance of a non-zero current. Unfortunately, Fig.9 does not provide error 
bars for the voltage data, but differential resistance exhibits strong fluctuations indicating high noise 
signal. The physics of the vortex lattice in Type-II superconductors can be successfully adapted for 
the case of an electron solid, as was shown by Valeri Dolgopolov [28] (see also Ref.[15]). 

When preparing this article, no serious attempts were made to analyze the noise spectrum 
accompanying the measurements shown in Fig. 9, due to the lack of experimental data (signal 
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Figure 8: The current as a function of time for ns = 5.20 × 1010 cm−2 and a temperature of 60 mK 
at a bias voltage of V = 4.90 mV. 

 
 
 
 
 
 
 
 
 

 
 

Figure 9: Voltage-current (V-I) curves and dV/dI of the NbSe2 NW device (adapted from [24]). 
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length). However, when tested by a trained neural network, the only signal with a length of 1024 
elements fell on neuron 31 of the trained network, which suggests that it belongs to white noise. 
Since this work represents only the initial stage of processing and analysis of experimental data, 
in the future, we will be able to conduct a more thorough study of the noise that occurs during 
measurements. 

 

5 Conclusions and future research 
We have presented a Machine Learning procedure for self-organizing neural networks to study un- 
correlated white noise and to analyze the noise measured in the experiment. We have embarked 
on this project only recently and have not had enough experimental data (SOM study of the only 
experimental sample allows us to suggest that the data exhibits white noise). But this initial ap- 
proach allows us to suggest the future research necessary for analyzing and comparing experimental 
data obtained by observing various effects in solid-state physics and numerical data, simulated using 
theoretical models. First of all, one of the authors (SVK) will perform long enough measurements of 
the current as a function of time at different voltages (between two thresholds). These results used 
as an input into a SOM network will allow us to achieve a more conclusive description of the noise 
measured in the experiment. Second, we will try to obtain experimental data for noises measured 
in Type-II superconductors and compare two sets of experimental results to confirm a similarity 
between the two experiments. Third, the most challenging research direction will be to construct 
Hartree-Fock models to simulate currents in silicon system (we have already succeeded in building 
the Hartree-Fock description of the equilibrium system to reproduce the first threshold dependence 
on the temperature [29]). In parallel, we will simulate voltage noise produced by sliding Abrikosov 
lattice in Type-II superconductor when superconducting current exceeds the first threshold value, 
similar to numerical simulations of I-V characteristics in a strong-pinning regime [27]. We then will 
compare these numerical simulations between themselves as well as with the detailed experimental 
data. 
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