
A Synthesis Framework for Stitching Surface Code with
SuperconductingQuantum Devices

Anbang Wu
University of California
Santa Barbara, USA
anbang@ucsb.edu

Gushu Li
University of California
Santa Barbara, USA

gushuli@ece.ucsb.edu

Hezi Zhang
University of California
Santa Barbara, USA
hezi@ucsb.edu

Gian Giacomo Guerreschi
Intel Labs

Santa Clara, USA
gian.giacomo.guerreschi@intel.com

Yufei Ding
University of California
Santa Barbara, USA

yufeiding@cs.ucsb.edu

Yuan Xie
University of California
Santa Barbara, USA

yuanxie@ece.ucsb.edu

ABSTRACT

Quantum error correction (QEC) is the central building block of
fault-tolerant quantum computation but the design of QEC codes
may not always match the underlying hardware. To tackle the
discrepancy between the quantum hardware and QEC codes, we
propose a synthesis framework that can implement and optimize
the surface code onto superconducting quantum architectures. In
particular, we divide the surface code synthesis into three key sub-
routines. The first two optimize the mapping of data qubits and
ancillary qubits including syndrome qubits on the connectivity-
constrained superconducting architecture, while the last subroutine
optimizes the surface code execution by rescheduling syndrome
measurements. Our experiments on mainstream superconducting
architectures demonstrate the effectiveness of the proposed syn-
thesis framework. Especially, the surface codes synthesized by the
proposed automatic synthesis framework can achieve comparable
or even better error correction capability than manually designed
QEC codes.

CCS CONCEPTS

· Computer systems organization → Quantum computing; ·
Software and its engineering → Compilers.

KEYWORDS

quantum computing, quantum error correction, compiler

ACM Reference Format:

Anbang Wu, Gushu Li, Hezi Zhang, Gian Giacomo Guerreschi, Yufei Ding,
and Yuan Xie. 2022. A Synthesis Framework for Stitching Surface Code
with Superconducting Quantum Devices. In Proceedings of The 49th Annual

International Symposium on Computer Architecture (ISCA ’22). ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3470496.3527381

ISCA ’22, June 18ś22, 2022, New York City, NY
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-8610-4/22/06. . . $15.00
https://doi.org/10.1145/3470496.3527381

1 INTRODUCTION

Quantum hardware has made significant progress over the past
decade, with the first demonstration of quantum supremacy in
2020 [2]. Among various quantum hardware technologies [3, 16,
26, 31], the superconducting (SC) qubit is currently one of the most
promising candidates for building quantum processors [13, 38] due
to its low error rate, single qubit addressability, manufacturing
scalability, etc. Many of the latest quantum computers adopt SC
technology, such as IBM’s 65-qubit heavy-hexagon-architecture
chip [49], Rigetti’s 32-qubit octagonal-architecture device [21], and
Google’s 54-qubit square-architecture processor [2].

The low error rate of SC quantum processors makes them ideal
platforms for quantum error correction (QEC) [5, 7, 19, 41, 43, 44],
thus enabling fault-tolerant (FT) quantum computation. Among
various QEC codes, the surface code [19] is a popular choice due
to its high tolerance of physical error rates (up to 1%). This makes
surface codes one of the most viable QEC options for demonstrating
near-term FT quantum computation.

With off-the-shelf surface code arrays, many recent research
efforts have been devoted to improving the efficiency of FT quantum
computation, ranging from compilation [15, 39], communication
scheduling [25, 27], tomicro-controller design [46]. All these studies
are based on a nontrivial assumption: we have found a scalable
way to build logical qubits with the surface code family on existing
quantum devices, in particular SC devices.

However, implementing surface codes on SC devices is complex
in itself as error detection relies on sophisticated circuits. Surface
codes divide physical qubits into data qubits and syndrome qubits,
with syndrome qubits detecting the errors of neighboring data
qubits through measurement circuits [19]. In surface code, the im-
plementation of measurement circuits requires a qubit structure
of 2D-lattice, with each qubit coupled to four neighbors [19]. Such
an architecture is not readily available on many latest SC quantum
processors [21, 49]. This is because dense architectures like the
2D-lattice would lead to a high physical error rate and low yield
rate [35].

Previous works attempt to address the connectivity gap between
surface codes and sparsely connected SC devices either by adapting
architectures with tunable couplings [26] or by designing device-
dedicated QEC codes [10]. Nevertheless, the former method is ex-
pensive and may introduce additional device noise, while the latter

337

This work is licensed under a Creative Commons Attribution International 4.0 License.

ISCA ’22, June 18ś22, 2022, New York City, NY Anbang Wu, Gushu Li, Hezi Zhang, Gian Giacomo Guerreschi, Yufei Ding, Yuan Xie

method is not automated. A third attempt is to treat the measure-
ment circuits of the surface code as ordinary quantum circuits and
compile them to sparse SC architectures with existing quantum
compilers [17, 34, 36, 42, 45, 47, 48, 50]. Unfortunately, generic com-
pilers are not suitable for compiling surface codes. Firstly, they
don’t distinguish data qubits from other qubits. Those compilers
may move data qubits frequently, making it hard to apply logical
operations which assume a fixed data qubit layout [19]. Secondly,
the SWAP gates they use to overcome the connectivity gap make
the compiled measurement circuits more error-prone, compared to
specialized measurement circuits [10, 32] which do not use SWAP
gates. Finally, they only focus on gate-level optimization and do not
account for the parallelism between measurement circuits enabled
by a specific execution order [19].

To address problems of existing methods, we propose the first
automatic synthesis framework Surf-Stitch which specializes in
stitching the surface code family to various SC quantum devices.
With specialized measurement circuits [10, 32] as the backend, our
framework overcomes three key challenges of the surface code
synthesis, which remain unexplored by existing works. The first
is the allocation of data qubits. If the data qubits of a measurement
circuit are far apart from each other, we would need many ancillary
qubits to help detect their errors. Conversely, if they are too close,
there will not be enough room for the syndrome qubit. The second
is the construction of measurement circuits. Measurement circuits
should be small as large circuits are error-prone and hurt the error
detection accuracy of the surface code. Besides, large measurement
circuits may contend for ancillary qubits. Such resource conflicts
would destroy the parallelism of error detection. The third is the ex-
ecution order of measurement circuits. We should exploit parallelism
between measurement circuits as much as possible, to shorten the
error detection cycle and reduce the decoherence error.

Our framework decouples the solution space of the identified
key challenges with a modular optimization scheme that includes
three stages. Firstly, we optimize the allocation of data qubits as
they are the key to gluing measurement circuits together. We search
for data qubits over rectangular device blocks since the measure-
ment circuit is exactly shaped by a rectangle [19]. We require each
rectangular block to be the smallest possible, for a compact data
qubit layout and potential small measurement circuits. Secondly,
we optimize measurement circuits for the allocated data qubits. The
goal is to keep them small and minimize the conflict between them
if possible. To achieve the goals, we constrict each measurement
circuit within rectangular blocks of zero overlapping areas and then
adopt two heuristics to find small circuits. Finally, we optimize the
execution order of measurement circuits as the conflict between
them is sometimes inevitable. We observe that the error detection
cycle can be reduced by executing large measurement circuits to-
gether. Therefore we propose a procedure to find and execute large
circuits that do not have resource conflicts in parallel.

We evaluate the proposed synthesis framework by comparing it
with manually-designed QEC codes [10]. The results show that the
surface codes synthesized by our framework can achieve equivalent
or even better error correction capability. This result is inspiring as
it unveils the possibility that automated synthesis can surpass man-
ual QEC code design by experienced theorists. We also investigate
our framework on various mainstream SC quantum architectures

to demonstrate its wide applicability. Surf-Stitch would be of great
interest to both QEC researchers and quantum hardware designers.
Theorists will have a baseline to compare with when designing
novel QEC codes. Hardware researchers can identify inefficient
architecture designs for the surface code with Surf-Stitch.

Our contributions in this paper are summarized as follows:

• We systematically formulate the surface code synthesis prob-
lem on SC quantum devices for the first time and identify
three key challenges: data qubit allocation, measurement
circuit construction, and syndrome measurement schedule.

• We propose the first automatic synthesis framework that
addresses the identified challenges step by step, with insights
extracted from surface codes and SC quantum architectures.

• Our evaluation demonstrates the effectiveness of the pro-
posed framework by the comparison to manually designed
QEC codes and a comprehensive investigation of Surf-Stitch
on various mainstream SC quantum architectures.

2 BACKGROUND

In this section, we introduce key concepts for understanding the
implementation requirements of surface codes [4, 5, 14]. We do not
cover the basics of quantum computing but recommend [37] for
reference.

2.1 Surface code basics

Quantum computation is fragile without error correction. Informa-
tion in qubits can be easily distorted by the decoherence error [37].
The imprecise quantum operation and erroneous quantum mea-
surement further worsen the situation [37]. To ensure fault-tolerant
quantum computation, various QEC codes [5, 7, 19, 41, 43, 44] are
proposed. In these QEC codes, the surface code is among the most
popular ones due to its excellent error correction capability [19].
We introduce the basics of surface codes as follows.

Figure 1: Common components of the surface code. (a) The

surface code latticewith data qubits (blue dots) and syndrome

qubits (red dots). (b) Z-type syndrome extraction and its cir-

cuit. (c) X-type syndrome extraction and its circuit.

Data and syndrome qubits: The surface code encodes a logical
qubit in a 2D lattice of physical qubits, as shown in Figure 1(a). The
physical qubits in the code lattice can be divided into two types:
data qubits and syndrome qubits, denoted as blue and red dots,
respectively in Figure 1(a). The encoded logical information is stored

338

A Synthesis Framework for Stitching Surface Code with Superconducting Quantum Devices ISCA ’22, June 18ś22, 2022, New York City, NY

in data qubits. Error information on data qubits can be extracted
by measuring the syndrome qubit (a.k.a measurement qubit). Each
syndrome qubit is coupled with its (up to) four neighboring data
qubits, using the syndrome extraction circuit (a.k.a measurement
circuit) shown in Figure 1(b)(c) to gather the error information on
data qubits.

Pauli operator and stabilizer: In surface codes, the relationship
between a syndrome qubit and its neighboring data qubits is repre-
sented by the product of Pauli operators (a.k.a Pauli string [37]), as
shown in Figure 1(a) where Pauli operators are labeled on the edges
between data qubits and syndrome qubits. For each syndrome qubit,
the Pauli string on its edges can be in one of two possible patterns.
The first one (Z-type) is shown in Figure 1(b). The connections
between the center syndrome qubit and the four data qubits are
all labeled by the operator 𝑍 , and together they are represented by
the Pauli string 𝑍𝑎𝑍𝑏𝑍𝑐𝑍𝑑 . The second one (X-type) as shown in
Figure 1(c) is similar, except that all connections are labeled by the
operator 𝑋 , together represented by the Pauli string 𝑋𝑎𝑋𝑏𝑋𝑐𝑋𝑑 .

For these two different patterns, we would have correspond-
ing syndrome extraction circuits to detect errors on data qubits
(shown on the right side of Figure 1(b)(c)). Syndrome extraction
circuits in Figure 1(b)(c) project the state of data qubits {𝑎, 𝑏, 𝑐, 𝑑}
onto the eigenstates of corresponding Pauli strings, which are also
referenced by stabilizers [22] in the context of QEC. Syndrome ex-
traction is thus known as the stabilizer measurement [6]. Without
ambiguity, we use the stabilizer notation to represent the syndrome
extraction circuit. We denote the stabilizer 𝑍𝑎𝑍𝑏𝑍𝑐𝑍𝑑 (𝑋𝑎𝑋𝑏𝑋𝑐𝑋𝑑)
with 𝑍𝑎𝑏𝑐𝑑 (𝑋𝑎𝑏𝑐𝑑) for simplicity.

Error detection: Surface codes can detect Pauli X- and Z-errors
on data qubits with Z- and X-type stabilizer measurement circuits,
respectively. Errors on a data qubit can affect the measurement
results of stabilizers associated with it. In an error detection cycle,
the surface code would run all stabilizer measurements once and
collect the measurement results. With these results, a surface code
error correction protocol can infer what errors have occurred in
the code lattice and apply corrections accordingly. For more details,
please refer to [19].

Figure 2: Code distance and the compact lattice. (a) Logical

operations of the distance-3 surface code. (b) Inside the ro-

tated rectangle (dashed brown line) is a compact surface code

lattice with the same code distance as in (a).

Figure 3: Z-type stabilizer measurement circuit synthesis.

(a) The connected graph of data qubits (blue) and ancillary

qubits (red). Qubit 𝑠 is the syndrome qubit. (b) The synthe-

sized stabilizer measurement circuit that is executable on the

connected graph in (a).

Code distance: The error correction capability of the surface
code is related to the code distance [7, 30], which is defined as the
minimum number of physical qubits that support the logical X or
Z operation on the encoded logical qubit (denoted by 𝑋𝐿 or 𝑍𝐿 in
Figure 2). Usually, surface codes with larger code distances can
correct more complex errors, but their implementation overhead is
also higher. Figure 2(a) shows the logical operations in a distance-3
surface code. Figure 2(b) indicates that a more compact surface code
lattice can be obtained without changing the code distance. In this
paper, we focus on the rotated surface code [24] in Figure 2(b).

2.2 SC hardware and stabilizer measurement

The low error rates and fast operation speed of SC qubits make
it an ideal platform for implementing surface codes that require
high-fidelity quantum operations and short stabilizer measurement
latency to detect data qubit errors in time. However, the average
node (qubit) degree of the SC quantum device is usually kept low
(< 3) to reduce frequency collisions and crosstalk errors in the de-
vice [10]. This means many SC processors have limited connectivity
between qubits and we may not have enough four-degree qubits to
synthesize the surface code lattice in Figure 2(b).

The first step of the surface code synthesis is to implement each
stabilizer measurement. To map a single stabilizer measurement
circuit to the sparsely-connected SC device, various methods have
been proposed, such as the degree-deduction technique [10], and the
flag-bridge circuit [8, 9, 12, 32]. Once data qubits and the required
ancillary qubits (including the syndrome qubit) for the stabilizer
measurement are specified, those methods can generate correspond-
ing measurement circuits executable on SC devices. Figure 3 shows
the generated flag-bridge circuit for the stabilizer 𝑍𝑎𝑏𝑐𝑑 with a tree
of ancillary qubits {𝑒, 𝑠, 𝑓 }. These ancillary qubits are also called
bridge qubits, and the tree they form is called the bridge tree. Here
we set qubit 𝑠 as the tree root, which acts as the syndrome qubit for
𝑍𝑎𝑏𝑐𝑑 , collecting error information from data qubits {𝑎, 𝑏, 𝑐, 𝑑}. The
construction of the flag-bridge circuit consists of five components:

1) Initialization: bridge qubits except the tree root 𝑠 are initialized
to |+⟩ while 𝑠 is initialized to |0⟩.

2) Encoding circuit: Starting from 𝑘 = 1 (i.e., from the root 𝑠), for
each node at the 𝑘-th level of the bridge tree, we add one CNOT
gate from this node to its parent node in the encoding circuit.

339

ISCA ’22, June 18ś22, 2022, New York City, NY Anbang Wu, Gushu Li, Hezi Zhang, Gian Giacomo Guerreschi, Yufei Ding, Yuan Xie

Figure 4: A motivating example for synthesizing a (rotated) distance-3 surface code. (a) An SC device based on the hexagon

structure. (b) A bad data qubit layout where the stabilizer 𝑋𝑖𝑑 𝑓 𝑒 cannot be measured. (c) A promising data qubit layout that

ensures all stabilizer measurements. (d) An example of resolving the bridge tree conflict.

3) Coupling circuit for data qubits: We couple data qubits in a
zigzag way with leaf bridge qubits instead of the tree root to respect
the device connectivity limitation.

4) Decoding circuit: The decoding circuit is the mirror of the en-
coding circuit. Those two circuits together ensure the fault tolerance
of the stabilizer measurement.

5) Measurements: The tree root is measured on the Z basis while
other ancillary qubits are measured on the X basis. The measure-
ment results on the X basis can be used to detect Pauli Z errors on
ancillary qubits.

Other stabilizer measurement circuits can be constructed in a
similar way. For more details, please refer to Lao et al. [32].

Methods discussed in this section only solve the low-level circuit
generation problem of one stabilizer measurement, far from tack-
ling the overall surface code synthesis, where we need to answer
the following questions: how to allocate data qubits of the surface
code on physical devices? how to decide the ancillary qubits for
each stabilizer measurement? how to determine the order of stabi-
lizer measurements when some measurement circuits need to be
executed sequentially?

Our framework aims exactly at the overall surface code synthesis
and uses the low-level measurement circuit synthesis methods in
this section as backends.

3 PROBLEM FORMULATION

In this section, we first formulate the problem of synthesizing sur-
face codes onto SC quantum processors and then introduce the
optimization opportunities.

We consider implementing the (rotated) surface code in Fig-
ure 2(b) on a quantum device with the hexagon architecture (Fig-
ure 4(a)) [10]. In this hexagon device, each qubit connects to at most
three other qubits. This imposes a challenge to synthesizing stabi-
lizer measurement circuits of the surface code since a syndrome
qubit in either an X- or Z- type stabilizer measurement should
connect to four data qubits (see Figure 1(b)(c)). As in Figure 3, we
can overcome the connectivity limitation of this SC device with

specialized measurement circuits [10, 32] as long as the data qubits
and the bridge tree for each stabilizer measurement are determined.
While deciding the data qubits and the bridge tree for one stabilizer
measurement is easy, deciding them for all stabilizer measurements
and making the implemented measurement circuits work together
are challenging tasks in the overall surface code synthesis.

In this section, we formulate the surface code synthesis problem
into three key stages: data qubit allocation, measurement circuit
construction, and stabilizer measurement schedule. Since the mea-
surement circuit is determined once the bridge tree is selected, we
would refer to the second stage as bridge tree construction in the
rest of the paper.

We briefly introduce the objectives and the design considerations
of each stage as follows.

Data qubit allocation: We choose to allocate and fix the position
of data qubits first as data qubits are the key to gluing stabilizer
measurement circuits together. Once allocated, the location of data
qubits should not be changed, otherwise, the logical operations
designed for a fixed data qubit layout [19] would be invalidated.
The layout of data qubits affects the execution of stabilizer measure-
ments. As an example, we synthesize the distance-3 surface code in
Figure 2(b) with two data qubit layouts in Figure 4(b) and Figure 4(c).
In Figure 4(b), the stabilizer𝑋𝑖𝑑 𝑓 𝑒 cannot be measured without mov-
ing data qubits and inserting SWAP gates, which are not allowed to
avoid error proliferation. In contrast, all stabilizer measurements
(𝑋𝑎𝑏ℎ𝑖 , 𝑋𝑖𝑑 𝑓 𝑒 , 𝑋𝑓 𝑔, 𝑋𝑏𝑐 , 𝑍𝑏𝑐𝑖𝑑 , 𝑍ℎ𝑖𝑔𝑓 , 𝑍𝑎ℎ, 𝑍𝑑𝑒) can be executed on
Figure 4(c) by using the depicted bridge trees.

Bridge tree construction: After the data qubits are placed, the
next step is to select bridge qubits and construct bridge trees for
stabilizer measurements. The first constraint in this stage is that
we should minimize the number of bridge qubits for each stabi-
lizer measurement since using more physical qubits would result in
larger measurement circuits which are naturally more error-prone.
Besides, the construction of bridge trees affects the efficiency of
error detection because two stabilizers can be simultaneously mea-
sured only if their bridge trees do not share qubits (i.e., no resource
conflict). For instance, referring to Figure 4(c), if we measure 𝑋𝑏𝑐

340

A Synthesis Framework for Stitching Surface Code with Superconducting Quantum Devices ISCA ’22, June 18ś22, 2022, New York City, NY

with bridge qubits {𝑟 , 𝑠}, these two qubits then cannot be used in the
measurement circuit of 𝑋𝑎𝑏ℎ𝑖 at the same time because the bridge
qubits need to be reset at the beginning of any measurement circuit.
However, if we measure 𝑋𝑏𝑐 with bridge qubits {𝑝 , 𝑞} in Figure 4(d),
we can measure 𝑋𝑏𝑐 and 𝑋𝑎𝑏ℎ𝑖 in parallel. An efficient bridge tree
construction should enable the concurrent measurement of as many
stabilizers as possible.

Stabilizer measurement scheduling: The third stage is to schedule
the execution of stabilizer measurements. It would be desirable
to execute stabilizer measurements in parallel as much as possi-
ble since it can reduce the error detection latency and mitigate
the decoherence error. However, stabilizer measurement circuits
with overlapped bridge qubits cannot be executed simultaneously.
For example in Figure 4(c), the measurement circuit of 𝑋𝑎𝑏ℎ𝑖 and
𝑍𝑏𝑐𝑖𝑑 cannot be measured together since they share bridge qubits
{𝑞9, 𝑞10}. One possibility is to measure 𝑋𝑎𝑏ℎ𝑖 and 𝑋𝑖𝑑ℎ𝑒 first, then
measures 𝑍ℎ𝑔𝑖 𝑓 and 𝑍𝑏𝑐𝑖𝑑 . This schedule may seem promising, but
it is not optimal as these two groups of stabilizer measurements
take 20 operation steps in total, using the flag-bridge circuit [32](see
Figure 3) as the backend. As a comparison, if we measure 𝑋𝑎𝑏ℎ𝑖 and
𝑍ℎ𝑔𝑖 𝑓 first and measure 𝑋𝑖𝑑 𝑓 𝑒 and 𝑍𝑏𝑐𝑖𝑑 second, the total number
of operation steps is only 18. Our objective is to identify the poten-
tial parallelism in stabilizer measurements and generate efficient
scheduling to shorten the overall error detection latency.

4 SYNTHESIS ALGORITHM DESIGN

In this section, we introduce the surface code synthesis flow of
Surf-Stitch. As discussed above, we will introduce three key stages:
data qubit allocation, bridge tree construction and stabilizer mea-
surement scheduling.

4.1 Data qubit allocator

We start by allocating data qubits. Once allocated, the positions of
data qubits should not be changed. This is because the logical oper-
ations on surface codes [19] assume a fixed data qubit layout, and
moving data qubits would invalidate those high-level operations.
Moreover, moving data qubits would involve a series of SWAP gates
which are noisy and could destroy the logical information stored
in data qubits.

A fundamental requirement for data qubit allocation is to en-
sure that a bridge tree exists for each stabilizer. The following
proposition about the degree of nodes (qubits) provides a necessary
condition to guarantee this.

Proposition 1. Any bridge tree for a stabilizer with support on

four data qubits must have at least one four-degree node or two three-

degree nodes.

Proof. For any graph 𝐺 (𝑉 , 𝐸) where 𝑉 is the vertex set and
𝐸 is the edge set, we have

∑
𝑣∈𝑉 𝑑𝑒𝑔(𝑣) = 2|𝐸 |. An 𝑛-vertex tree

always has 𝑛 − 1 edges. A bridge tree with four data qubits has four
1-degree leaf nodes and all other nodes should have degrees of at
least 2. Therefore we have 4 +

∑
𝑣∈𝑉 \data qubits 𝑑𝑒𝑔(𝑣) = 2𝑛 − 2 and

∑
𝑣∈𝑉 \data qubits 𝑑𝑒𝑔(𝑣) = 2𝑛 − 6 = 2(𝑛 − 4) + 2. We only have 𝑛 − 4

vertices after removing the four leaf nodes. So we must have at
least one four-degree node or two three-degree nodes. □

Algorithm 1: Data qubit allocation

Input: Device architecture graph 𝐺 .
Output: Data qubit layout 𝑑𝑎𝑡𝑎_𝑙𝑎𝑦𝑜𝑢𝑡 .

1 𝐿ℎ = all three- and four-degree nodes in 𝐺 ;

2 𝑏𝑟𝑖𝑑𝑔𝑒_𝑟𝑒𝑐𝑡𝑠 = [] ; // the set of bridge rectangles

3 for 𝑛𝑎 in 𝐿ℎ do

4 if 𝑑𝑒𝑔(𝑛𝑎) == 3 then

5 𝑛𝑏 = the nearest high-degree node of 𝑛𝑎 ;

6 𝑟𝑒𝑐𝑡 = the minimal rectangle containing 𝑛𝑎 , 𝑛𝑏 and

their neighboring qubits;

7 else

8 𝑟𝑒𝑐𝑡 = the minimal rectangle containing 𝑛𝑎 and its
neighboring qubits;

9 end

10 𝑏𝑟𝑖𝑑𝑔𝑒_𝑟𝑒𝑐𝑡𝑠 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑟𝑒𝑐𝑡);

11 end

12 𝑟0 = the bridge rectangle at the top left corner of 𝐺 ;

13 𝑏𝑟𝑖𝑑𝑔𝑒_𝑟𝑒𝑐𝑡_𝑡𝑢𝑝𝑙𝑒 = []; // compatible bridge rects;

14 repeat

15 for (𝑟1, 𝑟2, 𝑟3) ∈ ⊗3𝑏𝑟𝑖𝑑𝑔𝑒_𝑟𝑒𝑐𝑡𝑠 do

16 if 𝑟0, 𝑟1, 𝑟2, 𝑟3 are mutually compatible then

17 𝑝𝑜𝑡𝑒𝑛𝑡_𝑑𝑞𝑏𝑖𝑡𝑠 = qubits enclosed by 𝑟0, 𝑟1, 𝑟2, 𝑟3;

// potential data area;

18 if 𝑝𝑜𝑡𝑒𝑛𝑡_𝑑𝑞𝑏𝑖𝑡𝑠 ≠ ∅ then

19 𝑏𝑟𝑖𝑑𝑔𝑒_𝑟𝑒𝑐𝑡_𝑡𝑢𝑝𝑙𝑒.𝑎𝑝𝑝𝑒𝑛𝑑 ((𝑟0, 𝑟1, 𝑟2, 𝑟3));

20 break;

21 end

22 set 𝑟0 to 𝑟1, 𝑟2, 𝑟3 in turn to find new tuples of 𝑟0, 𝑟1, 𝑟2, 𝑟3
that has non-empty 𝑝𝑜𝑡𝑒𝑛𝑡_𝑑𝑞𝑏𝑖𝑡𝑠;

23 until 𝑏𝑟𝑖𝑑𝑔𝑒_𝑟𝑒𝑐𝑡_𝑡𝑢𝑝𝑙𝑒 converges;

24 𝑑𝑎𝑡𝑎_𝑙𝑎𝑦𝑜𝑢𝑡 = [];

25 for 𝑟0, 𝑟1, 𝑟2, 𝑟3 in 𝑏𝑟𝑖𝑑𝑔𝑒_𝑟𝑒𝑐𝑡_𝑡𝑢𝑝𝑙𝑒 do

26 𝑑𝑞𝑏 = the qubit at the center of 𝑝𝑜𝑡𝑒𝑛𝑡_𝑑𝑞𝑏𝑖𝑡𝑠 of

𝑟0, 𝑟1, 𝑟2, 𝑟3;

27 𝑑𝑎𝑡𝑎_𝑙𝑎𝑦𝑜𝑢𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑑𝑞𝑏);

28 end

From Proposition 1, we see that a feasible layout should ensure
that each data qubit has enough three-degree or four-degree qubits
around it so that it can form a stabilizer with nearby data qubits.
To achieve that, we introduce a data qubit layout that ensures the
existence of local bridge trees, whose bridge qubits lie within the
region bounded by the corresponding stabilizer’s data qubits. The
benefit of this strategy comes from the fact that local bridge trees
often lead to shallow measurement circuits. For illustration, we
adopt the SC quantum architecture shown in Figure 5(a). We embed
the coupling graph of that architecture into a 2D grid so that all
qubits can be referred to by the spatial coordinates on the grid.
Such an embedding is always possible for the latest SC processors
as they are usually designed in a modular structure.

Now we state the data qubit allocation algorithm, as shown in
Algorithm 1. We keep a list (denoted as 𝐿ℎ) for all the three- and
four-degree nodes in the grid and record their coordinates since

341

ISCA ’22, June 18ś22, 2022, New York City, NY Anbang Wu, Gushu Li, Hezi Zhang, Gian Giacomo Guerreschi, Yufei Ding, Yuan Xie

Figure 5: Data qubit allocation example. (a) A modified device from Figure 4(a). Red circles indicate physical qubits with a high

degree of connectivity (i.e. with 3 or more edges). (b) Finding compatible bridge rectangles. (c) Locating data qubits. (d) The final

data qubit layout and syndrome rectangles.

high-degree nodes are critical to constructing the data qubit layout.
In Figure 5(a), 𝐿ℎ = {𝑄2, 𝑄4, 𝑄10, 𝑄12, 𝑄13, 𝑄18, 𝑄21}. Then we pro-
cess the nodes in the list sequentially. For each node 𝑛𝑎 in 𝐿ℎ , if it is
a three-degree node, we search for its nearest high-degree node 𝑛𝑏
and create a minimal rectangle containing 𝑛𝑎 , 𝑛𝑏 , and their neigh-
bors. If 𝑛𝑎 is of degree ≥ 4, then we create a rectangle containing
𝑛𝑎 and its neighbors. Such a rectangle is called a bridge rectangle.
Figure 5(a) depicts five bridge rectangles resulted from {𝑄2, 𝑄10},
{𝑄10}, {𝑄4, 𝑄12}, {𝑄13, 𝑄21} and {𝑄18, 𝑄10}, indexed from 1 to 5.
We omit other bridge rectangles here for simplicity.

Based on those bridge rectangles, we can then determine the
positions of data qubits. As shown in Figure 1(a), each data qubit of
the surface code should be shared by four stabilizers. Likewise, we
can determine the position of a data qubit by four bridge rectangles.
We search for compatible bridge rectangles starting from rectan-
gle 1. (We can also start from rectangle 2 which is created from a
four-degree qubit. We will discuss this possibility in Section 5.) Two
bridge rectangles are said to be compatible if their overlapping area
is zero. For example in Figure 5(b), rectangle 2 is not compatible
with rectangle 1 and rectangle 4, while rectangles 1, 3, 4, and 5 are
mutually compatible. We avoid using incompatible rectangles as
they may not allow a feasible data qubit layout. When four compat-
ible bridge rectangles are found, we search for the data qubit in the
potential data area (the black rectangle in the center of Figure 5(c)),
which is enclosed by those compatible bridge rectangles, as shown
in Figure 5(c). If the potential data area is empty, we select another
four compatible bridge rectangles. Otherwise, we select the qubit
at the center of the potential data area as a data qubit.

On the boundary, we may not have enough bridge rectangles
to locate the data qubits. For example, the bottom right corner of
rectangle 3 is only neighbored by rectangle 5. In this case, we have
to locate the data qubit based on only those two bridge rectangles.
Specifically, a potential data qubit should satisfy: A) its x coordinate
≥ the largest x coordinate in rectangles 3 and 5; B) its y coordinate
should lie between the largest y coordinate of rectangle 3 and the
smallest y coordinate of rectangle 5. With these spatial constraints,

the only qubit we can find is𝑄14, as shown in the black rectangle on
the right of Figure 5(c). Positions of other data qubits are determined
in a similar way.

The final layout of data qubits and their associated syndrome
rectangles are shown in Figure 5(d). A syndrome rectangle is an
extension of the bridge rectangle which includes the allocated data
qubits. We can assign a stabilizer to each syndrome rectangle and
synthesize the corresponding measurement circuits locally (using
qubits inside each syndrome rectangle). In the next section, we will
discuss how to find a short bridge tree for each stabilizer.

4.2 Bridge tree finder

Figure 6: Finding bridge trees in a syndrome rectangle with

data qubits {𝑎, 𝑏, 𝑐, 𝑑}. (a)(b) shows the case where path merge

is efficient, while (c) shows the casewhenpathmerging incurs

extra overhead. (a) Green edges denote the shortest paths

from qubit 𝐸 to data qubits and they form a bridge tree with

length 10. (b) Blue edges form a bridge tree with length 8. (c)

An example where data qubits are close to each other.

Based on allocated data qubits and syndrome rectangles, we
search for bridge trees that satisfy two requirements: small in size
and local in position. The reason why they are required to be small
is that large bridge trees would compromise the fidelity of stabilizer
measurements. This is because the error correction capability of
the synthesized surface codes is sensitive to the length of bridge
trees, as each additional edge in a bridge tree results in two more

342

A Synthesis Framework for Stitching Surface Code with Superconducting Quantum Devices ISCA ’22, June 18ś22, 2022, New York City, NY

Algorithm 2: Bridge tree construction

Input: A syndrome rectangle 𝑅 with data qubits {𝑎, 𝑏, 𝑐, 𝑑}.
Output: Candidate bridge trees.
// bridge trees by the star-tree method;

1 𝑠𝑡𝑎𝑟_𝑡𝑟𝑒𝑒𝑠 = [];

// bridge trees by the branching-tree method;

2 𝑏𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔_𝑡𝑟𝑒𝑒𝑠 = [];

3 for 𝑞𝑏 in 𝑅 do

4 𝑇 = the bridge tree by connecting qubit 𝑞𝑏 to data qubits

{𝑎, 𝑏, 𝑐, 𝑑} with shortest paths;

5 insert 𝑇 to 𝑠𝑡𝑎𝑟_𝑡𝑟𝑒𝑒𝑠 and remove trees larger than 𝑇

from 𝑠𝑡𝑎𝑟_𝑡𝑟𝑒𝑒𝑠;

6 end

7 let {𝑎′, 𝑏 ′, 𝑐 ′, 𝑑 ′} be an arrangement of {𝑎, 𝑏, 𝑐, 𝑑} s.t.

𝑙𝑎′𝑏′ + 𝑙𝑐′𝑑′ = min{𝑙𝑎𝑏 + 𝑙𝑐𝑑 , 𝑙𝑎𝑐 + 𝑙𝑏𝑑 , 𝑙𝑎𝑑 + 𝑙𝑏𝑐 };

// 𝑙𝑎𝑏 is the distance of 𝑎 → 𝑏;

8 connect 𝑎′ and 𝑏 ′, 𝑐 ′ and 𝑑 ′ with shortest paths;

9 for 𝑞𝑏1 in 𝑎
′ → 𝑏 ′, 𝑞𝑏2 in 𝑐

′ → 𝑑 ′ do

10 𝑇 = the resulting bridge tree by connecting 𝑞𝑏1 and 𝑞𝑏2
with shortest paths;

11 insert 𝑇 to 𝑏𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔_𝑡𝑟𝑒𝑒𝑠 and remove trees larger

than 𝑇 from 𝑏𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔_𝑡𝑟𝑒𝑒𝑠;

12 end

13 merge 𝑠𝑡𝑎𝑟_𝑡𝑟𝑒𝑒𝑠 and 𝑏𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔_𝑡𝑟𝑒𝑒𝑠 to find a list of small
local bridge trees;

CNOT gates in the measurement circuit, increasing the probabil-
ity of correlated errors which are hard to detect and correct [19].
The reason why bridge trees should be local is to guarantee the
parallelism of bridge trees, which also affects the fidelity of stabi-
lizer measurements. For bridge trees that share bridge qubits, i.e.,
incompatible bridge trees, their corresponding stabilizers must be
measured sequentially, resulting in a longer error detection cycle,
which means more decoherence errors. To reduce potential con-
flicts between bridge trees, we only search for bridge trees inside
each syndrome rectangle. Such local bridge trees, whose qubits lie
completely within the syndrome rectangles, naturally facilitate the
concurrent measurement of stabilizers.

A natural way to find small local bridge trees is to first locate the
bridge tree root within the syndrome rectangle, and then connect
the tree root to data qubits by the shortest paths. We denote this
method as the star-tree method. A disadvantage of this method is
that it may miss opportunities for path merging. For example, in
the syndrome rectangle in Figure 6(a), the length of the bridge tree
produced by the star-tree method is 10 (green edges). In contrast,
by merging paths 𝐸 → 𝐹 → 𝑏 and 𝐸 → 𝑑 , we can get a bridge tree
of length 8 (blue edges in Figure 6(b)), which reduces the number
of CNOT gates in the resulting stabilizer measurement circuit by at
least 4.

To remedy the above shortcoming, we propose the branching-
tree method, which first connects close data qubit pairs by shortest
paths, and then connects those shortest paths to build a complete
bridge tree. As an example, suppose we are constructing a bridge
tree for the syndrome rectangle in Figure 6(a). We first find the

shortest paths 𝑎 → 𝑐 and 𝑏 → 𝑑 , since 𝑙𝑎𝑐 + 𝑙𝑏𝑑 (𝑙𝑎𝑐 is the length of
the shortest path from 𝑎 to 𝑐) is smaller than 𝑙𝑎𝑏 + 𝑙𝑐𝑑 and 𝑙𝑎𝑑 + 𝑙𝑏𝑐 .
Then by connecting paths 𝑎 → 𝑐 and 𝑏 → 𝑑 with path 𝐸 → 𝐹 , we
immediately obtain the small bridge tree (blue edges) in Figure 6(b).
The following proposition bounds the length of the bridge tree
generated by the branching-tree method:

Proposition 2. Let the total edge length of the bridge tree 𝑇

generated by the branching-tree method be 𝐸 (𝑇), then,

𝐸 (𝑇) ≤
1

2
(𝑙𝑎𝑏 + 𝑙𝑎𝑐 + 𝑙𝑎𝑑 + 𝑙𝑏𝑐 + 𝑙𝑏𝑑 + 𝑙𝑐𝑑).

Proof. W.l.o.g., we assume 𝑙𝑎𝑏 + 𝑙𝑐𝑑 ≤ min{𝑙𝑎𝑐 + 𝑙𝑏𝑑 , 𝑙𝑎𝑑 + 𝑙𝑏𝑐 }.
Then in 𝑇 , we first connect 𝑎 and 𝑏, 𝑐 and 𝑑 , respectively. On the
other hand, the distance between shortest paths 𝑎 → 𝑏 and 𝑐 → 𝑑

is smaller than min{𝑙𝑎𝑐 , 𝑙𝑎𝑑 , 𝑙𝑏𝑐 , 𝑙𝑏𝑑 }. This proposition then can be
proved by combining these two inequalities. □

Generally, the branching-treemethod ismore efficient ifmin{𝑙𝑎𝑏+

𝑙𝑐𝑑 , 𝑙𝑎𝑐+𝑙𝑏𝑑 , 𝑙𝑎𝑑+𝑙𝑏𝑐 } is small, as shown in Figure 6(a)(b). In this case,
the length of the resulting bridge tree is very close to 1

2
(𝑙𝑎𝑑 + 𝑙𝑏𝑐).

In contrast, the length of the bridge tree by the star-tree method is
at leastmax{𝑙𝑎𝑑 , 𝑙𝑏𝑐 }+2, which is larger than that by the branching-
tree method. However, if max{𝑙𝑎𝑏 + 𝑙𝑐𝑑 , 𝑙𝑎𝑐 + 𝑙𝑏𝑑 , 𝑙𝑎𝑑 + 𝑙𝑏𝑐 } is small
too, the benefit of path merging may not outweigh the overhead
of not using shortest paths. Figure 6(c) shows an example where
the star-tree method produces a shorter bridge tree. In practice, we
will run both the star-tree method and the branching-tree method,
then find small bridge trees by merging their results, as shown in
Algorithm 2. Once the bridge tree is determined, we can assign the
syndrome qubit to the center node of the bridge tree.

In general, our bridge tree finder can generate small bridge trees
that approximate optimal bridge trees as long as the distances
between data qubits are small (by Proposition 2).

4.3 Stabilizer measurement scheduler

With all stabilizers and their measurement circuits allocated to the
physical device, the next goal is to minimize the runtime of sta-
bilizer measurements by maximizing parallelism, which naturally
reduces the effect of decoherence. Two stabilizers can be measured
in parallel if and only if their measurement circuits do not share
bridge qubits. Such stabilizers are said to be compatible with each
other. To exploit the parallelism of compatible stabilizers while not
allowing incompatible stabilizers to be measured concurrently, we
propose a heuristic scheduling approach in Algorithm 3, which
consists of two steps: schedule initialization and refinement loop.

Schedule initialization: The proposed data qubit allocation en-
sures that syndrome rectangles of the same type do not have bridge
tree conflicts, i.e., the stabilizer measurements of the same type are
compatible with each other. With this guarantee, we initialize the
stabilizer measurement schedule with two sets, 𝑆1 and 𝑆2 which
contain X- and Z-type stabilizers, respectively.

Refinement loop: The core idea of the refinement loop is to move
stabilizers with large measurement circuits into one set. The mo-
tivation for this refinement is that the execution time of a set of
stabilizer measurements is determined by the stabilizer with the
deepest measurement circuit. After the refinement loop, we end up

343

ISCA ’22, June 18ś22, 2022, New York City, NY Anbang Wu, Gushu Li, Hezi Zhang, Gian Giacomo Guerreschi, Yufei Ding, Yuan Xie

Algorithm 3: Iterative stabilizer measurement scheduling

Input: Binary tuples of stabilizer and syndrome rectangle:
{(𝑠, 𝑅)}.

Output: A schedule of binary tuples of stabilizer and bridge
trees.

// Schedule initialization;

1 𝑆1 = tuples of X-stabilizers and syndrome rectangles;

2 𝑆2 = tuples of Z-stabilizers and syndrome rectangles;

// Iterative refinement;

3 repeat

4 if 𝑒𝑥𝑒𝑐_𝑡𝑖𝑚𝑒 (𝑆1) < 𝑒𝑥𝑒𝑐_𝑡𝑖𝑚𝑒 (𝑆2) then

5 swap(𝑆1, 𝑆2);

6 𝑟2 = (𝑠, 𝑅) in 𝑆2 that has longest execution time;

7 𝑠𝑤𝑎𝑝_𝑙𝑖𝑠𝑡 = [𝑟2]; for 𝑖 in [0 : 𝑘] do

8 𝑆 = 𝑆𝑖%2+1;

9 for 𝑟 in 𝑠𝑤𝑎𝑝_𝑙𝑖𝑠𝑡 do

10 𝑠𝑤𝑎𝑝_𝑙𝑖𝑠𝑡 .𝑟𝑒𝑚𝑜𝑣𝑒 (𝑟);

11 for 𝑟1 in 𝑆 in descending order do

12 if 𝑟1 and 𝑟 does not have compatible bridge

trees then

13 if 𝑒𝑥𝑒𝑐_𝑡𝑖𝑚𝑒 (𝑟1) > 𝑒𝑥𝑒𝑐_𝑡𝑖𝑚𝑒 (𝑟) then

14 terminate the refinement loop;

15 𝑠𝑤𝑎𝑝_𝑙𝑖𝑠𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑟1);

16 𝑆.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑟1);

17 end

18 if 𝑠𝑤𝑎𝑝_𝑙𝑖𝑠𝑡 == ∅ then

19 break;

20 end

21 end

22 if 𝑠𝑤𝑎𝑝_𝑙𝑖𝑠𝑡 ≠ ∅ then

23 recover 𝑆1 and 𝑆2 to the values before this iteration;

24 break;

25 until 𝑆1 converges;

26 generate the finalized stabilizer measurement schedule from

𝑆1 and 𝑆2;

with one set containing the stabilizers with large measurement cir-
cuits, and the other set containing the remaining stabilizers which
have small measurement circuits and can be measured in a short
time.

To illustrate how the refinement loop works, suppose we are
given stabilizers and syndrome rectangles shown in Figure 7. Ini-
tially, we have 𝑆1 = {(𝑠1, 𝑅1), (𝑠4, 𝑅4), (𝑠5, 𝑅5)} and 𝑆2 = {(𝑠2, 𝑅2), (𝑠3,

𝑅3), (𝑠6, 𝑅6)}. We then send the largest element in 𝑆2, which is
(𝑠2, 𝑅2) in this case, to the 𝑠𝑤𝑎𝑝_𝑙𝑖𝑠𝑡 and swap it into 𝑆1. Since
(𝑠4, 𝑅4) and (𝑠2, 𝑅2) do not have compatible bridge trees, we will
move (𝑠4, 𝑅4) to 𝑆2. In 𝑆2, (𝑠6, 𝑅6) is not compatible with (𝑠4, 𝑅4),
so it will be swapped into 𝑆1. After this swap, the refinement loop
will stop since the 𝑠𝑤𝑎𝑝_𝑙𝑖𝑠𝑡 is empty and every stabilizer in 𝑆1 has
a larger bridge tree than the stabilizer in 𝑆2. The finalized stabilizer
measurement schedule is shown in Figure 7(b). Compared to the
initial schedule, the refined schedule in Figure 7(b) reduces the

error detection cycle by one time step, and reduces the CNOT gate
number by two.

Figure 7: An example of stabilizer measurement scheduling.

5 EVALUATION

In this section, we first evaluate the proposed synthesis framework
Surf-Stitch by comparing its generated surface codes with state-
of-the-art manually designed QEC codes. We then demonstrate
the effectiveness of Surf-Stitch on mainstream SC architectures by
analyzing the error correction capability and resource overhead of
the synthesized codes.

5.1 Experiment Setup

Evaluation setting:We use the flag-bridge circuit [32] as the backend
for instantiating stabilizer measurement circuits as it provides the
extra feature of fault-tolerant error detection [11]. We implement
all numerical simulations with stim v1.5.0, a fast stabilizer circuit
simulator [20]. We use PyMatching v0.4.0 [23] for error decoding
with measurement signals from bridge qubits. The PyMatching
decoder is the implementation of the well-studiedMinimumWeight

Perfect Matching (MWPM) algorithm [10, 19]. Error rates are com-
puted by performing 105 simulations with 3𝑑 (𝑑 is the code distance)
error detection rounds, on a Ubuntu 18.04 server with a 6-core Intel
E5-2603v4 CPU and 32GB RAM.

Metrics: We evaluate the error threshold of the synthesized sur-
face codes to demonstrate their error correction capability. Error
threshold indicates the error rate below which hardware errors
can be tolerated [19]. Hence, a higher error threshold is preferred.
The time-step count determines the execution speed of the surface
code and its logical operations. A large time-step count would also
introduce more decoherence errors. Thus, a small time-step count
is preferred. Finally, We evaluate the resource overhead of the syn-
thesized surface codes with the CNOT count and the qubit count.
A resource-efficient synthesis should use fewer CNOT gates and
bridge qubits.

Device architectures: we use two categories of device architec-
tures, as shown in Table 1. The first category of architectures built
from tiled polygons is the basic structure of many SC quantum
devices, e.g. Google’s Sycamore [2] and IBM’s latest machines [28].
The second category of architectures is mainly used by IBM de-
vices [28]. It consists of heavy architectures with an extra qubit
inserted into each edge of the polygons. Edges with the extra qubit
in the middle are called heavy edges. Compared to polygon archi-
tectures, the average qubit connectivity of heavy architectures is

344

A Synthesis Framework for Stitching Surface Code with Superconducting Quantum Devices ISCA ’22, June 18ś22, 2022, New York City, NY

Table 1: Overview of device architectures.

Type Name
Building
blocks

Tilling Example Remark

Polygon
Archi-
tectures

Square

Each square can
have at most
four neighboring
squares for tiling.

Hexagon

Each hexagon
can have at most
six neighboring
hexagons for
tiling.

Octagon

Each octagon
can have at most
four neighboring
octagons for
tiling.

Heavy
Archi-
tectures

Heavy
Square

Heavy squares are
tiled like squares.

Heavy
Hexagon

Heavy hexagons
are tiled like
hexagons.

lower due to the inserted two-degree qubits. All architectures in
Table 1 can be easily embedded into a 2D grid.

Error model: In all simulations, we assume a similar circuit-level
error model as in [10, 19]. For the gate error, we assume an error
probability 𝑝𝑒 for the single-qubit depolarizing error channel on
single-qubit gates, the two-qubit depolarizing error channel on two-
qubit gates, and the Pauli-X error channel onmeasurement and reset
operations. For the idle error induced by decoherence, we assume
each idle qubit is followed by a single-qubit depolarizing error
channel per gate duration with the error probability 0.0002, which

is estimated by the decoherence error formula 1 − 𝑒−
𝑡

𝑇 ≈ 0.0002,
with the gate duration 𝑡 = 20𝑛𝑠 and the relaxation or dephasing
time 𝑇 = 100 𝜇𝑠 [1]. These errors happen on all qubits, including
data qubits and bridge qubits.

5.2 Compared to manually designed QEC codes

We first compare the synthesized surface codes by Surf-Stitch to the
two manually designed QEC codes by Chamberland et al. [10] on
heavy architectures. Figure 8(a)(b) show the qubit layouts and stabi-
lizer measurements of our synthesized surface codes on the heavy
square architecture (‘Surf-Stitch Heavy Square’) and the heavy
hexagon architecture (‘Surf-Stitch Heavy Hexagon’). Figure 8(c)(d)
show the manually designed QEC codes on the heavy square archi-
tecture (‘IBM Heavy Square’) and the heavy hexagon architecture
(‘IBM Heavy Hexagon’). The error thresholds of these codes are in
Figure 9. The error thresholds are computed with respect to Pauli
X errors.

Overall, compared with the manually designed codes on the
heavy architectures, the surface codes synthesized by Surf-Stitch
can have comparable or even better error correction capability. On

(a) Surf-Stitch Heavy Square (b) Surf-Stitch Heavy Hexagon

(c) IBM Heavy Square (d) IBM Heavy Hexagon

Figure 8: The synthesized distance-3 surface codes by Surf-

Stitch and the twomanually designed QEC codes by IBM [10].

L
o
g
ic
al
er
ro
r
ra
te

p
l

Surf-Stitch: d = 3 d = 5 d = 7 d = 9

IBM: d = 3 d = 5 d = 7 d = 9

10
−3

10
−1

0.00330.0016

10
−3

0.0053
physical error rate

(a) Heavy Hexagon
physical error rate

(b) Heavy Square

Figure 9: The error threshold is the physical error rate where

code curves of different distances meet. (a) The error thresh-

olds are 0.16% and 0.33% for codes by IBM and Surf-Stitch,

respectively. (b) The error threshold is 0.53% for both codes.

the heavy hexagon architecture, the error threshold of ‘Surf-Stitch
Heavy Hexagon’ is 0.33% which is 106% higher than that of ‘IBM
Heavy Hexagon’ (0.16%), as shown in Figure 9(a). This significant
discrepancy comes from the fact that ‘IBM Heavy Hexagon’ mea-
sures gauge operators instead of the stabilizers for the Pauli-X error
detection. Besides, ‘IBM Heavy Hexagon’ does not guarantee the
fault tolerance of the Pauli-X error detection procedure. On the
heavy square architecture, the error threshold of ‘Surf-Stitch Heavy
Square’ is the same as that of ‘IBM Heavy Square’, as shown in
Figure 9(b). This is because the code synthesized by Surf-Stitch is
almost identical to ‘IBM Heavy Square’ except for stabilizers on
boundaries, as shown in Figure 8(a)(c). The only difference is that
‘IBM Heavy Square’ removes some boundary nodes (dotted) and
edges (dotted) for better efficiency of stabilizer measurements on
the borderline.

In summary, Surf-Stitch can automatically generate surface codes
that have similar or even better error correction capability com-
pared with manually designed QEC codes on the two studied archi-
tectures.

345

ISCA ’22, June 18ś22, 2022, New York City, NY Anbang Wu, Gushu Li, Hezi Zhang, Gian Giacomo Guerreschi, Yufei Ding, Yuan Xie

Figure 10: First four stabilizers of the synthesized surface codes by Surf-Stitch. (a)(b)(c) syntheses on the square, hexagon, and

octagon architectures. (d)(e) syntheses on the square and heavy square architectures by using syndrome rectangles induced by

4-degree qubits.

Table 2: Metrics of the synthesized surface codes by Surf-

Stitch. The average numbers of bridge qubits, CNOT gates,

and time steps are computed over all X-type stabilizers.

Code
Avg. bridge
qubit #

Avg.
CNOT #

Avg. time-
step #

Tot. time-
step #

Error thresh-
old

Surf-Stitch Heavy Sqaure 3 8 12 24 0.53%
Surf-Stitch Heavy Hexagon 7 19 20 40 0.33%
Surf-Stitch Sqaure 2 6 10 20 0.63%
Surf-Stitch Hexagon 4 10 13 26 0.47%
Surf-Stitch Octagon 6 14 14 28 0.38%
Surf-Stitch Sqaure-4 1 4 8 8 0.70%
Surf-Stitch Heavy Sqaure-4 5 12 13 13 0.45%
IBM Heavy Sqaure 3 8 12 24 0.53%
IBM Heavy Hexagon 3 8 12 24 0.16%

Table 3: Qubit utilization of the distance-5 surface codes syn-

thesized by Surf-Stitch on different architectures.

Code data qubit % bridge qubit % unused qubit % Tot. qubit #
Surf-Stitch Heavy Sqaure 31.7% 45.6% 22.8% 79
Surf-Stitch Heavy Hexagon 18.8% 59.4% 21.8% 133
Surf-Stitch Square 55.6% 44.4% 0.0% 45
Surf-Stitch Hexagon 30.5% 48.8% 20.7% 82
Surf-Stitch Octagon 13.8% 75.8% 10.4% 116
Surf-Stitch Square-4 43.9% 56.1% 0.0% 57
Surf-Stitch Heavy Sqaure-4 16.3% 83.7% 0.0% 153
IBM Heavy Sqaure 31.7% 45.6% 22.8% 79
IBM Heavy Hexagon 17.4% 63.0% 19.6% 92

5.3 Synthesis on various SC architectures

We further apply Surf-Stitch to other architectures in Table 1 to
demonstrate the general applicability of Surf-Stitch. Figure 10(a)-(c)
presents the synthesis results of Surf-Stitch on the square, hexagon,
and octagon architectures. Besides syntheses enabled by a pair of
three-degree bridge qubits as in Figure 10(a)-(c), we also include
another two surface codes generated by using syndrome rectangles
centering around four-degree qubits, as shown in Figure 10(d)(e).
These two codes have the suffix ‘-4’ in the code name in Table 2 and
Table 3. Table 2 summarizes the characteristics of stabilizer mea-
surements in the synthesized surface codes by Surf-Stitch. Table 3
shows the resource requirements of these synthesized surface codes
and is obtained by finding the smallest tiling of building blocks in
Table 1 that is able to support the distance-5 surface code and then
computing the ratios of different types of qubits.

The effect of architectures: High-degree architectures are more
effective for surface code synthesis than low-degree architectures.
Compared to polygon architectures, heavy architectures increase
the bridge qubit number by 114% on average, up to 400%. Heavy

Table 4: Resource scalability of Surf-Stitch on different archi-

tectures. 𝑑 is the code distance. The ‘Ideal’ rows denotes the

ideal surface code on a 2D lattice [19].

Code bridge qubit # bridge/data 2-qubit gate # 1-qubit gate #

Surf-Stitch Heavy Sqaure 2(𝑑2 − 1) 2 8𝑑 (𝑑 − 1) 2(𝑑 − 1) (3𝑑 + 1)
Surf-Stitch Heavy Hexagon 2(2𝑑 + 1) (𝑑 − 1) 4 4(4𝑑 − 1) (𝑑 − 1) 2(𝑑 − 1) (7𝑑 − 1)
Surf-Stitch Square (𝑑 − 1) (𝑑 + 2) 1 6𝑑 (𝑑 − 1) 2(𝑑 − 1) (2𝑑 + 1)
Surf-Stitch Hexagon (2𝑑 + 3) (𝑑 − 1) 2 10𝑑 (𝑑 − 1) 2(5𝑑 − 1) (𝑑 − 1)
Surf-Stitch Octagon (𝑑 − 1) (3𝑑 + 7) 3 14𝑑 (𝑑 − 1) 2(𝑑 − 1) (6𝑑 + 1)

Ideal 𝑑2 − 1 1 4(𝑑2 − 1) 2(𝑑2 − 1)

architectures also increase the average time-step number by 40.7%
on average. Fortunately, in Surf-Stitch, such significant resource
differences do not lead to great error correction capability degra-
dation. Compared to polygon architectures, heavy architectures
reduce the error threshold by 26.7% on average. Besides, low-degree
devices have a much lower hardware error rate and are easier to
fabricate than high-degree devices [35].

The effect of the synthesis design: The synthesized codes center-
ing on four-degree qubits have higher resource requirements than
the synthesized codes induced by a pair of three-degree qubits. In
Table 3, 26.7% and 93.7% more qubits are required for ‘Surf-Stitch
Square-4’ and ‘Surf-Stitch Heavy Square-4’ than ‘Surf-Stitch Square’
and ‘Surf-Stitch Heavy Square’, respectively. The synthesis by four-
degree qubits may also have a lower error threshold. Compared to
‘Surf-Stitch Heavy Square’, ‘Surf-Stitch Heavy Square-4’ decreases
the error threshold by 15.1%.

Overall, not only the architectural design but also the synthesis
design have a critical impact on the resource overhead and error
correction capability of the synthesized codes. By optimizing the
three key stages in the surface code synthesis, Surf-Stitch achieves
reasonable error thresholds on various mainstream SC quantum
architectures. In fact, IBM recently demonstrates a CNOT gate with
a fidelity of 99.77% [29], whose physical error rate of 0.23% is lower
than the worst error threshold by Surf-Stitch in Table 2 (0.33% on
the heavy hexagon architecture).

Being effective in synthesizing surface codes, Surf-Stitch also
has good scalability on quantum resources. Table 4 reports the
bridge qubit number and quantum gate number by Surf-Stitch,
with respect to the code distance 𝑑 . These data are obtained by
analyzing the patterns of the synthesized surface codes. As shown
in Table 4, the required number of bridge qubits (also, two-qubit
gates and single-qubit gates) in Surf-Stitch scales almost linearly
with the number of data qubits, i.e., 𝑑2. This indicates that no matter
how large the code distance is, for a given architecture, Surf-Stitch

346

A Synthesis Framework for Stitching Surface Code with Superconducting Quantum Devices ISCA ’22, June 18ś22, 2022, New York City, NY

Square Heavy
Square

Hexagon Octagon Heavy
Hexagon

0.1

0.3

0.5

0.7

Er
ro

r t
hr

es
ho

ld
 (%

)

0.63

0.53
0.47

0.38
0.33

Impact of bridge trees
Surf-Stitch
Revised-SABRE

(a)

0.0004 0.0008 0.0012 0.0016 0.0020
Idle error

0.20

0.25

0.30

0.35

0.40

0.45

Er
ro

r t
hr

es
ho

ld
 (%

)

Impact of measurement scheduling
Surf-Stitch
Two-stage

(b)

Figure 11: Sub-component analysis. (a) The impact of differ-

ent bridge trees. (b) The impact of different measurement

scheduling.

only needs a constant number of bridge qubits to measure one
stabilizer. Such good scalability comes from the fact that Surf-Stitch
always uses small syndrome rectangles and only considers local
bridge trees that have limited sizes and do not grow as the code
distance increases.

5.4 Analysis on sub-components

In this section, we study the effect of Surf-Stitch’s three optimization
stages.

Data qubit allocation: To demonstrate the necessity of a special-
ized data qubit allocation algorithm, we compare the data qubit
allocation pass of Surf-Stitch to Qiskit [1] and the random sampling
method on device architectures in Table 1. For Qiskit, we try two
different qubit layouts: SABRE [34] and NoiseAdaptive [36]. The
random sampling method tries to find data qubits by sampling the
device nodes uniformly. During 100000 trials, Qiskit and the ran-
dom sampling method do not produce any valid data qubit layout
that is able to execute all stabilizer measurement circuits without
moving data qubits. The reason for the failure of these methods
is that they do not consider the constraints of the surface code
synthesis: (a) once allocated, data qubits should not be moved; (b)
there should be high-degree qubits between data qubits. In contrast,
Surf-Stitch always produces valid data qubit layouts.

Bridge tree construction: Keeping other optimization steps fixed,
we compare the bridge tree construction algorithm of Surf-Stitch
to a revised SABRE routing algorithm. We use a revised SABRE here
because the original SABRE cannot distinguish bridge qubits and
data qubits. To make a CNOT gate executable, SABRE may move
data qubits towards syndrome qubits. Such behavior is prohibited
in the surface code because moving data qubits will invalidate the
logical operations of the surface code. Besides, SABRE cannot guar-
antee the correct execution of stabilizer measurements. When we
measure an X- and Z-stabilizer together, the order of the CNOT
gates between syndrome qubits (or bridge qubits) and data qubits
must follow the zig-zag ordering [19], as shown in Figure 3. Un-
fortunately, SABRE does not obey this constraint. Therefore, we
revise the SABRE algorithm to make it applicable for implementing
stabilizer measurements. As in Figure 11(a), the SABRE method is
also significantly worse than Surf-Stitch due to the large number
of extra CNOT gates induced by using SWAP gates. This result

illustrates the necessity of a specialized bridge tree optimization
pass.

Stabilizer measurement scheduling: Keeping the first two op-
timization stages fixed, we compare the stabilizer measurement
scheduling of Surf-Stitch to the two-stagemeasurement scheme [32]
which firstmeasures all X-stabilizers and thenmeasures Z-stabilizers.
For the comparison, we consider the synthesized surface code in
Figure 10(e). As shown in Figure 11(b), the stabilizer measurement
schedule of Surf-Stitch achieves a higher error threshold than the
two-stage schedule, and the advantage of Surf-Stitch increases as
the idle error grows. Such a result demonstrates the effectiveness
of Surf-Stitch’s stabilizer measurement scheduling, especially for
SC quantum devices in the near future.

6 DISCUSSION

To the best of our knowledge, this paper is the first attempt that
formalizes the surface code synthesis problem on SC quantum
devices. In particular, we identify three key challenges of the surface
code synthesis: data qubit allocation, bridge tree construction, and
stabilizer measurement schedule. We propose a modular framework
to tackle these challenges one by one. The proposed framework is
the first automated solution to the surface code synthesis problem,
as far as we know. Our paper unveils the opportunities for the QEC
code optimization on SC devices and would potentially inspire a
series of works for closing the gap between QEC codes and SC
quantum architectures.

Although we show that the surface code synthesized by our
framework can achieve comparable or even better error correction
capability than manually designed QEC codes, there is still much
space left for potential improvements.

Improving data qubit allocation: For the concern of computational
efficiency, this paper adopts a greedy strategy when constructing
syndrome rectangles for stabilizer measurements. However, when
the device architecture becomes complicated, our framework may
be stuck at local minima and unable to generate the optimal data
qubit layout. There are two ways to solve this problem: the first
one is to incorporate more device information such as topological
symmetries into the data qubit layout design; the second way is to
use advanced optimization algorithms like simulated annealing or
neural network to discover better data qubit layouts.

Exploring more design space: The proposed framework is modular,
which makes it very extensible. However, such a solution cannot
explore the entire solution space and may miss some optimization
opportunities. For example, we may generate better bridge trees by
co-optimizing the bridge tree finder and the stabilizer measurement
scheduler. Or we may improve the data qubit layout by tweaking
the data qubit allocator and the bridge tree finder jointly.

Adapting to other QEC codes: This paper is specifically designed
for the surface code. Extra efforts may be needed to extend the
proposed framework to other QEC codes. For example, the idea of
using the bridge rectangle in our framework originates from the
stabilizer shape of the surface code. Our data qubit allocator should
be modified to process QEC codes with quite different stabilizer
shapes, e.g., the color code [18] whose stabilizers can be of any
shape.

347

ISCA ’22, June 18ś22, 2022, New York City, NY Anbang Wu, Gushu Li, Hezi Zhang, Gian Giacomo Guerreschi, Yufei Ding, Yuan Xie

7 RELATEDWORK

General quantum compilers: Compiling a general quantum circuit
onto an SC quantum device with limited qubit connectivity has been
widely studied [17, 34, 36, 42, 45, 47, 48, 50]. However, these general
quantum compilers are not suitable for compiling the surface code.
Firstly, they don’t distinguish data qubits from other qubits. They
may move data qubits frequently, invalidating logical operations
designed for a fixed data qubit layout [19]. Secondly, the SWAP gates
they use to overcome the connectivity issue of the SC device make
the compiled measurement circuits too error-prone for practical
error correction. Finally, they do not account for the constraints
on measurement circuits, e.g., the order of CNOT gates between
syndrome qubits and data qubits [19].

Circuit compilation over the surface code:Most circuit compilation
works on the surface code are at the higher logical circuit level.
Javadi et al. [27] and Hua et al. [25] studied the routing congestion
in circuits over the surface code. Ding et al. [15] and Paler et al. [39]
studied the compilation of magic state distillation circuits with
existing surface code logical operations for realizing a universal
quantum gate set. Lao et al. [33] proposed a mapping process to
execute lattice surgery-based quantum circuits on surface code
architectures. These works assume that the ideal surface code ar-
chitecture is already available and do not consider the problem
of synthesizing surface codes on hardware. In contrast, this paper
focuses on optimizing the surface code synthesis on various SC
quantum architectures.

QEC code and architecture: Most efforts on QEC code synthe-
sis are still on looking for an architecture that is suitable for the
target code. Reichardt [40] proposed three possible planar qubit
layouts for synthesizing the seven-qubit color code. Chamberland
et al. [9] proposed a trivalent architecture where it is straightfor-
ward to allocate data qubits of triangular color codes. Chamber-
land et al. [10] introduced heavy architectures which reduce qubit
frequency collisions while still providing support for the surface
code synthesis. Instead, the synthesis framework in this paper can
automatically synthesize the surface code onto various SC archi-
tectures and avoid manually redesigning code protocols for the
ever-changing quantum architectures. Another line of research
targets compiling stabilizer measurement circuits to existing SC
architectures. Lao and Almudever [32] proposed the flag-bridge
circuit which can measure the stabilizer of the Steane code on the
IBM-20 device. However, their work relies on manually appointed
data qubits and bridge qubits, and focuses on the IBM-20 device.
Methods in this category are orthogonal to our work and can be
easily merged into our framework.

8 CONCLUSION

In this paper, we formalize the three challenges of the surface code
synthesis on SC quantum architectures and present an automatic
synthesis framework to overcome these challenges. The proposed
framework consists of three optimizations. Firstly, we adopt a ge-
ometrical method to allocate data qubits in a way that ensures
the existence of shallow measurement circuits. Secondly, we select
two heuristics to reduce the size of local bridge trees, which are
enclosed by data qubits. Thirdly, we propose an iterative procedure
to arrange the execution of measurement circuits based on a good

initial schedule enabled by the proposed data qubit allocation. Our
comparative evaluation with manually designed QEC codes demon-
strates that, with good optimization, automated synthesis can even
surpass manual QEC code design by experienced theorists.

ACKNOWLEDGMENTS

We thank the anonymous reviews for their constructive feedback.
This work was supported in part by NSF 2048144. G. L. was in part
funded by NSF QISE-NET fellowship under the award DMR1747426.

REFERENCES
[1] MD SAJID ANIS, Abby-Mitchell, Héctor Abraham, AduOffei, Rochisha Agarwal,

Gabriele Agliardi, Merav Aharoni, Ismail Yunus Akhalwaya, Gadi Aleksandrow-
icz, Thomas Alexander, Matthew Amy, Sashwat Anagolum, Anthony-Gandon,
Eli Arbel, Abraham Asfaw, Anish Athalye, Artur Avkhadiev, Carlos Azaustre,
PRATHAMESH BHOLE, Abhik Banerjee, Santanu Banerjee, Will Bang, Aman
Bansal, Panagiotis Barkoutsos, Ashish Barnawal, George Barron, George S. Bar-
ron, Luciano Bello, Yael Ben-Haim, M. Chandler Bennett, Daniel Bevenius, Dhruv
Bhatnagar, Arjun Bhobe, Paolo Bianchini, Lev S. Bishop, Carsten Blank, Sorin
Bolos, Soham Bopardikar, Samuel Bosch, Sebastian Brandhofer, Brandon, Sergey
Bravyi, Nick Bronn, Bryce-Fuller, David Bucher, Artemiy Burov, Fran Cabrera,
Padraic Calpin, Lauren Capelluto, Jorge Carballo, Ginés Carrascal, Adam Carriker,
Ivan Carvalho, Adrian Chen, Chun-Fu Chen, Edward Chen, Jielun (Chris) Chen,
Richard Chen, Franck Chevallier, Kartik Chinda, Rathish Cholarajan, Jerry M.
Chow, Spencer Churchill, CisterMoke, Christian Claus, Christian Clauss, Caleb
Clothier, Romilly Cocking, Ryan Cocuzzo, Jordan Connor, Filipe Correa, Zachary
Crockett, Abigail J. Cross, Andrew W. Cross, Simon Cross, Juan Cruz-Benito,
Chris Culver, Antonio D. Córcoles-Gonzales, Navaneeth D, Sean Dague, Tareq El
Dandachi, Animesh N Dangwal, Jonathan Daniel, Marcus Daniels, Matthieu
Dartiailh, Abdón Rodríguez Davila, Faisal Debouni, Anton Dekusar, Amol Desh-
mukh, Mohit Deshpande, Delton Ding, Jun Doi, Eli M. Dow, Eric Drechsler,
Eugene Dumitrescu, Karel Dumon, Ivan Duran, Kareem EL-Safty, Eric Eastman,
Grant Eberle, Amir Ebrahimi, Pieter Eendebak, Daniel Egger, ElePT, Emilio, Al-
berto Espiricueta, Mark Everitt, Davide Facoetti, Farida, Paco Martín Fernández,
Samuele Ferracin, Davide Ferrari, Axel Hernández Ferrera, Romain Fouilland,
Albert Frisch, Andreas Fuhrer, Bryce Fuller, MELVIN GEORGE, Julien Gacon,
Borja Godoy Gago, Claudio Gambella, Jay M. Gambetta, Adhisha Gammanpila,
Luis Garcia, Tanya Garg, Shelly Garion, James R. Garrison, Jim Garrison, Tim
Gates, Leron Gil, Austin Gilliam, Aditya Giridharan, Juan Gomez-Mosquera,
Gonzalo, Salvador de la Puente González, Jesse Gorzinski, Ian Gould, Donny
Greenberg, Dmitry Grinko, Wen Guan, Dani Guijo, John A. Gunnels, Harshit
Gupta, Naman Gupta, Jakob M. Günther, Mikael Haglund, Isabel Haide, Ikko
Hamamura, Omar Costa Hamido, Frank Harkins, Kevin Hartman, Areeq Hasan,
Vojtech Havlicek, Joe Hellmers, Łukasz Herok, Stefan Hillmich, Hiroshi Horii,
Connor Howington, Shaohan Hu, Wei Hu, Junye Huang, Rolf Huisman, Haruki
Imai, Takashi Imamichi, Kazuaki Ishizaki, Ishwor, Raban Iten, Toshinari Itoko,
Alexander Ivrii, Ali Javadi, Ali Javadi-Abhari, Wahaj Javed, Qian Jianhua, Mad-
hav Jivrajani, Kiran Johns, Scott Johnstun, Jonathan-Shoemaker, JosDenmark,
JoshDumo, John Judge, Tal Kachmann, Akshay Kale, Naoki Kanazawa, Jessica
Kane, Kang-Bae, Annanay Kapila, Anton Karazeev, Paul Kassebaum, Tobias
Kehrer, Josh Kelso, Scott Kelso, Vismai Khanderao, Spencer King, Yuri Kobayashi,
Kovi11Day, Arseny Kovyrshin, Rajiv Krishnakumar, Vivek Krishnan, Kevin Kr-
sulich, Prasad Kumkar, Gawel Kus, Ryan LaRose, Enrique Lacal, Raphaël Lambert,
Haggai Landa, John Lapeyre, Joe Latone, Scott Lawrence, Christina Lee, Gushu
Li, Jake Lishman, Dennis Liu, Peng Liu, Lolcroc, Abhishek K M, Liam Madden,
Yunho Maeng, Saurav Maheshkar, Kahan Majmudar, Aleksei Malyshev, Mo-
hamed El Mandouh, Joshua Manela, Manjula, Jakub Marecek, Manoel Marques,
Kunal Marwaha, Dmitri Maslov, Paweł Maszota, Dolph Mathews, Atsushi Mat-
suo, Farai Mazhandu, Doug McClure, Maureen McElaney, Cameron McGarry,
David McKay, Dan McPherson, Srujan Meesala, Dekel Meirom, Corey Mendell,
Thomas Metcalfe, Martin Mevissen, Andrew Meyer, Antonio Mezzacapo, Ro-
hit Midha, Daniel Miller, Zlatko Minev, Abby Mitchell, Nikolaj Moll, Alejandro
Montanez, Gabriel Monteiro, Michael Duane Mooring, Renier Morales, Niall
Moran, David Morcuende, Seif Mostafa, Mario Motta, Romain Moyard, Prakash
Murali, Jan Müggenburg, Tristan NEMOZ, David Nadlinger, Ken Nakanishi, Gi-
acomo Nannicini, Paul Nation, Edwin Navarro, Yehuda Naveh, Scott Wyman
Neagle, Patrick Neuweiler, Aziz Ngoueya, Thien Nguyen, Johan Nicander, Nick-
Singstock, Pradeep Niroula, Hassi Norlen, NuoWenLei, Lee James O’Riordan,
Oluwatobi Ogunbayo, Pauline Ollitrault, Tamiya Onodera, Raul Otaolea, Steven
Oud, Dan Padilha, Hanhee Paik, Soham Pal, Yuchen Pang, Ashish Panigrahi,
Vincent R. Pascuzzi, Simone Perriello, Eric Peterson, Anna Phan, Kuba Pilch,
Francesco Piro, Marco Pistoia, Christophe Piveteau, Julia Plewa, Pierre Pocreau,
Alejandro Pozas-Kerstjens, Rafał Pracht, Milos Prokop, Viktor Prutyanov, Sumit

348

A Synthesis Framework for Stitching Surface Code with Superconducting Quantum Devices ISCA ’22, June 18ś22, 2022, New York City, NY

Puri, Daniel Puzzuoli, Jesús Pérez, Quant02, Quintiii, Rafey Iqbal Rahman, Arun
Raja, Roshan Rajeev, Isha Rajput, Nipun Ramagiri, Anirudh Rao, Rudy Raymond,
Oliver Reardon-Smith, Rafael Martín-Cuevas Redondo, Max Reuter, Julia Rice,
Matt Riedemann, Rietesh, Drew Risinger, Marcello La Rocca, Diego M. Rodríguez,
RohithKarur, Ben Rosand, Max Rossmannek, Mingi Ryu, Tharrmashastha SAPV,
Nahum Rosa Cruz Sa, Arijit Saha, Abdullah Ash-Saki, Sankalp Sanand, Martin
Sandberg, Hirmay Sandesara, Ritvik Sapra, Hayk Sargsyan, Aniruddha Sarkar,
Ninad Sathaye, Bruno Schmitt, Chris Schnabel, Zachary Schoenfeld, Travis L.
Scholten, Eddie Schoute, Mark Schulterbrandt, Joachim Schwarm, James Sea-
ward, Sergi, Ismael Faro Sertage, Kanav Setia, Freya Shah, Nathan Shammah,
Rohan Sharma, Yunong Shi, Jonathan Shoemaker, Adenilton Silva, Andrea Simon-
etto, Deeksha Singh, Divyanshu Singh, Parmeet Singh, Phattharaporn Singka-
nipa, Yukio Siraichi, Siri, Jesús Sistos, Iskandar Sitdikov, Seyon Sivarajah, Mag-
nus Berg Sletfjerding, John A. Smolin, Mathias Soeken, Igor Olegovich Sokolov,
Igor Sokolov, Vicente P. Soloviev, SooluThomas, Starfish, Dominik Steenken, Matt
Stypulkoski, Adrien Suau, Shaojun Sun, Kevin J. Sung, Makoto Suwama, Oskar
Słowik, Hitomi Takahashi, Tanvesh Takawale, Ivano Tavernelli, Charles Taylor,
Pete Taylour, Soolu Thomas, Kevin Tian, Mathieu Tillet, Maddy Tod, Miroslav
Tomasik, Caroline Tornow, Enrique de la Torre, Juan Luis Sánchez Toural, Kenso
Trabing, Matthew Treinish, Dimitar Trenev, TrishaPe, Felix Truger, Georgios
Tsilimigkounakis, Davindra Tulsi, Wes Turner, Yotam Vaknin, Carmen Recio Val-
carce, Francois Varchon, Adish Vartak, Almudena Carrera Vazquez, Prajjwal Vi-
jaywargiya, Victor Villar, Bhargav Vishnu, Desiree Vogt-Lee, Christophe Vuillot,
James Weaver, Johannes Weidenfeller, Rafal Wieczorek, Jonathan A. Wildstrom,
Jessica Wilson, Erick Winston, WinterSoldier, Jack J. Woehr, Stefan Woerner,
Ryan Woo, Christopher J. Wood, Ryan Wood, Steve Wood, James Wootton, Matt
Wright, Lucy Xing, Jintao YU, Bo Yang, Unchun Yang, Jimmy Yao, Daniyar Yer-
alin, Ryota Yonekura, David Yonge-Mallo, Ryuhei Yoshida, Richard Young, Jessie
Yu, Lebin Yu, Christopher Zachow, Laura Zdanski, Helena Zhang, Iulia Zidaru,
Christa Zoufal, aeddins ibm, alexzhang13, b63, bartek bartlomiej, bcamorrison,
brandhsn, charmerDark, deeplokhande, dekel.meirom, dime10, dlasecki, ehchen,
fanizzamarco, fs1132429, gadial, galeinston, georgezhou20, georgios ts, gruu,
hhorii, hykavitha, itoko, jeppevinkel, jessica angel7, jezerjojo14, jliu45, jscott2,
klinvill, krutik2966, ma5x, michelle4654, msuwama, nico lgrs, ntgiwsvp, ordmoj,
sagar pahwa, pritamsinha2304, ryancocuzzo, saktar unr, saswati qiskit, septem-
brr, sethmerkel, sg495, shaashwat, smturro2, sternparky, strickroman, tigerjack,
tsura crisaldo, upsideon, vadebayo49, welien, willhbang, wmurphy collabstar,
yang.luh, and Mantas Čepulkovskis. 2021. Qiskit: An Open-source Framework
for Quantum Computing. https://doi.org/10.5281/zenodo.2573505

[2] F. Arute, K. Arya, R. Babbush, D. Bacon, J. Bardin, R. Barends, R. Biswas, S. Boixo,
F. Brandão, D. Buell, B. Burkett, Y. Chen, Zijun Chen, B. Chiaro, R. Collins, W.
Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina,
R. Graff, Keith Guerin, Steve Habegger, M. Harrigan, M. Hartmann, A. Ho, M.
Hoffmann, Trent Huang, T. Humble, S. Isakov, E. Jeffrey, Zhang Jiang, D. Kafri, K.
Kechedzhi, J. Kelly, P. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis,
Mike Lindmark, E. Lucero, Dmitry I. Lyakh, Salvatore Mandrà, J. McClean, M.
McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman,
M. Neeley, C. Neill, M. Niu, E. Ostby, A. Petukhov, John C. Platt, C. Quintana,
E. Rieffel, P. Roushan, N. Rubin, D. Sank, K. Satzinger, V. Smelyanskiy, Kevin J.
Sung, M. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. Yao, P. Yeh,
Adam Zalcman, H. Neven, and J. Martinis. 2019. Quantum supremacy using a
programmable superconducting processor. Nature 574 (2019), 505ś510.

[3] Torsten Asselmeyer-Maluga. 2021. 3D topological quantum computing. Interna-
tional Journal of Quantum Information (2021).

[4] Rami Barends, Julian Kelly, Anthony Megrant, Andrzej Veitia, Daniel Sank, Evan
Jeffrey, Ted C White, Josh Mutus, Austin G Fowler, Brooks Campbell, et al. 2014.
Superconducting quantum circuits at the surface code threshold for fault toler-
ance. Nature 508, 7497 (2014), 500ś503.

[5] Sergey B Bravyi and A Yu Kitaev. 1998. Quantum codes on a lattice with boundary.
arXiv preprint quant-ph/9811052 (1998).

[6] A Robert Calderbank, Eric M Rains, Peter W Shor, and Neil JA Sloane. 1997.
Quantum error correction and orthogonal geometry. Physical Review Letters 78,
3 (1997), 405.

[7] A Robert Calderbank and Peter W Shor. 1996. Good quantum error-correcting
codes exist. Physical Review A 54, 2 (1996), 1098.

[8] C. Chamberland and M. Beverland. 2017. FLAG FAULT-TOLERANT ERROR
CORRECTION WITH ARBITRARY DISTANCE CODES. arXiv: Quantum Physics
2 (2017), 53.

[9] C. Chamberland, Aleksander Kubica, Theodore J. Yoder, and Guanyu Zhu. 2019.
Triangular color codes on trivalent graphs with flag qubits. arXiv: Quantum
Physics (2019).

[10] C. Chamberland, Guanyu Zhu, Theodore J. Yoder, J. Hertzberg, and A. Cross.
2020. Topological and Subsystem Codes on Low-Degree Graphs with Flag Qubits.
Physical Review X 10 (2020).

[11] R. Chao and B. Reichardt. 2017. Fault-tolerant quantum computation with few
qubits. npj Quantum Information 4 (2017), 1ś8.

[12] R. Chao and B. Reichardt. 2019. Flag fault-tolerant error correction for any
stabilizer code. arXiv: Quantum Physics (2019).

[13] Yu Chen, Charles J. Neill, Pedram Roushan, Nelson Leung, Michael Fang, Rami
Barends, Julian Kelly, Brooks Campbell, Z Chen, Benjamin Chiaro, Andrew
Dunsworth, Evan Jeffrey, Anthony Megrant, Josh Mutus, P. J. J. O’Malley, Chris
Quintana, Daniel Thomas Sank, Amit Vainsencher, J. Wenner, Theodore White,
Michael R. Geller, Andrew N Cleland, and John M. Martinis. 2014. Qubit Archi-
tecture with High Coherence and Fast Tunable Coupling. Physical review letters
113 22 (2014), 220502.

[14] Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. 2002. Topological
quantum memory. J. Math. Phys. 43, 9 (2002), 4452ś4505.

[15] Yongshan Ding, Adam Holmes, Ali JavadiAbhari, Diana Franklin, Margaret
Martonosi, and Frederic T. Chong. 2018. Magic-State Functional Units: Mapping
and Scheduling Multi-Level Distillation Circuits for Fault-Tolerant Quantum
Architectures. 2018 51st Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO) (2018), 828ś840.

[16] David P. DiVincenzo and Ibm. 2000. The Physical Implementation of Quantum
Computation. Protein Science 48 (2000), 771ś783.

[17] Will Finigan, Michael Cubeddu, Thomas Lively, Johannes Flick, and Prineha
Narang. 2018. Qubit allocation for noisy intermediate-scale quantum computers.
arXiv preprint arXiv:1810.08291 (2018).

[18] Austin G. Fowler. 2011. Two-dimensional color-code quantum computation.
Physical Review A 83 (2011), 042310.

[19] Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N Cleland.
2012. Surface codes: Towards practical large-scale quantum computation. Physical
Review A 86, 3 (2012), 032324.

[20] Craig Gidney. 2021. Stim: a fast stabilizer circuit simulator. Quantum 5 (July
2021), 497. https://doi.org/10.22331/q-2021-07-06-497

[21] Alysson Gold, Anna Stockklauser, Matt Reagor, Jean-Philip Paquette, Andrew
Bestwick, Cody James Winkleblack, Ben Scharmann, Feyza Oruc, and Brandon
Langley. 2021. Experimental demonstration of entangling gates across chips in a
multi-core QPU. Bulletin of the American Physical Society (2021).

[22] Daniel Gottesman. 1996. Class of quantum error-correcting codes saturating the
quantum Hamming bound. Physical Review A 54, 3 (1996), 1862.

[23] Oscar Higgott. 2021. PyMatching: A Python package for decoding quantum
codes with minimum-weight perfect matching. arXiv preprint arXiv:2105.13082
(2021).

[24] Clare Horsman, Austin G. Fowler, Simon J. Devitt, and Rodney Van Meter. 2012.
Surface code quantum computing by lattice surgery. New Journal of Physics 14
(2012), 123011.

[25] Fei Hua, Yan-Hao Chen, Yuwei Jin, Chi Zhang, Ari B. Hayes, Youtao Zhang, and
Eddy Z. Zhang. 2021. AutoBraid: A Framework for Enabling Efficient Surface
Code Communication in QuantumComputing.MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture (2021).

[26] J. Kelly. 2017. A Preview of Bristlecone, Google’s New Quantum Processor.
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html.

[27] Ali JavadiAbhari, Pranav Gokhale, Adam Holmes, Diana Franklin, Kenneth R.
Brown, Margaret Martonosi, and Frederic T. Chong. 2017. Optimized Surface
Code Communication in SuperconductingQuantumComputers. 2017 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO) (2017), 692ś
705.

[28] P. Jurcevic, Ali Javadi-Abhari, L. Bishop, I. Lauer, D. Bogorin, M. Brink, L. Capel-
luto, O. Günlük, Toshinari Itoko, Naoki Kanazawa, A. Kandala, G. Keefe, Kevin D
Krsulich, W. Landers, E. Lewandowski, D. McClure, G. Nannicini, Adinath Naras-
gond, H. Nayfeh, E. Pritchett, M. Rothwell, S. Srinivasan, N. Sundaresan, Cindy
Wang, K. X. Wei, C. J. Wood, J. Yau, E. Zhang, O. Dial, J. Chow, and J. Gambetta.
2020. Demonstration of quantum volume 64 on a superconducting quantum
computing system. Quantum Science & Technology 6 (2020).

[29] A. Kandala, K. X. Wei, S. Srinivasan, E. Magesan, S. Carnevale, G. A. Keefe, D.
Klaus, O. Dial, and D. C. McKay. 2021. Demonstration of a High-Fidelity cnot Gate
for Fixed-Frequency Transmons with Engineered𝑍𝑍 Suppression. Phys. Rev. Lett.
127 (Sep 2021), 130501. Issue 13. https://doi.org/10.1103/PhysRevLett.127.130501

[30] Emanuel Knill, Raymond Laflamme, and Lorenza Viola. 2000. Theory of quantum
error correction for general noise. Physical Review Letters 84, 11 (2000), 2525.

[31] Pieter Kok, William J. Munro, Kae Nemoto, Timothy C. Ralph, Jonathan P. Dowl-
ing, andGerard J. Milburn. 2007. Linear optical quantum computingwith photonic
qubits. Reviews of Modern Physics 79 (2007), 135ś174.

[32] L. Lao and C. G. Almudéver. 2020. Fault-tolerant quantum error correction on
near-term quantum processors using flag and bridge qubits. Physical Review A
101 (2020), 032333.

[33] Lingling Lao, Bert van Wee, Imran Ashraf, J. van Someren, Nader Khammassi,
Koen Bertels, and Carmen Garcia Almudever. 2018. Mapping of lattice surgery-
based quantum circuits on surface code architectures. Quantum Science and
Technology (2018).

[34] Gushu Li, Yufei Ding, and Yuan Xie. 2019. Tackling the qubit mapping problem
for NISQ-era quantum devices. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems. 1001ś1014.

349

ISCA ’22, June 18ś22, 2022, New York City, NY Anbang Wu, Gushu Li, Hezi Zhang, Gian Giacomo Guerreschi, Yufei Ding, Yuan Xie

[35] Gushu Li, Yufei Ding, and Yuan Xie. 2020. Towards Efficient Superconducting
Quantum Processor Architecture Design. Proceedings of the Twenty-Fifth Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (2020).

[36] Prakash Murali, Jonathan M Baker, Ali Javadi-Abhari, Frederic T Chong, and Mar-
garet Martonosi. 2019. Noise-adaptive compiler mappings for noisy intermediate-
scale quantum computers. In Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Languages and Operating Sys-
tems. 1015ś1029.

[37] Michael A Nielsen and Isaac Chuang. 2002. Quantum computation and quantum
information.

[38] Hanhee Paik, David I. Schuster, Lev Bishop, Gerhard Kirchmair, Gianluigi Cate-
lani, Adam P. Sears, B. R. Johnson, Matthew Reagor, Luigi Frunzio, Leonid I.
Glazman, Steven M. Girvin, Michel H. Devoret, and Robert J. Schoelkopf. 2011.
Observation of high coherence in Josephson junction qubits measured in a three-
dimensional circuit QED architecture. Physical review letters 107 24 (2011), 240501.

[39] Alexandru Paler. 2019. SurfBraid: A concept tool for preparing and resource
estimating quantum circuits protected by the surface code. ArXiv abs/1902.02417
(2019).

[40] B. Reichardt. 2018. Fault-tolerant quantum error correction for Steane’s seven-
qubit color code with few or no extra qubits. arXiv: Quantum Physics (2018).

[41] Peter W Shor. 1995. Scheme for reducing decoherence in quantum computer
memory. Physical review A 52, 4 (1995), R2493.

[42] Marcos Yukio Siraichi, Vinícius Fernandes dos Santos, Sylvain Collange, and
Fernando Magno Quintão Pereira. 2018. Qubit allocation. In Proceedings of the
2018 International Symposium on Code Generation and Optimization. 113ś125.

[43] Andrew Steane. 1996. Multiple-particle interference and quantum error correc-
tion. Proceedings of the Royal Society of London. Series A: Mathematical, Physical
and Engineering Sciences 452, 1954 (1996), 2551ś2577.

[44] Andrew M Steane. 1996. Error correcting codes in quantum theory. Physical
Review Letters 77, 5 (1996), 793.

[45] Bochen Tan and Jason Cong. 2020. Optimal layout synthesis for quantum com-
puting. In 2020 IEEE/ACM International Conference On Computer Aided Design
(ICCAD). IEEE, 1ś9.

[46] Swamit S. Tannu, Zachary Myers, Prashant J. Nair, Douglas M. Carmean, and
Moinuddin K. Qureshi. 2017. Taming the Instruction Bandwidth of Quantum
Computers via Hardware-Managed Error Correction. 2017 50th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO) (2017), 679ś691.

[47] Swamit S Tannu and Moinuddin K Qureshi. 2019. Mitigating measurement errors
in quantum computers by exploiting state-dependent bias. In Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture. 279ś290.

[48] Robert Wille, Lukas Burgholzer, and Alwin Zulehner. 2019. Mapping quantum
circuits to IBM QX architectures using the minimal number of SWAP and H
operations. In 2019 56th ACM/IEEE Design Automation Conference (DAC). IEEE,
1ś6.

[49] Eric J Zhang, Srikanth Srinivasan, Neereja Sundaresan, Daniela F Bogorin, Yves
Martin, Jared B Hertzberg, John Timmerwilke, Emily J Pritchett, Jeng-Bang Yau,
Cindy Wang, et al. 2020. High-fidelity superconducting quantum processors via
laser-annealing of transmon qubits. arXiv preprint arXiv:2012.08475 (2020).

[50] Alwin Zulehner, Alexandru Paler, and Robert Wille. 2018. An efficient methodol-
ogy for mapping quantum circuits to the IBMQX architectures. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 38, 7 (2018), 1226ś
1236.

350

	Abstract
	1 Introduction
	2 Background
	2.1 Surface code basics
	2.2 SC hardware and stabilizer measurement

	3 Problem Formulation
	4 Synthesis Algorithm Design
	4.1 Data qubit allocator
	4.2 Bridge tree finder
	4.3 Stabilizer measurement scheduler

	5 Evaluation
	5.1 Experiment Setup
	5.2 Compared to manually designed QEC codes
	5.3 Synthesis on various SC architectures
	5.4 Analysis on sub-components

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

