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Abstract—We consider the problem of finding the maximally
influential node in random networks where each node influences
every other node with constant yet unknown probability. We
develop an online algorithm that learns the relative influences of
the nodes. It relaxes the assumption in the existing literature that
a central observer can monitor the influence spread globally. The
proposed algorithm delegates the online updates to the nodes on
the network; hence requires only local observations at the nodes.
We show that using an explore-then-commit learning strategy, the
cumulative regret accumulated by the algorithm over horizon
T approaches O(T%?) for a network with a large number
of nodes. Additionally, we show that, for fixed 7', the worst
case-regret grows linearly with the number n of nodes in the
graph. Numerical experiments illustrate this linear dependence
for Chung-Lu models. The experiments also demonstrate that
e-greedy learning strategies can achieve similar performance to
the explore-then-commit strategy on Chung-Lu models.

Index Terms—influence maximization, online learning, social
networks, algorithm design

I. INTRODUCTION

Influence maximization is the problem of selecting the most
influential subset of nodes in a network, given a budget on
the size of the selected subset. With the rise of marketing on
social networks and the recent realization of the importance
of tracking epidemics, the influence maximization problem has
gained a renewed interest in the last few years [1]. The notion
of influence in such problems is a measure of how well the
selected subset spreads a dispersive effect of interest, such
as an advertisement [2] or a disease [3], to the other nodes
in the network. For consistency with the existing influence
maximization literature, we call this dispersive effect influence.

We consider influence maximization problems on networks
modeled as random graphs, where we label the nodes that
have received the influence as active and all other nodes as
inactive. All nodes are initially inactive. A decision-maker
then activates a set of nodes called the seed nodes and
the influence spreads from these seed nodes based on an
influence spread model called the independent cascade process
[4]. In this model, the influence spreads iteratively, where
in each iteration, active nodes in the network can activate
their neighboring inactive nodes with some time-independent
probability, called the influence probability. A more detailed
description of the independent cascade process is provided in
Section 3.1. Under this model, influence maximization can be
characterized as the problem of choosing the node or the set
of nodes that, when activated initially, maximizes the number
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of active nodes in the network after the independent cascade
process terminates.

The influence maximization problem we consider is NP-
hard with respect to the number of nodes in the network [4].
Thus, only approximate solutions can be found for large net-
works. We can classify these approximate solution algorithms
for influence maximization as offline and online [1]. Both of
these approaches have their limitations. The offline approaches
provide scalable solutions for large graphs. However, they only
work if all influence probabilities of the underlying graph are
known beforehand.

Online algorithms have been introduced to relax the con-
straint that the influence probabilities of the graph are known
[5]. These algorithms learn the influence probabilities of the
graph at run-time and gradually improve their seed node
selections. However, the existing online algorithms require a
central decision-maker to observe which nodes the influence
spreads to. This assumption may not be realizable in real-world
networks. For example, in an epidemic tracking application,
observing how much an individual would spread disease to
the rest of the community requires the full contact history of
everyone within the community. Even if we ignore the privacy
concerns arising from having access to such data, the complete
contact history is difficult to obtain and computationally ex-
pensive to process.

In this work, we introduce two decentralized online influ-
ence maximization algorithms that delegate the online updates
to the nodes within the network and eliminate the requirement
of a central decision-maker to observe the influence spread.
To our knowledge, this paper is the first to use such a decen-
tralized online approach to solve the influence maximization
problem. In addition to reducing the computational burden on
the central decision-maker, one of the algorithms introduced
in this paper provides guaranteed asymptotic upper bounds on
the expected total regret for networks with symmetric influence
probabilities. We also demonstrate the performance of both of
the algorithms experimentally on synthetically generated social
networks.

The rest of this paper is organized as follows. In section 2,
we provide a review of current literature relevant to the work
presented in this paper. Section 3 presents some preliminary
information and states the decentralized online influence max-
imization problem. Section 4 introduces algorithms that can
solve this problem under a symmetry assumption on influence
probabilities, and provides convergence guarantees. Section 5
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shows empirical results that verify the guarantees given in
section 4. We conclude this paper and give future research
directions in section 6.

II. RELATED WORK

Influence maximization on independent cascade networks
was introduced by [4]. This paper also showed that the
influence maximization problem is NP-hard and provided the
first approximate offline solution, greedy forward selection, to
the problem. The following decade saw incremental improve-
ments to this algorithm with shortest-path-based algorithms
[6], CELF [3], CELF++ [7], and TIM [8]. More recently,
Tang et. al. have proposed several algorithms with near-linear
time complexity guarantees, which makes these algorithms
highly scalable for large networks [9]. However, all of these
algorithms are offline and they require the graph structure to
be known beforehand. Our algorithm differs from all of these
approaches since it does not require the influence probabilities
between nodes to be known and can learn the optimal seed
node choice incrementally using online updates.

Online influence maximization problem was introduced by
[5], to investigate how the influence maximization problem can
be adapted to cases where a decision-maker tries to maximize
the sum of total influences across multiple iterations. In this
problem, the decision-maker repeatedly chooses seed nodes
and observes the influence spread over the network until
some known iteration number, called horizon is reached. The
decision-maker needs to learn the best node choices at run-
time by refining its beliefs on relative values of nodes or
the influence probabilities between nodes. In these algorithms,
there is always a trade-off between exploration and exploita-
tion, where the decision-maker either chooses a potentially
sub-optimal seed to learn more information about the network
or chooses the seed it believes to be optimal at the cost of
less information. Approaches to online influence maximization
include learning the influence probabilities in the network
by observing influence spread over the network and using
the learned influence probabilities to solve the problem using
offline methods [10], [11] or casting the problem as a bandit
problem [12], [13]. Unfortunately, all of these methods require
the observation of the activation state of all nodes on the
network. So far, attempts to restrict the required informa-
tion to include only local influence spread, such as the one
given by [14], have only provided convergence guarantees
for specific network models. The algorithm we present is a
decentralized alternative to the approaches given above, and it
does not require global observation of node activations. It also
yields general worst-case asymptotic convergence bounds on
networks with symmetric influence probabilities.

III. PRELIMINARIES AND PROBLEM STATEMENT
A. Network Model

We use a weighted graph G = (V, E,P) to model the
network on which the influence spreads. Here V' denotes
the set of vertices in the network and £ C V x V (or
E C {{a,b}| a,b € V} for the undirected case) denotes

the set of all possible connections in the network. Lastly,
P : E — [0,1] is a function which assigns weights to each
edge, and these weights represent the influence probabilities on
the network. That is P((, 7)) is the probability of ¢ influencing
7, given that the influence has already been spread to <.

The independent cascade process [4] is a model which
describes the diffusion of influence over the network using
successive discrete steps called cascades. In each cascade, all
nodes are labeled as either active or inactive where active
nodes represent the influenced nodes. In the first cascade, the
network is initialized with a set of active nodes S C V/, called
seeds, and all other nodes are initialized as inactive. In each
cascade after initialization, if a node 7 € V becomes active
in the current cascade, it activates a node j € V in the next
cascade with probability P((4,)), given that j is inactive in
the current cascade. Once a node becomes active, it remains
active for the rest of the cascades. This process terminates if
no new nodes are activated in the current cascade. The set
of nodes that are active after the independent cascade process
terminates is called the influence set of S on G and is denoted
as 0(S,G), or just o(9) if the underlying network structure is
clear from the context.

Based on the influence probabilities given by P. G can
occupy two different regimes, called super-critical and sub-
critical regimes. We can determine the regime G occupies
the from the largest eigenvalue X\ in the adjacency matrix
[P((¢,7))]; of the graph G. If A > 1 then the graph is called
super-critical, which means the size of the largest connected
component of G is linear with the number of nodes n in G.
For the independent cascade process defined above, the super-
criticality translates to the size of maxg o(S,G) being linear
with n. If A < 1 then the graph is sub-critical and the size of
maxg o(S,G) grows sub-linearly with n [15].

B. Problem Formulation

Given a network G = (V, E,P) and a horizon T, we con-
sider a scenario where there exists a central decision-maker,
which in each iteration ¢ € [T selects a seed s; € V. Then,
s¢ is activated by the central decision-maker and influence
diffuses over the network based on the independent cascade
process. The influence set resulting from this diffusion process
is denoted by oy(s;). We also let L;*(i) = 1,,(s,)(7). That
is, Ly*(4) is the indicator function of o:(s:). Then the fotal
influence of s; at iteration ¢ can be written as

Ty(se) = lou(se)| = Y L5 (d). (1)
i€V

We consider a decentralized scenario where both the central
decision-maker and the nodes in G are capable of executing
algorithms, and the central decision-maker cannot directly
observe which nodes are influenced, or which edges in E
are active at any given iteration ¢ € [T]. This makes the
central decision-maker incapable of performing online updates
to learn which nodes are the most influential ones. Instead,
the nodes in network G are responsible for keeping and
updating their own estimates for how influential they are. This
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distinction separates the work presented in this paper from
the existing influence maximization literature. The nodes are
only allowed to make local observations on whether they are
influenced or not. That is, each node i € V' can observe L;* (i)
and execute local updates based only on this information.
Neither the decision-maker nor any node has any information
about the influence probabilities P at iteration ¢t = 1.

Ideally, the task of the decision-maker is to choose and
activate a seed s; in each iteration ¢ so that the sum of
total influences across all iterations is maximal. That is, the
decision-maker wants to maximize

T
> Ti(se). )
t=1

However, due to the lack of knowledge of the influence
probabilities at iteration ¢ = 1, the decision-maker can never
guarantee that the sum of total influences across all iterations
are maximized. Instead, the choices for s; made by the
decision-maker will probably be sub-optimal. We measure this
sub-optimality using total regret

R=[) Ti(s*) — Ti(s)], 3)
t=1

where s* is the node on G that is expected to be the most
influential. That is, s* = arg maxcy E(Z;(s)).

In the decentralized scenario we have, the central decision-
maker and the nodes on the network must work together to
ensure that the expectation of the regret E[R] is kept as low
as possible. We call the collection of algorithms executed
by the central decision-maker and the nodes a decentralized
algorithm. With this definition in mind, we present Problem
1, and Assumption 1. In this paper, we provide a solution for
Problem 1 under Assumption 1.

Problem 1. Find a decentralized algorithm for online influ-
ence maximization with convergence guarantees on E[R] such
that:

e Network nodes i € V keep and update their own
estimates for how influential they are based only on the
local activation information L;* (7).

o Central decision-maker selects and activates a seed node
s¢ in each turn-based only on the estimates made by the
nodes in the network.

Assumption 1. All influence probabilities on the network are
symmetric. That is, given the network G = (V, E,P), for all
(i,7) € E we have (j,i) € E, and

P((i,4)) = P((5,9))- @)
In particular, for all t € [T] we have

E[L{*(i)] = E[Lj(s1)]. (5)

Notation Definition
g The graph representing the network. G = (V, E, P).
n Number of nodes in G, that is n :== |V|.
m Exploration horizon.
Xt Total reward collected by the node ¢ until time ¢.
o(s) Set of influenced nodes in G for seed s.
L$ The indicator function of o(s).
Tt Ti(s) = |oe(s)| = ;v LE(D)-
A A= E[Ze(i) — Ze (5))-
Ai Al ‘= maxy E[It(j)} - E[It(l)]

TABLE I: A summary of notations and their definitions.

IV. DECENTRALIZED INFLUENCE MAXIMIZATION

We now propose an online algorithm (Algorithm 1), to
solve Problem 1 under Assumption 1. In this algorithm, each
node ¢ is responsible for keeping its own value X,;. In
each iteration ¢ of Algorithm 1, the decision-maker picks a
seed node s;. Then each node 7 in the network updates its
own value simultaneously based on L°t (i), which determines
whether ¢ is influenced by s; or not. When selecting seed
nodes, the decision-maker must choose between exploration
and exploitation. In Algorithm 1 the decision-maker makes
this choice based on the explore-then-commit (ETC) rule.
Under the ETC rule, given some predetermined exploration
horizon m, if iteration number ¢ is less than or equal to m, the
algorithm chooses seed nodes uniformly at random from V.
Otherwise, the algorithm chooses a seed node with a maximal
value.

Algorithm 1 ETC with decentralized updates
Input A network G = (V, E, P),
horizon T
exploration horizon m.
Initialize Vi € V, X, ; = 0.
fort=1to T do
if t < m then
Choose a seed s; € V uniformly at random.
else
Choose a seed s; = arg max; X, ;.
end if
The network generates activations L;.
for Each node 7 € V in parallel do
Observe the local activation Ly (z).
Update Xt+1,i — Xt,i + Lt(Z)
end for
Update ¢t <—t + 1.
end for

Unlike existing algorithms, Algorithm 1 does not require the
decision-maker to make global observations on the activation
state L**(¢) of all nodes ¢ € V in the network. Instead,
Algorithm 1 delegates the online updates of node value X ;
to the nodes themselves. This way, any given node ¢ is only
required to observe its own activation L*t(¢). The only global
information the decision-maker needs to observe in any given
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iteration ¢ is the node
1 = argmax Xy ;. (6)
K3

That is, the decision-maker must know at least one node with
a maximal value.

There are several different methods for the decision-maker
to observe i. A naive approach the decision-maker can use to
obtain this information is sequentially polling each node in the
network and comparing their values to find the maximal one.
However, polling each node defeats the purpose of Algorithm
1, since it requires the decision-maker to globally observe each
nodes’ value. Instead, depending on the physical or technical
limitations of the network, it may be possible to compute
7 without polling each node individually. For example, if
the physical realization of the network G allows the nodes
to transfer arbitrary messages between each other over the
network edges, e.g. social networks, then methods such as
decentralized optimization or loopy-message-passing [16] can
be used to efficiently find 7 without the need for polling.

In addition to reducing the computational burden on the
central decision-maker, Algorithm 1 enjoys several theoretical
convergence guarantees under Assumption 1. Firstly for large
enough m, the seed nodes Algorithm 1 chooses converge to
node ¢* with the highest expectation of being activated by
another node chosen uniformly at random from V. That is, for
a randomly selected node J ~ Uniform(V'), the seed choices
converge to

i* = argmax E[L7 (3)]. (7)
i€[n]
For more general networks where Assumption 1 does not
hold, node ¢* is not necessarily the most influential node
in the network. However, due to the symmetry enforced
by Assumption 1, ¢* is guaranteed to maximize expected
influence E[Z(i*)] because

BL7(G) = 3 P(J = E[LI()] = ~B[Z()].  ®

n
J€(n]

In other words, under Assumption 1, the node with the highest
expectation of being influenced by a randomly chosen node
is also the most influential node in the network. Thus, given
sufficiently large m, the seed choices of Algorithm 1 converge
to the node with the highest expected influence in the network.

We can also exploit the symmetry enforced by Assumption
1 to yield upper bounds on the expected regret of Algorithm 1.
To derive this upper bound, we first define the sub-optimality
A; of a node i.

Definition 1. The sub-optimality A; of node i € V' is defined
as

A; = max BIL ()] - BIL (1) ©)

Lemma 1 gives an upper bound on the probability of a
suboptimal node having a higher value than the node with the
highest expected influence E[Z;(j)] in the network.

Lemma 1. Suppose Assumption 1 holds. Then if n = |V|,
st is selected uniformly from V for all t € [m — 1], and
Xt = Zle(Lft (2)), then any node pair i,j € V satisfies

mA%j
P(Xm,j > Xm,i) <exp| — = ], (10)

2n2

where A; ; = E[Z,(i) — Z,(j)]. In particular if node i* is
optimal, then

mA?
P X’mi szi* < - =) 11
(s > Xni) <o (< 520).a
Proof. For all t € [T] we have
E[L" ()] = E[L;(s0)] = E[Z()] /. (12)
Then the proof is given by a chain of inequalities,
1
]P)(mez Z mej) = ]P)((XmJ — Xm,z) Z 0> (133)
m
1 m
—p( 5 Do) - L) 2 0) (130
t=1
1 «— 1/ - 500 Aji Ay
= (G ) - H ) - S 2 ) s
mA%’j
<exp| — oz ) (13d)
Here, (13d) follows from Hoeffding’s inequality. [

Theorem 2 and Corollary 3 provides means for choosing the
exploration parameter m such that asymptotic regret bounds
exist under Assumption 1. These results show that under
Assumption 1, regret is bounded by an O(7'/3) function for
fixed n. The sub-linearity of regret with respect to 1" shows
that Algorithm 1 is indeed capable of successfully learning the
most influential node in the network for large enough 7'

Theorem 2. Suppose Assumption 1 holds and let G =
(V,E,P) be a network and define c(n) = max,o(S,G)/n.
Then, if the exploration horizon is chosen as m = aT?/3, the
expected regret E[R) of Algorithm 1 satisfies

E[R] < ¢(n)(1 — ¢(n))anT?? + e~/ 2q71/2n212/3 (14)

Proof. (Sketch) The regret R can be decomposed as R =
R(Qm] + R(n,T] where R(O,m] = Zznzl A; and R(m,T] =
Z;‘F:m 41 Ai. From the definitions of A; and ¢(n), it is simple
to show that E[R g )] < mnc(n)(1 — ¢(n)). On the other
hand, using Lemma 1, we can give an upper bound on
]E[R(m7T]] as

- mA?
E[R 7] < (T —m) § :eXp < B 27@2Z )Ai_ (15)
i=1

Notice that exp(—";TA;)Ai is maximized for A; = n/\/m,
And its value for this A; is e~'/2n/\/m. This maximal value
can be used to simplify the bound on E[R,, 1] as

Tz \/%> nZe~1/2,

NG (16)

E[R (1] < <
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Adding up the upper bounds for E[Rq ] and E[R,, 1] and
simplifying the resulting algebraic expression completes the
proof. O

Corollary 3. Suppose that Assumption 1 holds. Then for any
arbitrary positive constant « there are non-negative constants
C4, and Cy such that for all horizons T and number n = |V |
of nodes, if the learning horizon m is set as m = oT?/3, we
have

E[R] < min(C) + Con®T%3, nT). (17)

Proof. From Theorem 2, we can immediately deduce that
E[R] < C1 + Con?T?/3 for some constants Cy,Cs. Also,

since . .
E[R] :ZAt gznznT, (18)

t=1 t=1
we have B[R] < min(C; + Con®T?/3, nT). O

Algorithm 2 e-greedy with decentralized updates
Input A network G = (V, E, P),
horizon 7.
an array of exploration parameters [¢; . ..
Initialize Vi ¢ V, X, ; = 0.
1: fort =1to T do

ET].

2:  Pick ry ~ Uniform([0, 1])

3:  if r, <1—¢; then

4: Choose a seed s; € V' uniformly at random.
5. else

6: Choose a seed s; = argmax; Xy ;.
7:  end if

8:  The network generates activations L.
9:  for Each node ¢ € V in parallel do
10: Observe the local activation Ly (z).
11: if s; = ¢ then

12: Update Xt+1,i — Xt,i + Lt(l)

13: end if

14:  end for

15:  Update ¢t + t + 1.
16: end for

Instead of basing the exploration-exploitation decision on
an explore-then-commit rule, we can modify Algorithm 1
such that it uses e-greedy decision rule. In this decision
rule, the central decision makes is provided with a sequence
(et)r € [0,1]T of learning parameters, and at each time ¢ the
central decision-maker chooses to explore with probability &,
and chooses to exploit with probability 1 — ;. The modified
algorithm which uses this decision rule is shown in Algorithm
2.

The e-greedy decision rule makes Algorithm 2 a general-
ization of Algorithm 1. Specifically, Algorithm 2 reduces to
Algorithm 1 given that

1, t<m

£ = vtE[T]
0, t>m

19)

The advantage of using the e-greedy decision rule as compared
to the explore-then-commit rule is that the former allows finer
control over the exploration-exploitation trade-off. That is,
depending on the specific problem requirements, ¢, can also
be tailored in such a way that the convergence of Algorithm
2 satisfies these requirements. For example, if the network in
which the algorithm is to operate has influence probabilities
that are not stationary over time, then the explore-then-commit
based method given in Algorithm 1 can fail to converge since
the algorithm cannot adapt to changing influence probabilities
after the exploration period is over. In contrast, Algorithm
2 does not have a definite exploration period, and choosing
the sequence (¢¢)7 as a constant series £; := ¢ allows the
algorithm to adapt to changes in the influence probabilites
indefinitely.

The optimal choice for the sequence e; depends on the
influence probabilities of the network G. This optimal choice
can be difficult to compute exactly. In the following section
we test two variants of Algorithm 2 based on different choices
for the sequence ¢;. For convenience, we label these variants
EGreedyl and EGreedy2. These variants have exploration
parameters defined as

EGreedyl: &, := "1,
EGreedy2: ¢, :=max(1, C/t),

Belo1]
where C' >0,

where
(20)

where 3 and C are parameters that determine the trade-off be-
tween exploration and exploitation. EGreedyl and EGreedy?2
are not necessarily optimal. However, they are common
choices for €; in other online learning algorithms based on
e-greedy decision rule, and they are known to perform well in
many applications.

V. EXPERIMENTS

In this section, we test the dependence of Algorithms 1 and
2 to their respective algorithm parameters on randomly gen-
erated networks. The networks in the numerical experiments
are based on Chung-Lu models [17], simple yet commonly
used approximations for real social networks. These models
are specified using a weight vector [wq, ws . . . w,] that assigns
a weight to each node on the network, and the influence proba-
bilities of the network is defined as P((4, j)) = wiw;/ >, wy.
We choose w; ~ Uniform([0, W]) where W is a constant
which denotes the maximal allowed expected degree of the
nodes on the graph. We now report observations from test
where W = 2. Though not included in the paper, it is
worth emphasizing that similar observations are valid for other
choices for W as well.

To test the dependence of cumulative regret R of Algorithm
1, on the number n of nodes in the network, we first set
the horizon T = 100 and m = T2/3. Then, we sample
100 different values for n logarithmically from the interval
[10,1000]. For each n, we simulate the cumulative regret
obtained by Algorithm 1 after T iterations on a Chung-Lu
model with n nodes. We then repeat this simulation 200
times and compute the empirical average and one standard
deviation confidence bounds of the cumulative regret across
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Fig. 1: Dependence of cumulative regret against: (a) Number n of
nodes in the network, (b) horizon 7'. The light gray area indicates
one standard deviation confidence bounds.

all simulations. Figure 1 (top) shows these empirical averages
and confidence bounds as functions of n. The coefficient of
determination for the best linear fit to the empirical averages
has a RZ2 > 1 —2.2 x 107!, The high value of R? means
that for fixed 7', the cumulative regret is approximated well
by a linear function of n, which suggests that, for fixed T, the
regret E[R] is O(n), as predicted by Corollary 3.

Similarly, we test the dependence of regret of Algorithm 1
on horizon 7' by sampling 100 values of T' logarithmically
from [1,10000] while setting m = T2/3 and n = 100.
Figure 1 (bottom) shows the empirical means and one standard
deviation bounds of the regret as functions of 7/3. The
coefficient of determination of the quadratic best fit to the
empirical mean is RZ > 1—1.8x 1079, which shows that the
average regret E[R] is a quadratic function of T'/3 for fixed
n. In other words, E[R] is of order T2/3, which is consistent
with the theoretical findings presented in Corollary 3.

Recall that for m = oT?/3, Theorem 3 provides conver-
gence bounds on Algorithm 1, where « is an arbitrary positive
constant. Unfortunately, none of the theoretical results provide
an optimal choice for o that minimizes regret. However, at
least for the randomly generated Chung-Lu models, there is
empirical evidence that suggests small deviations from the
optimal o do not affect the cumulative regret greatly and
o = 1 yields nearly optimal results. For fixed 7' = 500 and
n = 100 we discovered that while the optimal choice for «
is around 0.95, choosing oo = 1 instead of this optimal value
only results in a 5% increase in cumulative regret, which is
not very significant. Similar results were obtained for different

choices for n and W.

As mentioned in the previous section, we test the per-
formance of Algorithm 2 using the two different settings
for exploration parameters ;. We call the algorithm variants
arising from these two settings EGreedyl and EGreedy2, the
exploration parameters of which can be seen in (20). For tests
done on Chung-Lu models with n = 100 and W = 2, and
horizon T set to 500, we have empirically found that choosing
B = 0.97 and C = 20 provides near-minimal cumulative
regret. Hence we use these values for our consequent tests. Fig-
ure 2a shows average learning curves of EGreedyl, EGreedy2,
and explore-then-commit based Algorithm 1, labeled as ETC,
with m = 60 ~ T2/3. These learning curves are averaged over
2000 separate simulations. Figure 2a shows that although the
average one step regret decreases over time in all algorithms,
the EGreedy1 algorithm provides better results than both ETC
and EGreedy2. Nevertheless it is important to note that the
relative performance of these algorithms in general depends
on the problem at hand.

Lastly, we experiment with changing the maximum allowed
degree W in the Chung-Lu models we used to see how
the cumulative regret changes with the operating regime of
the graph. Recall that a network is called super-critical if
the size of the largest connected component is linear with
n, and it is called sub-critical otherwise. For the Chung-Lu
models we are using, the operating regime of the network is
directly dependent on W, where W > 2 leads to a super-
critical network and W < 2 leads to a sub-critical network.
Figures 2b, 2c, 2d show the cumulative regrets of Algorithm
1, EGreedyl, EGreedy?2, against the maximum allowed degree
W. The data obtained here were averaged over 1000 runs,
where the number of nodes n in the network and horizon T’
is both fixed to 100. For these tests, have set m = 22 ~ T2/3,
B = 0.97, and C = 20. One standard deviation confidence
bounds are also shown as grey regions around the average
regret. From Figure 2, we can observe that, compared to super-
critical networks, the cumulative regrets of all three algorithms
are generally smaller in sub-critical networks for the range
of values of W we have tested. An intuitive explanation
for this behavior is that the worst-case regret in a single
iteration is bounded above by the size of the largest influence
set, maxg 0 (.5, G), which is o(n) for sub-critical networks as
opposed to O(n) for super-critical networks. Thus, for large
enough n, sub-critical networks enjoy smaller upper bounds on
their one-step regrets. Also, the cumulative regret approaches 0
for sufficiently large values for W since the probability of the
entire network being connected approaches 1 as W increases.
The maximal regret R is achieved when W is small, yet large
enough to cause the network to be super-critical.

VI. CONCLUSION AND FUTURE WORK

We consider the online influence maximization on networks,
where the nodes on the network are capable of perform-
ing decentralized computations. We propose an explore-then-
commit algorithm and an e-greedy algorithm that delegate the
online updates to nodes on the network. These algorithms
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remove the requirement of the central decision-maker being
able to observe node activations globally. We prove that the
explore-then-commit algorithm has convergence guarantees
under the assumption that the network has symmetric influence
probabilities, Lastly, we show that the empirical findings are
consistent with these guarantees.

The theoretical guarantees in this paper require the symme-
try given in Assumption 1. This assumption holds for all undi-
rected networks but does not hold for all directed networks.
Future work will be devoted to relaxing this assumption.
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APPENDIX A
PROOF OF THEOREM 2

Let G = ([n],E,P) be a network, and let
E[max; Z;(i)/n] = ¢(n). Also assume, without
loss of generality, that node 1 is optimal, That is
1 = argmax;epy E[Z;(i)] for all ¢ € [T], Then if

we define Ry = Z?:a+1zt(8*) — Zy(s¢) we have
R = Rm) + B@m,1)- To prove the theorem, we provide
upper bounds on each of these terms separately. For R g
we have the chain of inequalities,

E[Ro,m]] = t—il A, (21a)
= iE[ft(l)] —E[Zi(s¢)] (21b)
< i ElmaxZy(i)] — E[Z:(s¢)] 2lo)
= im(n) — E[Zi(s)] (21d)

< ch(n) —P(s, = arg miaxIt(i))]E[m?XIt(i)] (21e)

= ch(n) — P(s; = arg mlaXIt(i))nc(n) (211f)

D:ﬂs

c(n) —P(s; € 0(j)|j = arg mZaxIt(i))nc(n)

(21g)

= ch(n) - ]EPUg)l

|j = arg mgxIt(i)} ne(n)
t=1 '

21h)

= ch(n) —-E {Itéj) |7 = arg m?XIt(i)} ne(n) (217)

= Z ne(n) — ne(n)? (21))
= mne(n)(1 — ¢(n)), (21k)

where (21h) is because Algorithm 1 chooses s; uniformly at
random from |V| for all ¢ < m. We can also give an upper
bound on R, 1] as,

T
D A

E[R(m.1)] = (22a)
t=m-+1
= (T -m)A,, (22b)
=(T—=m)) Pli = sm)A; (22¢)
i=1
=(T—-—m P(X,,; = max X,, ;)A; (22d)
(T =) 3P (s = s o)
S (T - m) ZP(an,i Z XTYL,l)Ai (228)
i=1
" mA?
< (T—m);exp <— o2 )Ai7 (221)

where (22c) follows from the fact that Algorithm 1 chooses

S = S, for all t > m, and (22f) follows from Lemma 1. This
expression can be simplified further using the fact that the
function f(x) = zexp(—ma?/(2n?)) is pseudoconcave on
interval [0, +00). It is also easy to show that f'(n/y/m) =0,
hence z* = n/+/m maximizes f on interval [0, +00). That is,
f(z) < f(z*) = e '/2n/\/m for all x € [0, 400). Using this
fact, we can continue the chain of inequelities given in (22)
as,

n 2
E[R (. < (T —m) Z exp ( _ma, )Ai (23a)

2n?
=1

TS e 2 23b
<(T-m) ;e NG (23b)
_ (fa _ m) nZe=1/2, (23¢)

By (21) and (23), we have
T
A /m

We complete the proof by choosing m = aT%/3 and simpli-
fying (8) under this choice. This yields

E[R] < ne(n)(1 — e(n)aT?/® + T2/ *ne~t/2.

E[R] < mne(n)(1 —c(n)) + ( — \/ﬁ) ne1/2. (24)

(25)
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