
AutoComm: A Framework for Enabling Efficient Communication in Distributed
Quantum Programs

Anbang Wu∗, Hezi Zhang∗, Gushu Li†, Alireza Shabani‡, Yuan Xie† and Yufei Ding∗
∗CS Department, †ECE Department

Uuniversity of California, Santa Barbara
Santa Barbara, USA

{anbang, hezi, yufeiding}∗@ucsb.edu, {gushuli, yuanxie}†@ece.ucsb.edu
‡Cisco Research

Los Angeles, USA
ashabani@cisco.com

Keywords-quantum computing, quantum compiler

Abstract—Distributed quantum computing (DQC) is a promis-
ing approach to extending the computational power of near-
term quantum hardware. However, the non-local quantum
communication between quantum nodes is much more expensive
and error-prone than the local quantum operation within each
quantum device. Previous DQC compilers focus on optimizing
the implementation of each non-local gate and adopt similar
compilation designs to single-node quantum compilers. The
communication patterns in distributed quantum programs
remain unexplored, leading to a far-from-optimal communi-
cation cost. In this paper, we identify burst communication, a
specific qubit-node communication pattern that widely exists in
various distributed quantum programs and can be leveraged to
guide communication overhead optimization. We then propose
AutoComm, an automatic compiler framework to extract burst
communication patterns from input programs and then optimize
the communication steps of burst communication discovered.
Compared to state-of-the-art DQC compilers, experimental
results show that our proposed AutoComm can reduce the
communication resource consumption and the program latency
by 72.9% and 69.2% on average, respectively.

I. INTRODUCTION

Quantum computing is promising with its great potential

of providing significant speedup to many problems, such

as large-number factorization with an exponential speedup

[1] and unordered database search with a quadratic speedup

[2]. A large number of qubits is required in order to solve

practical problems with quantum advantage and the qubit

count requirement is even higher after taking quantum

error correction [3] into consideration. However, it has

turned out that extending the number of qubits on a single

quantum processor is exceedingly difficult due to various

hardware-level challenges such as crosstalk errors [4], [5],

qubit addressability [6], fabrication difficulty [7], etc. Those

challenges usually increase with the size of quantum hardware

and may limit the number of qubits in a single quantum

processor.

Rather than relying on the advancement of a single

quantum processor, an alternative way to scale up quantum

computing is to explore distributed quantum computing

(DQC) [8], [9], which integrates the computing resources

of multiple quantum processors. In DQC, remote quantum

communication involving qubits in different compute nodes is

essential yet far more expensive than the local communication

between same-node qubits (e.g., 5-100x time consumption

and up to 40x fidelity degradation [10], [11]). There are two

major schemes for inter-node communication: one built upon

cat-entangler and -disentangler protocols [12], and the other

based on quantum teleportation [3]. In this paper, we refer

to the former scheme as Cat-Comm and the latter one as TP-
Comm. Both schemes consume remote EPR pairs [13], which

are pre-distributed entangled qubit pairs, as a resource to

establish quantum communication. Cat-Comm can implement

a remote CX gate [3] with only one EPR pair, but for general

two-qubit gates such as SWAP gate [3], Cat-Comm requires

up to three EPR pairs [14]. In contrast, TP-Comm can execute

any remote two-qubit gate with two EPR pairs [13] and is

thus more efficient for the SWAP gate. For a distributed

quantum program, more complex remote operations or more

quantum information transferred per EPR pair would lead to

less communication cost.

The overall compiling flow for DQC is similar to that of

single-node quantum programs, except with more emphasis

on remote communication overhead. One compiler design

proposed by Ferrari et al. [14] adopts a similar compilation

strategy to single-node compilers [15]–[19], using Cat-Comm

for implementing the remote CX. This strategy has a low

communication throughput due to the low information of

the remote CX gate. The compiler by Baker et al. [10]

and another design by Ferrari et al. [14] instead eliminate

all remote CX gates by using remote SWAP, which only

requires two EPR pairs for implementation but contains the

information of three CX gates. Unfortunately, bounded by

the information of a single two-qubit gate, these compilers

cannot achieve higher throughput of information per EPR pair.

Eisert et al. [13] suggest that a higher throughput could be

achieved by considering multi-qubit gates. Diadamo et al. [20]

1027

2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO)

978-1-6654-6272-3/22/$31.00 ©2022 IEEE
DOI 10.1109/MICRO56248.2022.00074

20
22

 5
5t

h
IE

EE
/A

C
M

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
M

ic
ro

ar
ch

ite
ct

ur
e

(M
IC

R
O

) |
 9

78
-1

-6
65

4-
62

72
-3

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

M
IC

R
O

56
24

8.
20

22
.0

00
74

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 01,2022 at 18:10:42 UTC from IEEE Xplore. Restrictions apply.

Distributed Quantum Program Compiling Flow Integration

Other Passes

Existing Flow

Qubit Mapping

Gate Unrolling

AutoComm Design and Optimzations

ScheduleAssignmentAggregation

Burst identify

Linear merge

Pattern inspect

Cat&TP-Comm

Pattern inspect

Parallel&Fusion
Sparse

Communication Burst Communication

Figure 1. AutoComm Overview.

compiles distributed VQE by using Cat-Comm to implement

controlled-unitary-unitary and controlled-controlled-unitary

gates. However, their work can only optimize gates written in

the controlled-unitary form, not applicable to the decomposed

circuit that consists of only quantum basis gates (e.g.,

CX+U3 [16]). Besides, their work cannot optimize programs

lacking controlled-unitary blocks.

Besides increasing the ‘height’ (number of qubits) of

remote operations, we observe that the throughput of in-

formation per EPR pair can also be significantly boosted

up by expanding the ‘width’ (number of gates) of each

remote communication. Specifically, we discover that it is

possible to implement a group of remote two-qubit gates

collectively through one or two EPR pairs. On top of

the observation, we propose optimizing the communication

overhead of distributed quantum programs based on the

burst communication, which denotes a group of continuous

remote two-qubit gates between one qubit and one node.

Burst communication is powerful as it is more information-

intensive than a single two-qubit gate and contains but is not

limited to controlled-unitary blocks. Burst communication is

also flexible for optimization as it does not require specialized

circuit representation and is available in decomposed circuits.

To this end, we develop the first burst-communication-

centric optimization framework, AutoComm. Our framework

focuses on the optimization of remote communication and

leverages existing compiling flows [10], [14]–[19] on other

program optimization aspects (e.g., qubit mapping to assign

qubits over different DQC nodes), as shown in Figure 1. This

two-step design not only makes our work extensible but also

outstands our significant novel contributions on communi-

cation optimization. In existing compiling flows, each CX

is implemented independently (i.e., sparse communication);

while with AutoComm, sparse communication is converted

into burst communication and specifically optimized for

higher communication throughput.

Overall, our framework consists of three key stages. Firstly,

we perform a communication aggregation pass to group

remote gates and extract burst communication blocks. Due

to the wide existence of burst communication in distributed

quantum programs, this pass could generate a large amount of

burst communication blocks for the following optimizations.

Secondly, we propose a hybrid communication scheme that

examines the patterns of each burst communication block

and assigns the optimal communication scheme for each

block. The insight is that TP-Comm and Cat-Comm are more

resource-efficient for different types of burst communication,

thus considering only one scheme would incur extra resource

consumption. Finally, we adopt an adaptive schedule for

burst communication blocks of different patterns to squeeze

out the parallelism between them and thus reduce the overall

program latency. We observe that it is possible to execute

burst communication with shared qubits or nodes in parallel,

and we can fuse some burst communication blocks to cut

down the communication footprint.
Our contributions are summarized as follows:

• We identify the burst communication feature in DQC

and promote its importance in optimizing distributed

quantum programs. we further propose the first commu-

nication optimization framework based on it.

• We propose a communication aggregation pass to expose

burst communications and design a hybrid commu-

nication scheme, using both Cat- and TP-Comm to

accommodate different communication patterns.

• We propose an efficient communication scheduling

method to optimize the program latency adaptively,

squeezing out the parallelism of burst communication.

• Compared to state-of-the-art baselines, AutoComm

reduces the EPR pair consumption and the program

latency by 72.9% and 69.2% on average, respectively.

II. BACKGROUND

In this section, we would introduce the necessary background

to understand distributed quantum computing and inter-node

quantum communication. We do not cover the basic quantum

computing concepts (e.g., qubit, gate, measurement) and

recommend [3] for more details.
(a) Quantum communication

Like in classical distributed computing, remote/inter-

node quantum communication is the bedrock of distributed

quantum computing (DQC) but is also the bottleneck of DQC.

Different from classical distributed computing, quantum data

cannot be easily shared across quantum nodes due to the

quantum no-cloning theorem [3]. The workaround is to

exploit inter-node quantum entanglement. If two qubits are

in the entangled quantum state 1√
2
(|00〉+ |11〉), we say they

form an EPR pair [3]. The two qubits of an EPR pair can

be distributed to different quantum nodes, formulating a

remote EPR pair [13]. The remote EPR pair is the most

widely-used quantum communication resource, providing the

necessary quantum entanglement for transferring quantum

data between nodes. Actually, based on EPR pairs, two

communication protocols emerge, named Cat-Comm and TP-
Comm respectively. Figure 2 illustrates how to use these two

schemes to implement one remote CX gate, with the control

qubit q0 residing in quantum node A and the target qubit q′0 in

node B. Qubits in Figure 2 fall into two categories. The first

1028

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 01,2022 at 18:10:42 UTC from IEEE Xplore. Restrictions apply.

H

M

M

Z

N
od

e
A

Cat-entangler Cat-disentangler

Target CX

N
od

e
B

H

Z

M

Teleportation
M

H

Target CX

N
od

e
A

N
od

e
B M

Z

M

Teleportation

(a) (b)

Figure 2. The implementation of one remote CX. (a) The Cat-Comm
version. (b) The TP-Comm version. Wavy lines and dashed lines denote EPR
pairs and classical communication bits respectively. M denotes measurement.

category of qubits is used to store program information and

is called data qubits, e.g., q0 and q′0. The second category of

qubits, called communication qubits, is used to hold remote

EPR pairs, e.g. qc0 and q′c0.

(b) Cat-Comm and TP-Comm
As shown in Figure 2(a), Cat-Comm utilizes cat-entangler

to transfer the state of the control qubit q0 to node B,

execute the target CX gate, and then use cat-disentangler to

transfer the state back to node A. TP-Comm in Figure 2(b)

employs quantum teleportation [3] to transfer the state of

q0 to node B, and then execute the target CX gate. Note

that in Figure 2(b), we also include another teleportation

to move the state teleported to q′c0 back to q0. Essentially,

the second teleportation is used to handle the side effect of

TP-Comm: the communication qubit q′c0 will be occupied

by the teleported state of q0 and thus cannot be used to

establish new EPR pairs. We need the second teleportation

to set q′c0 free. For the second teleportation, besides moving

the teleported state of q0 back to its original location as

in Figure 2(b), we can also move the teleported state to

any other location as long as the occupation on the current

communication qubit q′c0 is released. Overall, two EPR pairs

are required to implement one remote CX gate by TP-Comm,

with one of them handling the side effect. To avoid ambiguity,

when we say one invocation of TP-Comm, we actually refer

to one invocation of quantum teleportation. That’s to say,

one invocation of TP-Comm consumes one EPR pair, just

like one call of Cat-Comm. Thus, to implement one remote

CX, we would need two invocations of TP-Comm.

Figure 2 only shows how to implement one remote CX gate.

To implement a complex remote interaction between quantum

nodes, one simple strategy is to first decompose the remote

interaction into several remote CX gates and implement

each remote CX as in Figure 2. However, this strategy

may incur heavy communication costs. Eisert et al. observe

that optimized implementations exist for specific inter-node

interactions, as shown in Figure 3. Our framework will

cleverly take advantage of the implementations in Figure 3

based on our observation of burst communication, to optimize

the communication cost of distributed quantum programs, as

we can see in later sections.

H

M

M

Z

N
od

e
A

Cat-entangler Cat-disentangler

N
od

e
B

Unitary
Block

H

Z

M

Teleportation
M

H

N
od

e
A

N
od

e
B M

Z

M

Teleportation

Unitary
Block

(a) (b)

Figure 3. The optimized implementation of complex remote interactions.
(a) Controlled-unitary block by one call of Cat-Comm. (b) Unitary block
by two calls of TP-Comm.

Figure 4. Program snippet extracted from quantum arithmetic circuits [22].

III. PROBLEM AND MOTIVATION

In this section, we first introduce the communication problem

in DQC and then identify optimization opportunities by con-

sidering burst communication. For the rest of the discussion,

we assume that quantum communication can be established

between any two quantum nodes, a typical assumption in

data-center distributed computing [21]. We also assume that

each quantum node has only two communication qubits,

which is realistic for near-term DQC [14].

A. Communication Problem
The example distributed program in Figure 4 is modified

from quantum arithmetic circuits [22]. This program contains

many remote CX gates, e.g., CX q1,q3. Remote CX gates

are inevitable in DQC especially when the program’s qubit

number is substantially larger than that of each quantum node.

To execute a distributed program, we need to invoke either

Cat-Comm or TP-Comm to implement remote operations,

as shown in Figures 2 and 3. Due to the noisy nature of

quantum communication, remote operations are far more

error-prone than local quantum gates. The long runtime of

quantum communication would also lead to the decoherence

of quantum states. As a result, to produce high fidelity

outcome, we hope the number of remote communication

to be as small as possible, and so is the latency induced.

As indicated in Section II, one remote CX gate requires

at least one remote EPR pair. While there is little room

for optimizing the communication cost of one remote CX,

there is a large optimization space when considering burst

communication, which involves a group of remote CX gates.

For example in Figure 4, we can execute the first two CX

gates on q1,q3 collectively, with only one EPR pair by

using the circuit in Figure 3(a). From the perspective of

information theory, burst communication is more informative

1029

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 01,2022 at 18:10:42 UTC from IEEE Xplore. Restrictions apply.

than communication that carries only one remote CX. The

overall communication overhead would be considerably

lowered if handling all remote CX gates in this burst manner.

Fortunately, as we can see in the next section, burst

communication is prevalent in diverse distributed quantum

programs.

B. Burst Communication in DQC
Aside from the arithmetic program shown in Figure 4, we also

see burst communication in a variety of quantum programs.

As examples, we examine the burst communication of the

Quantum Fourier Transform (QFT) program [3] and the

Quantum Approximate Optimization Algorithm (QAOA) [23]

by hand. These two represent different categories of quantum

programs: QAOA is one of the most important applications in

near-term quantum computing whereas QFT is the building

block circuit of quantum algorithms.

We first give a formal definition of burst communication

in DQC. In this paper, we refer to a group of continuous

remote two-qubit gates between one qubit and one node as

burst communication. For two remote two-qubit gates g1 and

g2, the continuity of these two gates means there are no other

remote gates between g1 and g2.

To characterize the burst communication of a distributed

program d prog, for a remote gate g in d prog, we define

function ε(g) to be the largest burst communication block

that contains g. The gate order of d prog may affect the burst

communication block found. ε(g) is defined to be the largest

over all functional-equivalent gate order of d prog. We then

define len(ε(g)) to be the number of remote CX gates in

ε(g) if compiled to the CX+U3 basis [16]. Finally, we are

ready to define the inverse-burst distribution as follows:

P(x) =
|{g|len(ε(g))< x}|

#g
. (1)

A lower P(x) suggests more burst communication. Specifi-

cally, for a given x, the lower P(x) is, the larger 1−P(x) is

and the more remote CX gates belong to burst communication

blocks that each possesses more than x remote CX gates,

indicating more burst communication opportunities. On the

other hand, for the given probability P0 = P(x), we hope the

corresponding x to be as large as possible since it means

there are 1− P0 of remote CX gates belonging to burst

communication blocks that each possesses more than x remote

CX gates. The distribution 1−P(x) actually provides an

ideal upper bound for the burst communication existing in

distributed quantum programs and can serve as a metric to

evaluate the communication efficiency of various distributed

quantum algorithms.

We begin by examining the QFT program using the

aforementioned definition. We assume the total qubit number

is n, the quantum node number is k, and qubits are evenly

distributed across all nodes, with t = n
k qubits per node.

Figure 5 shows the QFT program with k = 2 and t = 2.

For the QFT program, each qi is controlled by all qubits

Figure 5. (a) QFT program with two nodes and two qubits per node. (b)
The layout for the maximal P4. Parameters of CRZ gates are omitted here
for simplicity. For the purpose of demonstration, we do not combine CRZ43

and CRZ32 to form a 4-REM-CX block. The 4-REM-CX (or 2-REM-CX)
block denotes the gate block which contains four (resp. two) remote CX
gates when compiled to the CX+U3 basis.

q j (through the CRZ gate) that satisfies j > i [3], as shown

in Figure 5. Then, we have P(2) = 0 because each CRZ

gate in QFT is compiled into two CX gates, as illustrated

in Figure 5(a). Now, we consider P(4). For the i-th qubit

satisfies i ≤ n− k, the number of j s.t. ε(CRZ ji) < 4 is at

most � i−1
t−1� because for one node, if at least two of its qubits

have subscripts > i, this node would have at least two qubits

interacting with qubit i. Since CRZ gates are commutable

with each other, we could then form a communication block

with at least 4 CX gates. It’s easy to see that there are at most

� i−1
t−1� nodes, each containing no more than one qubit with

subscript > i. On the other hand, if i > n− k, then the i-th
qubit is at most controlled by n− i qubits, thus the number

of j s.t. ε(CRZ ji)< 4 is at most n− i. Therefore, we have

P(4)≤ ∑n−k
i=1 � i−1

t−1�+∑n
i=n−k+1(n− i)

∑n
i=1(n− i)− k ∑t

l=1(t− l)
=

1

t
.

This indicates there are 1−P(4)≥ 1− 1
t remote gates within

burst communication blocks that each possesses more than 4

remote CX gates. Generally, we can prove that P(x)≤ x/2−1
t ,

for x > 2. This upper bound is quite promising when t
is large and it is actually loose. For Figure 5(b) which

approximates the upper bound of P(4), there may be 1
t

of remote CRZ gates, i.e., CRZ43 and CRZ32 not in a

block with 4 remote CX gates at the first glance. But as

shown in Figure 5(b), we can actually combine CRZ43

and CRZ32 to form a 4-REM-CX block (the block that

contains 4 remote CX gates when compiled to the CX+U3

basis). More 4-REM-CX blocks or n-REX-CX blocks (n > 4)

can enable more burst communication opportunities. This

indicates that the distributed QFT program has more abundant

burst communication than the upper bound of P(x) (thus the

lower bound of 1−P(x)) suggests.

Similarly, for the QAOA program, we assume k nodes and

t qubits per node. We also suppose r remote ZZ interactions

between any two nodes. Figure 6 shows the QAOA program

with k = 2 and t = 3. Likewise, P(2) = 0 since each ZZ

1030

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 01,2022 at 18:10:42 UTC from IEEE Xplore. Restrictions apply.

Figure 6. QAOA program with two nodes and three qubits per node.
Parameters of ZZ interactions are omitted here for simplicity. (a) inter-node
communication number r = 3. (b) r = 4.

interaction is compiled into two CX gates, as shown in

Figure 6(a). For every two nodes, the qubit layout to minimize

len(ε(ZZ)) for each ZZ interaction is to make every two

ZZ interactions have no shared qubits, i.e., not adjacent.

However, this layout at most accommodates t ZZ interactions.

For r > t, considering m2 +(t −m) < r ≤ (m+ 1)2 +(t −
m− 1), there are at most t −m− 1 ZZ interactions that

are not adjacent to any other ZZ interactions. Thus, we

have P(4) = t−m−1
r < t−m−1

m2+(t−m)
. For example in Figure 6(b),

we have 12 + (t − 1) = 3 < r < 22 + (t − 2) = 5, thus we

predict P(4)< t−1−1
12+(t−1)

= 1
3 . This bound is correct because

in Figure 6(b), only 1
4 of remote ZZ interactions are not in a

4-REM-CX block. It is easy to see that P(4) would quickly

decrease if m becomes large. For the general P(x), a similar

conclusion can be reached. Therefore, burst communication

is also broadly available in the distributed QAOA program.

We could derive a similar analysis for other distributed

quantum programs. Further numerical evidence for the rich-

ness of burst communication in various distributed quantum

programs is shown in Figure 15. The next step is to figure

out how to utilize abundant burst communication to optimize

the communication cost of distributed quantum programs, as

discussed in the next section.

C. Optimization Opportunities
To exploit burst communication in distributed quantum

programs, we need to answer three key questions:

How to unveil burst communication?
Burst communication is a type of high-level program

information and cannot be easily deduced from the low-

level circuit language, especially when remote interactions

between multiple nodes are all mixed together. For example

in Figure 4, gate CX q2;q4 between node A and node B

is followed by CX q1;q6, which is the interaction between

node A and node C. Such a disorder in distributed quantum

programs causes great difficulty in utilizing the benefits of

burst communication.

How to select the best communication scheme?
Burst communication comes in various forms. While

being more efficient for implementing one remote CX gate,

Cat-Comm is not always better than TP-Comm for burst

communication. For example in Figure 4, if we use Cat-

Comm to implement the last three remote CX gates between

q3 and node A, three EPR pairs are needed. However, with

TP-Comm to teleport q3 to node A, at most two EPR pairs are

needed. Thus, to reduce the communication cost, we should

examine the pattern of burst communication and choose the

communication scheme wisely.

How to schedule burst communication?
Finally, we need to schedule the execution of burst

communication blocks. If we arrange all burst communication

in a sequential way, the large time overhead would impose

non-negligible decoherence errors on quantum states. As

a result, we should maximize the parallelism in burst

communication to generate high-fidelity output. To achieve

this goal, we should first identify the relationships between

communication blocks and then reduce the time gaps caused

by communication blocks adaptively.

IV. AUTOCOMM FRAMEWORK

In this section, we first give an overview of the AutoComm

framework and then introduce each component in detail.

A. Design overview
We propose the AutoComm framework as shown in Figure 1.

AutoComm focuses on the communication optimization of

distributed quantum programs and serves as the back-end

of front compiling flows (e.g., mapping qubits to quantum

nodes). We would adopt existing technologies for these front

compiling stages, as we would see in Section V.

To reduce the communication overhead in distributed

quantum programs, AutoComm comes with three stages

to utilize burst communication. Firstly, it aggregates remote

two-qubit gates by gate commutation. Gate commutation is

common in quantum programs [24]. Commutable gates, on

the one hand, may be ordered arbitrarily and hide the burst

communication. On the other hand, we could also utilize

gate commutation to uncover burst communication blocks.

In this stage, we first identify potential burst communication

and then employ a linear merge step to combine isolated

burst communication blocks.

Secondly, it assigns an optimal communication scheme

for each burst communication block. We observe that the

pattern of burst communication impacts the efficiency of

communication schemes. Cat-Comm is less expensive for

some patterns, while TP-Comm may be more cost-effective

for others. It is thus important to examine the patterns of

burst communication and consider both Cat-Comm and TP-

Comm for implementing them, rather than only focusing on

one scheme.

Thirdly, it performs a block-level schedule of burst

communication. It is possible to execute communication

blocks with shared nodes or qubits concurrently or shorten the

1031

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 01,2022 at 18:10:42 UTC from IEEE Xplore. Restrictions apply.

= =

RZ = RZ

RZ1 RZ2

=

RZ2 RZ1

RX
=

RX
RZ

=
RZ

X
=

X

X Z
=

Z

Z

Figure 7. Some representative gate commutation rules used in AutoComm.

quantum state transfer path across quantum nodes. Combined

with these optimizations, a greedy schedule is effective for

burst communication.

Algorithm 1: Linear merge procedure

Input: An array of communication blocks blk list
Output: Merged communication blocks blk list merge

1 blk list merge = [];
2 blk = blk list[0] ;
3 while there are blocks in blk list not visited do
4 non commute gates = [];
5 for blk next in unvisited blocks of blk list do

// Attempt merge blk to blk_next
6 for gate between blk and blk next do
7 if gate is single-qubit and not commutes with blk

then
8 non commute gates.append(gate);
9 if gate is two-qubit then

10 check if gate is commutable with
non commute gates and blk;

11 if not commutable then
12 if gate is in-node two-qubit then
13 non commute gates.append(gate);
14 else
15 break;

16 end
17 blk =merge blk, non commute gates and blk next;
18 end
19 if the above merge failed then
20 Try to merge blk next to blk similarly;
21 if succeeds then
22 blk =merge blk, non commute gates and blk next;
23 else
24 blk = blk next;
25 end
26 output the merged blocks and adjust the order of commutable gates;

B. Communication Aggregation
Burst communication is prevalent in distributed programs,

but may not be immediately available due to two factors:

CX gates may be scattered across the program, and whether

CX gates are remote or not depends on the qubit mapping

to quantum nodes. To make our framework able to uncover

hidden burst communication regardless of qubit mappings,

we need to rewrite the circuit and aggregate remote CX gates.

Figure 7 shows a fraction of circuit rewriting rules for

remote gate aggregation. The first two rows of Figure 7

1 2
3

4

1 2

1 2

3

4

5
6

7

Figure 8. Communication aggregation for the example program in Figure 4.
(a) Identifying potential burst communication. (b) Linear merge. (c) Iterative
refinement.

contain gate commutation rules for two-qubit gates, from

simple ones to complex ones. These rules enable flexible

two-qubit gate relocation so that burst communication can

be automatically exposed and utilized. The remaining two

rows of Figure 7 are about exchanging single-qubit gates

with the CX gate and affect the pattern of the aggregated

burst communication (more details in Section IV-C). Based

on these circuit rewriting rules, we design the following steps

to aggregate remote gates.

(a) Identifying potential burst communication
As burst communication is defined between one qubit

and one node, the first step of communication aggregation

is thus to identify the qubit-node pair of potential burst

communication. We start with the qubit-node pair associated

with most remote gates as it would likely lead to a large

burst communication block. For example in Figure 4, the

chosen qubit-node pair is (q3, node A) as it is associated

with 5 remote CX gates. We then search for consecutive

remote CX gates related to this qubit-node pair. In this step,

circuit rewriting is not applied yet and the search would

result in many isolated communication blocks. For example

in Figure 8(a), we obtain four small blocks.

(b) Linear merge
The next step is to merge isolated small communication

blocks obtained in step (a). As illustrated in Algorithm 1,

we merge related communication blocks in a linear and

greedy manner. For communication blocks 1©, 2©, 3©, 4©
in Figure 8(a), we can easily merge block 1© and 2© since

only single-qubit gates exist between those two blocks. We

call denote the merged block of 1© and 2© by blk new.

Unfortunately, we can not merge block blk new and block 3©.

On the one hand, CX q5,q3 is not commutable with blk new,

1032

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 01,2022 at 18:10:42 UTC from IEEE Xplore. Restrictions apply.

so we cannot move blk new close to 3©. On the other hand,

CX q5,q2 is not commutable with 3©, making it impossible

to move 3© close to blk new. We then skip blk new and start

from block 3© to find other merge opportunities. The linear

merge procedure will visit all blocks at least once. Finally,

we obtain two larger communication blocks after the linear

merge, as shown in Figure 8(b).

(c) Iterative refinement
Then we repeat steps (a) and (b) for other qubit-node

pairs until no more merge opportunities exist. The final

result of communication aggregation is shown in Figure 8(c).

Identified burst communication blocks are ordered by the

time being discovered.

C. Communication Assignment
With burst communication blocks, the next optimization is to

find the best way to execute them. We address this problem

by first examining the pros and cons of Cat-Comm and

TP-Comm, and then assigning the optimal communication

scheme based on the pattern analysis of burst communication

blocks. Since we assume only two communication qubits in

each quantum node, the communication patterns discussed

here center on interactions between one qubit and one node.

Extending burst communication to the node-to-node situation

is promising when communication qubits are plentiful. We

leave it for future work.

Cat-Comm vs. TP-Comm:
Suppose we have a burst communication block between

q1 in node A and several qubits in node B, with n remote

CX gates totally. If the block can be executed by one

invocation of Cat-Comm, the savings on EPR pairs would

be up to n times, compared to executing each remote

CX gate individually. However, Cat-Comm only supports

controlled-unitary blocks and needs many (≥ 2) EPR pairs

to implement communication blocks not being controlled-

unitary. Compared to Cat-Comm, TP-Comm can implement

any burst communication block with two EPR pairs: one

to teleport q1 to node B, the other to teleport q1 back to

node A, in order to handle the side effect of TP-Comm.

There are cases we would like to teleport q1 to another node

instead of simply moving it back. We postpone the details

to Section IV-D. Compared to Cat-Comm, the disadvantage

of TP-Comm is that its EPR pair saving is at most n
2 times.

Overall, Cat-Comm provides higher EPR pair savings for

specific burst communication blocks, while TP-Comm can

handle any burst communication block with up to two EPR

pairs.

Pattern analysis:
Figure 9(a)(b) shows two primitive patterns of burst

communication. For the unidirectional communication pattern

in Figure 9(a) where one qubit, i.e., q1 always serves as the

control qubit, the communication block can be implemented

by Cat-Comm with only one EPR pair if no single-qubit gate

on q1 separates two-qubit gates [12]. For example, one call of

Cat-Comm can handle the gate sequence CX q1,q′1; CX q1,q′2

Figure 9. Two primitive communication patterns (a)(b) and the variant (c).

(a) (b)

Figure 10. The transformation between communication patterns by using
Hadamard gates.

, but cannot address CX q1,q′1; RZ q1; CX q1,q′2 due to the

middle RZ gate. However, by moving RZ behind CX q1,q′2,

the resulted gate sequence CX q1,q′1; CX q1,q′2; RZ q1 only

requires one invocation of Cat-Comm. Thus, to execute

a communication block of unidirectional pattern with

Cat-Comm, we should move single-qubit gates on the

control qubit outside the communication block. Other-

wise, we resort to TP-Comm. For example, to implement

CX q1,q′1; H q1; CX q1,q′2; H q1; CX q1,q′3, it is better to use

TP-Comm.

A varied unidirectional pattern in which q1 always serves

as the target qubit, as shown in Figure 9(c), also occurs

frequently in distributed quantum programs. This pattern can

be transformed into the pattern in Figure 9(a) by applying a

series of Hadamard gates, as shown in Figure 10(a).

Figure 9(b) shows a bidirectional pattern in which q1

serves as both control qubit and target qubit. Although

we can transform a bidirectional communication block to

be unidirectional as in Figure 10(b) with Hadamard gates,

single-qubit gates on the control qubit may still prevent a

cheap implementation by Cat-Comm. In fact, for the block in

Figure 10(b), TP-Comm is more efficient as it only requires

two EPR pairs, while Cat-Comm requires three EPR pairs.

To summarize, for unidirectional communication patterns

in Figure 9(a)(c), we will try Cat-Comm first, while for

the bidirectional pattern in Figure 9(b), TP-Comm is mostly

preferred. The insight behind the conclusion is that, analogous

to classical distributed computing, Cat-Comm only shares

its read-only copy to another node, thus it is not a natural

fit for bidirectional communications which involve read and

write on the shared qubit. TP-Comm, in contrast, migrates

data to another node, allowing read and write operations on

the migrated qubit.

Communication scheme assignment:
Now, we are ready to assign an optimal communication

scheme to each burst communication block. Taking Fig-

1033

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 01,2022 at 18:10:42 UTC from IEEE Xplore. Restrictions apply.

2 4

Cat-Comm
Blocks

TP-Comm
Blocks

7

Teleport Teleport Teleport Teleport Teleport

EPR
Prep

1

3 5

6

7

1

6
3

5

2

4

Figure 11. (a) The result of the communication assignment pass. (b) The result of the communication scheduling pass.

ure 8(c) as an example, we assign Cat-Comm to unidirectional

blocks 1©, 6© (we can move the T † gate on q2 outside the

communication block) and 7©. We call these blocks Cat-
Comm blocks for simplicity. We then assign TP-Comm to

bidirectional blocks 2©, 4© and 5©. Likewise, we call them

TP-Comm blocks. For 3©, although being unidirectional, it

cannot be executed by one invocation of Cat-Comm due

to the H gate on q5. Since executing it with either Cat-

Comm or TP-Comm requires two EPR pairs, we set the TP-

Comm assignment as default. The finalized communication

assignment is shown in Figure 11(a).

D. Communication Scheduling
After optimizing the EPR pair consumption, we then schedule

the execution of burst communication blocks to reduce the

overall program latency and mitigate the effect of decoher-

ence. Based on the quantitative data shown in Table I, the

preparation of remote EPR pairs is the most time-consuming

one among various operations and hence should be carefully

optimized to hide its latency. While the quantitative data

may vary across quantum computing platforms, the schedule

design in this section should be also effective.

Operation Variable Name Latency
Single-qubit gates t1q ∼ 0.1 CX
CX and CZ gates t2q 1 CX
Measure tms 5 CX
EPR preparation tep ∼ 12 CX
One-bit classical comm tcb ∼ 1 CX

Table I
THE QUANTITATIVE DATA OF OPERATIONS IN DQC, EXTRACTED

FROM [25], [26]. LATENCIES ARE NORMALIZED TO CX COUNTS.

The designs here aim to maximize the parallelism of

communication blocks and shorten the latency of sequential

communication by fusion.

More block-level parallelism:
The essence of scheduling is to maximize the parallelism

of a circuit. For burst communication blocks without nodes

or qubits in common, they can be concurrently executed

in nature. For blocks with shared nodes or qubits, their

parallelism is limited by their commutability, as well as the

communication resource each node holds. With the constraint

that each node can establish only two communications in

parallel, there is little room for lazy operations. We adopt a

greedy strategy to execute commutable blocks, i.e., execute

as many blocks as possible simultaneously, as soon as EPR

pairs are prepared.

EPR
prepare

Figure 12. The schedule optimization for commutable Cat-Comm blocks,
with shared qubit or node.

EPR
prepare

Teleport TeleportTeleportTeleport

TeleportTeleport EPR
prepare

Figure 13. The schedule optimization for TP-Comm blocks. Aligned qubit
teleportation in (b) is better than the independent qubit teleportation in (a).

For Cat-Comm blocks, we can execute two commutable

blocks in parallel at most if they share nodes, as shown in

Figure 12. For TP-Comm blocks, the situation is complex

as each TP-Comm block requires two EPR pairs. For two

commutable TP-Comm blocks, rather than prioritizing the

completion of one TP-comm block as in Figure 13(a), we

observe that parallelism can be enabled by communica-

tion alignment, as shown in Figure 13(b). Compared to

Figure 13(a), Figure 13(b) aligns the qubit teleportation

of two TP-Comm blocks, leading to a latency saving of

1034

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 01,2022 at 18:10:42 UTC from IEEE Xplore. Restrictions apply.

tblock + 2ttele. This TP-Comm alignment technique can be

generalized to the case of n commutable TP-Comm blocks.

With TP-Comm alignment, the total latency saving can be up

to (n−1)(tblock +2ttele) (e.g., if those TP-Comm blocks are

on nodes {A1,A2},{A2,A3}, · · · ,{An,An+1} respectively).

EPR
prepare

Teleport Teleport

Teleport TeleportTeleportTeleport

Teleport

Figure 14. The schedule optimization for TP-Comm blocks. Cyclic qubit
teleportation in (b) is better than the SWAP-style qubit teleportation in (a).

Fusion of sequential blocks:
Sometimes communication blocks have to be executed in

sequence. However, if one qubit is teleported across many

TP-Comm blocks, we can shorten the latency of executing

those TP-Comm blocks by fusing the teleportations, as shown

in Figure 14. Figure 14(a) shows a simple schedule where

each TP-Comm block is executed independently. As each

node has only two communication qubits, we need to wait

for tep before executing the next TP-Comm block. In contrast,

Figure 14(b) fuses the teleportations between quantum nodes,

forming a cycle: A→ B→C→ A. With TP-Comm fusion,

the number of teleportations is reduced by one and the overall

execution time is reduced by tep+ ttele. Generally, if we have

n TP-Comm blocks with the same teleported qubit, the total

number of teleportation would be reduced by n−2, and the

overall latency saving would be (n− 2)(tep + ttele). From

another view, the fusion also optimizes the token passing

problem in classical distributed computing [21], which also

appears in Section IV-C, about whether to move the teleported

qubit back or to another node, in order to handle the side

effect of TP-Comm.

With the designs above, the communication scheduling

pass should apply block-level commutation analysis to unveil

the patterns discussed above and then apply corresponding

optimizations. We omit the details since this procedure is very

similar to the communication aggregation except working

at the block level. With all those optimizations applied,

Figure 11(b) shows the optimized communication schedule

for the example program in Figure 4. In total, 58.3% latency

saving is achieved compared to executing each remote CX

gate independently.

V. EVALUATION

In this section, we first compare the performance of Au-

toComm to two baselines and then evaluate the effect

of optimization passes in AutoComm. We finally perform

a sensitivity analysis on AutoComm to study how its

performance evolves as the experiment configuration changes.

A. Experiment Setup
(a) Platforms

We perform all experiments on a Ubuntu 18.04 server

with a 6-core Intel E5-2603v4 CPU and 32GB RAM. Other

software includes Python 3.8.3 and Qiskit 0.18.3 [16].

(b) Benchmark programs
We consider two categories of benchmark programs,

as shown in Table II. The first category of benchmarks

focuses on implementing elementary functions, e.g., arith-

metic operations and Fourier transformation. These quantum

programs are often used as building blocks of large quantum

applications. The second category of benchmarks aims to

solve real-world problems, including Bernstein-Vazirani (BV)

algorithm, Quantum Approximate Optimization algorithm

(QAOA), and Unitary Coupled Cluster ansatzes (UCCSD).

Specifically, for BV, we choose 1000 randomized secret

strings which on average contain 2
3 #qubit nonzeros. For

QAOA, we choose the graph maxcut problem (over 1000

randomized graphs), and for UCCSD, we select molecules

LiH,BeH2, and CH4 which correspond to programs with 8,

12 and 16 qubits, respectively. All benchmark programs used

in the evaluation are collected from IBM Qiskit [16] and

RevLib [22].

(c) Baseline
We implement two state-of-the-art compilers, GP-Cat and

GP-TP, which, to the best of our knowledge, represent the

best efforts for distributed quantum compilation. GP-Cat

implements one of the compiler designs proposed by [14]

which exploits the Cat-Comm scheme for remote CX gates

but does not consider burst communication. We did not

extend GP-Cat to use TP-Comm as TP-Comm is not efficient

at implementing a single remote CX gate. For the GP-TP

baseline, we adopt a similar compiler design to [10], [14]

where nonlocal operations are turned into local operations

by swapping qubits between nodes. In GP-TP, we use TP-

Comm to implement nonlocal qubit swapping operations as

TP-Comm is better at implementing the remote SWAP gate

than Cat-Comm. For both baselines and AutoComm, we

map qubits to compute nodes by the ‘Static Overall Extreme

Exchange’ (Abbrev. SOEE) strategy [10], which aims to

reduce inter-node communication. To reduce the program

latency, the baselines adopt a greedy scheduling method, i.e.,

executing operations as soon as possible.

(d) Distributed quantum computing model
We assume a uniform DQC system. Each node in the

DQC system has the same number of qubits. The fidelity

of EPR pairs between any two nodes is the same, and so is

the latency of preparing them. We also assume that the EPR

pair can be established between any two nodes and each

node has two communication qubits as in [10], [20]. Since

our framework focuses on communication optimization, we

assume a trapped-ion style device [6] for each compute node

that any two local qubits can communicate with each other.

Our work can also be easily applied to superconducting

1035

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 01,2022 at 18:10:42 UTC from IEEE Xplore. Restrictions apply.

devices [27] with sparse two-qubit connections.

For Table II, we assume each node has 10 data qubits

for benchmark programs except UCCSD. For UCCSD, we

assume each node has 2 data qubits. For all experiments, we

assume that qubits of the test program are evenly distributed

over all nodes.

(e) Metric
The first metric is the total number of consumed EPR

pairs for executing a distributed quantum program. Each

invocation of Cat-Comm or TP-Comm requires one EPR

pair. Note that without TP-Comm fusion, two EPR pairs are

needed to execute one burst communication block with the

TP-Comm, with one of the EPR pairs moving the teleported

qubit back to its original node. The number of consumed EPR

pairs models the resource overhead of executing distributed

quantum programs and a lower value is favored.

The second metric is the maximum number of inter-node

two-qubit gates got executed with one EPR pair. We denote

this metric by ‘Peak # REM CX’. To give a concrete example,

assuming a distributed quantum program where the largest

Cat-Comm block contains 10 remote CX gates and the largest

TP-Comm block contains 18 remote CX gates, if without

TP-Comm fusion, then for this program, ‘Peak # REM CX’

is 10 = max(10,18/2). If we assume the largest TP-Comm

block is fused with the next TP-Comm block, then ‘Peak

REM CX’ is 18 = max(10,18) because TP-Comm fusion

reduces the EPR pair consumption of a TP-Comm block. The

metric ‘Peak # REM CX’ characterizes the communication

throughput and a higher value is preferred.

Finally, we consider two metrics that model the relative

performance of AutoComm to baselines, with respect to

EPR consumption and program latency. The first one is the

‘improv. factor’, which is defined to be ‘# total EPR pairs

by baseline/# total EPR pairs by AutoComm’. The second

one is the ‘LAT-DEC factor’ that is defined to be ‘program

latency by baseline/program latency by AutoComm’. The

target of AutoComm is to make these two metrics as large

as possible.

B. Compared to Baselines
We first analyze the ability of AutoComm in exposing burst

communications, with communication statistics shown in

Figure 15. We then evaluate AutoComm and two baselines on

benchmark programs in Table II. The results of AutoComm

and its relative performance to GP-Cat and GP-TP are shown

in Table III. When we say on average in this section, we

refer to the geometric mean.

Burst communication statistics:
Figure 15 shows the distribution of burst communications

assembled by AutoComm. This distribution is closely related

to the inverse-burst distribution discussed in Section III-B

but is easier to compute. We can see that burst communi-

cations exist widely, no matter in building-block circuits

(Figure 15(a)) or in real-world applications (Figure 15(b)).

Moreover, Figure 15 demonstrates the effectiveness of

Type Name # qubit # node # gate # CX
REM CX
by SOEE

Build-
ing
Blocks

Multi-
Controlled
Gate
(MCTR)

100 10 10640 4560 1680

200 20 21840 9360 3568

300 30 33040 14160 5632

Ripple-Carry
Adder
(RCA)

100 10 1569 785 99

200 20 3169 1585 209

300 30 4769 2385 319

Quantum
Fourier
Transform
(QFT)

100 10 19800 9900 9000

200 20 79600 39800 38000

300 30 179400 89700 87000

Real
World
Appli-
cations

Bernstein
Vazirani
(BV)

100 10 265 65 56

200 20 535 135 126

300 30 803 203 194

QAOA

100 10 6000 4000 3144

200 20 24000 16000 14076

300 30 54000 36000 32896

UCCSD

8 4 3129 1420 900

12 6 40659 19142 15136

16 8 129829 64956 53426

Table II
BENCHMARK PROGRAMS. # QUBIT IS THE TOTAL NUMBER OF QUBITS

AND EACH NODE HAS EXACTLY ‘# QUBIT/# NODE’ DATA QUBITS.

AutoComm in unveiling burst communications. In Figure 15,

the EPR pairs that each support ≥ 2 remote CX gates account

for 76.8% of the overall consumed EPR pairs, on average.

Compared to GP-Cat:
As shown in Table III, AutoComm achieves significant

reduction in both EPR pair consumption and program latency,

compared to GP-Cat. Specifically, AutoComm reduces the

number of consumed EPR pairs by a factor of 3.9x on average,

up to 18.8x (ref. ‘Improv. factor’). AutoComm also reduces

the program latency by a factor of 3.1x on average, up to

9.4x (ref. ‘LAT-DEC factor’). These significant improvements

come from the high communication throughput enabled by

AutoComm. In GP-Cat, each EPR pair, i.e., each invocation

of Cat-Comm is used to implement only one remote CX gate.

In contrast, the peak communication throughput (ref. ‘Peak

REM CX’) by AutoComm is 7.2x on average and up to 20x

of that by GP-Cat. Those results indicate that AutoComm

can efficiently discover and utilize burst communications,

transferring more information with each EPR pair.

Compared to GP-TP:
As shown in Table III, AutoComm achieves significant

reduction in both EPR pair consumption and program latency,

compared to GP-TP. Specifically, AutoComm reduces the

number of consumed EPR pairs by a factor of 3.5x on

average, up to 13.3x. AutoComm also reduces the program

latency by a factor of 3.4x on average, up to 10.7x. On

the side of information theory, AutoComm enables a higher

throughput of information. Each EPR pair in GP-TP carries

3/2 remote CX gates (i.e., a remote SWAP gate over two

EPR pairs), much smaller than the throughput by AutoComm.

On the algorithmic side, AutoComm avoids unnecessary

qubit movement. For example, consider the gate sequence

CX q1,q2; CX q1,q3; CX q1,q4; CX q2,q1 where q1 is in

1036

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 01,2022 at 18:10:42 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Figure 15. Burst communications by AutoComm: Pr[X] = Pr[one EPR
pair supports ≥ X REM-CXs].

node A, q2 is in node B, and q3,q4 are in node C. To execute

these remote gates, GP-TP needs to swap q1 into node B

first, then to node C, and back to node B again. However,

with AutoComm, we only need to first move q1 to node C

and then to node B, since CX q1,q2 is commutable with

CX q1,q3 and CX q1,q4.

C. Optimization Analysis
In this section, we further analyze the effectiveness of each

optimization pass in AutoComm. Again, when we say on
average in this section, we refer to the geometric mean.

For simplicity, we denote the communication aggregation

pass by P1, the assignment pass by P2, and the scheduling

pass by P3. We first study how P1 and P2 affect the ‘improv.

factor’ of AutoComm to GP-Cat, then evaluate how P3 affects

the ‘LAT-DEC factor’. The results are shown in Table IV.

We do not compare P2 to GP-Cat directly as P2 cannot work

properly without communication aggregation.

The effect of communication aggregation:
As shown in Table IV, compared to GP-Cat, ‘P1+Cat-

Comm’ reduces the EPR pair consumption by a factor

of 2.6x, on average. The result indicates the effectiveness

of the communication aggregation pass in reducing the

communication cost by grouping remote CX gates into a

burst communication block. On the other hand, this analysis

also shows that burst communication may not be readily

available in distributed quantum programs and we need the

communication aggregation pass to unveil them.

The effect of communication assignment:
As shown in Table IV, compared to ‘P1+Cat-Comm’,

‘P1+P2’ further reduces the EPR pair consumption by a factor

of 1.4x, on average. The result demonstrates the importance

of considering both Cat-Comm and TP-Comm for burst

communication. The benefit of P2 is even more significant

for programs where bidirectional communication patterns

appear frequently, e.g., RCA and QFT. This is because Cat-

Comm is not as efficient as TP-Comm for implementing

bidirectional burst communication.

The effect of communication scheduling:
As shown in Table IV, compared to ‘P1+P2’, ‘P1+P2+P3’

further reduces the program latency by a factor of 1.1x,

on average. The result illustrates the effectiveness of P3 in

reducing communication-induced latency. The effectiveness

(a) (b)

Figure 16. The effects of (a) # qubit and (b) # node on the ‘improv. factor’
of AutoComm when compared to GP-Cat. The test program is MCTR.

of P3 for scheduling burst communication stems from its

smart utilization of communication qubits, especially for

TP-Comm blocks, as discussed in Section IV-D. As for

programs comprised of Cat-Comm blocks, e.g., BV and

UCCSD, P3 behaves as efficiently as the default as-soon-as-

possible scheduling method.

D. Sensitivity Analysis
The performance of AutoComm may be affected by factors

like the number of program qubits, the number of DQC

nodes, the qubit mapping, and the heterogeneity of compute

nodes. In this section, we study how the performance of

AutoComm changes as those factors varies.

When evaluating the effect of # qubit and # node (ref.

Figure 16), we assume program qubits are evenly distributed

over all nodes: each node has exactly ‘# qubit/# node’ data

qubits. We also assume two communication qubits per node.
The effect of # qubit:

As shown in Figure 16(a), the ‘improv. factor’ of Auto-

Comm converges when # qubit increases (i.e., # qubit/# node

becomes large). The reason may be that the number of

burst communication blocks also increases when the total

number of remote multi-qubit gates grows with the number

of program qubits. Such behavior is preferable because it

illustrates that AutoComm can provide a consistent reduction

of the communication overhead as the number of program

qubits grows.
The effect of # node:

As shown in Figure 16(b), the ‘improv. factor’ of Auto-

Comm deteriorates when # node increases (i.e., # qubit/# node

becomes small). On the one hand, the remote multi-qubit

gate would proliferate when # node increases, potentially

providing more chances for burst communication. On the

other hand, it is harder to find large burst communication

blocks when # qubit/# node becomes small, instead increasing

the communication overhead. Overall, we should not use too

many nodes for distributing programs.
The effect of qubit mapping:

When evaluating the sensitivity to qubit mappings, we

adapt two widely used algorithms, NoiseAdaptive [28] and

SABRE [15] to benchmark programs in Table II. Such

adaptations are straightforward as the DQC backend can also

be described by the coupling graph. As shown in Figure 17(a),

1037

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 01,2022 at 18:10:42 UTC from IEEE Xplore. Restrictions apply.

Name: abbrev. –
qubit – # node

Tot. EPR pairs consumed
Peak # REM CX

Compared to GP-Cat Compared to GP-TP

By Cat-Comm By TP-Comm Improv. factor LAT-DEC factor Improv. factor LAT-DEC factor

MCTR-100-10 313 220 10 3.15 3.27 2.81 3.90

MCTR-200-20 554 418 10 3.67 3.83 3.26 4.51

MCTR-300-30 932 1112 10 2.76 2.88 2.45 3.39

RCA-100-10 0 36 3 2.75 2.22 2.00 1.37

RCA-200-20 0 76 3 2.75 2.26 2.00 1.38

RCA-300-30 0 116 3 2.75 2.27 2.00 1.38

QFT-100-10 0 540 20 16.67 9.35 4.67 3.24

QFT-200-20 0 2090 20 18.18 9.40 5.27 3.26

QFT-300-30 0 4640 20 18.75 9.41 5.50 3.26

BV-100-10 9 0 8 6.22 4.33 12.22 9.68

BV-200-20 19 0 8 6.63 4.63 13.16 10.47

BV-300-30 29 0 8 6.69 4.69 13.31 10.65

QAOA-100-10 1182 266 6 2.17 1.83 1.56 2.09

QAOA-200-20 6059 728 8 2.07 1.79 1.57 2.52

QAOA-300-30 14915 1138 6 2.05 1.69 1.62 2.68

UCCSD-8-4 464 0 4 1.94 1.74 3.97 4.08

UCCSD-12-6 8973 0 4 1.69 1.55 3.10 3.31

UCCSD-16-8 33303 0 5 1.60 1.50 3.02 3.29

Table III
RESULTS OF AUTOCOMM AND ITS COMPARISON TO BASELINES. THE FIRST COLUMN CONTAINS ACRONYMS OF PROGRAMS IN TABLE II.

Name
Improv. factor compared to GP-Cat LAT-DEC factor compared to GP-Cat

P1+Cat-Comm P1+P2 P1+P2 P1+P2+P3

MCTR 3.05 3.17 2.76 3.30

RCA 1.88 2.75 2.25 2.25

QFT 2.22 10.00 7.14 9.39

BV 6.51 6.51 4.55 4.55

QAOA 2.08 2.10 1.65 1.77

UCCSD 1.74 1.74 1.59 1.59

Table IV
OPTIMIZATION ANALYSIS FOR AUTOCOMM. RESULTS ARE AVERAGED

OVER PROGRAMS IN TABLE II. ‘P1+P2+P3’ IS JUST AUTOCOMM.

(a) (b)

Figure 17. The effects of (a) qubit mappings and (b) heterogeneous
nodes. Numbers in (a)(b) are averaged (geometric mean) ‘improv. factor’
of AutoComm to GP-Cat.

our framework still achieves significant communication cost

reduction with NoiseAdaptive and SABRE. This indicates

the practicality of AutoComm’s two-step compilation design

(ref. Figure 1), which enables us to focus on communication

optimization while leveraging tons of existing efforts on qubit

mapping.

The effect of heterogeneous nodes:
For this analysis, we consider two settings: the hetero-

geneous setting distributes each 100-qubit program over 4

nodes with 10, 20, 30, and 40 data qubits, respectively; the

homogeneous setting evenly distributes each program over 4

nodes with 25 data qubits per node. As shown in Figure 17(b),

our framework still achieves significant communication cost

reduction on heterogeneous nodes. In the heterogeneous

setting, nodes with few qubits limit the benefits of burst

communication while nodes with many qubits boost them.

These two effects cancel out each other and guarantee the

performance of AutoComm.

VI. DISCUSSION AND FUTURE WORK

To the best of our knowledge, this paper is the first attempt

that formalizes and optimizes burst communication in dis-

tributed quantum programs. Although our framework signifi-

cantly surpasses existing works in optimizing communication,

there is still much space left for potential improvements.

Extending to general collective communication:
This paper only considers the near-term DQC where

communication qubits are supposed to be limited. In such

a case, we are restricted to studying the qubit-to-node burst

communication, which is a special case of general collective

communication that involves a group of nodes. Assuming the

availability of more communication qubits in the future, we

could consider node-to-node collective communication which

offers a potential optimization opportunity as we can now

aggregate small qubit-to-node burst communication blocks

into a large collective communication block.

Adapting to higher-level program abstraction:
This paper works with the low-level circuit language to

maintain compatibility with existing compiling flows. How-

ever, if higher-level program information is provided, more

aggressive communication optimization could be enabled. For

example, if we know one inter-node circuit block is related to

1038

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 01,2022 at 18:10:42 UTC from IEEE Xplore. Restrictions apply.

a controlled-controlled unitary, we could implement it with

at most two EPR pairs as at most two control qubits need

to be shared by Cat-Comm. It is also promising to extend

existing quantum programming languages to provide burst

communication primitives which could expose extra burst

communication that is difficult to uncover at a low level.

Combining with quantum error correction:
Since DQC involves quantum communication which is

far noisier than local quantum gates, reinforcing the whole

distributed quantum system with quantum error correction

(QEC) becomes vital for future DQC. No matter encoding

logical qubits in each node independently or forming a logical

qubit with several nodes [29], [30], the implementation of

logical gates (e.g., the logical CX) would involve a large

number of physical qubits (possibly across several nodes)

and provide great opportunities for burst communication

optimization.

VII. RELATED WORK

Most existing quantum compilers [15]–[19] focus on the

compilation of programs within a single quantum computer.

These works do not consider inter-node communication.

Extending them to DQC cannot achieve high communication

throughput in distributed quantum programs.

Unfortunately, existing compilers for DQC adopt simi-

lar methodologies to single-node quantum compilers. One

compiler design proposed by Ferrari et al. [14] exploits Cat-

Comm to implement each remote CX gate independently,

treating the remote CX like the local CX. Another compiler

design by Ferrari et al. [14] and the compiler by Baker et

al. [10] use remote SWAP gates to transform remote opera-

tions into local operations, resembling SWAP-based routing

(e.g., SABRE [15]) for single-node quantum programs.

Diadamo et al. [20] consider specific optimizations of inter-

node controlled-unitary blocks. However, their work requires

specialized circuit representation and cannot optimize general

quantum programs. All these works do not consider the

burst communication proposed in this paper and thus cannot

achieve high communication throughput.

Another line of work executes distributed quantum pro-

grams without using inter-node quantum communication

protocols [31], [32]. These works run large quantum circuits

in a divide-and-conquer way. To overcome the expressibility

loss due to no inter-node communication, these works rely

heavily on classical post-processing techniques and cannot

be extended to large-scale quantum programs.

There are also works trying to reduce the communication

overhead of distributed quantum programs by exploring

various circuit partition/qubit mapping techniques [8], [33]–

[36]. These works are orthogonal to our work and can be

easily merged into our framework.

VIII. CONCLUSION

As in classical distributed computing, the inter-node commu-

nication overhead bottlenecks distributed quantum computing.

Existing compilers [10], [14], [20] for distributed programs

either treat the inter-node communication like the local

communication or only provide optimization for gates in

the controlled-unitary form. These works fail to utilize

the hidden communication patterns in distributed quantum

programs. To overcome the shortcomings of existing DQC

compilers, this paper explores various distributed quantum

programs and identifies burst communication for the first time.

Burst communication is a qubit-node communication pattern

that widely exists in many distributed quantum programs.

Based on burst communication, we propose the framework,

AutoComm, which is demonstrated to be efficient in cutting

down inter-node communication overhead. The proposed

framework can be easily integrated into existing compiling

flows of quantum programs and would benefit near-term

distributed quantum computing.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their constructive

feedback. This work was supported in part by NSF 2048144

and Cisco Research. G. L. was in part funded by NSF QISE-

NET fellowship under the award DMR1747426.

REFERENCES

[1] Peter W Shor. Polynomial-time algorithms for prime factor-
ization and discrete logarithms on a quantum computer. SIAM
review, 41(2):303–332, 1999.

[2] Lov K Grover. A fast quantum mechanical algorithm for
database search. In Proceedings of the twenty-eighth annual
ACM symposium on Theory of computing, pages 212–219,
1996.

[3] Michael A Nielsen and Isaac Chuang. Quantum computation
and quantum information, 2002.

[4] Kenneth R Brown, Jungsang Kim, and Christopher Monroe.
Co-designing a scalable quantum computer with trapped
atomic ions. npj Quantum Information, 2(1):1–10, 2016.

[5] Colin D Bruzewicz, John Chiaverini, Robert McConnell, and
Jeremy M Sage. Trapped-ion quantum computing: Progress
and challenges. Applied Physics Reviews, 6(2):021314, 2019.

[6] Colin D Bruzewicz, John Chiaverini, Robert McConnell, and
Jeremy M Sage. Trapped-ion quantum computing: Progress
and challenges. Applied Physics Reviews, 6(2):021314, 2019.

[7] Markus Brink, Jerry M Chow, Jared Hertzberg, Easwar Mage-
san, and Sami Rosenblatt. Device challenges for near term
superconducting quantum processors: frequency collisions. In
2018 IEEE International Electron Devices Meeting (IEDM),
pages 6–1. IEEE, 2018.

[8] Pablo Andr’es-Mart’inez and Chris Heunen. Automated
distribution of quantum circuits via hypergraph partitioning.
Physical Review A, 2019.

[9] Nicholas Laracuente, Kaitlin N. Smith, Poolad Imany, Kevin L.
Silverman, and Fred Chong. Short-range microwave networks
to scale superconducting quantum computation. ArXiv,
abs/2201.08825, 2022.

1039

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 01,2022 at 18:10:42 UTC from IEEE Xplore. Restrictions apply.

[10] Jonathan M. Baker, Casey Duckering, Alexander Hoover, and
Frederic T. Chong. Time-sliced quantum circuit partitioning
for modular architectures. Proceedings of the 17th ACM
International Conference on Computing Frontiers, 2020.

[11] Christopher Young, Akbar Safari, Preston Huft, J. Zhang, Eun
Oh, Ravikumar Chinnarasu, and Mark Saffman. An archi-
tecture for quantum networking of neutral atom processors.
2022.

[12] Anocha Yimsiriwattana and Samuel J Lomonaco Jr. Gener-
alized ghz states and distributed quantum computing. arXiv
preprint quant-ph/0402148, 2004.

[13] Jens Eisert, Kurt Jacobs, Polykarpos Papadopoulos, and
Martin B Plenio. Optimal local implementation of nonlocal
quantum gates. Physical Review A, 62(5):052317, 2000.

[14] Davide Ferrari, Angela Sara Cacciapuoti, Michele Amoretti,
and Marcello Caleffi. Compiler design for distributed quantum
computing. IEEE Transactions on Quantum Engineering, 2:1–
20, 2021.

[15] Gushu Li, Yufei Ding, and Yuan Xie. Tackling the qubit
mapping problem for nisq-era quantum devices. Proceedings
of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems,
2019.

[16] MD SAJID ANIS, Héctor Abraham, AduOffei, Rochisha Agar-
wal, Gabriele Agliardi, Merav Aharoni, Ismail Yunus Akhal-
waya, Gadi Aleksandrowicz, Thomas Alexander, Matthew
Amy, Sashwat Anagolum, Eli Arbel, Abraham Asfaw, Anish
Athalye, Artur Avkhadiev, Carlos Azaustre, PRATHAMESH
BHOLE, Abhik Banerjee, Santanu Banerjee, Will Bang, Aman
Bansal, Panagiotis Barkoutsos, Ashish Barnawal, George
Barron, George S. Barron, Luciano Bello, Yael Ben-Haim,
M. Chandler Bennett, Daniel Bevenius, Dhruv Bhatnagar,
Arjun Bhobe, Paolo Bianchini, Lev S. Bishop, Carsten Blank,
Sorin Bolos, Soham Bopardikar, Samuel Bosch, Sebastian
Brandhofer, Brandon, Sergey Bravyi, Nick Bronn, Bryce-
Fuller, David Bucher, Artemiy Burov, Fran Cabrera, Padraic
Calpin, Lauren Capelluto, Jorge Carballo, Ginés Carrascal,
Adam Carriker, Ivan Carvalho, Adrian Chen, Chun-Fu Chen,
Edward Chen, Jielun (Chris) Chen, Richard Chen, Franck
Chevallier, Kartik Chinda, Rathish Cholarajan, Jerry M. Chow,
Spencer Churchill, CisterMoke, Christian Claus, Christian
Clauss, Caleb Clothier, Romilly Cocking, Ryan Cocuzzo,
Jordan Connor, Filipe Correa, Abigail J. Cross, Andrew W.
Cross, Simon Cross, Juan Cruz-Benito, Chris Culver, An-
tonio D. Córcoles-Gonzales, Navaneeth D, Sean Dague,
Tareq El Dandachi, Animesh N Dangwal, Jonathan Daniel,
Marcus Daniels, Matthieu Dartiailh, Abdón Rodrı́guez Davila,
Faisal Debouni, Anton Dekusar, Amol Deshmukh, Mohit
Deshpande, Delton Ding, Jun Doi, Eli M. Dow, Eric Drechsler,
Eugene Dumitrescu, Karel Dumon, Ivan Duran, Kareem EL-
Safty, Eric Eastman, Grant Eberle, Amir Ebrahimi, Pieter
Eendebak, Daniel Egger, ElePT, Emilio, Alberto Espiricueta,
Mark Everitt, Davide Facoetti, Farida, Paco Martı́n Fernández,
Samuele Ferracin, Davide Ferrari, Axel Hernández Ferrera,
Romain Fouilland, Albert Frisch, Andreas Fuhrer, Bryce
Fuller, MELVIN GEORGE, Julien Gacon, Borja Godoy Gago,
Claudio Gambella, Jay M. Gambetta, Adhisha Gammanpila,
Luis Garcia, Tanya Garg, Shelly Garion, James R. Garrison,
Tim Gates, Leron Gil, Austin Gilliam, Aditya Giridharan, Juan

Gomez-Mosquera, Gonzalo, Salvador de la Puente González,
Jesse Gorzinski, Ian Gould, Donny Greenberg, Dmitry Grinko,
Wen Guan, Dani Guijo, John A. Gunnels, Harshit Gupta,
Naman Gupta, Jakob M. Günther, Mikael Haglund, Isabel
Haide, Ikko Hamamura, Omar Costa Hamido, Frank Harkins,
Kevin Hartman, Areeq Hasan, Vojtech Havlicek, Joe Hellmers,
Łukasz Herok, Stefan Hillmich, Hiroshi Horii, Connor How-
ington, Shaohan Hu, Wei Hu, Junye Huang, Rolf Huisman,
Haruki Imai, Takashi Imamichi, Kazuaki Ishizaki, Ishwor,
Raban Iten, Toshinari Itoko, Alexander Ivrii, Ali Javadi,
Ali Javadi-Abhari, Wahaj Javed, Qian Jianhua, Madhav
Jivrajani, Kiran Johns, Scott Johnstun, Jonathan-Shoemaker,
JosDenmark, JoshDumo, John Judge, Tal Kachmann, Akshay
Kale, Naoki Kanazawa, Jessica Kane, Kang-Bae, Annanay
Kapila, Anton Karazeev, Paul Kassebaum, Josh Kelso, Scott
Kelso, Vismai Khanderao, Spencer King, Yuri Kobayashi,
Kovi11Day, Arseny Kovyrshin, Rajiv Krishnakumar, Vivek
Krishnan, Kevin Krsulich, Prasad Kumkar, Gawel Kus, Ryan
LaRose, Enrique Lacal, Raphaël Lambert, Haggai Landa, John
Lapeyre, Joe Latone, Scott Lawrence, Christina Lee, Gushu
Li, Jake Lishman, Dennis Liu, Peng Liu, Abhishek K M, Liam
Madden, Yunho Maeng, Saurav Maheshkar, Kahan Majmudar,
Aleksei Malyshev, Mohamed El Mandouh, Joshua Manela,
Manjula, Jakub Marecek, Manoel Marques, Kunal Marwaha,
Dmitri Maslov, Paweł Maszota, Dolph Mathews, Atsushi
Matsuo, Farai Mazhandu, Doug McClure, Maureen McElaney,
Cameron McGarry, David McKay, Dan McPherson, Srujan
Meesala, Dekel Meirom, Corey Mendell, Thomas Metcalfe,
Martin Mevissen, Andrew Meyer, Antonio Mezzacapo, Rohit
Midha, Daniel Miller, Zlatko Minev, Abby Mitchell, Nikolaj
Moll, Alejandro Montanez, Gabriel Monteiro, Michael Duane
Mooring, Renier Morales, Niall Moran, David Morcuende,
Seif Mostafa, Mario Motta, Romain Moyard, Prakash Murali,
Jan Müggenburg, Tristan NEMOZ, David Nadlinger, Ken
Nakanishi, Giacomo Nannicini, Paul Nation, Edwin Navarro,
Yehuda Naveh, Scott Wyman Neagle, Patrick Neuweiler, Aziz
Ngoueya, Johan Nicander, Nick-Singstock, Pradeep Niroula,
Hassi Norlen, NuoWenLei, Lee James O’Riordan, Oluwatobi
Ogunbayo, Pauline Ollitrault, Tamiya Onodera, Raul Otaolea,
Steven Oud, Dan Padilha, Hanhee Paik, Soham Pal, Yuchen
Pang, Ashish Panigrahi, Vincent R. Pascuzzi, Simone Perriello,
Eric Peterson, Anna Phan, Kuba Pilch, Francesco Piro, Marco
Pistoia, Christophe Piveteau, Julia Plewa, Pierre Pocreau,
Alejandro Pozas-Kerstjens, Rafał Pracht, Milos Prokop, Viktor
Prutyanov, Sumit Puri, Daniel Puzzuoli, Jesús Pérez, Quant02,
Quintiii, Rafey Iqbal Rahman, Arun Raja, Roshan Rajeev,
Isha Rajput, Nipun Ramagiri, Anirudh Rao, Rudy Raymond,
Oliver Reardon-Smith, Rafael Martı́n-Cuevas Redondo, Max
Reuter, Julia Rice, Matt Riedemann, Rietesh, Drew Risinger,
Marcello La Rocca, Diego M. Rodrı́guez, RohithKarur, Ben
Rosand, Max Rossmannek, Mingi Ryu, Tharrmashastha
SAPV, Nahum Rosa Cruz Sa, Arijit Saha, Abdullah Ash-
Saki, Sankalp Sanand, Martin Sandberg, Hirmay Sandesara,
Ritvik Sapra, Hayk Sargsyan, Aniruddha Sarkar, Ninad
Sathaye, Bruno Schmitt, Chris Schnabel, Zachary Schoenfeld,
Travis L. Scholten, Eddie Schoute, Mark Schulterbrandt,
Joachim Schwarm, James Seaward, Sergi, Ismael Faro Sertage,
Kanav Setia, Freya Shah, Nathan Shammah, Rohan Sharma,
Yunong Shi, Jonathan Shoemaker, Adenilton Silva, Andrea
Simonetto, Deeksha Singh, Divyanshu Singh, Parmeet Singh,
Phattharaporn Singkanipa, Yukio Siraichi, Siri, Jesús Sistos,
Iskandar Sitdikov, Seyon Sivarajah, Magnus Berg Sletfjerding,
John A. Smolin, Mathias Soeken, Igor Olegovich Sokolov,
Igor Sokolov, Vicente P. Soloviev, SooluThomas, Starfish,

1040

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 01,2022 at 18:10:42 UTC from IEEE Xplore. Restrictions apply.

Dominik Steenken, Matt Stypulkoski, Adrien Suau, Shaojun
Sun, Kevin J. Sung, Makoto Suwama, Oskar Słowik, Hitomi
Takahashi, Tanvesh Takawale, Ivano Tavernelli, Charles Taylor,
Pete Taylour, Soolu Thomas, Kevin Tian, Mathieu Tillet,
Maddy Tod, Miroslav Tomasik, Caroline Tornow, Enrique de la
Torre, Juan Luis Sánchez Toural, Kenso Trabing, Matthew
Treinish, Dimitar Trenev, TrishaPe, Felix Truger, Georgios
Tsilimigkounakis, Davindra Tulsi, Wes Turner, Yotam Vaknin,
Carmen Recio Valcarce, Francois Varchon, Adish Vartak, Al-
mudena Carrera Vazquez, Prajjwal Vijaywargiya, Victor Villar,
Bhargav Vishnu, Desiree Vogt-Lee, Christophe Vuillot, James
Weaver, Johannes Weidenfeller, Rafal Wieczorek, Jonathan A.
Wildstrom, Jessica Wilson, Erick Winston, WinterSoldier,
Jack J. Woehr, Stefan Woerner, Ryan Woo, Christopher J.
Wood, Ryan Wood, Steve Wood, James Wootton, Matt Wright,
Lucy Xing, Jintao YU, Bo Yang, Unchun Yang, Daniyar
Yeralin, Ryota Yonekura, David Yonge-Mallo, Ryuhei Yoshida,
Richard Young, Jessie Yu, Lebin Yu, Christopher Zachow,
Laura Zdanski, Helena Zhang, Iulia Zidaru, and Christa Zoufal.
Qiskit: An open-source framework for quantum computing,
2021.

[17] Matthew Amy and Vlad Gheorghiu. staq—a full-stack
quantum processing toolkit. arXiv: Quantum Physics, 2019.

[18] Nader Khammassi, Imran Ashraf, J. van Someren, Răzvan
Nane, A. M. Krol, M. A. Rol, Lingling Lao, Koen Bertels,
and Carmen Garcia Almudever. Openql : A portable quantum
programming framework for quantum accelerators. ACM J.
Emerg. Technol. Comput. Syst., 18:13:1–13:24, 2022.

[19] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will
Simmons, Alec Edgington, and Ross Duncan. t—ket〉: a
retargetable compiler for nisq devices. Quantum Science and
Technology, 2020.

[20] Stephen Diadamo, Marco Ghibaudi, and James R. Cruise.
Distributed quantum computing and network control for
accelerated vqe. IEEE Transactions on Quantum Engineering,
2:1–21, 2021.

[21] Maarten Van Steen and A Tanenbaum. Distributed systems
principles and paradigms. Network, 2:28, 2002.

[22] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler.
RevLib: An online resource for reversible functions and
reversible circuits. In Int’l Symp. on Multi-Valued Logic, pages
220–225, 2008. RevLib is available at http://www.revlib.org.

[23] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A
quantum approximate optimization algorithm. arXiv: Quantum
Physics, 2014.

[24] Yun Seong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs,
and Dmitrii L. Maslov. Automated optimization of large

[26] Roberto Sanchez Correa and Jean Pierre David. Ultra-low
latency communication channels for fpga-based hpc cluster.
Integration, 63:41–55, 2018.

quantum circuits with continuous parameters. npj Quantum
Information, 4:1–12, 2017.

[25] Nemanja Isailovic, Yatish Patel, Mark Whitney, and John
Kubiatowicz. Interconnection networks for scalable quantum
computers. In 33rd International Symposium on Computer
Architecture (ISCA’06), pages 366–377. IEEE, 2006.

[27] Philip Krantz, Morten Kjaergaard, Fei Yan, Terry P Orlando,
Simon Gustavsson, and William D Oliver. A quantum
engineer’s guide to superconducting qubits. Applied Physics
Reviews, 6(2):021318, 2019.

[28] Prakash Murali, Jonathan M. Baker, Ali Javadi-Abhari, Fred-
eric T. Chong, and Margaret Martonosi. Noise-adaptive
compiler mappings for noisy intermediate-scale quantum
computers. Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, 2019.

[29] Hamza Jnane, Brennan Undseth, Zhenyu Cai, Simon C.
Benjamin, and Bálint Koczor. Multicore quantum computing.
2022.

[30] Ying Li and Simon C. Benjamin. Hierarchical surface code
for network quantum computing with modules of arbitrary
size. Physical Review A, 94:042303, 2016.

[31] Wei Tang, Teague Tomesh, Martin Suchara, Jeffrey Larson, and
Margaret Martonosi. Cutqc: using small quantum computers
for large quantum circuit evaluations. In Proceedings of the
26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, pages
473–486, 2021.

[32] Tianyi Peng, Aram Wettroth Harrow, Maris A. Ozols, and
Xiaodi Wu. Simulating large quantum circuits on a small
quantum computer. Physical review letters, 125 15:150504,
2020.

[33] Davood Dadkhah, Mariam Zomorodi, Seyed Ebrahim Hosseini,
Pawel Plawiak, and Xujuan Zhou. Reordering and partitioning
of distributed quantum circuits. IEEE Access, 10:70329–70341,
2022.

[34] Omid Daei, Keivan Navi, and Mariam Zomorodi-Moghadam.
Optimized quantum circuit partitioning. International Journal
of Theoretical Physics, 59(12):3804–3820, 2020.

[35] Mariam Zomorodi Moghadam, Monireh Houshmand, and
Mahboobeh Houshmand. Optimizing teleportation cost in dis-
tributed quantum circuits. International Journal of Theoretical
Physics, 57:848–861, 2016.

[36] Zohreh Davarzani, Mariam Zomorodi Moghadam, Mahboobeh
Houshmand, and Mostafa Nouri. A dynamic programming
approach for distributing quantum circuits by bipartite graphs.
Quantum Inf. Process., 19:360, 2020.

1041

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 01,2022 at 18:10:42 UTC from IEEE Xplore. Restrictions apply.

