Paulihedral: A Generalized Block-Wise Compiler Optimization
Framework for Quantum Simulation Kernels

Gushu Li

University of California
Santa Barbara, USA
gushuli@ece.ucsb.edu

Ali Javadi-Abhari
IBM Quantum
Yorktown Heights, USA
ali.javadi@ibm.com

ABSTRACT

The quantum simulation kernel is an important subroutine appear-
ing as a very long gate sequence in many quantum programs. In this
paper, we propose Paulihedral, a block-wise compiler framework
that can deeply optimize this subroutine by exploiting high-level
program structure and optimization opportunities. Paulihedral first
employs a new Pauli intermediate representation that can maintain
the high-level semantics and constraints in quantum simulation
kernels. This naturally enables new large-scale optimizations that
are hard to implement at the low gate-level. In particular, we pro-
pose two technology-independent instruction scheduling passes,
and two technology-dependent code optimization passes which
reconcile the circuit synthesis, gate cancellation, and qubit mapping
stages of the compiler. Experimental results show that Paulihedral
can outperform state-of-the-art compiler infrastructures in a wide-
range of applications on both near-term superconducting quantum
processors and future fault-tolerant quantum computers.

CCS CONCEPTS

» Computer systems organization — Quantum computing;
« Software and its engineering — Compilers; - Hardware —
Emerging languages and compilers.

KEYWORDS

quantum computing, compiler, quantum simulation

ACM Reference Format:

Gushu Li, Anbang Wu, Yunong Shi, Ali Javadi-Abhari, Yufei Ding, and Yuan
Xie. 2022. Paulihedral: A Generalized Block-Wise Compiler Optimization
Framework for Quantum Simulation Kernels. In Proceedings of the 27th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’22), February 28 — March 4,
2022, Lausanne, Switzerland. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3503222.3507715

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ASPLOS °22, February 28 — March 4, 2022, Lausanne, Switzerland

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9205-1/22/02.
https://doi.org/10.1145/3503222.3507715

Anbang Wu
University of California
Santa Barbara, USA
anbang@cs.ucsb.edu

Yufei Ding
University of California
Santa Barbara, USA
yufeiding@cs.ucsb.edu

554

Yunong Shi
Amazon Braket
New York, USA

shiyunon@amazon.com

Yuan Xie
University of California
Santa Barbara, USA
yuanxie@ece.ucsb.edu

1 INTRODUCTION

One of the most important quantum algorithm design principles
is quantum simulation (or Hamiltonian simulation). Simulating a
quantum physical system, which motivated Feynman’s proposal
to build a quantum computer [19], is by itself an important appli-
cation of quantum computing [2, 33]. Later, the idea of quantum
simulation was extended to quantum algorithms for other appli-
cations, e.g., linear systems [24], quantum principal component
analysis [35], and quantum support vector machine [46]. These
algorithms involve simulating an artificial quantum system crafted
based on the target problem. In recently developed variational quan-
tum algorithms for near-term quantum computers (e.g., VQE for
chemistry [45] and QAOA for combinatorial optimization [18]), the
program structures are also inspired by the simulation principle.

Because the quantum simulation principle is shared among many
algorithms, one subroutine, which we term the quantum simulation
kernel in this paper, appears frequently in quantum programs. This
kernel is to implement the operator (controlled-)exp(iHt) where H
is the Hamiltonian of the simulated system and ¢ € R is system evo-
lution time. Since it is hard in general to directly compile exp(iHt)
into executable single- and two-qubit gates, a compiler usually de-
composes H into the sum of local Hamiltonians [33] (simulation of
which can be easily compiled to basic gates) and then synthesize
them one-by-one. Consequently, the quantum simulation kernel
will be compiled to a very long gate sequence and constitute the
vast majority of cost in post-compilation quantum programs.

Optimizing the compilation of this kernel can immediately ben-
efit a wide range of quantum applications. However, three key
challenges have so far hindered deeper compiler optimizations for
quantum simulation kernels.

First, existing quantum compilers (e.g., Qiskit [1], Quilc [52],
t|ket) [50]) lack a good formal high-level intermediate represen-
tation (IR). Once programs are converted to low-level gate se-
quences, the high-level semantics of quantum simulation kernels
are lost and hard to reconstruct from assembly-style gate sequences.
Moreover, simulation kernels face different constraints in differ-
ent algorithms. Previous ad-hoc optimizations of quantum simula-
tion [3, 13, 14, 17, 23, 25, 29, 31, 48, 56, 61, 62] are mostly algorithm-
specific and do not generalize due to the lack of a formal IR that
can uniformly represent simulations kernels as well as varying
constraints that are attached to them in different algorithms.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3503222.3507715
https://doi.org/10.1145/3503222.3507715
https://doi.org/10.1145/3503222.3507715

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

Second, most optimizations (e.g., circuit rewriting [53], gate can-
cellation [42], template matching [37], qubit mapping [39]) in to-
day’s quantum compilers [1, 52] are local program transformations
at small scale. However, these passes are designed for generic input
program and fail to leverage the deeper optimization opportunities
present in quantum simulation kernels. These opportunities are
mainly from the properties of Pauli strings which naturally appear
in the (Suzuki-)Trotter Hamiltonian approximation [33, 55], Jordan-
Wigner [26] or Bravyi-Kitaev [9] fermion-to-qubit transformation,
etc.

Third, quantum simulation kernels appear in a wide range of
algorithms. Some algorithms [2, 24, 33, 35, 46] are designed for fault-
tolerant quantum computers with quantum error correction while
others [18, 45] target near-term noisy quantum computers. The
hardware models of these backends can be very different and one
single optimization pass may not be suitable for all of them. Adapt-
ing the high-level algorithmic optimizations to the various (and
ever-evolving) hardware platforms with different constraints and
optimization objectives naturally invokes a reconfigurable compiler
infrastructure.

To overcome these challenges, we propose Paulihedral, a com-
piler framework backed by a formal IR to deeply optimize quantum
simulation kernels. A brief comparison between Paulihedral and
conventional quantum compilers is shown in Figure 1. First, Pauli-
hedral comes with a new IR, namely Pauli IR, to represent the
quantum simulation kernels at the Pauli string level rather than
the gate level. The syntax of Pauli IR has a novel block structure
which can uniformly represent the simulation kernels of differ-
ent forms and constraints. The semantics of Pauli IR is defined
on the commutative matrix addition operation. Such semantics
guarantees that the follow-up high-level algorithmic optimizations
are always semantics-preserving and can be safely applied. Sec-
ond, we propose several novel optimization passes to reconcile
instruction scheduling, circuit synthesis, gate cancellation, and
qubit layout/routing at the Pauli IR level. All these passes are much
more effective than their counterparts in conventional gate-based
compilers because they are operating in a large scope where the
algorithmic properties of Pauli strings (quantum simulation kernel)
are fully exploited. The optimization algorithms in these passes are
also highly scalable since analyzing and processing Pauli strings are
much easier than handling the gate matrices on a classical computer.
Third, we decouple the technology-independent and technology-
dependent optimizations at different stages and Paulihedral can be
extended to different backends by adding/modifying the technology-
dependent passes. To showcase, we develop technology-dependent
optimizations for two different backends, the fault-tolerant quan-
tum computer and the noisy near-term superconducting quantum
processor.

Our comprehensive evaluations show that Paulihedral outper-
forms state-of-the-art baseline compilers (Qiskit [1], t|ket) [50] and
algorithm-specific compilers [3-5]) with significant gate count and
circuit depth reduction on both fault-tolerant and superconducting
backends, and only introduces very small additional compilation
time. We also perform real-system experiments to show that Pauli-
hedral can significantly increase the end-to-end success rate of
QAOA programs on IBM’s superconducting quantum devices.

Our major contributions can be summarized as follows:

555

Gushu Li, Anbang Wu, Yunong Shi, Ali Javadi-Abhari, Yufei Ding, Yuan Xie

Quantum Simulation Kernels |

(Section 3)

compiler frontend:

Gate Sequence '
inter-block:

e.g., Qiskit level 3 passes: instruction scheduling
unroll to 1- & 2-qubit gates,
qubit layout & routing,
unroll to basis gates,
2-qubit block optimization,
commutative cancellation,

(Section 4)
block-wise optimization: Pauli IR
circuit synthesis, gate

cancellation, layout & routing, (Section 5)

Gate Sequence Gate Sequence

Conventional compiler, e.g., Qiskit, t|ket) Paulihedral compiler

Figure 1: Paulihedral vs conventional compilers

(1) We propose Paulihedral, an extensible algorithmic compiler
framework that can deeply optimize quantum simulation
kernels and thus benefit the compilation of a wide range of
quantum programs, with passes that make it retargetable to
various backends and optimization objectives.

We define a new Pauli IR with formal syntax and semantics
which can uniformly represent quantum simulation kernels
and encode algorithmic constraints of seemingly very differ-
ent algorithms, and safely expose high-level information to
the compiler for optimizations.

We propose several compiler passes for different optimiza-
tion objectives and backends. They can outperform previous
works by systematically leveraging the algorithmic informa-
tion and they are scalable to efficiently handle larger-size
programs.

Our experiments on 31 different benchmarks show that Pauli-
hedral can outperform state-of-the-art baseline compilers
with significant gate count and circuit depth reduction. For
example, compared with t|ket) [50], Paulihedral achieves
53.1% gate count reduction and 53.3% circuit depth reduc-
tion on average on the superconducting backend, as well as
33.6% gate count and 65.0% circuit depth reduction on the
fault-tolerant backend, using only ~ 5% additional compila-
tion time. For QAOA on a real quantum device, Paulihedral
achieves end-to-end 1.24X success probability improvement
on average (up to 1.87X) against the baseline Qiskit com-
piler [1].

2 BACKGROUND

In the section we introduce the necessary background about quan-
tum simulation kernels. We do not cover basic quantum computing
concepts (e.g., qubit, gate, linear operator, circuit) and we recom-
mend [43] for more details.

2.1 Pauli String and Compilation

We start with the Pauli string, the basic concept in quantum sim-
ulation. For an n-qubit system, a Pauli string is defined as P =
On—10p—2 09 where 0; € {LX,Y,Z},0<i<n-1.X,Y,Z are
the three Pauli operators, and [is the identity. o; corresponds to
the i-th qubit. The operators in a Pauli string P can represent a
Hermitian operator ®?:_01 oi (® is the Kronecker product), which
can be denoted by P without ambiguity. In the rest of this paper,

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation Kernels

we do not distinguish a Pauli string P and the Hermitian operator
generated by P.

One important property of a Pauli string is that the operator
exp(in) can be easily synthesized into basic gates. Figure 2 shows
an example of synthesizing exp(iYsZ3 X1 Zp %) There are two iden-
tical layers of single-qubit gates at the beginning and the end of
the synthesized circuit. In this single-qubit gate layer, there are
H or Y gates on those qubits whose operators are X (i.e., 1) or
Y (i.e., g4) in the Pauli string, respectively. In the middle is a left
CNOT tree, a central Rz(0) gate, and a right CNOT tree. The left
tree can be generated in different ways and the only requirement
is to connect all the qubits whose operators are not the identity in
P (e.g., 90, q1, q3, g4 in Figure 2). The lower half of Figure 2 shows
three different but valid ways to generate the CNOT tree circuits
and their corresponding tree graphs. In these trees, the CNOT gates
should connect the qubits from the leaf nodes to the root node. Any
qubit in the tree can become the root (e.g., g4 in Figure 2 (1) (2), g1
in Figure 2 (3)). The central Rz(0) gate is applied on the root qubit
and the right CNOT tree has the same CNOT gates in the left tree
but in a reversed order. Paulihedral uses this algorithmic flexibility
in synthesis to increase gate cancellation and reduce the mapping
overhead.

2.2 Quantum Simulation Kernels

The quantum simulation kernel is to (approximately) implement
the operator exp(iHt) where H is the Hamiltonian of the simu-
lated system and t € R. Since directly compiling exp(iHt) into
single- and two-qubit gates is hard, a compiler usually expands
H in the Pauli basis, i.e., H = Z;.V:l wjP; where wj € R and P; is
a Pauli string. Then exp(iH¢t) is approximated using the Trotter

formula [60]: exp(iHt) = [Hfll exp(lP]w]At) "y O(tAt). At is
a parameter determined by the simulation accuracy. Figure 3 (a)
shows the expansion process. exp(iHt) is first converted to z;
terms of exp(iHAt). Each exp(iHAt) is then expanded to an array
of exp(iPjw;At) and converted to basic gates.

Quantum simulation kernels also appear in recently developed
variational quantum algorithms, in which the vast majority of the
program is an ansatz (parameterized quantum circuit). One popular
type of ansatz with good trainability is the application-inspired
ansatz [10] which can be considered as a simulation kernel. Com-
pared with implementing exp(iHAt), the only difference is that the
At is changed to some tunable parameters associated with different

|~

q0 15 [) —E ~ —

ql —H— mEXls left right —z o -

q2 — 4 % M CNOT CNOT Ho R —

a3 —® M tree tree M2 “

w eyl e - -
I 1 1

00— (1) 2) 3)

al - — Rz(6)

q2 [

q3

qé Rz(6) B—{Rrz(6) 7

a0 Fade a3
root qubit: g4

40 — 94— ql ¢ a3
root qubit: g1

a0 5 ql— 93 5 g4
root qubit: g4

Figure 2: Synthesis example of exp(iY4Zgng1Z0§)

556

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

@@ eRlmbhnZy)
---------------------------- exp(iwyZ3lL,Z Iy
- exp(LHArj‘-).H exp(iHAt) |—| exp(iHAt) |» W4 W expE§W3IZ3222111Z10y%
""""""""""""""""""" exXpIWylz 231140y
—]{ exp(iw; P10 ——] exp(lePNAt)I— : W3 exp(iwsl3Z,Z11oY)

(a) Expansion of Hamiltonian simulation (b) Ansatz in OAOA graph Max-Cut

Figure 3: Example of quantum simulation kernels

q0 . ZZY DY 771 _E ZZY E ZZ1
=
A 4 5_D W > PN R
< \Va \H
no gate cancellation gate canceTF’c'on In

in naive synthesis alternative synthesis

777
3k $
W
ORI
swap required in
naive synthesis

J\-E)

no swap required in
alternatlve synthesis

gate cancellation i is blocked by non- —commutative circuit

Figure 4: Optimization opportunities and challenges

Pauli strings and the overall program structure remains the same. For
example, Figure 3 (b) shows the ansatz of QAOA algorithm [18] on
a 4-node graph Max-Cut problem. The graph of the problem has
5 edges of different weights, and the Hamiltonian of this problem
is the weighted sum of the 5 Pauli strings associated with the 5
edges. The majority of the QAOA ansatz [18] is to implement the 5
operators on the right (y is the parameter).

3 FOUNDATIONS OF PAULIHEDRAL

In this section, we first introduce the opportunities and challenges of
compiler optimizations for the simulation kernel. Then we formally
introduce a new IR that maintains the high-level information and
the algorithm constraints in Paulihedral.

3.1 Opportunities and Challenges

The optimization opportunities used in this paper come from the
properties of Pauli strings mentioned above. We introduce them
by the examples in Figure 4. 1) Gate cancellation: It is possible
to have more gate cancellation by selecting a different synthesis
plan for the exp(iP8). Suppose the naive synthesis is the one in
Figure 2 (1) and we have two Pauli strings, ZZY and ZZI. Under
the naive synthesis (on the left of Figure 4 (a)) there is no gate
cancellation. However, in an alternative synthesis of ZZY, we can
have two CNOT gates cancelled (on the right of Figure 4 (a)). 2)
Mapping: The mapping overhead onto connectivity-constrained
architectures can also be reduced. For example, we wish to map the
ZZZ simulation circuit onto a linear architecture with the current
mapping shown in Figure 4 (b). Under the naive synthesis we need
to insert one SWAP between g0 and g1. While a better synthesis
plan on the right of Figure 4 (b) does not require any SWAPs.
Although there is much optimization space for quantum simu-
lation kernels, such optimizations are not yet widely deployed in

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

(program) == (pauli_block)

| (program) ; (pauli_block)

(pauli_block) == {(pauli_str_list), parameter}
(pauli_str_list) == (pauli_str, weight)

| {pauli_str_list) ; (pauli_str, weight)

(pauli_str) == 0y_10p-2 - 09
oix=1|X|Y|Z (0<i<n-1)
parameter, weight € R

Figure 5: Formal syntax of an n-qubit Pauli IR program

today’s quantum compiler infrastructures due to the following chal-
lenges. 1) Missing high-level information: Once the program
is converted to basic gates, where today’s compilers perform most
optimizations, it is hard to identify and reconstruct the high-level
semantics of Pauli string simulation circuit blocks from an assembly-
style gate sequence. 2) Non-semantics-preserving optimization:
To leverage some optimization opportunities would require non-
semantics-preserving operations that are usually not allowed in a
compiler. For example, consider the program in Figure 4 (c). It is
known from Figure 4 (a) that gates can be cancelled between ZZY
and ZZI but now there is an ZXI simulation circuit between them.
We observe that the order of the simulation terms with respect to
different Pauli strings is not specified in the Trotter formula or the
variational form requirement. So, from an algorithmic perspective,
the compiler may exchange the order of ZZI and ZXI, making ZZY
and ZZ] adjacent for gate cancellation. However, such operation
is not semantics preserving from a gate-level perspective because,
in general, exp(iZZ161)exp(iZX162) # exp(iZXI62)exp(iZZ16,).
This would be impossible to leverage without an IR that is able to
encode such algorithmic knowledge.

3.2 Pauli IR: Syntax and Semantics

To overcome the challenges above, the objective of the new IR
is to maintain high-level algorithmic information and make all
transformations semantics-preserving. Our new IR, namely Pauli
IR, realizes them with its syntax and semantics.

Syntax: The syntax is shown in Figure 5 and explained as fol-
lows. A program is recursively defined as a list of pauli_blocks.
Each pauli_block is a tuple with two elements. The first element is
a list of weighted Pauli strings (pauli_str_lists) and the second ele-
ment is a real-valued parameter shared by all Pauli strings in this
pauli_block. One element in the pauli_str_list is an n-qubit Pauli
string and a real-value weight. Figure 6 shows the Pauli IR code of
three example programs. Figure 6 (a) simulates the Hamiltonian of
H; and each pauli_block has one pauli_str. Figure 6 (b)(c) are vari-
ational quantum algorithms so that parameters are labeled by 6 and
y- In the UCCSD program (Figure 6 (b)), each pauli_block has mul-
tiple pauli_strs which share the same 0 in the pauli_block. In the
QAOA program (Figure 6 (c)), all pauli_strs are in one pauli_block,
sharing the parameter y.

Encoding constraints: One key advantage of the IR syntax is
that the algorithmic constraints in all simulation kernels, as far as
we know, can be naturally encoded. In some simulation kernels
(e.g., UCCSD [45], QAOA for constrained optimization [47]), the

557

Gushu Li, Anbang Wu, Yunong Shi, Ali Javadi-Abhari, Yufei Ding, Yuan Xie

{(I11zZ, @.214), At};
{(11z1, -0.37), At};

0.042), At};

{(IIXY, @.5), (IIYX, -0.5), 6,}; (b)4-qubit
{(XYII, -8.5), (YXII, 6.5), 6,}; UCCSD
{(XYYY, -8.125), , (YXXX, 0.125), 6:};

{(YYXX, 0.042), At}; -
{(z1z1, ©.186), At}; {(I1112Z, W,), (IIIZIZ, w,), (c) 6-qubit
{(ZZ11, 0.138), At}; 1 1 eeeees QA0A

(ZIZIIT), wya), (ZZIIII, W), Vv3};

(a) H, simulation

Figure 6: Example Puali IR programs

[2] =0
[{program); (pauli_block)] = [{program)] + [{pauli_block)]
[{{pauli_str_list), parameter}] = parameter X [{pauli_str_list)]
[{pauli_str_list); (pauli_str, weight)] = [{pauli_str_list)]
+ [(pauli_str, weight)]
[{pauli_str, weight)] = weight x [pauli_str]

[on-10n—2---00] =0n-1®0n2®---® 0y

Figure 7: Formal semantics of an n-qubit Pauli IR program

algorithm requires that some Pauli strings should always appear
together for some algorithmic purposes like symmetry preserv-
ing [21], parameter sharing [18, 45], error suppression [23], etc.
Pauli IR employs a pauli_block structure to represent such con-
straints. The compiler can extract such information and all the
pauli_strs inside one pauli_block are always scheduled together in
follow-up optimization passes. In the rest of this paper, pauli_block
is denoted by block for simplicity.

Semantics: The IR’s semantics function, which is denoted by
[{program)], can be formally defined by the rules in Figure 7. This
function is a mapping from the IR syntax to the set of all Hermitian
operators in a 2"-dimensional Hilbert space as our IR is to represent
the Hamiltonian to be simulated. Note that the rules in the second
and the fourth rows are defined based on matrix addition which
is always commutative. As a result, exchanging the order of the
pauli_blocks in a program or the order of {(pauli_str, weight)s in
a pauli_block will not change the semantics.

4 BLOCK-WISE INSTRUCTION SCHEDULING
PASSES

The first step in Paulihedral is to schedule the blocks and the instruc-
tions within each block. Intuitively for two adjacent Pauli strings,
more gates can be cancelled if they share the same non-identity
operators on more qubits. Trying to maximize the number of shared
operators between consecutive strings would be desirable. Also, it
is possible to execute multiple blocks which have non-identity oper-
ators on disjoint sets of qubits in parallel and reduce the final circuit
depth. In this paper, we present two block scheduling algorithms
for two optimization objectives, reducing the total gate count or
the circuit depth. We explain our block scheduling optimizations
using the example in Figure 8. Suppose we will schedule 10 blocks
on 8 qubits (Figure 8 (a)). In these blocks, each column is a Pauli
string. The identity operators are omitted since they do not result
in any circuit.

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation Kernels

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

A T Z 8 10 . 2 1 8 210
@2 —vxHxv 71z Zv a2 vxHzzHxyHzv |-
a3 — xxHxv 3 - X Y vibk g3 S xx b vyxHxvyHvyi |-
ad—{xvHzzHvx — zz 2z a4 vxp+— 5 > IxvHzzHzzzz}
a5 —{ xxHzzHvx v Z fvx|—2 5 = v x f—i—2—L '7|—xx—xv—zz
a6 zz | X v X X a6 — 2z [— X X Y x
q7 x x - x v} 2z M a7 = xox HxYHYH 2

(a) 10 example blocks . (b) gate-count oriented scheduling (lexicographic order)

------ - ! HIl ¢ : H H
. T g I H ool PR O 3 U) FR
a2 3 yxHHzzHHxvy zv a2 a— e 7z v P——o
q3 XX =YX = XY Y| ppmsssssmmoomnnooms 5 a3 3 X X XY YX =y f———
Q4 XY XY|HZzZ 22 77) q4 — XY X Y zz 22 p=zz
s HxvHxx - xvldzz |9 6 Mk os—xvy—Hx « 72 XY v
g6 -H YY X X Y xP- g6 — YV |—— o x| v + 1 xt
i g —] i b == e e

(c) block sorting by active length

(d) depth-oriented scheduling

Figure 8: Example of block scheduling optimizations

4.1 Gate-Count-Oriented Scheduling

Lexicographic ordering of Pauli strings has been shown to be effec-
tive at enabling gate cancellation between them [23, 59]. Here we
adapt this principle to the multi-string-per-block case for our gate-
count-oriented scheduling algorithm. In the lexicographic order,
the Pauli strings are scheduled in the alphabetical order. In Figure 8,
we assume X < Y < Z < I and use little-endian to lexicographi-
cally order from g7 down to q0. When a block has multiple strings,
we first apply the lexicographic order on all strings in this block
and then use the first string to represent this block when compared
with other blocks. The first Pauli string can be representative be-
cause the strings in one block are usually mutually commutative
in practical algorithmic constraints [18, 23, 45]. Two strings in a
mutually commutative set can share the same operators on many
qubits and all strings in one block are similar. Figure 8 (b) shows
the result of gate-count-oriented scheduling.

4.2 Depth-Oriented Scheduling

The blocks can also be scheduled for reducing circuit depth. For
example, in Figure 8, g0 to g5 are idle when executing block 9, 7, and
6. We may execute block 1 with them in parallel so that the overall
circuit depth can be reduced. We propose a new depth-oriented
block scheduling algorithm, whose pseudocode is in Algorithm 1.
For the example in Figure 8, we first sort all blocks by the active
length of the Pauli strings of the blocks in a decreasing order. The
active length of a block is defined by the number of qubits which
have a non-identity operator in at least one Pauli string of this
block. This is an over-approximated estimation on how a block will
occupy the qubits. The blocks of the same active length are ordered
by the lexicographic order above. Figure 8 (c) shows the sorting
result. Block 3, 1, 8, 2 have the largest active length of 4 so they are
at the beginning. Block 9, 7, 6, 5 have the smallest active length of
2 and they are at the end.

Then we begin to schedule all blocks and put the blocks in dif-
ferent layers to increase the parallelism. For each layer, we first
schedule a large active length block. Then we search for small ac-
tive length blocks that can be executed in parallel with the large
block. For the example in Figure 8 (d), we initialize the first layer
by selecting the first block after the sorting. We place the block

558

Algorithm 1: Depth-oriented scheduling

Input: List of Pauli blocks.

Output: Pauli Layers L.

Sort Pauli blocks by active-length-decreasing order, then
sort blocks of the same active length by lexicographic
order;

1

R = the set of all Pauli blocks remaining; L = &;
3 Initialize the first layer;
while R is not empty do
next_block =
arg maxp;, ., g Overlap(block, last Pauli layer);
pauli_layer = [next_block]; R.remove(next_block);
while total depth of the small padding blocks < the depth
of next_block do
find small Pauli block not overlapped with
next_block;
Append these blocks to pauli_layer;
10 Remove these blocks from R;
end
L.append(pauli_layer);
end

11

12

13

3 at the beginning. Then we search for small blocks that have no
overlapped active qubits with the large block and can be executed in
parallel. There are no such small blocks for block 3 so we continue
by start another layer with block 1. In this layer, block 4, 9, 7, 6
can be placed in parallel with block 1. We iterate over the sorted
block and find the first few blocks that can padded in this layer. In
this example, we select block 4 and 9. We also estimate the depth
of these small blocks so that total depth of these blocks will not
exceed the depth of the original large block in this layer. We repeat
this padding process until we cannot find any new blocks that can
be added in this layer. We then continue to the next layer and start
with block 2 because its first Pauli string has the most overlapped
Pauli operators with the Pauli strings at the end of the previous
layer. We iterate until all blocks are scheduled. Figure 8 (d) shows
the final result of our depth-oriented scheduling and we can expect

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

that the circuit depth can be reduced even if we do not convert the
program to the gates. This is another benefit of Pauli IR because
the compiler can operate on a fairly compact description of the
program. Once the program is lowered to gates, then the size blows
up and parallelizing gates becomes much more expensive.

5 BLOCK-WISE OPTIMIZATION PASSES

In this section, we introduce two optimization passes that can
exploit the gate cancellation potential created by our scheduling
passes in the last section, and convert the Pauli IR programs to gate
sequences with different optimization objectives onto the fault-
tolerant quantum computer (FT) backend and the near-term super-
conducting quantum computer (SC) backend.

5.1 On the Fault-Tolerant Backend

Our strategy for the FT backend is to adaptively find the synthe-
sis plan that can maximize gate cancellation since the mapping
overhead can usually be neglected after applying quantum error
correction [20]. The pseudocode is shown in Algorithm 2, and we
explain it with Figure 9. To capture the major gate cancellation
opportunities, we scan over all layered blocks and try to select
consecutive layer pairs that share the most Pauli operators. There
should be significant operator overlap between consecutive layers
since this was considered in our scheduling. The blocks on the left
of Figure 9 are in five layers. Layer 1, 2, 3, 5 have one block in each
and layer 4 has two blocks. We will pair the layer 3 and 4 together
first since they share the same Pauli operators on 6 qubits. Then
the first two layers are paired since they share Pauli operators on
only 2 qubits. The last layer is left alone.

We first realize gate cancellation between the paired layers. For
all layer pairs, we synthesize the Pauli strings at the end of the first
layer and the Pauli strings at the beginning the second layer in the
pair. For the layer 3 (block 3) and the layer 4 (block 4 and 5), we need
to handle the ITYXXYXXT in the layer 3 and (IIIIYXXX,YYXXIIII)
in the layer 4. There are two sets of overlapped operators, YXX
on qubit 3-1 and YXX on qubit 6-4. For each set, most gates can
be directly cancelled, and we can select one qubit from each set
and connect them with CNOT gates. The synthesis result for these
two layers with gates cancelled is shown on the right of Figure 9.
We repeat this process to optimize the synthesis of Pauli strings at
the junction of two paired layers. Here we will synthesize the last
string in layer 1 and the first string in layer 2.

We then realize the gate cancellation between strings inside a
block. For those Pauli strings in the paired layer but not synthesized
(one block with multiple strings), we employ a similar strategy at
the string level for all Pauli strings inside one block. For each block,
we search for string pairs that share the same Pauli operators on
the most qubits and then synthesize these pairs first. In the block 1
in Figure 9, the first three Pauli strings are not yet synthesized. We
will pair and synthesize the first two Pauli strings since they share 5
Pauli operators and a lot of gates can be cancelled. For the individual
Pauli strings left, they are not paired with other strings (e.g., the
third string in block 1). We check if it shares more Pauli operators
with its left neighbor string or right neighbor string. Then we select
the one with more gate cancellation and synthesize the Pauli string
accordingly. For the blocks that are not paired with other blocks

559

Gushu Li, Anbang Wu, Yunong Shi, Ali Javadi-Abhari, Yufei Ding, Yuan Xie

Algorithm 2: Optimization for FT backend
Input: List of Pauli layers pls
Output: A quantum circuit of basic gates

1 pl_paired = []; // paired Pauli layer list

2 while neighboring layers exist in pls do

30| 1= argmaXiepgexser (pis) Overlap (pli, pliv) ;

4 pls.remove(pl;); pls.remove(pliy1);

s | pl_paired.append((pli, pli+1));

6 end

<
=

or (ply, ply) in pl_paired do
8 ps_list; = last Pauli string of plj;
9 ps_listy = first Pauli string of ply;
analyze string overlap then do synthesis on
(ps_listy, ps_lists);
pli.remove(ps_listy); ply.remove(ps_listz);
for pb in (pli + pl) do
most_overlap_sort(pb); // find overlap at
Pauli-string-level

10

11

12

13

14 analyze string overlap then do synthesis on the
sorted strings in pb;

15 end

16 end

for pb in pls do

most_overlap_sort(pb); analyze string overlap then do

17
18

synthesis on the sorted strings in pb;

19 end
Iayerpair' \
qo | : "_‘Q’.x4 3 {Hl 4 H
ql 12 4 x [x f H
Q2-zrzIfyvRXHE X H'é* Ot
BazzzzHzYHYH Y= TH]—& D{RID-D— V-
4 - - - - o H
s D EL B P35t
a6qdxxvyy@HzvHYH |, —H— -Ey—é'eﬁi() é—Y
qg7dzzzzHz1f v
——— ' 5
string pair gate cancellation between layers

Figure 9: Example of compilation onto FT backend

at the beginning of this algorithm (e.g., block 6), we treat them as
unsynthesized Pauli strings and apply the same strategy, pairing
and synthesizing the strings with high gate cancellation potential
first then dealing with individual strings. Finally, all Pauli strings
are compiled and we obtain a gate sequence of the input Pauli IR
program. The final gate count is substantially reduced because the
gate cancellation potential created by our block scheduling passes
is maximally exploited through the adaptive synthesis plan in our
block-wise optimization pass.

5.2 On the Near-Term Superconducting Backend

The compilation is more complicated for the SC backend because
the SWAP gates are necessary to change the qubit mapping due
to the qubit connectivity constraints. The gates are not uniform
as they have different error rates on different qubits. We assume
that the device calibration information (qubit coupling graph and

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation Kernels

N

find a tree embedding
in the coupling map

a0 =}

ql ——4
q2 —H
g3 —
g4 —
a5 —H
a6 —

L1
X < X H X
X H X < X

H-<><N><N><I

X X < N X

a7 x
(a) example program

core qubits
connected
@ after SWAP

"7
(d) embedded tree transformation

Figure 10: Example of compilation onto SC backend

the gate error rates on each qubit and qubit pair) is provided by
the vendor. The major objective on the SC backend is to reduce the
mapping overhead.

Our key idea is to find a tree embedding in the coupling map
that can support the Pauli strings in the current layer and also
minimize the mapping transition overhead between layers. Algo-
rithm 3 shows the pseudocode, and we explain it using the example
in Figure 10. For the initial qubit layout, we map all qubits to the
most connected subgraph in the device coupling map. Suppose the
coupling map and the current mapping of Figure 10 (b). We then
begin to generate the simulation circuits and insert SWAPs for the
blocks that appear in the critical path. In our block scheduling, we
have already placed the blocks in different layers. In each layer,
the largest block (involving the most qubits) is most likely on the
critical path. Our optimization pass will first process the largest
block in each layer, followed by the small blocks remaining. The
program in Figure 10 (a) has two layers in which block 3 and 4 are
the largest blocks.

For each block, we first select a root qubit. We define that the core
qubit list of a block contains the qubits which have a non-identity
operator on all Pauli strings in the block (e.g., g2-5 for block 3,
q(2,4,6) for block 4). For block 3, since it is the first layer, we only
need to consider itself. For g2-5 in its core list, they are already in a
connected subgraph (Figure 10 (b)). We select any one of them (e.g.,
q2) as the root. And we only need to attach g6 to this subgraph by
connecting it to any node of this graph. Suppose we swap g6 with g0
and now all active qubits in this block are connected in a subgraph.
Active qubits are those qubits that have a non-identity operator
in at least one string in this block. We can naturally generate an
embedded tree from the coupling map (Figure 10 (c)).

Next we can synthesize the strings in block 3. The key idea
is to naturally implement the CNOT tree in the Pauli circuits on
the embedded tree so that we do not need to insert SWAPs for all
individual CNOTs. We generate CNOT gates and single-qubit gates
from the outermost qubits to the root for all the Pauli strings in the
current block. If a qubit is active in the current Pauli string, we will
check if its parent node is also active in the current Pauli string. If
so, we insert a CNOT between the qubit and its parent. Otherwise,
we swap it with its parent so that the qubit can get closer to the root
and will be connected by CNOT later. In Figure 10 (c), the generated
CNOTs are labeled by red arrows. After we determine the left CNOT

560

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

Algorithm 3: Optimization for SC backend

Input: List of Pauli layers pls, device information
Output: Hardware compatible circuit Q
1 Map logical qubits to the most connected subgraph of the
device coupling map; // Initial mapping

2 for pauli_layer in pls do
3 pb = the largest Pauli block in pauli_layer;
4 s = core qubit list of pb;
5 T; = node in s with largest connected component;
6 connect active qubits in pb to tree Ty through shortest
path (lowest error rate);
7 wl =leaves of T sorted by depth;
8 for ps in pb do
9 while wl # @ do
n = wl.deque(); np = n.parent;
if n is the root of T; then continue;
if ps[n] # I and ps[np] # I then

add single-qubit gates based on ps[n] and

pslnpl; Q.append(CNOT (n, np));
else if ps[n] # I and ps[np] == I then
‘ Q.append(SWAP(n,np));

end
wl.append(np);
end

10

11

12
13

14
15
16

17

18

19 generate the right half circuit of ps reversely;

20 end

for spb in remaining blocks of pauli_layer do

T, = try_construct_tree(spb); // Return NULL if
changes T;

synthesize spb with T if T} not changed; otherwise

21
22

23
add spb to remain_layers;

24 end

25 end

26 while remain_layers is not empty do

27 Sort remain_layers by cumulative distance between
active qubits;

28 Synthesize first layer of remain_layers with the same

strategy and remove it from remain_layers;

29 end

tree, the right CNOT tree can be generated by reversing the order
of CNOTs in the left tree.

After we process block 3, we will compile block 4, the next block
in the critical path. As our block scheduling passes tend to maximize
the overlap between two consecutive layers, the core lists of two
consecutive layers are similar. For example, ¢(2,4,6) are in the core
list of block 4 and they all appear in the core list of block 3. We
evaluate all these qubits to select the root qubit with the largest
connected component (within the core list) in the current mapping
(Figure 10 (c)) to minimize the transition overhead. For ¢(2,4,6), we
will select q2 or g4 since they are in a size-2 connected component
while g6 is in a size-1 connected component. Similarly, we then
move all other active qubits to the tree through the path with the

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

smallest error rate estimated by the device information. Here we
select g2 as the root and then swap g6 and g5 to transit from block
3 to 4 with only 1 SWAP (Figure 10 (d)). After that the core qubits
in block 4 are connected and we can begin synthesizing all strings
in block 4.

The procedure above is to process the largest blocks in each
layer. For other small blocks in the same layer, we follow a similar
strategy and attempt to construct the trees for active qubits in
those small blocks. If the trees of the small blocks do not affect
the tree construction of the large block, we just process the small
blocks in parallel with the large block since they will not affect
each other. This will create parallelism and reduce the depth of the
generated circuit. For example, block 2 and 3 can be processed in
parallel because g0 and g1 are connected after swapping g6 with
q0. However, if the trees of the small blocks affect the processing of
the large block, we will put it in remain_layer and process them at
the end. For example, block 1 will be in the remain_layer because
connecting q0 and g7 will affect block 3.

After we process all the large blocks in the critical path and
those small blocks that can executed in parallel, we will compile the
blocks in the remain_layer. The order of processing these blocks
is determined by whether the active qubits are close in the current
mapping. We compute the cumulative distance between active
qubits in a block and then compile the block with the smallest
cumulative distance and update the qubit mapping. This process is
repeated until all the blocks are processed.

6 EVALUATION

In this section, we evaluate Paulihedral by comparing with state-
of-the-art baselines, analyze the effects of individual passes, and
perform real system study.

6.1 Experiment Setup

Backend: The optimizations in this paper target two different back-
ends, the fault-tolerant backend (FT) and near-term superconduct-
ing backend (SC). We will cover both of them. We select IBM’s latest
65-qubit Manhattan architecture [11] as the SC backend. For real
system study, we use IBM’s 16-qubit Melbourne chip, the largest
publicly available one.

Metric: We use the CNOT/single-qubit gate count, and the cir-
cuit depth in the post-compilation program to evaluate Paulihedral.
For the SC backend, the CNOT gate count is more important due to
its higher error rate and latency. The depth is also important due to
short qubit coherence times. For the FT backend, T gate is usually
more expensive but for the simulation kernels, the ratio between
the H, Y, CNOT gate count and the T gate count grows linearly as
the number of qubits increases. Because a Pauli string of length n
will have O(n) H, Y, and CNOT gates but the number of Rz gates
(the only source of T gates) is always one. It has also been shown
that CNOT count is a significant cost in fault-tolerant algorithms
and should not be neglected compared to T gates [36]. Hence, we
estimate the performance with total gate count and circuit depth,
following convention in previous work [13, 14, 25, 61].

Benchmark: We select 31 benchmarks of different sizes and
various applications. For the SC backend, we select VQE UCCSD
ansatzes [45] of six sizes, and the QAOA programs [18] for graph

561

Gushu Li, Anbang Wu, Yunong Shi, Ali Javadi-Abhari, Yufei Ding, Yuan Xie

Table 1: Benchmark information

Backend Pauli #
144
1476

4200

8316

9300

20724

Name Qubit #
UCCSD-8 8
UCCSD-12
UCCSD-16
UCCSD-20
UCCSD-24
UCCSD-28
REG-20-4
REG-20-8
REG-20-12
Rand-20-0.1
Rand-20-0.3
Rand-20-0.5
TSP-4
TSP-5
Ising-1D
Ising-2D
Ising-3D
Heisen-1D
Heisen-2D
Heisen-3D
Nz
H,S
MgO
CO2
NaCl
Rand-30
Rand-40
Rand-50
Rand-60
Rand-70
Rand-80

Single #
1240
15588
47044
109248
115584
270196

Type

UCCSD

sC

QAOA

Ising

Heisenberg

354
39594
66026
388258
252402
1249768
132939
316039
618763
1068153
1699771
2540640

649
32151
52686
310519
202282
945935
99123
229240
441532
754071
1190101
1768117

FT

Molecule

Random

max-cut on regular (REG) graphs of degrees 4, 8, 12, and random
(Rand) graphs of edge probability 0.1, 0.3, 0.5, as well as traveling
salesman problem (TSP) of different sizes. These benchmarks are
generated by Qiskit [1]. For the FT backend, we first generate
the Hamiltonians of five molecules using PySCF [54] (N2, H2S,
MgO, CO2, NaCl). We also prepare the Hamiltonians of three Ising
models and three Heisenberg models, both of which are widely used
in condensed matter physics, of different dimensions. We finally
generate random Hamiltonians (Rand) of various sizes (30 to 80
qubits) for a more comprehensive evaluation. For a Hamiltonian of
n qubits, we prepare 5n2 Pauli strings. In each Pauli string, we first
randomly select one integer m between 1 and n. Then we randomly
select m qubits and assign random Pauli operators to them. The
rest n — m qubits will be assigned with the identity. Table 1 shows
the details of these benchmarks. Note that ‘Pauli #” represents the
number of Pauli strings. We include the CNOT and single-qubit
gate counts when naively converting these benchmarks into gates
without any optimization/transformations, and neglecting mapping
overhead.

Implementation: We prototype Paulihedral in Python 3.8 (de-
noted by ‘PH’). The entire compilation flow has two stages. The
first stage is the quantum simulation program optimizations. The
baselines include the CQC t|ket) compiler [50] which employs the
simultaneous diagonalization [13, 14, 17], a popular technique for
optimizing quantum simulation programs (‘TK’), and the QAOA
compiler [3-5], an algorithm-specific compiler for unconstrained
optimization QAOA on graphs (‘QAOA compiler’). The second
stage is the generic compilation and we have two industry generic
compilers, the IBM’s Qiskit [1] at the highest optimization level 3
(‘Qiskit_L3’) and the CQC t|ket) generic compiler [50] at the high-
est optimization level 2 (‘tket_O2’), The experiments are performed
on a server with a 28-core Intel Xeon Platinum 8280 CPU and 1TB

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation Kernels

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

Table 2: Compilation time and results compared with t|ket) [50]

Time(s) PH+Qiskit_L3 Time(s) PHitket 02 Time(s) TK=Qiksit_L3 Time(s) TR+tket 02
PH | Qiskit | CNOT | Single Total Depth tket CNOT | Single | Total | Depth | TK | Qiskit | CNOT | Single Total Depth tket CNOT Single Total Depth
UCCSD8 | 0 5 1165 | 667 | 1832 | 1404 16 | 1282 | 538 | 1820 | 1a15 | o | 17 | 2247 | 1183 | 3435 | 1975 1 1775 | 346 | 2121 | 1527
UCCSD-12 | 1 | 120 | 17322 | 8607 | 25929 | 17808 | 485 | 20794 | 6816 | 27610 | 19439 | 0 | 331 | 35130 | 16113 | 51243 | 28910 | 31 | 26713 | 4007 | 30720 | 21747
UCCSD-16 | 3 | 471 | 58441 | 27607 | 86048 | 55566 | 7300 | 77274 | 19157 | 96431 | 65749 | 2 | 1525 | 140932 | 55678 | 196610 | 107177 | 179 | 106868 | 11837 | 118705 | 87064
UCCSD-20 | 8 | 827 | 106464 | 54951 | 161415 | 97168 | 11033 | 128195 | 37972 | 166167 | 107750 | 4 | 3171 | 315911 | 123823 | 439734 | 233862 | G655 | 223106 | 23736 | 246842 | 179618
UCCSD-24 | 9 | 1235 | 126013 | 63258 | 194271 | 113293 | 33155 | 187653 | 40357 | 228010 | 156431 | 6 | 4015 | 383444 | 145586 | 529030 | 283638 | 944 | 260282 | 29101 | 289383 | 213557
UCCSD-28 | 25 | 2759 | 280514 | 145672 | 426186 | 258326 | 69940 | 473093 | 92118 | 565211 | 386285 | 17 | 8933 | 870722 | 326600 | 1197322 | 644877 | 3313 | 595631 | 58782 | 654413 | 482484
REG-20-4 0 1 329 108 437 161 2 311 43 354 128 0 0 1594 523 2117 762 3 1441 40 1481 710
REG208 | 0 2 519 | 266 | 785 290 7 574 | 84 | 658 | 267 | 0 1985 | 663 | 2643 | 894 3 1726 50 1806 | 816
REG-20-12 0 2 694 393 1087 396 12 842 125 967 404 0 0 1893 705 2598 765 3 1675 120 1795 775
Rand-20-0.1 0 1 188 46 234 97 1 167 20 187 67 0 0 577 184 761 255 0 448 18 466 214
Rand-20-0.3 0 1 414 181 595 236 5 439 60 499 202 0 0 1539 502 2041 688 2 1355 56 1412 644
Rand-20-0.5 0 2 571 313 884 335 9 674 98 772 333 0 0 1812 622 2434 735 3 1614 93 1707 746
TSP-4 0 2 500 | 381 | 881 257 5 583 | 112 | 695 | 283 | 0 | 0 1006 | 55 | 1562 | 446 2 1207 12 | 1319 | 530
TSP5 0 3 1095 | 683 | 1776 | 636 24 | 1457 | 225 | 1es2 | 534 | 0 | 0 288 | 1250 | 4136 | 1030 5 3057 | 225 | 322 | 1289
N, 6 | 255 | 1632 | 11223 | 27855 | 17486 | 37 | 16002 | 10861 | 26863 | 17682 | 2 | 116 | 19762 | 9785 | 20547 | 21087 | 15 | 18928 | 9702 | 28630 | 20446
HS 16 | 450 | 25726 | 17580 | 43306 | 27676 | 94 | 24813 | 16836 | 41649 | 28051 | 3 | 209 | 35248 | 17453 | 52701 | 36450 | 47 | 3398 | 17075 | 51043 | 35329
MgO | 615 | 2489 | 116973 | 87654 | 204627 | 126259 | 3291 | 113575 | 78585 | 192160 | 127619 | 20 | 1840 | 198428 | 92012 | 200440 | 203064 | 3818 | 192499 | 85694 | 278193 | 194905
CO; 293 | 1656 | 96829 | 65243 | 162072 | 93679 | 2663 | 93391 | 61386 | 154777 | 95302 | 15 | 1182 | 126634 | 58368 | 185002 | 129697 | 1699 | 121768 | 56277 | 178045 | 124557
NaCl | 7377 | 7492 | 316456 | 247630 | 564086 | 338763 | 28920 | 307038 | 223261 | 530299 | 342775 | 63 | 7262 | 626692 | 267424 | 894116 | 626665 | 87838 | 605201 | 247500 | 852701 | 599322
Tsing1D_| 0 0 58 2 87 6 0 58 2 87 6 o | 2 508 2 537 150 0 508 2 537 50
Ising-2D 0 98 49 147 18 0 98 49 147 18 0 1 306 49 355 219 0 306 49 355 219
Ising-3D 0 0 118 59 177 18 0 118 59 177 18 0 1 290 59 349 188 0 290 59 349 188
Heisen-1D 0 1 87 204 291 13 0 87 190 277 13 0 1 172 176 348 100 0 169 200 369 126
Heisen-2D 0 1 216 315 531 43 0 212 284 496 47 0 1 293 239 532 89 0 293 294 587 98
Heisen3D | 0 2 305 | 366 | 671 & 0 295 | 335 | 60 | &1 | 0 | 2 365 | 271 | 636 118 0 364 328 692 125
Rand-30 | 13 | 1386 | 94222 | 47315 | 141537 | 70787 | 2329 | 89152 | 50490 | 139642 | 78420 | 5 | 779 | 114043 | 55665 | 169708 | 8719 | 141 | 108943 | 62158 | 171101 | 97897
Rand-40 | 42 | 4253 | 233266 | 108988 | 342254 | 166989 | 175842 | 223946 | 119225 | 343171 | 189856 | 11 | 1775 | 270928 | 125264 | 396192 | 199567 | 961 | 259985 | 142805 | 402790 | 227284
Rand-50 | 104 | 9144 | 470240 | 211605 | 681845 | 329388 | 55853 | 455607 | 234635 | 690242 | 379553 | 24 | 3575 | 533631 | 239379 | 773010 | 388722 | 5220 | 514235 | 276401 | 790636 | 447315
Rand-60 | 203 | 14007 | 834418 | 364816 | 1199234 | 575973 | =72hrs NA 44 | 5930 | 926982 | 404279 | 1331261 | 666338 | 22096 | 895895 | 471005 | 1366900 | 768714
Rand-70 | 393 | 27849 | 1345439 | 576378 | 1921817 | 924730 | =72hrs NA 7a | 9672 | 1476952 | 636284 | 2113236 | 1050970 | 138031 | 1430214 | 746249 | 2176463 | 1220344
Rand-80 | 709 | 39322 | 2033283 | 856105 | 2589388 | 1386577 | =72hrs NA 116 | 17092 | 2205935 | 938304 | 3144239 | 1555808 | 285101 | 2138232 | 1104321 | 3242553 | 1811440
RAM. Note that due to the limited representation ability of t|ket), Table 3: Comparing with QAOA compiler [3]
the algorithmic constraints are hard to be encoded in “TK’. To run
. . . PH+Qiskit_L3 QAOA_Compiler+Qiskit L3
our experlments and perform a fair comparison at our beSt’ we Benchmark | CNOT | Single | Total | Depth | Time(s) | CNOT | Single | Total | Depth | Time(s)
relax those constraints in “TK’ and this relaxation allows a larger REG-20-4 | 329 | 108 | 437 | 161 | 014 | 394 | 101 | 495 | 171 | 632
o REG-208 | 519 | 266 | 785 | 290 | 023 | 727 | 141 | 868 | 297 | 1027
optimization space. REG20-12 | 694 | 393 | 1087 | 3% | 029 | 1020 | 181 | 1201 | 399 | 1455
Rand-200.1 | 188 | 46 | 238 | o7 | 008 | 212 | 80 | 292 | 111 | 452
. . Rand-2003 | 414 | 181 | 595 | 236 | 01 546 | 118 | 664 | 230 | 774
6.2 Comparlng with tlket> and the QAOA Rand-2005 | 571 | 313 | ssa | 335 | o012z | 84z | 155 | 997 | 334 | 123

Compiler
Table 2 shows the compilation time and results of the four configu-
rations of all benchmarks on the two backends. Note that ‘>72 hrs’
indicates that the ‘tket 02’ takes over 72 hours and was shut down
in the middle. In summary, ‘PH’ outperforms ‘TK’ with substantial
gate count and circuit depth reduction while only introducing ~ 5%
additional time (‘PH’ vs ‘Qiskit/tket’) in the entire compilation flow.

On the SC backend, ‘PH’ can reduce the CNOT, single-qubit,
total gate count, and circuit depth by 66.2% (43.3%), 53.4% (-22.7%),
62.6% (41.2%), and 60.8% (44.3%), respectively on average, compared
with ‘TK’ using ‘Qiskit_L3’ (‘tket_O2’) generic compilation. ‘PH’
can achieve such significant improvement because “TK’ does not
support mapping-aware optimization for general Pauli strings and
can only do a inefficient generic qubit mapping. The single-qubit
gate count increases when using ‘tket_02’ but this does not affect
the overall improvement since the CNOT gates have much higher
error rates on the SC backend and latency and the total single-qubit
gate count is still relatively low.

On the FT backend, ‘PH’ can reduce the CNOT, single-qubit,
total gate count, and circuit depth by 38.7% (44.5%), 18.6% (3.0%),
32.8% (34.4%), and 61.7% (68.0%), respectively on average, compared
with ‘TK’ using ‘Qiskit_L3’ (‘tket_02’). The circuit depth reduction
is significant due to the depth-oriented scheduling in ‘PH’. Our
block-wise optimization is also much effective compared with ‘TK’
strategy. The details of “TK’ are not public and what we can infer,
at our best, from their limited documents [13, 14, 17, 50] is that the

562

simultaneous diagonalization may introduce too much overhead.
For example, the ‘Ising-1D’ program has even more gates after “TK’.
One possible reason is that all Pauli strings in Ising-1D are mutually
commutative and it takes many additional gates to simultaneously
diagonalize all these Pauli strings.

Table 3 shows the compilation results of ‘PH’ and the QAOA
compiler [3] on the 6 MaxCut problems. We ran the QAOA com-
piler with 20 random seeds for each program and collected the
averaged compilation results. Comparing with the QAOA compiler,
Paulihedral can achieve 24.6%, 12.2%, and 3.2% reduction in CNOT
count, total gate count, and circuit depth, respectively on average,
using only 1.7% compilation time. The overhead is about 40% in
single-qubit gate count, but in QAOA the CNOT count is usually
over 3—4X higher than single-qubit gate count and CNOT error rate
is usually 10x higher on the SC backend. Therefore, ‘PH’ signifi-
cantly outperforms QAOA compiler, even though it is more general
purpose and not tailored to a single algorithm. This is because
‘PH’ employs a block-wise optimization for searching SWAPs and
the search scope is much larger than that of the QAOA compiler’s
greedy search.

6.3 Pass Option Comparison

Now we study the effect of different pass options in Paulihedral.
We first compare the two block scheduling passes.

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

Table 4: Pass option effect comparison

DO vs GCO Block-Wise Compilation improvement
CNOT | Single Total Depth | CNOT | Single Total Depth
UCCSD-8 -4.43% -1.19% -3.27% 0.72% -51.07% | -51.14% | -51.09% | -37.93%
UCCSD-12 6.32% -8.41% 0.93% 2.37% | -57.38% | -55.35% | -56.73% | -50.06%
UCCSD-16 -2.62% -6.32% | -3.84% -1.94% | -59.61% | -45.26% | -55.90% | -51.89%
UCCSD-20 -3.81% -8.55% -5.48% -6.49% | -72.40% | -56.43% | -68.47% | -67.66%
UCCSD-24 -5.25% 3.90% -2.23% | -10.60% | -68.72% | -49.02% | -63.80% | -63.38%
UCCSD-28 -1.19% 5.00% 0.84% -2.34% | -73.97% | -56.31% | -69.80% | -67.22%
REG-20-4 N.A. -21.85% | -6.90% | -18.62% | 27.78%
REG-20-8 N.A. -34.63% 1.14% -25.73% | 18.37%
REG-20-12 N.A. -36.62% | -12.86% | -29.69% | 13.79%
Rand-20-0.1 N.A. -11.74% | -16.36% | -12.69% | 36.62%
Rand-20-0.3 N.A. -28.99% | -2.16% | -22.53% | 26.20%
Rand-20-0.5 N.A. -38.60% | -4.28% | -29.67% | 10.20%
TSP-4 N.A. -43.12% | -12.81% | -33.05% | -19.18%
TSP-5 N.A. -47.53% | -7.58% | -37.07% | -2.30%
N> 13.30% 3.13% 8.97% -7.59% -4.54% -2.93% -3.90% -6.77%
H,S 17.43% 6.24% 12.61% | -3.09% -6.32% | -2.94% -4.98% | -8.25%
MgO 31.16% 8.51% 20.40% -0.48% -6.89% -8.17% -7.44% -9.45%
CO, 26.08% 6.43% 17.36% -8.84% -5.13% -1.34% -3.64% -6.04%
NaCl 25.03% 6.55% 16.18% | -5.46% | -12.18% | -8.48% | -10.60% | -13.62%
Ising-1D 0.00% 0.00% 0.00% | -93.10% | 0.00% 0.00% 0.00% 0.00%
Ising-2D 0.00% 0.00% 0.00% -68.42% 0.00% 0.00% 0.00% 0.00%
Ising-3D 0.00% 0.00% 0.00% | -71.43% | 0.00% 0.00% 0.00% 0.00%
Heisen-1D 0.00% 0.00% 0.00% | -92.57% | 0.00% 7.37% 5.05% 0.00%
Heisen-2D | -19.10% | -12.01% | -15.04% | -82.30% 0.00% 3.28% 1.92% 0.00%
Heisen-3D -8.41% | -13.68% | -11.36% | -80.83% 0.00% 1.95% 1.05% 0.00%
Rand-30 7.25% 6.95% 7.15% -9.76% -8.74% | -3.53% -7.06% | -29.45%
Rand-40 6.11% 5.55% 5.93% -9.46% -9.68% -2.99% -7.65% | -31.80%
Rand-50 4.83% 4.98% 4.88% -9.21% | -10.48% | -2.19% -8.06% | -33.15%
Rand-60 4.10% 4.36% 4.18% -9.30% | -10.75% | -1.90% -8.23% | -33.44%
Rand-70 3.60% 3.79% 3.66% -8.80% | -11.07% | -1.63% -8.44% | -33.76%
Rand-80 3.27% 3.34% 3.29% -8.70% | -11.19% | -1.54% -8.54% | -34.17%

DO vs GCO scheduling: On the left of Table 4 we show the
difference between the depth-oriented (DO) scheduling and the
gate-count-oriented (GCO) scheduling (in Section 4). Overall, across
the 17 benchmarks on the FT backend, ‘DO’ can yield low-depth
circuits while ‘GCO’ can reduce the gate count more. The circuit
depth of DO is 46.7% (geomean) compared with that of GCO and
the gate count overhead is 5.9%, 0.64%, and 3.3% for CNOT, single-
qubit, and total gate count, respectively. For benchmarks on the SC
backend, the effect of the block scheduling is largely amortized by
mapping overhead reduction since the tested Manhattan architec-
ture has very sparse qubit connection. For the UCCSD benchmarks,
‘DO’ and ‘GCO’ share similar overall performance. For the QAOA
benchmarks, there is no difference between ‘DO’ and ‘GCO’ since
the entire kernel has only one block.

BC improvement: Our block-wise compilation (BC) passes
(in Section 5) can significantly reduce the gate count and circuit
depth. On the right of Table 4 we show the comparison between
using BC against a naive synthesis and Qiskit_L3. For the 17 bench-
marks on the FT backend, BC reduces the circuit depth, the CNOT,
single-qubit, and total gate counts by 15.5%, 6.0%, 3.1%, and 5.0%,
respectively. On the SC backend, the BC pass is even more effective
since the large mapping overhead can be greatly reduced. For the
UCCSD (QAOA) benchmarks, BC can reduce the CNOT, single-
qubit, total gate count, and circuit depth by 60% (33%), 45% (8%),
56% (26%), and 53% (—14%), respectively on average. The circuit
depth of QAOA benchmarks is increased since the BC focus more on
SWAP reduction, leading to fewer gates but deeper circuits because
the effect of SWAP reduction is relatively limited in the small-size
QAOA benchmarks.

563

Gushu Li, Anbang Wu, Yunong Shi, Ali Javadi-Abhari, Yufei Ding, Yuan Xie

Pauli string pattern effects: It can be observed that the effect
of the passes vary on different benchmarks. The reason is that
the Pauli strings in the benchmarks have different patterns which
can be classified into two categories based on the numbers of non-
identity operators in each Pauli string. As mentioned in Section 2, a
Pauli string with more non-identity operators on more qubits will in
general be converted to a larger circuit block involving more qubits
and gates. The first category includes the molecule Hamiltonians,
the random Hamiltonians, and the UCCSD. In these Hamiltonians,
many Pauli strings have non-identity operators on various numbers
of qubits (up to all qubits). The second category includes the Ising,
Heisenberg, and the selected QAOA benchmarks, of which the
Hamiltonians only have Pauli strings with non-identity operators
on at most two qubits. Such a difference in the operator distribution
affects the compilation results.

On the FT backend, benchmarks in the first category (molecule
and random Hamiltonians) benefit more from the BC optimizations
since Pauli strings with more non-identity operators have larger
potential in gate cancellation and depth reduction. Benchmarks in
the second category (Ising and Heisenberg) cannot benefit from
BC since those Pauli strings with only two non-identity opera-
tors can only be synthesized in a single way and there is no space
BC can explore to further reduce the gate count and circuit depth.
However, these benchmarks can benefit a lot from DO. GCO turns
out to be inefficient in both gate count and circuit depth for them
because GCO cannot create gate count reduction while DO can
create additional single-qubit gate reduction opportunities between
consecutive layers by putting many small-size blocks in one layer.
On these benchmarks, DO completely outperforms GCO with on
average 84.2% circuit depth reduction and 7.5% total gate count
reduction. Similarly on the SC backend, the BC improvement on the
UCCSD benchmarks (first category) is also more significant com-
pared with the QAOA benchmarks (second category) because more
gate can be cancelled and more SWAPs in the mapping overhead
can be eliminated when the tree sizes are large for Pauli strings
with more non-identity operators.

6.4 Pass Benefit Breakdown

To show the separate effect of scheduling passes and optimization
passes, we prepare breakdown experiments on four benchmarks
(two random Hamiltonian RAND-40 and RAND-50, two molecule
Hamiltonians Ny and H3S). Their information is in Table 1. We
have four configurations by combining two ordering options and
whether to apply block-level optimizations. The baseline order is
the original order of the problem Hamiltonians, which for RAND-
40 and -50 is random and for Nz and HjS is determined by the
Hamiltonian generation module in PySCF [54] (which is based
on ordering the electron orbitals from low energy to high energy
level). The DO order is the depth-oriented order in Section 4.2. ‘BC’
means that the block-level optimization in Section 5.1 is applied.
All configurations are followed by Qiskit Level 3 optimization by
default. The following table shows the CNOT gate count, single-
qubit gate count, circuit depth, and their corresponding reduction
percentage of each configuration compared to the ‘Baseline order’.

In Table 5 we can find that both the DO order and the BC have
substantial contributions to the final CNOT/single-qubit gate count

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation Kernels

Table 5: Benefit breakdown of the block ordering and block-
wise optimization passes

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

M ESP Improvement RSP Improvement

a4
3

‘ heebhhn: |
: fim n 1 i I« I= B

REG-n7-d4 REG-n8-d4 REG-n9-d4 REG-n10-d4 RD-n7-p0.5 RD-n8-p0.5 RD-n9-p0.5 RD-n10-p0.5 geomean

Benchmark | Metric | Baseline order | Baseline order + BC DO order DO order + BC
CNOT 313011 279165 (-10.8%) 259477 (-17.1%) | 234264 (-25.1%)
§ Single 157853 149234 (-5.5%) 143686 (-9.0%) | 131302 (-16.8%) . A 1.
RAND-40 Depgth 51 T (SM%) 245675 (10.7%) | 168003 (38.5%) Figure 11: Success Probability Improvement for QAOA on
CNOT 613714 548499 (-10.6%) | 529220 (-13.8%) | 474999 (-22.6%) IBM’s 16-qubit Melbourne Chip
RAND-50 | Single 300955 283647 (-5.8%) 279465 (-7.1%) | 255104 (-15.2%)
Depth 520844 360004 (-32.1%) | 490793 (-74%) | 329169 (-37.9%)
CNOT 36484 23371 (-35.9%) 17423 (-52.2%) | 15981 (-56.2%) . L.
N, Single 20124 4713 (26.9%) 11557 (42.6%) | 11366 (435%) Table 6: Detailed compilation results onto IBM Melbourne
Depth 42525 25216 (-40.7%) 18749 (-56.0%) | 16788 (-60.5%)
CNOT 61127 38213 (-37.5%) 27752 (-54.6%) | 24792 (-59.4%) _ i _
S Single 32885 24173 (-26.5%) 18154 (-44.8%) | 17307 (-47.4%) i i Qiskit Pa‘}llhedr"‘l*Q‘Sk‘t
Depth 70618 40985 (-42.0%) 30430 (-56.9%) | 26581 (-62.4%) Metric CNOT | Single | Depth | RSP | CNOT | Single | Depth | RSP
REG-n7-d4 | 45 218 86 | 23.81% | 43 131 56 | 27.50%
REG-n8-d4 | 78 202 100 | 10.97% | 66 170 78 | 12.89%
REG-n9-d4 | 86 247 113 | 22.05% | 67 124 70 | 24.69%
and circuit depth reduction. Averaging over the results of the four REG-n10-d4 | 122 | 238 | 114 | 1022% | 70 134 72| 19.08%
. RD-n7-p05 | 35 149 64 | 0.67% | 40 82 39 | 0.85%
selecteq bel.rlchmarks, the effect of Bp 1§ 69% of t.hat of DO or.der RD n8.p03 - e 57 T o09m = o 5 o
scheduling in CNOT reduction, 65% in single-qubit gate reduction, RD-n9-p05 | 76 200 | 107 [037% | 71 126 o7 | 042%
and 1.62x in circuit depth reduction. RD-n10-p0.5 141 314 174 0.08% 93 211 106 0.09%

6.5 Real System Study

Finally, we evaluate ‘PH’ on IBM’s 16-qubit Melbourne chip with
8 QAOA MaxCut programs. We generate 4 regular graphs of 7 to
10 nodes with 4 edges per node (‘REG-n(7-10)-d4’), and 4 random
graphs of 7 to 10 nodes with edge probability 0.5 (‘RD-n(7-10)-
p0.5’). We prepare 1-level QAOA circuits on these graphs and then
optimize the parameters in the simulator. Those circuits with the
optimized parameters are then evaluated on the Melbourne chip
(40960 shots per circuit). The baseline is ‘Qiskit_L3” with the Pauli
strings ordered by iterating over the adjacency matrix (Qiskit de-
fault configuration).

Figure 11 shows the improvement of the success probability
after applying ‘PH’ optimizations. The ‘Estimated Success Probabil-
ity’ (ESP), a widely used metric in guiding the compiler optimiza-
tion [39, 44, 57], is a theoretical estimation of the success probability
based on the program and the hardware noise model. The ‘Real Sys-
tem Success Probability’ (RSP) is the number of trials with correct
measurement results divided by the total number of trials when
executing on the real machine. Applying ‘PH’ can improve the ESP
by 2.11x on average (up to 3.00x) based on the noise model of the
tested device, by reducing the CNOT count and circuit depth by
15.1% and 36.2%, respectively on average. On the real machine, ‘PH’
can improve the RSP by 1.24x on average (up to 1.87X). There is a
gap between the results from ESP and RSP because the noise model
only provides limited hardware information. We expect that the
compilation can be further improved with more detailed hardware
models.

Table 6 shows the detailed compilation results onto the IBM’s
16-qubit Melbourne chip It can be observed that Paulihedral op-
timization leads to significant reduction in both gate count and
circuit depth. More importantly, the reduction grows as the bench-
mark size increases, showing that Paulihedral will be more effective
on larger size input programs. Such reduction can be turned into
the final success probability improvement. We show the absolute
success probabilities and the relative improvement in the second
table. We can also observe that there is a significant difference be-
tween regular graphs and random graphs. This is because regular
graphs have some symmetries and the solution space (the number

564

of valid solutions) is much larger than that of random graphs (that
is, the number of valid solutions are larger). This makes QAOA on
regular graphs much more noise tolerant. The low absolute success
probability comes from the fact that the Melbourne chip is an old
device with higher error rates. But it is the only publicly accessible
chip with 14 qubits and all other public devices are of 5-7 qubits.

7 DISCUSSION

It would be always desirable to have more effective quantum com-
piler optimizations to fully exploit the potential of quantum com-
puting. One common approach is to model the hardware more
precisely (e.g., from coarse-grained gate count [30, 49, 64] to inde-
pendent non-uniform gate error [39, 58], then correlated crosstalk
error [41], and finally low-level pulse optimizations [12, 22]). The
compiler can naturally exploit more potential from the hardware
with more detailed hardware information.

Different from these compiler innovations that are mostly driven
by the underlying technologies, Paulihedral takes another approach
which is to enable deeper compiler optimizations by leveraging the
algorithmic properties of the high-level quantum programs. Rela-
tively little attention has been given to this direction because 1) it is
exceedingly difficult to extract useful high-level semantics from the
gate-sequence representation in today’s compiler infrastructures,
and 2) scalable yet effective static analysis of quantum programs
is also very hard as the size of the operation matrices grows expo-
nentially with the number of qubits. We believe that these are two
critical yet difficult open problems in the future development of
quantum compiler/software infrastructure since they prevent the
compiler from automatically detecting high-level and large-scale
optimization opportunities.

Paulihedral tackles these two problems for the quantum simu-
lation kernel, a widely used subroutine, and thus can benefit the
compiler optimization for many quantum algorithms. In particular,
we define a new Pauli IR which can capture the high-level semantics
of simulation kernels. The domain knowledge of quantum simula-
tion can thus be exploited by the compiler automatically, yielding
optimizations that are hard to be implemented in the conventional

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

gate-based representation. We then design several new compiler
passes, all of which are scalable block-wise circuit transformations
since the analysis on Pauli strings can be efficiently handled by clas-
sical computers. The evaluation in this paper has covered a wide
range of quantum simulation kernels and we expect that Pauli-
hedral will continue to benefit future quantum algorithms since
the quantum simulation has been a long-living algorithm design
principle in the last few decades.

Looking forward, although Paulihedral is designed from an al-
gorithmic perspective, it can incorporate those technology-driven
optimizations. In this paper, we have supported two different back-
ends with two technology-dependent optimization passes targeting
different objectives and hardware constraints. These passes can
also be further optimized once we have a deeper understanding
of the quantum devices and come up with more comprehensive
hardware models. Paulihedral can be further extended to other
quantum architectures (e.g., ion-trap-based architectures [40, 63],
photonics [7]) by adding new optimization passes.

It is also possible to make Paulihedral more intelligent by auto-
matically managing the passes based on the input program charac-
teristics. Currently Paulihedral has four passes and we have already
observed that the different Pauli string patterns can affect the fi-
nal improvement under different pass configurations as discussed
in Section 6. In the future, more passes can be included to cover
more backends, error resources, architectural constraints, and opti-
mization objectives. How to automatically select the most suitable
combination of passes from a pool of compiler passes is worth to
explore.

Finally, the idea of quantum algorithmic compiler can be ex-
tended to other promising quantum algorithm domains. There
are several other important common techniques in quantum al-
gorithm design (e.g., quantum phase estimation [43], amplitude
amplification [8]) and promising quantum application domains
(e.g., quantum machine learning [34]). How to design new pro-
gramming languages to maintain the high-level semantics of these
programs and then propose corresponding algorithmic compiler
optimizations is still an open problem which can be left as future
work.

8 RELATED WORK

Paulihedral is a compiler framework with a new IR abstraction
and deeper optimizations for general quantum simulation kernels.
We first review the program representation and optimizations in
quantum compilers. Then we discuss existing optimizations for
quantum simulation programs.

IR in quantum compilers: Modern classical compilers employ
multiple IRs (e.g., control flow graph, static single assignment) from
high level to low level and different optimizations are applied on dif-
ferent IRs. Today’s quantum compilers [1, 6, 27, 38, 50], on the other
hand, are mostly built around low-level representations [15, 28, 51],
which makes it difficult to extract high-level information about
the semantics of the algorithm and discover non-commutative yet
semantics-preserving re-orderings. The most recent version of open
quantum assembly language (OpenQASM) [16] recognizes the need
for higher-level semantics such as control, inverse, and power op-
erations, but is still incapable of representing Pauli-level semantics

565

Gushu Li, Anbang Wu, Yunong Shi, Ali Javadi-Abhari, Yufei Ding, Yuan Xie

which are prevalent in quantum simulation kernels. As we have
shown, our Pauli IR can carry high-level semantics through multi-
ple optimization stages, encode all known algorithm constraints,
and is compatible with further low-level optimizations by these
tools.

Quantum compiler optimizations: The state-of-the-art quan-
tum compilers [1, 51] usually have multiple passes to execute differ-
ent optimizations, (e.g., circuit rewriting [53], gate cancellation [42],
template matching [37], qubit mapping [39]). These passes applied
on the low-level gate sequences usually only rewrite the circuit
locally on very few qubits or gates every time and only focus on
one optimization objective in each pass. Different from these op-
timizations, all passes in Paulihedral performance program trans-
formations at a much larger scope in a scalable way and multiple
optimization opportunities can be reconciled because the high-level
algorithmic information is leveraged. This makes Paulihedral opti-
mizations more effective than simply combining those small-scale
single-objective passes.

Optimizations for simulation algorithms: One common op-
timization technique is to group the Pauli strings into sets of mutu-
ally commutative strings and then apply simultaneous diagonaliza-
tion [13, 14, 17, 61]. This technique, adopted by t|ket) [13, 14, 17, 50],
can simplify the circuit inside each set while the simultaneous di-
agonalization step introduces substantial overhead before and after
the circuit of each set, limiting the overall optimization perfor-
mance. Some other works [3, 23, 25, 31, 32, 48, 56, 62] explore the
simulation program optimization or synthesis but these works are
mostly ad-hoc, limited to specific algorithms/architectures, and not
easily generalizable to a broader range of programs and employed
by a compiler infrastructure. In Paulihedral, the Pauli IR’s recursive,
block-wise structure can support simulation kernels in all related
algorithms, as far as we know. And our optimization algorithms
have been shown to be much more effective in the evaluation above.

9 CONCLUSION

We propose Paulihedral, an algorithmic quantum compiler target-
ing the quantum simulation kernel, a subroutine widely used in
many quantum algorithms. Paulihedral enables deep compiler op-
timizations by defining a new Pauli-string-based IR, which can
encode high-level algorithmic information and constraints of many
seemingly different quantum algorithms in a unified manner. All
follow-up optimizations in Paulihedral operate at a large scope with
good scalability and can reconcile multiple optimization opportuni-
ties. Paulihedral can be extended to different backends by adding
or modifying technology-dependent passes. Comprehensive exper-
imental results show that Paulihedral can significantly outperform
state-of-the-art quantum compilers with more effective, scalable
optimizations and better reconfigurability.

ACKNOWLEDGMENTS

We thank the anonymous reviews for their constructive feedback.
This work was supported in part by NSF 2048144. G. L. was in
part funded by NSF QISE-NET fellowship under the award DMR-
1747426.

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation Kernels

A ARTIFACT ABSTRACT

The artifact contains the source code of the Paulihedral compiler
and other necessary code scripts to reproduce the key results (Ta-
ble 2, 3, and 4) and compare with the baselines in our evaluation.
The hardware requirement is a regular X86 server/laptop but the
memory size may limit the size of the benchmark that can be com-
piled. The IBM Melbourne device used in our evaluation has just
retired and the related results cannot be reproduced. But we still
keep the original script of that experiment for your reference. The
software dependencies only contain common software packages.
We also provide our benchmark generation script and have pre-
generated all benchmarks used in our evaluation. Note that for
Table 3 the results are averaged over 20 randomly generated graphs
per benchmark. While in our artifact, we show the result of one
random seed and a slight deviation is expected.

B ARTIFACT CHECKLIST

e Language: Paulihedral has a new intermediate representa-
tion (IR), Pauli IR, which is implemented by a 2-dimensional
Python list in this artifact. Examples can be found in ‘Pauli-
hedral.ipynb’.

o Algorithm: Paulihedral has four core algorithms.

Gate-count-oriented scheduling (Section 4.1) is the func-

tion ‘gate_count_oriented_scheduling’ in ‘parallel_blpy’.

Depth-oriented scheduling (Section 4.2) is the function

‘depth_oriented_scheduling’ in ‘parallel_bl.py’.

Block-wise optimization on fault-tolerant backend (Sec-

tion 5.1) is in function ‘block_opt_FT’ in ‘synthesis_FT.py’.

Block-wise optimization on superconducting backend (Sec-

tion 5.2) is in function ‘block_opt_SC’ in ‘synthesis_SC.py’.

e Benchmarks: The benchmarks are the Pauli IR programs
of the simulation kernels listed in Table 1.

e Runtime environment: Python, Jupyter Notebook.

o Disk space required: 10 GB is sufficient for the artifact and
all software dependencies.

e Hardware: Intel CPU, Memory size depending on the bench-
mark size (the largest benchmarks can be processed with 1T
RAM).

e Experiments: Compiling the Pauli IR programs using Pauli-
hedral and follow-up generic quantum compilers.

e Time to prepare workflow: 10 minutes

e Time to complete experiments: The approximate execu-
tion time for each benchmark under different configurations
can be found in Table 2. It will take hundreds of CPU hours
to fully reproduce all results in Table 2, 3, and 4.

e Output: The output of the compilation is the quantum circuit
containing CNOT gates and single-qubit gates only.

e Metrics: We consider the following metrics in the output

Number of single-qubit gates

Number of CNOT gates

Number of all gates

Circuit depth

Execution time
All these metrics can be directly counted from the output
quantum circuit.

e Publicly available: Yes

566

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

Code license: Apache License 2.0

Workflow framework used: Jupyter notebook, Qiskit, t|ket)
Archived repo: https://zenodo.org/record/5780204

DOI: 10.5281/zenodo.5748398

C DESCRIPTION

C.1 How to Access

The artifact is available at the following Zenodo link https://zenodo.
org/record/5780204 with DOI 10.5281/zenodo.5780204. You can
download the zip file and then decompress it.

C.2 Hardware Dependencies

A regular server with Intel CPUs can run our artifact while the
amount of RAM may limit the size of benchmarks that can be
executed. In our experiments, we use 1T RAM to execute all bench-
marks. If you do not have enough RAM, it is possible that the large
benchmarks like ‘NaCl’ and ‘Rand-80’ are not executable due to
out of memory. Note that in Section 6.4, we have real system exper-
iments on IBM’s Melbourne device. This device has permanently
retired and is not longer accessible. So we are not able to reproduce
the results in Figure 11.

C.3 Software Dependencies

The artifact in implemented in Python 3.8.12. We require Qiskit
and t|ket). In our experiments, we use Qiskit 0.23.5 and t|ket) ver-
sion 0.11.0. while other versions may or may not work. These two
frameworks requires numpy 1.20.0. We also need jupyter note-
book, which can installed from Anaconda, since we prepare the
file ‘Paulihedral.ipynb’ that contains scripts to automatically and
interactively reproduce the results in Table 2, 3, and 4 for easy
validation. See ‘README.md’ for installing the software depen-
dencies. Note that the PySCF version must be 1.7.6. The QAOA
compiler used in our evaluation (Section 6.2, Table 3) is down-
loaded from https://github.com/mahabubul-alam/QAOA-Compiler
and has already been integrated in this artifact (in the folder ‘QAOA-
Compiler’). The QAOA compiler requires networkx 2.5.0 and com-
mentjson 0.9.0. The list of dependencies can be found in ‘require-
ments.txt’.

C.4 Benchmarks

The benchmarks can be generated using the file ‘gene_benchmark.py’.
We have pre-generated all benchmarks used in our evaluation and
they can be found in benchmark/data. You can also generate Pauli IR
programs from you own Hamiltonians/applications following the
format in the example in the first code block in ‘Paulihedral.ipynb’.

D INSTALLATION

To use our artifact, you can first download the repo to your lo-
cal machine. Then you can install the software dependencies by
running the command:

install -r requirements. txt

pip

https://zenodo.org/record/5780204
https://zenodo.org/record/5780204
https://zenodo.org/record/5780204

ASPLOS 22, February 28 — March 4, 2022, Lausanne, Switzerland

E EVALUATION AND EXPECTED RESULTS

After you download the artifact and install all software dependen-
cies, you can open the jupyter notebook file ‘Paulihedral.ipynb’. The
first code block will demonstrate an example of a Pauli IR program.
Note that we just set all the rotation angles in the center Rz gates
to ‘1.0’. The Rz gates will not be affected in the entire compilation
flow. The second, third, and fourth code blocks will automatically
reproduce the results in Table 2, 3, and 4, respectively. The results
are printed out directly. Note that the results in Table 3 are aver-
aged over 20 randomly generated graphs per benchmark. While in
our artifact, we show the result of one random seed. Therefore, a
slight deviation is expected. Note that the execution time cannot
be perfectly reproduced because your local machine configurations
can be different from the server we used in our evaluation while
the trend should remain the same.

Since reproducing all the results are very time consuming (hun-
dreds of CPU hours on a server), we add an option in ‘config.py’
so that small-size experiment results can be reproduced quickly. In
‘config.py’, if you set ‘test_scale’ to ‘full’, then the code will run all
benchmarks; if you set ‘test_scale’ to ‘small’, then the code only
run small benchmarks, which will take about a few CPU hours on
a MacBook. By default, ‘test_scale’ is set to ‘small’.

We also attach our code (in file ‘real_system.py’) for experiment
on the IBM devices. This script can print out the compilation results
when compiling the QAOA programs onto the IBM Melbourne chip.
However, since the IBM Melbourne chip used in this paper is no
longer available, the real system execution results in Figure 11
cannot be reproduced. You can change the device to other available
IBM devices in the script.

REFERENCES

[1] Héctor Abraham, AduOffei, Rochisha Agarwal, Ismail Yunus Akhalwaya, Gadi
Aleksandrowicz, Thomas Alexander, Matthew Amy, Eli Arbel, Arijit02, Abraham
Asfaw, Artur Avkhadiev, Carlos Azaustre, AzizNgoueya, Abhik Banerjee, Aman
Bansal, Panagiotis Barkoutsos, Ashish Barnawal, George Barron, George S. Bar-
ron, Luciano Bello, Yael Ben-Haim, Daniel Bevenius, Arjun Bhobe, Lev S. Bishop,
Carsten Blank, Sorin Bolos, Samuel Bosch, Brandon, Sergey Bravyi, Bryce-Fuller,
David Bucher, Artemiy Burov, Fran Cabrera, Padraic Calpin, Lauren Capelluto,
Jorge Carballo, Ginés Carrascal, Adrian Chen, Chun-Fu Chen, Edward Chen,
Jielun (Chris) Chen, Richard Chen, Jerry M. Chow, Spencer Churchill, Chris-
tian Claus, Christian Clauss, Romilly Cocking, Filipe Correa, Abigail J. Cross,
Andrew W. Cross, Simon Cross, Juan Cruz-Benito, Chris Culver, Antonio D.
Coércoles-Gonzales, Sean Dague, Tareq El Dandachi, Marcus Daniels, Matthieu
Dartiailh, DavideFrr, Abdén Rodriguez Davila, Anton Dekusar, Delton Ding,
Jun Doi, Eric Drechsler, Drew, Eugene Dumitrescu, Karel Dumon, Ivan Duran,
Kareem EL-Safty, Eric Eastman, Grant Eberle, Pieter Eendebak, Daniel Egger,
Mark Everitt, Paco Martin Fernandez, Axel Hernandez Ferrera, Romain Fouilland,
FranckChevallier, Albert Frisch, Andreas Fuhrer, Bryce Fuller, MELVIN GEORGE,
Julien Gacon, Borja Godoy Gago, Claudio Gambella, Jay M. Gambetta, Adhisha
Gammanpila, Luis Garcia, Tanya Garg, Shelly Garion, Austin Gilliam, Aditya
Giridharan, Juan Gomez-Mosquera, Gonzalo, Salvador de la Puente Gonzalez,
Jesse Gorzinski, Ian Gould, Donny Greenberg, Dmitry Grinko, Wen Guan, John A.
Gunnels, Mikael Haglund, Isabel Haide, Ikko Hamamura, Omar Costa Hamido,
Frank Harkins, Vojtech Havlicek, Joe Hellmers, Lukasz Herok, Stefan Hillmich,
Hiroshi Horii, Connor Howington, Shaohan Hu, Wei Hu, Junye Huang, Rolf
Huisman, Haruki Imai, Takashi Imamichi, Kazuaki Ishizaki, Raban Iten, Toshinari
Itoko, JamesSeaward, Ali Javadi, Ali Javadi-Abhari, Wahaj Javed, Jessica, Madhav
Jivrajani, Kiran Johns, Scott Johnstun, Jonathan-Shoemaker, Vismai K, Tal Kach-
mann, Akshay Kale, Naoki Kanazawa, Kang-Bae, Anton Karazeev, Paul Kasse-
baum, Josh Kelso, Spencer King, Knabberjoe, Yuri Kobayashi, Arseny Kovyrshin,
Rajiv Krishnakumar, Vivek Krishnan, Kevin Krsulich, Prasad Kumkar, Gawel Kus,
Ryan LaRose, Enrique Lacal, Raphaél Lambert, John Lapeyre, Joe Latone, Scott
Lawrence, Christina Lee, Gushu Li, Dennis Liu, Peng Liu, Yunho Maeng, Kahan
Majmudar, Aleksei Malyshev, Joshua Manela, Jakub Marecek, Manoel Marques,
Dmitri Maslov, Dolph Mathews, Atsushi Matsuo, Douglas T. McClure, Cameron

567

[11

[12

Gushu Li, Anbang Wu, Yunong Shi, Ali Javadi-Abhari, Yufei Ding, Yuan Xie

McGarry, David McKay, Dan McPherson, Srujan Meesala, Thomas Metcalfe, Mar-
tin Mevissen, Andrew Meyer, Antonio Mezzacapo, Rohit Midha, Zlatko Minev,
Abby Mitchell, Nikolaj Moll, Jhon Montanez, Gabriel Monteiro, Michael Duane
Mooring, Renier Morales, Niall Moran, Mario Motta, MrF, Prakash Murali, Jan
Miiggenburg, David Nadlinger, Ken Nakanishi, Giacomo Nannicini, Paul Nation,
Edwin Navarro, Yehuda Naveh, Scott Wyman Neagle, Patrick Neuweiler, Johan
Nicander, Pradeep Niroula, Hassi Norlen, NuoWenLei, Lee James O’Riordan,
Oluwatobi Ogunbayo, Pauline Ollitrault, Raul Otaolea, Steven Oud, Dan Padilha,
Hanhee Paik, Soham Pal, Yuchen Pang, Vincent R. Pascuzzi, Simone Perriello,
Anna Phan, Francesco Piro, Marco Pistoia, Christophe Piveteau, Pierre Pocreau,
Alejandro Pozas-Kerstjens, Milos Prokop, Viktor Prutyanov, Daniel Puzzuoli,
Jests Pérez, Quintiii, Rafey Igbal Rahman, Arun Raja, Nipun Ramagiri, Anirudh
Rao, Rudy Raymond, Rafael Martin-Cuevas Redondo, Max Reuter, Julia Rice, Matt
Riedemann, Marcello La Rocca, Diego M. Rodriguez, RohithKarur, Max Rossman-
nek, Mingi Ryu, Tharrmashastha SAPV, SamFerracin, Martin Sandberg, Hirmay
Sandesara, Ritvik Sapra, Hayk Sargsyan, Aniruddha Sarkar, Ninad Sathaye, Bruno
Schmitt, Chris Schnabel, Zachary Schoenfeld, Travis L. Scholten, Eddie Schoute,
Joachim Schwarm, Ismael Faro Sertage, Kanav Setia, Nathan Shammah, Yunong
Shi, Adenilton Silva, Andrea Simonetto, Nick Singstock, Yukio Siraichi, Iskandar
Sitdikov, Seyon Sivarajah, Magnus Berg Sletfjerding, John A. Smolin, Mathias
Soeken, Igor Olegovich Sokolov, Igor Sokolov, SooluThomas, Starfish, Dominik
Steenken, Matt Stypulkoski, Shaojun Sun, Kevin J. Sung, Hitomi Takahashi, Tan-
vesh Takawale, Ivano Tavernelli, Charles Taylor, Pete Taylour, Soolu Thomas,
Mathieu Tillet, Maddy Tod, Miroslav Tomasik, Enrique de la Torre, Kenso Tra-
bing, Matthew Treinish, TrishaPe, Davindra Tulsi, Wes Turner, Yotam Vaknin,
Carmen Recio Valcarce, Francois Varchon, Almudena Carrera Vazquez, Victor
Villar, Desiree Vogt-Lee, Christophe Vuillot, James Weaver, Johannes Weiden-
feller, Rafal Wieczorek, Jonathan A. Wildstrom, Erick Winston, Jack J. Woehr,
Stefan Woerner, Ryan Woo, Christopher J. Wood, Ryan Wood, Stephen Wood,
Steve Wood, James Wootton, Daniyar Yeralin, David Yonge-Mallo, Richard Young,
Jessie Yu, Christopher Zachow, Laura Zdanski, Helena Zhang, Christa Zoufal, and
Mantas Cepulkovskis. 2019. Qiskit: An Open-source Framework for Quantum
Computing. https://doi.org/10.5281/zenodo.2562110

Daniel S. Abrams and Seth Lloyd. 1999. Quantum Algorithm Providing Exponen-
tial Speed Increase for Finding Eigenvalues and Eigenvectors. Phys. Rev. Lett. 83
(Dec 1999), 5162-5165. Issue 24. https://doi.org/10.1103/PhysRevLett.83.5162
Mahabubul Alam, Abdullah Ash-Saki, and Swaroop Ghosh. 2020. Circuit Com-
pilation Methodologies for Quantum Approximate Optimization Algorithm. In
53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 215-228. https://doi.org/10.1109/MICRO50266.2020.00029

Mahabubul Alam, Abdullah Ash-Saki, and Swaroop Ghosh. 2020. An efficient
circuit compilation flow for quantum approximate optimization algorithm. In
2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE, 1-6. https:
//doi.org/10.1109/DAC18072.2020.9218558

Mahabubul Alam, Abdullah Ash-Saki, Junde Li, Anupam Chattopadhyay, and
Swaroop Ghosh. 2020. Noise resilient compilation policies for quantum approxi-
mate optimization algorithm. In Proceedings of the 39th International Conference
on Computer-Aided Design. 1-7. https://doi.org/10.1145/3400302.3415745
Matthew Amy and Vlad Gheorghiu. 2020. stag—A full-stack quantum processing
toolkit. Quantum Science and Technology 5, 3 (jun 2020), 034016. https://doi.org/
10.1088/2058-9565/ab9359

J. M. Arrazola, V. Bergholm, K. Bradler, T. R. Bromley, M. J. Collins, I. Dhand, A.
Fumagalli, T. Gerrits, A. Goussev, L. G. Helt, J. Hundal, T. Isacsson, R. B. Israel, J.
Izaac, S. Jahangiri, R. Janik, N. Killoran, S. P. Kumar, J. Lavoie, A. E. Lita, D. H.
Mabhler, M. Menotti, B. Morrison, S. W. Nam, L. Neuhaus, H. Y. Qi, N. Quesada, A.
Repingon, K. K. Sabapathy, M. Schuld, D. Su, J. Swinarton, A. Szava, K. Tan, P.
Tan, V. D. Vaidya, Z. Vernon, Z. Zabaneh, and Y. Zhang. 2021. Quantum circuits
with many photons on a programmable nanophotonic chip. Nature 591, 7848 (01
Mar 2021), 54-60. https://doi.org/10.1038/s41586-021-03202- 1

G. Brassard and P. Hoyer. 1997. An exact quantum polynomial-time algorithm
for Simon’s problem. In Proceedings of the Fifth Israeli Symposium on Theory of
Computing and Systems. 12-23. https://doi.org/10.1109/ISTCS.1997.595153
Sergey B. Bravyi and Alexei Yu. Kitaev. 2002. Fermionic Quantum Computation.
Annals of Physics 298, 1 (2002), 210-226. https://doi.org/10.1006/aphy.2002.6254
M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo,
Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and
Patrick J. Coles. 2021. Variational quantum algorithms. Nature Reviews Physics 3,
9 (01 Sep 2021), 625-644. https://doi.org/10.1038/s42254-021-00348-9
Christopher Chamberland, Guanyu Zhu, Theodore J. Yoder, Jared B. Hertzberg,
and Andrew W. Cross. 2020. Topological and Subsystem Codes on Low-Degree
Graphs with Flag Qubits. Phys. Rev. X 10 (Jan 2020), 011022. Issue 1. https:
//doi.org/10.1103/PhysRevX.10.011022

J. Cheng, H. Deng, and X. Qia. 2020. AccQOC: Accelerating Quantum Opti-
mal Control Based Pulse Generation. In ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). 543-555. https://doi.org/10.1109/
ISCA45697.2020.00052

https://doi.org/10.5281/zenodo.2562110
https://doi.org/10.1103/PhysRevLett.83.5162
https://doi.org/10.1109/MICRO50266.2020.00029
https://doi.org/10.1109/DAC18072.2020.9218558
https://doi.org/10.1109/DAC18072.2020.9218558
https://doi.org/10.1145/3400302.3415745
https://doi.org/10.1088/2058-9565/ab9359
https://doi.org/10.1088/2058-9565/ab9359
https://doi.org/10.1038/s41586-021-03202-1
https://doi.org/10.1109/ISTCS.1997.595153
https://doi.org/10.1006/aphy.2002.6254
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1103/PhysRevX.10.011022
https://doi.org/10.1103/PhysRevX.10.011022
https://doi.org/10.1109/ISCA45697.2020.00052
https://doi.org/10.1109/ISCA45697.2020.00052

[13] Alexander Cowtan, Silas Dilkes, Ross Duncan, Will Simmons, and Seyon Sivara-

jah. 2020. Phase Gadget Synthesis for Shallow Circuits. Electronic Proceedings in
Theoretical Computer Science 318 (May 2020), 213-228. https://doi.org/10.4204/
eptcs.318.13

Alexander Cowtan, Will Simmons, and Ross Duncan. 2020. A Generic Com-
pilation Strategy for the Unitary Coupled Cluster Ansatz. arXiv preprint
arXiv:2007.10515 (2020).

Andrew W Cross, Lev S Bishop, John A Smolin, and Jay M Gambetta. 2017. Open
quantum assembly language. arXiv preprint arXiv:1707.03429 (2017).

Andrew W Cross, Ali Javadi-Abhari, Thomas Alexander, Niel de Beaudrap, Lev S
Bishop, Steven Heidel, Colm A Ryan, John Smolin, Jay M Gambetta, and Blake R
Johnson. 2021. OpenQASM 3: A broader and deeper quantum assembly language.
arXiv preprint arXiv:2104.14722 (2021).

Arianne Meijer-van de Griend and Ross Duncan. 2020. Architecture-aware
synthesis of phase polynomials for NISQ devices. arXiv preprint arXiv:2004.06052
(2020).

Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A quantum approxi-
mate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014).

Richard P Feynman. 1982. Simulating physics with computers. Int. J. Theor. Phys
21, 6/7 (1982).

Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland.
2012. Surface codes: Towards practical large-scale quantum computation. Phys.
Rev. A 86 (Sep 2012), 032324. Issue 3. https://doi.org/10.1103/PhysRevA.86.032324
Bryan T. Gard, Linghua Zhu, George S. Barron, Nicholas J. Mayhall, Sophia E.
Economou, and Edwin Barnes. 2020. Efficient symmetry-preserving state prepa-
ration circuits for the variational quantum eigensolver algorithm. npj Quantum
Information 6, 1 (28 Jan 2020), 10. https://doi.org/10.1038/s41534-019-0240-1

P. Gokhale, A. Javadi-Abhari, N. Earnest, Y. Shi, and F. T. Chong. 2020. Optimized
Quantum Compilation for Near-Term Algorithms with OpenPulse. In 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). 186-200. https:
//doi.org/10.1109/MICR0O50266.2020.00027

Kaiwen Gui, Teague Tomesh, Pranav Gokhale, Yunong Shi, Frederic T Chong,
Margaret Martonosi, and Martin Suchara. 2020. Term grouping and travelling
salesperson for digital quantum simulation. arXiv preprint arXiv:2001.05983
(2020).

Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. 2009. Quantum Algorithm
for Linear Systems of Equations. Phys. Rev. Lett. 103 (Oct 2009), 150502. Issue 15.
https://doi.org/10.1103/PhysRevLett.103.150502

Matthew B. Hastings, Dave Wecker, Bela Bauer, and Matthias Troyer. 2015. Im-
proving Quantum Algorithms for Quantum Chemistry. Quantum Info. Comput.
15, 1-2 (jan 2015), 1-21. https://doi.org/10.5555/2685188.2685189

P. Jordan and E. Wigner. 1928. Uber das Paulische Aquivalenzverbot. Zeitschrift
fuir Physik 47, 9 (01 Sep 1928), 631-651. https://doi.org/10.1007/BF01331938

N. Khammassi, I. Ashraf, J. V. Someren, R. Nane, A. M. Krol, M. A. Rol, L. Lao, K.
Bertels, and C. G. Almudever. 2021. OpenQL: A Portable Quantum Programming
Framework for Quantum Accelerators. J. Emerg. Technol. Comput. Syst. 18, 1,
Article 13 (dec 2021), 24 pages. https://doi.org/10.1145/3474222

Aleks Kissinger and John van de Wetering. 2020. PyZX: Large Scale Automated
Diagrammatic Reasoning. Electronic Proceedings in Theoretical Computer Science
318 (May 2020), 229-241. https://doi.org/10.4204/eptcs.318.14

Lingling Lao and Dan Browne. 2021. 2QAN: A quantum compiler for 2-local
qubit Hamiltonian simulation algorithms. arXiv preprint arXiv:2108.02099 (2021).
Gushu Li, Yufei Ding, and Yuan Xie. 2019. Tackling the Qubit Mapping Problem
for NISQ-Era Quantum Devices. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems (Providence, RI, USA) (ASPLOS ’19). Association for Computing Machin-
ery, New York, NY, USA, 1001-1014. https://doi.org/10.1145/3297858.3304023
Gushu Li, Yunong Shi, and Ali Javadi-Abhari. 2021. Software-Hardware Co-
Optimization for Computational Chemistry on Superconducting Quantum Pro-
cessors. In Proceedings of the 48th Annual International Symposium on Computer
Architecture. IEEE Press, 832-845. https://doi.org/10.1109/ISCA52012.2021.00070
Gushu Li, Anbang Wu, Yunong Shi, Ali Javadi-Abhari, Yufei Ding, and Yuan
Xie. 2021. On the Co-Design of Quantum Software and Hardware. In Proceed-
ings of the Eight Annual ACM International Conference on Nanoscale Comput-
ing and Communication (Virtual Event, Italy) (NANOCOM °21). Association
for Computing Machinery, New York, NY, USA, Article 15, 7 pages. https:
//doi.org/10.1145/3477206.3477464

Seth Lloyd. 1996. Universal Quantum Simulators. Science 273,
5278 (1996), 1073-1078. https://doi.org/10.1126/science.273.5278.1073
arXiv:https://www.science.org/doi/pdf/10.1126/science.273.5278.1073

Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. 2013. Quantum algorithms
for supervised and unsupervised machine learning. arXiv preprint arXiv:1307.0411
(2013).

Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. 2014. Quantum principal
component analysis. Nature Physics 10, 9 (01 Sep 2014), 631-633. https://doi.
org/10.1038/nphys3029

Dmitri Maslov. 2016. Optimal and Asymptotically Optimal NCT Reversible Cir-
cuits by the Gate Types. Quantum Info. Comput. 16, 13-14 (oct 2016), 1096-1112.

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation Kernels

[37

(38]

[39

[40

[41

[42

[43

[44

~
)

[46

[47

(48

N
)

[50]

[51

[52

[53

(54

ASPLOS 22, February 28 — March 4, 2022, Lausanne, Switzerland

https://doi.org/10.5555/3179430.3179432

Dmitri Maslov, Gerhard W. Dueck, D. Michael Miller, and Camille Negrevergne.
2008. Quantum Circuit Simplification and Level Compaction. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 27, 3 (2008), 436-444.
https://doi.org/10.1109/TCAD.2007.911334

A. McCaskey and T. Nguyen. 2021. A MLIR Dialect for Quantum Assembly
Languages. In 2021 IEEE International Conference on Quantum Computing and
Engineering (QCE). IEEE Computer Society, Los Alamitos, CA, USA, 255-264.
https://doi.org/10.1109/QCE52317.2021.00043

Prakash Murali, Jonathan M. Baker, Ali Javadi-Abhari, Frederic T. Chong, and
Margaret Martonosi. 2019. Noise-Adaptive Compiler Mappings for Noisy
Intermediate-Scale Quantum Computers. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems (Providence, RI, USA) (ASPLOS °19). Association for Comput-
ing Machinery, New York, NY, USA, 1015-1029. https://doi.org/10.1145/3297858.
3304075

Prakash Murali, Dripto M. Debroy, Kenneth R. Brown, and Margaret Martonosi.
2020. Architecting Noisy Intermediate-Scale Trapped Ion Quantum Computers.
In Proceedings of the ACM/IEEE 47th Annual International Symposium on Computer
Architecture (Virtual Event) (ISCA °20). IEEE Press, 529-542. https://doi.org/10.
1109/ISCA45697.2020.00051

Prakash Murali, David C. Mckay, Margaret Martonosi, and Ali Javadi-Abhari.
2020. Software Mitigation of Crosstalk on Noisy Intermediate-Scale Quan-
tum Computers. In Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems. As-
sociation for Computing Machinery, New York, NY, USA, 1001-1016. https:
//doi.org/10.1145/3373376.3378477

Yunseong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs, and Dmitri Maslov. 2018.
Automated optimization of large quantum circuits with continuous parameters.
npj Quantum Information 4, 1 (10 May 2018), 23. https://doi.org/10.1038/s41534-
018-0072-4

Michael A Nielsen and Isaac L Chuang. 2010. Quantum Computation and Quan-
tum Information. Quantum Computation and Quantum Information, by Michael A.
Nielsen, Isaac L. Chuang, Cambridge, UK: Cambridge University Press, 2010 (2010).
Shin Nishio, Yulu Pan, Takahiko Satoh, Hideharu Amano, and Rodney Van Meter.
2020. Extracting Success from IBM’s 20-Qubit Machines Using Error-Aware
Compilation. J. Emerg. Technol. Comput. Syst. 16, 3, Article 32 (May 2020), 25 pages.
https://doi.org/10.1145/3386162

Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou,
Peter J. Love, Alan Aspuru-Guzik, and Jeremy L. O’Brien. 2014. A variational
eigenvalue solver on a photonic quantum processor. Nature Communications 5, 1
(23 Jul 2014), 4213. https://doi.org/10.1038/ncomms5213

Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. 2014. Quantum Support
Vector Machine for Big Data Classification. Phys. Rev. Lett. 113 (Sep 2014), 130503.
Issue 13. https://doi.org/10.1103/PhysRevLett.113.130503

Zain H Saleem, Bilal Tariq, and Martin Suchara. 2020. Approaches to constrained
quantum approximate optimization. arXiv preprint arXiv:2010.06660 (2020).
Yunong Shi, Nelson Leung, Pranav Gokhale, Zane Rossi, David 1. Schuster,
Henry Hoffmann, and Frederic T. Chong. 2019. Optimized Compilation of
Aggregated Instructions for Realistic Quantum Computers. In Proceedings of
the Twenty-Fourth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (Providence, RI, USA) (ASPLOS
’19). Association for Computing Machinery, New York, NY, USA, 1031-1044.
https://doi.org/10.1145/3297858.3304018

Marcos Yukio Siraichi, Vinicius Fernandes dos Santos, Caroline Collange, and
Fernando Magno Quintao Pereira. 2018. Qubit Allocation. In Proceedings of the
2018 International Symposium on Code Generation and Optimization (Vienna,
Austria) (CGO 2018). Association for Computing Machinery, New York, NY, USA,
113-125. https://doi.org/10.1145/3168822

Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington,
and Ross Duncan. 2020. ¢ |ket): a retargetable compiler for NISQ devices. Quan-
tum Science and Technology 6, 1 (nov 2020), 014003. https://doi.org/10.1088/2058-
9565/ab8e92

Robert S Smith, Michael J Curtis, and William J Zeng. 2016. A practical quantum
instruction set architecture. arXiv preprint arXiv:1608.03355 (2016).

R S Smith, E C Peterson, M G Skilbeck, and E J Davis. 2020. An open-source,
industrial-strength optimizing compiler for quantum programs. Quantum Science
and Technology 5, 4 (jul 2020), 044001. https://doi.org/10.1088/2058-9565/ab9acb
Mathias Soeken and Michael Kirkedal Thomsen. 2013. White Dots Do Matter:
Rewriting Reversible Logic Circuits. In Proceedings of the 5th International Confer-
ence on Reversible Computation (Victoria, BC, Canada) (RC’13). Springer-Verlag,
Berlin, Heidelberg, 196-208. https://doi.org/10.1007/978-3-642-38986-3_16
Qiming Sun, Timothy C. Berkelbach, Nick S. Blunt, George H. Booth, Sheng
Guo, Zhendong Li, Junzi Liu, James D. McClain, Elvira R. Sayfutyarova, Sandeep
Sharma, Sebastian Wouters, and Garnet Kin-Lic Chan. 2017. PySCF: the Python-
based simulations of chemistry framework. , e1340 pages. https://doi.org/10.1002/
wems. 1340 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1340

https://doi.org/10.4204/eptcs.318.13
https://doi.org/10.4204/eptcs.318.13
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1038/s41534-019-0240-1
https://doi.org/10.1109/MICRO50266.2020.00027
https://doi.org/10.1109/MICRO50266.2020.00027
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.5555/2685188.2685189
https://doi.org/10.1007/BF01331938
https://doi.org/10.1145/3474222
https://doi.org/10.4204/eptcs.318.14
https://doi.org/10.1145/3297858.3304023
https://doi.org/10.1109/ISCA52012.2021.00070
https://doi.org/10.1145/3477206.3477464
https://doi.org/10.1145/3477206.3477464
https://doi.org/10.1126/science.273.5278.1073
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.273.5278.1073
https://doi.org/10.1038/nphys3029
https://doi.org/10.1038/nphys3029
https://doi.org/10.5555/3179430.3179432
https://doi.org/10.1109/TCAD.2007.911334
https://doi.org/10.1109/QCE52317.2021.00043
https://doi.org/10.1145/3297858.3304075
https://doi.org/10.1145/3297858.3304075
https://doi.org/10.1109/ISCA45697.2020.00051
https://doi.org/10.1109/ISCA45697.2020.00051
https://doi.org/10.1145/3373376.3378477
https://doi.org/10.1145/3373376.3378477
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.1145/3386162
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1103/PhysRevLett.113.130503
https://doi.org/10.1145/3297858.3304018
https://doi.org/10.1145/3168822
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1088/2058-9565/ab9acb
https://doi.org/10.1007/978-3-642-38986-3_16
https://doi.org/10.1002/wcms.1340
https://doi.org/10.1002/wcms.1340
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1340

ASPLOS 22, February 28 — March 4, 2022, Lausanne, Switzerland

[55] Masuo Suzuki. 1976. Generalized Trotter’s formula and systematic approximants
of exponential operators and inner derivations with applications to many-body
problems. Communications in Mathematical Physics 51, 2 (1976), 183-190. https:
//doi.org/10.1007/BF01609348

Bochen Tan and Jason Cong. 2020. Optimal Layout Synthesis for Quantum
Computing. In Proceedings of the 39th International Conference on Computer-Aided
Design (Virtual Event, USA) (ICCAD °20). Association for Computing Machinery,
New York, NY, USA, Article 137, 9 pages. https://doi.org/10.1145/3400302.3415620
Swamit S. Tannu and Moinuddin Qureshi. 2019. Ensemble of Diverse Mappings:
Improving Reliability of Quantum Computers by Orchestrating Dissimilar Mis-
takes. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Mi-
croarchitecture (Columbus, OH, USA) (MICRO ’52). Association for Computing Ma-
chinery, New York, NY, USA, 253-265. https://doi.org/10.1145/3352460.3358257
Swamit S. Tannu and Moinuddin K. Qureshi. 2019. Not All Qubits Are Created
Equal: A Case for Variability-Aware Policies for NISQ-Era Quantum Comput-
ers. In Proceedings of the Twenty-Fourth International Conference on Architec-
tural Support for Programming Languages and Operating Systems (Providence, RI,
USA) (ASPLOS °19). Association for Computing Machinery, New York, NY, USA,
987-999. https://doi.org/10.1145/3297858.3304007

Andrew Tranter, Peter]J. Love, Florian Mintert, and Peter V. Coveney. 2018. A
Comparison of the Bravyi-Kitaev and Jordan-Wigner Transformations for the

[56

[57

[58

(59

569

[60]

[61]

[62

[64]

Gushu Li, Anbang Wu, Yunong Shi, Ali Javadi-Abhari, Yufei Ding, Yuan Xie

Quantum Simulation of Quantum Chemistry. Journal of Chemical Theory and
Computation 14, 11 (2018), 5617-5630. https://doi.org/10.1021/acs.jctc.8b00450
arXiv:https://doi.org/10.1021/acs.jctc.8b00450 PMID: 30189144.

H. F. Trotter. 1959. On the Product of Semi-Groups of Operators. Proc. Amer.
Math. Soc. 10, 4 (1959), 545-551. https://doi.org/10.2307/2033649

Ewout van den Berg and Kristan Temme. 2020. Circuit optimization of Hamil-
tonian simulation by simultaneous diagonalization of Pauli clusters. Quantum 4
(Sept. 2020), 322. https://doi.org/10.22331/q-2020-09-12-322

Vivien Vandaele, Simon Martiel, and Timothée Goubault de Brugiére. 2021. Phase
polynomials synthesis algorithms for NISQ architectures and beyond. arXiv
preprint arXiv:2104.00934 (2021).

Xin-Chuan Wu, Dripto M. Debroy, Yongshan Ding, Jonathan M. Baker, Yuri
Alexeev, Kenneth R. Brown, and Frederic T. Chong. 2021. TILT: Achieving
Higher Fidelity on a Trapped-Ion Linear-Tape Quantum Computing Architecture.
(2021), 153-166. https://doi.org/10.1109/HPCA51647.2021.00023

A. Zulehner, A. Paler, and R. Wille. 2019. An Efficient Methodology for Mapping
Quantum Circuits to the IBM QX Architectures. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 38, 7 (2019), 1226-1236. https:
//doi.org/10.1109/TCAD.2018.2846658

https://doi.org/10.1007/BF01609348
https://doi.org/10.1007/BF01609348
https://doi.org/10.1145/3400302.3415620
https://doi.org/10.1145/3352460.3358257
https://doi.org/10.1145/3297858.3304007
https://doi.org/10.1021/acs.jctc.8b00450
https://arxiv.org/abs/https://doi.org/10.1021/acs.jctc.8b00450
https://doi.org/10.2307/2033649
https://doi.org/10.22331/q-2020-09-12-322
https://doi.org/10.1109/HPCA51647.2021.00023
https://doi.org/10.1109/TCAD.2018.2846658
https://doi.org/10.1109/TCAD.2018.2846658

	Abstract
	1 Introduction
	2 Background
	2.1 Pauli String and Compilation
	2.2 Quantum Simulation Kernels

	3 Foundations of Paulihedral
	3.1 Opportunities and Challenges
	3.2 Pauli IR: Syntax and Semantics

	4 Block-Wise Instruction Scheduling Passes
	4.1 Gate-Count-Oriented Scheduling
	4.2 Depth-Oriented Scheduling

	5 Block-Wise Optimization Passes
	5.1 On the Fault-Tolerant Backend
	5.2 On the Near-Term Superconducting Backend

	6 Evaluation
	6.1 Experiment Setup
	6.2 Comparing with t|ket and the QAOA Compiler
	6.3 Pass Option Comparison
	6.4 Pass Benefit Breakdown
	6.5 Real System Study

	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	A Artifact Abstract
	B Artifact Checklist
	C Description
	C.1 How to Access
	C.2 Hardware Dependencies
	C.3 Software Dependencies
	C.4 Benchmarks

	D Installation
	E Evaluation and Expected Results
	References

