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Abstract—Distributed quantum computing (DQC) is a promis-
ing approach to extending the computational power of near-
term quantum hardware. However, the non-local quantum
communication between quantum nodes is much more expensive
and error-prone than the local quantum operation within each
quantum device. Previous DQC compilers focus on optimizing
the implementation of each non-local gate and adopt similar
compilation designs to single-node quantum compilers. The
communication patterns in distributed quantum programs
remain unexplored, leading to a far-from-optimal communi-
cation cost. In this paper, we identify burst communication, a
specific qubit-node communication pattern that widely exists in
various distributed quantum programs and can be leveraged to
guide communication overhead optimization. We then propose
AutoComm, an automatic compiler framework to extract burst
communication patterns from input programs and then optimize

the communication steps of burst communication discovered.

Compared to state-of-the-art DQC compilers, experimental
results show that our proposed AutoComm can reduce the
communication resource consumption and the program latency
by 72.9% and 69.2% on average, respectively.

I. INTRODUCTION

Quantum computing is promising with its great potential
of providing significant speedup to many problems, such
as large-number factorization with an exponential speedup
[1] and unordered database search with a quadratic speedup
[2]. A large number of qubits is required in order to solve
practical problems with quantum advantage and the qubit
count requirement is even higher after taking quantum
error correction [3] into consideration. However, it has
turned out that extending the number of qubits on a single
quantum processor is exceedingly difficult due to various
hardware-level challenges such as crosstalk errors [4], [5],
qubit addressability [6], fabrication difficulty [7], etc. Those
challenges usually increase with the size of quantum hardware
and may limit the number of qubits in a single quantum
processor.

Rather than relying on the advancement of a single
quantum processor, an alternative way to scale up quantum

computing is to explore distributed quantum computing
(DQC) [8], [9], which integrates the computing resources
of multiple quantum processors. In DQC, remote quantum
communication involving qubits in different compute nodes is
essential yet far more expensive than the local communication
between same-node qubits (e.g., 5-100x time consumption
and up to 40x fidelity degradation [10], [11]). There are two
major schemes for inter-node communication: one built upon
cat-entangler and -disentangler protocols [12], and the other
based on quantum teleportation [3]. In this paper, we refer
to the former scheme as Cat-Comm and the latter one as TP-
Comm. Both schemes consume remote EPR pairs [13], which
are pre-distributed entangled qubit pairs, as a resource to
establish quantum communication. Cat-Comm can implement
a remote CX gate [3] with only one EPR pair, but for general
two-qubit gates such as SWAP gate [3], Cat-Comm requires
up to three EPR pairs [14]. In contrast, TP-Comm can execute
any remote two-qubit gate with two EPR pairs [13] and is
thus more efficient for the SWAP gate. For a distributed
quantum program, more complex remote operations or more
quantum information transferred per EPR pair would lead to
less communication cost.

The overall compiling flow for DQC is similar to that of
single-node quantum programs, except with more emphasis
on remote communication overhead. One compiler design
proposed by Ferrari et al. [14] adopts a similar compilation
strategy to single-node compilers [15]-[19], using Cat-Comm
for implementing the remote CX. This strategy has a low
communication throughput due to the low information of
the remote CX gate. The compiler by Baker et al. [10]
and another design by Ferrari et al. [14] instead eliminate
all remote CX gates by using remote SWAP, which only
requires two EPR pairs for implementation but contains the
information of three CX gates. Unfortunately, bounded by
the information of a single two-qubit gate, these compilers
cannot achieve higher throughput of information per EPR pair.
Eisert et al. [13] suggest that a higher throughput could be
achieved by considering multi-qubit gates. Diadamo et al. [20]
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compiles distributed VQE by using Cat-Comm to implement
controlled-unitary-unitary and controlled-controlled-unitary
gates. However, their work can only optimize gates written in
the controlled-unitary form, not applicable to the decomposed
circuit that consists of only quantum basis gates (e.g.,
CX+U3 [16]). Besides, their work cannot optimize programs
lacking controlled-unitary blocks.

Besides increasing the ‘height’ (number of qubits) of
remote operations, we observe that the throughput of in-
formation per EPR pair can also be significantly boosted
up by expanding the ‘width’ (number of gates) of each
remote communication. Specifically, we discover that it is
possible to implement a group of remote two-qubit gates
collectively through one or two EPR pairs. On top of
the observation, we propose optimizing the communication
overhead of distributed quantum programs based on the
burst communication, which denotes a group of continuous
remote two-qubit gates between one qubit and one node.
Burst communication is powerful as it is more information-
intensive than a single two-qubit gate and contains but is not
limited to controlled-unitary blocks. Burst communication is
also flexible for optimization as it does not require specialized
circuit representation and is available in decomposed circuits.

To this end, we develop the first burst-communication-
centric optimization framework, AutoComm. Our framework
focuses on the optimization of remote communication and
leverages existing compiling flows [10], [14]-[19] on other
program optimization aspects (e.g., qubit mapping to assign
qubits over different DQC nodes), as shown in Figure 1. This
two-step design not only makes our work extensible but also
outstands our significant novel contributions on communi-
cation optimization. In existing compiling flows, each CX
is implemented independently (i.e., sparse communication);
while with AutoComm, sparse communication is converted
into burst communication and specifically optimized for
higher communication throughput.

Overall, our framework consists of three key stages. Firstly,
we perform a communication aggregation pass to group
remote gates and extract burst communication blocks. Due
to the wide existence of burst communication in distributed
quantum programs, this pass could generate a large amount of
burst communication blocks for the following optimizations.

Secondly, we propose a hybrid communication scheme that
examines the patterns of each burst communication block
and assigns the optimal communication scheme for each
block. The insight is that TP-Comm and Cat-Comm are more
resource-efficient for different types of burst communication,
thus considering only one scheme would incur extra resource
consumption. Finally, we adopt an adaptive schedule for
burst communication blocks of different patterns to squeeze
out the parallelism between them and thus reduce the overall
program latency. We observe that it is possible to execute
burst communication with shared qubits or nodes in parallel,
and we can fuse some burst communication blocks to cut
down the communication footprint.

Our contributions are summarized as follows:

o We identify the burst communication feature in DQC
and promote its importance in optimizing distributed
quantum programs. we further propose the first commu-
nication optimization framework based on it.

« We propose a communication aggregation pass to expose
burst communications and design a hybrid commu-
nication scheme, using both Cat- and TP-Comm to
accommodate different communication patterns.

« We propose an efficient communication scheduling
method to optimize the program latency adaptively,
squeezing out the parallelism of burst communication.

e Compared to state-of-the-art baselines, AutoComm
reduces the EPR pair consumption and the program
latency by 72.9% and 69.2% on average, respectively.

II. BACKGROUND
In this section, we would introduce the necessary background
to understand distributed quantum computing and inter-node
quantum communication. We do not cover the basic quantum
computing concepts (e.g., qubit, gate, measurement) and
recommend [3] for more details.
(a) Quantum communication

Like in classical distributed computing, remote/inter-
node quantum communication is the bedrock of distributed
quantum computing (DQC) but is also the bottleneck of DQC.
Different from classical distributed computing, quantum data
cannot be easily shared across quantum nodes due to the
quantum no-cloning theorem [3]. The workaround is to
exploit inter-node quantum entanglement. If two qubits are
in the entangled quantum state %(K)O) +|11)), we say they
form an EPR pair [3]. The two qubits of an EPR pair can
be distributed to different quantum nodes, formulating a
remote EPR pair [13]. The remote EPR pair is the most
widely-used quantum communication resource, providing the
necessary quantum entanglement for transferring quantum
data between nodes. Actually, based on EPR pairs, two
communication protocols emerge, named Cat-Comm and TP-
Comm respectively. Figure 2 illustrates how to use these two
schemes to implement one remote CX gate, with the control
qubit go residing in quantum node A and the target qubit g, in
node B. Qubits in Figure 2 fall into two categories. The first
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Figure 2. The implementation of one remote CX. (a) The Cat-Comm

version. (b) The TP-Comm version. Wavy lines and dashed lines denote EPR

pairs and classical communication bits respectively. M denotes measurement.

category of qubits is used to store program information and
is called data qubits, e.g., qo and gp,. The second category of
qubits, called communication qubits, is used to hold remote
EPR pairs, e.g. gco and ¢l.
(b) Cat-Comm and TP-Comm

As shown in Figure 2(a), Cat-Comm utilizes cat-entangler
to transfer the state of the control qubit gy to node B,
execute the target CX gate, and then use cat-disentangler to
transfer the state back to node A. TP-Comm in Figure 2(b)
employs quantum teleportation [3] to transfer the state of
qo to node B, and then execute the target CX gate. Note
that in Figure 2(b), we also include another teleportation
to move the state teleported to g/, back to go. Essentially,
the second teleportation is used to handle the side effect of
TP-Comm: the communication qubit ¢, will be occupied
by the teleported state of go and thus cannot be used to
establish new EPR pairs. We need the second teleportation
to set g, free. For the second teleportation, besides moving
the teleported state of go back to its original location as
in Figure 2(b), we can also move the teleported state to
any other location as long as the occupation on the current
communication qubit ¢/, is released. Overall, two EPR pairs
are required to implement one remote CX gate by TP-Comm,
with one of them handling the side effect. To avoid ambiguity,
when we say one invocation of TP-Comm, we actually refer
to one invocation of quantum teleportation. That’s to say,
one invocation of TP-Comm consumes one EPR pair, just
like one call of Cat-Comm. Thus, to implement one remote
CX, we would need two invocations of TP-Comm.

Figure 2 only shows how to implement one remote CX gate.

To implement a complex remote interaction between quantum
nodes, one simple strategy is to first decompose the remote
interaction into several remote CX gates and implement
each remote CX as in Figure 2. However, this strategy
may incur heavy communication costs. Eisert et al. observe
that optimized implementations exist for specific inter-node
interactions, as shown in Figure 3. Our framework will
cleverly take advantage of the implementations in Figure 3
based on our observation of burst communication, to optimize
the communication cost of distributed quantum programs, as
we can see in later sections.

Teleportation
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Figure 3.  The optimized implementation of complex remote interactions.

(a) Controlled-unitary block by one call of Cat-Comm. (b) Unitary block
by two calls of TP-Comm.
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Figure 4. Program snippet extracted from quantum arithmetic circuits [22].

III. PROBLEM AND MOTIVATION

In this section, we first introduce the communication problem
in DQC and then identify optimization opportunities by con-
sidering burst communication. For the rest of the discussion,
we assume that quantum communication can be established
between any two quantum nodes, a typical assumption in
data-center distributed computing [21]. We also assume that
each quantum node has only two communication qubits,
which is realistic for near-term DQC [14].
A. Communication Problem
The example distributed program in Figure 4 is modified
from quantum arithmetic circuits [22]. This program contains
many remote CX gates, e.g., CX q1,q3. Remote CX gates
are inevitable in DQC especially when the program’s qubit
number is substantially larger than that of each quantum node.
To execute a distributed program, we need to invoke either
Cat-Comm or TP-Comm to implement remote operations,
as shown in Figures 2 and 3. Due to the noisy nature of
quantum communication, remote operations are far more
error-prone than local quantum gates. The long runtime of
quantum communication would also lead to the decoherence
of quantum states. As a result, to produce high fidelity
outcome, we hope the number of remote communication
to be as small as possible, and so is the latency induced.

As indicated in Section II, one remote CX gate requires
at least one remote EPR pair. While there is little room
for optimizing the communication cost of one remote CX,
there is a large optimization space when considering burst
communication, which involves a group of remote CX gates.
For example in Figure 4, we can execute the first two CX
gates on ¢i,q3 collectively, with only one EPR pair by
using the circuit in Figure 3(a). From the perspective of
information theory, burst communication is more informative
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than communication that carries only one remote CX. The
overall communication overhead would be considerably
lowered if handling all remote CX gates in this burst manner.

Fortunately, as we can see in the next section, burst
communication is prevalent in diverse distributed quantum
programs.

B. Burst Communication in DQC

Aside from the arithmetic program shown in Figure 4, we also
see burst communication in a variety of quantum programs.
As examples, we examine the burst communication of the
Quantum Fourier Transform (QFT) program [3] and the
Quantum Approximate Optimization Algorithm (QAOA) [23]
by hand. These two represent different categories of quantum
programs: QAOA is one of the most important applications in
near-term quantum computing whereas QFT is the building
block circuit of quantum algorithms.

We first give a formal definition of burst communication
in DQC. In this paper, we refer to a group of continuous
remote two-qubit gates between one qubit and one node as
burst communication. For two remote two-qubit gates g; and
g2, the continuity of these two gates means there are no other
remote gates between g; and g».

To characterize the burst communication of a distributed
program dprog, for a remote gate g in dprog, we define
function €(g) to be the largest burst communication block
that contains g. The gate order of dprog may affect the burst
communication block found. €(g) is defined to be the largest
over all functional-equivalent gate order of dprog. We then
define len(g(g)) to be the number of remote CX gates in
€(g) if compiled to the CX+U3 basis [16]. Finally, we are
ready to define the inverse-burst distribution as follows:

play  Hellene(e) <}

#g

A lower P(x) suggests more burst communication. Specifi-
cally, for a given x, the lower P(x) is, the larger 1 — P(x) is
and the more remote CX gates belong to burst communication
blocks that each possesses more than x remote CX gates,
indicating more burst communication opportunities. On the
other hand, for the given probability Py = P(x), we hope the
corresponding x to be as large as possible since it means
there are 1 — Py of remote CX gates belonging to burst
communication blocks that each possesses more than x remote
CX gates. The distribution 1 — P(x) actually provides an
ideal upper bound for the burst communication existing in
distributed quantum programs and can serve as a metric to
evaluate the communication efficiency of various distributed
quantum algorithms.

We begin by examining the QFT program using the
aforementioned definition. We assume the total qubit number
is n, the quantum node number is k, and qubits are evenly
distributed across all nodes, with ¢ = 7 qubits per node.
Figure 5 shows the QFT program with k=2 and t = 2.
For the QFT program, each g; is controlled by all qubits

ey

Figure 5. (a) QFT program with two nodes and two qubits per node. (b)
The layout for the maximal P. Parameters of CRZ gates are omitted here
for simplicity. For the purpose of demonstration, we do not combine CRZ43
and CRZ3; to form a 4-REM-CX block. The 4-REM-CX (or 2-REM-CX)
block denotes the gate block which contains four (resp. two) remote CX
gates when compiled to the CX+U3 basis.

q; (through the CRZ gate) that satisfies j > i [3], as shown
in Figure 5. Then, we have P(2) = 0 because each CRZ
gate in QFT is compiled into two CX gates, as illustrated
in Figure 5(a). Now, we consider P(4). For the i-th qubit
satisfies i < n—k, the number of j s.t. £(CRZ;j;) <4 is at
most L%j because for one node, if at least two of its qubits
have subscripts > i, this node would have at least two qubits
interacting with qubit i. Since CRZ gates are commutable
with each other, we could then form a communication block
with at least 4 CX gates. It’s easy to see that there are at most
%J nodes, each containing no more than one qubit with
subscript > i. On the other hand, if i > n —k, then the i-th
qubit is at most controlled by n —i qubits, thus the number
of j s.t. e(CRZj;) <4 is at most n— i. Therefore, we have
Plt) < Z?;’:"L%J Ll (=) 1
Yisi(n—i)—k¥X_(t—1) !
This indicates there are 1 —P(4) > 1— % remote gates within
burst communication blocks that each possesses more than 4
remote CX gates. Generally, we can prove that P(x) < )@
for x > 2. This upper bound is quite promising when ¢
is large and it is actually loose. For Figure 5(b) which
approximates the upper bound of P(4), there may be }
of remote CRZ gates, i.e., CRZ43 and CRZ3; not in a
block with 4 remote CX gates at the first glance. But as
shown in Figure 5(b), we can actually combine CRZ43
and CRZ3, to form a 4-REM-CX block (the block that
contains 4 remote CX gates when compiled to the CX+U3
basis). More 4-REM-CX blocks or n-REX-CX blocks (n > 4)
can enable more burst communication opportunities. This
indicates that the distributed QFT program has more abundant
burst communication than the upper bound of P(x) (thus the
lower bound of 1 — P(x)) suggests.
Similarly, for the QAOA program, we assume k nodes and
t qubits per node. We also suppose r remote ZZ interactions
between any two nodes. Figure 6 shows the QAOA program
with k =2 and t = 3. Likewise, P(2) = 0 since each ZZ

b}
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Figure 6. QAOA program with two nodes and three qubits per node.

Parameters of ZZ interactions are omitted here for simplicity. (a) inter-node
communication number r = 3. (b) r =4.

interaction is compiled into two CX gates, as shown in
Figure 6(a). For every two nodes, the qubit layout to minimize
len(e(ZZ)) for each ZZ interaction is to make every two
77 interactions have no shared qubits, i.e., not adjacent.
However, this layout at most accommodates ¢ ZZ interactions.
For r > t, considering m?> + (t —m) < r < (m+1)>+ (t —
m— 1), there are at most t —m — 1 ZZ interactions that
are not adjacent to any other ZZ interactions. Thus, we
have P(4) = ==L < m;%tjn) For example in Figure 6(b),
we have 12+ (1 —1) =3 <r <22+ (t—2) =5, thus we
predict P(4) < % = % This bound is correct because
in Figure 6(b), only % of remote ZZ interactions are not in a
4-REM-CX block. It is easy to see that P(4) would quickly
decrease if m becomes large. For the general P(x), a similar
conclusion can be reached. Therefore, burst communication
is also broadly available in the distributed QAOA program.

We could derive a similar analysis for other distributed
quantum programs. Further numerical evidence for the rich-
ness of burst communication in various distributed quantum
programs is shown in Figure 15. The next step is to figure
out how to utilize abundant burst communication to optimize
the communication cost of distributed quantum programs, as
discussed in the next section.

C. Optimization Opportunities
To exploit burst communication in distributed quantum
programs, we need to answer three key questions:

How to unveil burst communication?

Burst communication is a type of high-level program
information and cannot be easily deduced from the low-
level circuit language, especially when remote interactions
between multiple nodes are all mixed together. For example
in Figure 4, gate CX ¢»;q94 between node A and node B
is followed by CX q1;¢s, Which is the interaction between
node A and node C. Such a disorder in distributed quantum
programs causes great difficulty in utilizing the benefits of
burst communication.

1031

How to select the best communication scheme?

Burst communication comes in various forms. While
being more efficient for implementing one remote CX gate,
Cat-Comm is not always better than TP-Comm for burst
communication. For example in Figure 4, if we use Cat-
Comm to implement the last three remote CX gates between
g3 and node A, three EPR pairs are needed. However, with
TP-Comm to teleport g3 to node A, at most two EPR pairs are
needed. Thus, to reduce the communication cost, we should
examine the pattern of burst communication and choose the
communication scheme wisely.

How to schedule burst communication?

Finally, we need to schedule the execution of burst
communication blocks. If we arrange all burst communication
in a sequential way, the large time overhead would impose
non-negligible decoherence errors on quantum states. As
a result, we should maximize the parallelism in burst
communication to generate high-fidelity output. To achieve
this goal, we should first identify the relationships between
communication blocks and then reduce the time gaps caused
by communication blocks adaptively.

IV. AutoCoMM FRAMEWORK
In this section, we first give an overview of the AutoComm
framework and then introduce each component in detail.
A. Design overview
We propose the AutoComm framework as shown in Figure 1.
AutoComm focuses on the communication optimization of
distributed quantum programs and serves as the back-end
of front compiling flows (e.g., mapping qubits to quantum
nodes). We would adopt existing technologies for these front
compiling stages, as we would see in Section V.

To reduce the communication overhead in distributed
quantum programs, AutoComm comes with three stages
to utilize burst communication. Firstly, it aggregates remote
two-qubit gates by gate commutation. Gate commutation is
common in quantum programs [24]. Commutable gates, on
the one hand, may be ordered arbitrarily and hide the burst
communication. On the other hand, we could also utilize
gate commutation to uncover burst communication blocks.
In this stage, we first identify potential burst communication
and then employ a linear merge step to combine isolated
burst communication blocks.

Secondly, it assigns an optimal communication scheme
for each burst communication block. We observe that the
pattern of burst communication impacts the efficiency of
communication schemes. Cat-Comm is less expensive for
some patterns, while TP-Comm may be more cost-effective
for others. It is thus important to examine the patterns of
burst communication and consider both Cat-Comm and TP-
Comm for implementing them, rather than only focusing on
one scheme.

Thirdly, it performs a block-level schedule of burst
communication. It is possible to execute communication
blocks with shared nodes or qubits concurrently or shorten the
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Figure 7. Some representative gate commutation rules used in AutoComm.

quantum state transfer path across quantum nodes. Combined
with these optimizations, a greedy schedule is effective for
burst communication.

Algorithm 1: Linear merge procedure

Input: An array of communication blocks blk_list
Output: Merged communication blocks blk_list_merge
1 blk_list_merge =[];
2 blk = blk_list[0] ;
3 while there are blocks in blk_list not visited do

4 non_commute_gates = ||;
5 for blk_next in unvisited blocks of blk_list do
// Attempt merge blk to blk_next
for gate between blk and blk_next do
if gate is single-qubit and not commutes with blk
then
| non_commute_gates.append (gate);
9 if gate is two-qubit then
10 check if gate is commutable with
non_commute_gates and blk;
11 if not commutable then
12 if gate is in-node two-qubit then
13 | non_commute_gates.append(gate);
14 else
15 | break;
16 end
17 blk =merge blk, non_commute_gates and blk_next;
18 end
19 if the above merge failed then
20 Try to merge blk_next to blk similarly;
21 if succeeds then
22 \ blk =merge blk, non_commute_gates and blk_next;
23 else
2 | blk = blk_next;

25 end
26 output the merged blocks and adjust the order of commutable gates;

B. Communication Aggregation

Burst communication is prevalent in distributed programs,
but may not be immediately available due to two factors:
CX gates may be scattered across the program, and whether
CX gates are remote or not depends on the qubit mapping
to quantum nodes. To make our framework able to uncover
hidden burst communication regardless of qubit mappings,

we need to rewrite the circuit and aggregate remote CX gates.

Figure 7 shows a fraction of circuit rewriting rules for
remote gate aggregation. The first two rows of Figure 7
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Figure 8. Communication aggregation for the example program in Figure 4.
(a) Identifying potential burst communication. (b) Linear merge. (c) Iterative
refinement.

contain gate commutation rules for two-qubit gates, from
simple ones to complex ones. These rules enable flexible
two-qubit gate relocation so that burst communication can
be automatically exposed and utilized. The remaining two
rows of Figure 7 are about exchanging single-qubit gates
with the CX gate and affect the pattern of the aggregated
burst communication (more details in Section [V-C). Based
on these circuit rewriting rules, we design the following steps
to aggregate remote gates.
(a) Identifying potential burst communication

As burst communication is defined between one qubit
and one node, the first step of communication aggregation
is thus to identify the qubit-node pair of potential burst
communication. We start with the qubit-node pair associated
with most remote gates as it would likely lead to a large
burst communication block. For example in Figure 4, the
chosen qubit-node pair is (g3, node A) as it is associated
with 5 remote CX gates. We then search for consecutive
remote CX gates related to this qubit-node pair. In this step,
circuit rewriting is not applied yet and the search would
result in many isolated communication blocks. For example
in Figure 8(a), we obtain four small blocks.

(b) Linear merge

The next step is to merge isolated small communication
blocks obtained in step (a). As illustrated in Algorithm 1,
we merge related communication blocks in a linear and
greedy manner. For communication blocks D, @), @), @
in Figure 8(a), we can easily merge block D and ) since
only single-qubit gates exist between those two blocks. We
call denote the merged block of D and @ by blk_new.
Unfortunately, we can not merge block blk_new and block Q).
On the one hand, CX gs,¢3 is not commutable with blk_new,
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so we cannot move blk_new close to 3). On the other hand,
CX gs,q> is not commutable with 3), making it impossible
to move () close to blk_new. We then skip blk_new and start
from block Q) to find other merge opportunities. The linear
merge procedure will visit all blocks at least once. Finally,
we obtain two larger communication blocks after the linear
merge, as shown in Figure 8(b).
(c) Iterative refinement

Then we repeat steps (a) and (b) for other qubit-node
pairs until no more merge opportunities exist. The final
result of communication aggregation is shown in Figure 8(c).
Identified burst communication blocks are ordered by the
time being discovered.

C. Communication Assignment
With burst communication blocks, the next optimization is to
find the best way to execute them. We address this problem
by first examining the pros and cons of Cat-Comm and
TP-Comm, and then assigning the optimal communication
scheme based on the pattern analysis of burst communication
blocks. Since we assume only two communication qubits in
each quantum node, the communication patterns discussed
here center on interactions between one qubit and one node.
Extending burst communication to the node-to-node situation
is promising when communication qubits are plentiful. We
leave it for future work.

Cat-Comm vs. TP-Comm.:

Suppose we have a burst communication block between
g1 in node A and several qubits in node B, with n remote
CX gates totally. If the block can be executed by one
invocation of Cat-Comm, the savings on EPR pairs would
be up to n times, compared to executing each remote
CX gate individually. However, Cat-Comm only supports
controlled-unitary blocks and needs many (> 2) EPR pairs
to implement communication blocks not being controlled-
unitary. Compared to Cat-Comm, TP-Comm can implement
any burst communication block with two EPR pairs: one
to teleport ¢; to node B, the other to teleport ¢; back to
node A, in order to handle the side effect of TP-Comm.
There are cases we would like to teleport g; to another node
instead of simply moving it back. We postpone the details
to Section I'V-D. Compared to Cat-Comm, the disadvantage
of TP-Comm is that its EPR pair saving is at most 75 times.
Overall, Cat-Comm provides higher EPR pair savings for
specific burst communication blocks, while TP-Comm can
handle any burst communication block with up to two EPR
pairs.

Pattern analysis:

Figure 9(a)(b) shows two primitive patterns of burst
communication. For the unidirectional communication pattern
in Figure 9(a) where one qubit, i.e., g; always serves as the
control qubit, the communication block can be implemented
by Cat-Comm with only one EPR pair if no single-qubit gate
on g separates two-qubit gates [12]. For example, one call of
Cat-Comm can handle the gate sequence CX q1,4}; CX q1,4)
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Figure 9. Two primitive communication patterns (a)(b) and the variant (c).
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Figure 10. The transformation between communication patterns by using
Hadamard gates.

, but cannot address CX q1,q¢; RZq1;CX q1,45 due to the
middle RZ gate. However, by moving RZ behind CX ¢y, 4},
the resulted gate sequence CX q1,q};CX q1,q5; RZq, only
requires one invocation of Cat-Comm. Thus, to execute
a communication block of unidirectional pattern with
Cat-Comm, we should move single-qubit gates on the
control qubit outside the communication block. Other-
wise, we resort to TP-Comm. For example, to implement
CX q1,q); Hq1; CX q1,45; Hq1; CX q1, 45, it is better to use
TP-Comm.

A varied unidirectional pattern in which ¢ always serves
as the target qubit, as shown in Figure 9(c), also occurs
frequently in distributed quantum programs. This pattern can
be transformed into the pattern in Figure 9(a) by applying a
series of Hadamard gates, as shown in Figure 10(a).

Figure 9(b) shows a bidirectional pattern in which ¢
serves as both control qubit and target qubit. Although
we can transform a bidirectional communication block to
be unidirectional as in Figure 10(b) with Hadamard gates,
single-qubit gates on the control qubit may still prevent a
cheap implementation by Cat-Comm. In fact, for the block in
Figure 10(b), TP-Comm is more efficient as it only requires
two EPR pairs, while Cat-Comm requires three EPR pairs.

To summarize, for unidirectional communication patterns
in Figure 9(a)(c), we will try Cat-Comm first, while for
the bidirectional pattern in Figure 9(b), TP-Comm is mostly
preferred. The insight behind the conclusion is that, analogous
to classical distributed computing, Cat-Comm only shares
its read-only copy to another node, thus it is not a natural
fit for bidirectional communications which involve read and
write on the shared qubit. TP-Comm, in contrast, migrates
data to another node, allowing read and write operations on
the migrated qubit.

Communication scheme assignment:

Now, we are ready to assign an optimal communication

scheme to each burst communication block. Taking Fig-
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ure 8(c) as an example, we assign Cat-Comm to unidirectional
blocks D, ® (we can move the TT gate on ¢, outside the
communication block) and (7). We call these blocks Cat-
Comm blocks for simplicity. We then assign TP-Comm to
bidirectional blocks @), @ and (3. Likewise, we call them
TP-Comm blocks. For (), although being unidirectional, it
cannot be executed by one invocation of Cat-Comm due
to the H gate on gs. Since executing it with either Cat-
Comm or TP-Comm requires two EPR pairs, we set the TP-
Comm assignment as default. The finalized communication
assignment is shown in Figure 11(a).

D. Communication Scheduling

After optimizing the EPR pair consumption, we then schedule
the execution of burst communication blocks to reduce the
overall program latency and mitigate the effect of decoher-
ence. Based on the quantitative data shown in Table I, the
preparation of remote EPR pairs is the most time-consuming
one among various operations and hence should be carefully
optimized to hide its latency. While the quantitative data
may vary across quantum computing platforms, the schedule
design in this section should be also effective.

Operation Variable Name | Latency
Single-qubit gates Ig ~ 0.1 CX
CX and CZ gates tay 1CX
Measure tins 5 CX
EPR preparation tep ~ 12 CX
One-bit classical comm teh ~1CX

Table 1
THE QUANTITATIVE DATA OF OPERATIONS IN DQC, EXTRACTED
FROM [25], [26]. LATENCIES ARE NORMALIZED TO CX COUNTS.

The designs here aim to maximize the parallelism of
communication blocks and shorten the latency of sequential
communication by fusion.

More block-level parallelism:

The essence of scheduling is to maximize the parallelism
of a circuit. For burst communication blocks without nodes
or qubits in common, they can be concurrently executed
in nature. For blocks with shared nodes or qubits, their
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(a) The result of the communication assignment pass. (b) The result of the communication scheduling pass.

parallelism is limited by their commutability, as well as the
communication resource each node holds. With the constraint
that each node can establish only two communications in
parallel, there is little room for lazy operations. We adopt a
greedy strategy to execute commutable blocks, i.e., execute
as many blocks as possible simultaneously, as soon as EPR
pairs are prepared.

prepare

tey |

P P X | >
— CXqq5 | i

Figure 12. The schedule optimization for commutable Cat-Comm blocks,
with shared qubit or node.
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Figure 13. The schedule optimization for TP-Comm blocks. Aligned qubit
teleportation in (b) is better than the independent qubit teleportation in (a).

For Cat-Comm blocks, we can execute two commutable
blocks in parallel at most if they share nodes, as shown in
Figure 12. For TP-Comm blocks, the situation is complex
as each TP-Comm block requires two EPR pairs. For two
commutable TP-Comm blocks, rather than prioritizing the
completion of one TP-comm block as in Figure 13(a), we
observe that parallelism can be enabled by communica-
tion alignment, as shown in Figure 13(b). Compared to
Figure 13(a), Figure 13(b) aligns the qubit teleportation
of two TP-Comm blocks, leading to a latency saving of
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thiock + 2tre1e- This TP-Comm alignment technique can be
generalized to the case of n commutable TP-Comm blocks.
With TP-Comm alignment, the total latency saving can be up
to (n—1)(tpiock + 2trere) (e.g., if those TP-Comm blocks are
on nodes {A1,A2},{A2,A3}, -, {An,Ant1} respectively).
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Figure 14. The schedule optimization for TP-Comm blocks. Cyclic qubit
teleportation in (b) is better than the SWAP-style qubit teleportation in (a).

Fusion of sequential blocks:

Sometimes communication blocks have to be executed in
sequence. However, if one qubit is teleported across many
TP-Comm blocks, we can shorten the latency of executing
those TP-Comm blocks by fusing the teleportations, as shown
in Figure 14. Figure 14(a) shows a simple schedule where
each TP-Comm block is executed independently. As each
node has only two communication qubits, we need to wait
for ., before executing the next TP-Comm block. In contrast,
Figure 14(b) fuses the teleportations between quantum nodes,
forming a cycle: A - B — C — A. With TP-Comm fusion,
the number of teleportations is reduced by one and the overall
execution time is reduced by f,, +t;¢j. Generally, if we have
n TP-Comm blocks with the same teleported qubit, the total
number of teleportation would be reduced by n— 2, and the
overall latency saving would be (7 —2)(fep + tiele). From
another view, the fusion also optimizes the token passing
problem in classical distributed computing [21], which also
appears in Section I'V-C, about whether to move the teleported
qubit back or to another node, in order to handle the side
effect of TP-Comm.

With the designs above, the communication scheduling
pass should apply block-level commutation analysis to unveil
the patterns discussed above and then apply corresponding
optimizations. We omit the details since this procedure is very
similar to the communication aggregation except working
at the block level. With all those optimizations applied,
Figure 11(b) shows the optimized communication schedule
for the example program in Figure 4. In total, 58.3% latency
saving is achieved compared to executing each remote CX
gate independently.

V. EVALUATION
In this section, we first compare the performance of Au-
toComm to two baselines and then evaluate the effect
of optimization passes in AutoComm. We finally perform
a sensitivity analysis on AutoComm to study how its
performance evolves as the experiment configuration changes.
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A. Experiment Setup
(a) Platforms
We perform all experiments on a Ubuntu 18.04 server
with a 6-core Intel E5-2603v4 CPU and 32GB RAM. Other
software includes Python 3.8.3 and Qiskit 0.18.3 [16].
(b) Benchmark programs
We consider two categories of benchmark programs,
as shown in Table II. The first category of benchmarks
focuses on implementing elementary functions, e.g., arith-
metic operations and Fourier transformation. These quantum
programs are often used as building blocks of large quantum
applications. The second category of benchmarks aims to
solve real-world problems, including Bernstein-Vazirani (BV)
algorithm, Quantum Approximate Optimization algorithm
(QAOA), and Unitary Coupled Cluster ansatzes (UCCSD).
Specifically, for BV, we choose 1000 randomized secret
strings which on average contain %#qubit nonzeros. For
QAOA, we choose the graph maxcut problem (over 1000
randomized graphs), and for UCCSD, we select molecules
LiH,BeH;, and CH4 which correspond to programs with 8§,
12 and 16 qubits, respectively. All benchmark programs used
in the evaluation are collected from IBM Qiskit [16] and
RevLib [22].
(c) Baseline
We implement two state-of-the-art compilers, GP-Cat and
GP-TP, which, to the best of our knowledge, represent the
best efforts for distributed quantum compilation. GP-Cat
implements one of the compiler designs proposed by [14]
which exploits the Cat-Comm scheme for remote CX gates
but does not consider burst communication. We did not
extend GP-Cat to use TP-Comm as TP-Comm is not efficient
at implementing a single remote CX gate. For the GP-TP
baseline, we adopt a similar compiler design to [10], [14]
where nonlocal operations are turned into local operations
by swapping qubits between nodes. In GP-TP, we use TP-
Comm to implement nonlocal qubit swapping operations as
TP-Comm is better at implementing the remote SWAP gate
than Cat-Comm. For both baselines and AutoComm, we
map qubits to compute nodes by the ‘Static Overall Extreme
Exchange’ (Abbrev. SOEFE) strategy [10], which aims to
reduce inter-node communication. To reduce the program
latency, the baselines adopt a greedy scheduling method, i.e.,
executing operations as soon as possible.
(d) Distributed quantum computing model
We assume a uniform DQC system. Each node in the
DQC system has the same number of qubits. The fidelity
of EPR pairs between any two nodes is the same, and so is
the latency of preparing them. We also assume that the EPR
pair can be established between any two nodes and each
node has two communication qubits as in [10], [20]. Since
our framework focuses on communication optimization, we
assume a trapped-ion style device [6] for each compute node
that any two local qubits can communicate with each other.
Our work can also be easily applied to superconducting
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devices [27] with sparse two-qubit connections.

For Table II, we assume each node has 10 data qubits
for benchmark programs except UCCSD. For UCCSD, we
assume each node has 2 data qubits. For all experiments, we
assume that qubits of the test program are evenly distributed
over all nodes.

(e) Metric

The first metric is the total number of consumed EPR
pairs for executing a distributed quantum program. Each
invocation of Cat-Comm or TP-Comm requires one EPR
pair. Note that without TP-Comm fusion, two EPR pairs are
needed to execute one burst communication block with the
TP-Comm, with one of the EPR pairs moving the teleported
qubit back to its original node. The number of consumed EPR
pairs models the resource overhead of executing distributed
quantum programs and a lower value is favored.

The second metric is the maximum number of inter-node
two-qubit gates got executed with one EPR pair. We denote
this metric by ‘Peak # REM CX’. To give a concrete example,
assuming a distributed quantum program where the largest
Cat-Comm block contains 10 remote CX gates and the largest
TP-Comm block contains 18 remote CX gates, if without
TP-Comm fusion, then for this program, ‘Peak # REM CX’
is 10 = max(10,18/2). If we assume the largest TP-Comm
block is fused with the next TP-Comm block, then ‘Peak
# REM CX’ is 18 = max(10, 18) because TP-Comm fusion
reduces the EPR pair consumption of a TP-Comm block. The
metric ‘Peak # REM CX’ characterizes the communication
throughput and a higher value is preferred.

Finally, we consider two metrics that model the relative
performance of AutoComm to baselines, with respect to
EPR consumption and program latency. The first one is the
‘improv. factor’, which is defined to be ‘# total EPR pairs
by baseline/# total EPR pairs by AutoComm’. The second
one is the ‘LAT-DEC factor’ that is defined to be ‘program
latency by baseline/program latency by AutoComm’. The
target of AutoComm is to make these two metrics as large
as possible.

B. Compared to Baselines

We first analyze the ability of AutoComm in exposing burst
communications, with communication statistics shown in
Figure 15. We then evaluate AutoComm and two baselines on
benchmark programs in Table II. The results of AutoComm
and its relative performance to GP-Cat and GP-TP are shown
in Table III. When we say on average in this section, we
refer to the geometric mean.

Burst communication statistics:

Figure 15 shows the distribution of burst communications
assembled by AutoComm. This distribution is closely related
to the inverse-burst distribution discussed in Section III-B
but is easier to compute. We can see that burst communi-
cations exist widely, no matter in building-block circuits
(Figure 15(a)) or in real-world applications (Figure 15(b)).
Moreover, Figure 15 demonstrates the effectiveness of
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#REM CX
Type Name # qubit # node # gate #CX by SOEE
Multi- 100 10 10640 4560 1680
g‘;{':""c‘i 200 20 21840 | 9360 3568
(MCTR) 300 30 33040 | 14160 | 5632
Build: | Ripple-Carry | 100 10 1569 785 99
ing Adder 200 20 3169 1585 209
Blocks | (RCA) 300 30 4769 2385 319
Quantum 100 10 19800 | 9900 9000
Fourier
Transform 200 20 79600 | 39800 | 38000
(QFT) 300 30 179400 | 89700 | 87000
Bemnstein 100 10 265 65 56
Vazirani 200 20 535 135 126
BY) 300 30 803 203 194
Real 100 10 6000 4000 3144
World
Appli. | QAOA 200 20 24000 | 16000 | 14076
cations 300 30 54000 | 36000 | 32896
8 4 3129 1420 900
UCCsD 12 6 40659 | 19142 15136
16 3 129829 | 64956 | 53426

Table 11
BENCHMARK PROGRAMS. # QUBIT IS THE TOTAL NUMBER OF QUBITS
AND EACH NODE HAS EXACTLY ‘# QUBIT/# NODE’ DATA QUBITS.

AutoComm in unveiling burst communications. In Figure 15,

the EPR pairs that each support > 2 remote CX gates account

for 76.8% of the overall consumed EPR pairs, on average.
Compared to GP-Cat:

As shown in Table III, AutoComm achieves significant
reduction in both EPR pair consumption and program latency,
compared to GP-Cat. Specifically, AutoComm reduces the
number of consumed EPR pairs by a factor of 3.9x on average,
up to 18.8x (ref. ‘Improv. factor’). AutoComm also reduces
the program latency by a factor of 3.1x on average, up to
9.4x (ref. ‘LAT-DEC factor’). These significant improvements
come from the high communication throughput enabled by
AutoComm. In GP-Cat, each EPR pair, i.e., each invocation
of Cat-Comm is used to implement only one remote CX gate.
In contrast, the peak communication throughput (ref. ‘Peak
#REM CX’) by AutoComm is 7.2x on average and up to 20x
of that by GP-Cat. Those results indicate that AutoComm
can efficiently discover and utilize burst communications,
transferring more information with each EPR pair.

Compared to GP-TP:

As shown in Table III, AutoComm achieves significant
reduction in both EPR pair consumption and program latency,
compared to GP-TP. Specifically, AutoComm reduces the
number of consumed EPR pairs by a factor of 3.5x on
average, up to 13.3x. AutoComm also reduces the program
latency by a factor of 3.4x on average, up to 10.7x. On
the side of information theory, AutoComm enables a higher
throughput of information. Each EPR pair in GP-TP carries
3/2 remote CX gates (i.e., a remote SWAP gate over two
EPR pairs), much smaller than the throughput by AutoComm.
On the algorithmic side, AutoComm avoids unnecessary
qubit movement. For example, consider the gate sequence
CX q1,92; CX q1,93; CX q1,494; CX q2,q1 where g is in
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Figure 15. Burst communications by AutoComm: Pr[X] = Pr[one EPR

pair supports > X REM-CXs].

node A, ¢ is in node B, and ¢3, ¢4 are in node C. To execute
these remote gates, GP-TP needs to swap ¢; into node B
first, then to node C, and back to node B again. However,
with AutoComm, we only need to first move ¢; to node C
and then to node B, since CX ¢;,g» is commutable with
CX ¢1,93 and CX ¢q1,4a4.

C. Optimization Analysis

In this section, we further analyze the effectiveness of each
optimization pass in AutoComm. Again, when we say on
average in this section, we refer to the geometric mean.

For simplicity, we denote the communication aggregation
pass by PI, the assignment pass by P2, and the scheduling
pass by P3. We first study how P1 and P2 affect the ‘improv.
factor’ of AutoComm to GP-Cat, then evaluate how P3 affects
the ‘LAT-DEC factor’. The results are shown in Table IV.
We do not compare P2 to GP-Cat directly as P2 cannot work
properly without communication aggregation.

The effect of communication aggregation:

As shown in Table IV, compared to GP-Cat, ‘P1+Cat-
Comm’ reduces the EPR pair consumption by a factor
of 2.6x, on average. The result indicates the effectiveness
of the communication aggregation pass in reducing the
communication cost by grouping remote CX gates into a
burst communication block. On the other hand, this analysis
also shows that burst communication may not be readily
available in distributed quantum programs and we need the
communication aggregation pass to unveil them.

The effect of communication assignment:

As shown in Table IV, compared to ‘P1+Cat-Comm’,
‘P14P2’ further reduces the EPR pair consumption by a factor
of 1.4x, on average. The result demonstrates the importance
of considering both Cat-Comm and TP-Comm for burst
communication. The benefit of P2 is even more significant
for programs where bidirectional communication patterns
appear frequently, e.g., RCA and QFT. This is because Cat-
Comm is not as efficient as TP-Comm for implementing
bidirectional burst communication.

The effect of communication scheduling:

As shown in Table IV, compared to ‘P1+P2’, ‘P1+P2+P3’
further reduces the program latency by a factor of 1.1x,
on average. The result illustrates the effectiveness of P3 in
reducing communication-induced latency. The effectiveness
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Figure 16. The effects of (a) #qubit and (b) #node on the ‘improv. factor’
of AutoComm when compared to GP-Cat. The test program is MCTR.

of P3 for scheduling burst communication stems from its
smart utilization of communication qubits, especially for
TP-Comm blocks, as discussed in Section IV-D. As for
programs comprised of Cat-Comm blocks, e.g., BV and
UCCSD, P3 behaves as efficiently as the default as-soon-as-
possible scheduling method.

D. Sensitivity Analysis

The performance of AutoComm may be affected by factors
like the number of program qubits, the number of DQC
nodes, the qubit mapping, and the heterogeneity of compute
nodes. In this section, we study how the performance of
AutoComm changes as those factors varies.

When evaluating the effect of #qubit and #node (ref.
Figure 16), we assume program qubits are evenly distributed
over all nodes: each node has exactly ‘#qubit/#node’ data
qubits. We also assume two communication qubits per node.

The effect of # qubit:

As shown in Figure 16(a), the ‘improv. factor’ of Auto-
Comm converges when # qubit increases (i.e., # qubit/# node
becomes large). The reason may be that the number of
burst communication blocks also increases when the total
number of remote multi-qubit gates grows with the number
of program qubits. Such behavior is preferable because it
illustrates that AutoComm can provide a consistent reduction
of the communication overhead as the number of program
qubits grows.

The effect of #node:

As shown in Figure 16(b), the ‘improv. factor’ of Auto-
Comm deteriorates when # node increases (i.e., # qubit/# node
becomes small). On the one hand, the remote multi-qubit
gate would proliferate when #node increases, potentially
providing more chances for burst communication. On the
other hand, it is harder to find large burst communication
blocks when # qubit/# node becomes small, instead increasing
the communication overhead. Overall, we should not use too
many nodes for distributing programs.

The effect of qubit mapping:

When evaluating the sensitivity to qubit mappings, we
adapt two widely used algorithms, NoiseAdaptive [28] and
SABRE [15] to benchmark programs in Table II. Such
adaptations are straightforward as the DQC backend can also
be described by the coupling graph. As shown in Figure 17(a),
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Name': abbrev. — #Tot. EPR pairs consumed Peak #REM CX Compared to GP-Cat Compared to GP-TP
#qubit—#node | By Cat-Comm | By TP-Comm Improv. factor | LAT-DEC factor | Improv. factor | LAT-DEC factor
MCTR-100-10 313 220 10 3.15 3.27 2.81 3.90
MCTR-200-20 554 418 10 3.67 3.83 3.26 4.51
MCTR-300-30 932 1112 10 2.76 2.88 245 3.39
RCA-100-10 0 36 3 2.75 222 2.00 1.37
RCA-200-20 0 76 3 2.75 2.26 2.00 1.38
RCA-300-30 0 116 3 2.75 2.27 2.00 1.38
QFT-100-10 0 540 20 16.67 9.35 4.67 3.24
QFT-200-20 0 2090 20 18.18 9.40 5.27 3.26
QFT-300-30 0 4640 20 18.75 9.41 5.50 3.26
BV-100-10 9 0 8 6.22 4.33 12.22 9.68
BV-200-20 19 0 8 6.63 4.63 13.16 10.47
BV-300-30 29 0 8 6.69 4.69 13.31 10.65
QAOA-100-10 1182 266 6 2.17 1.83 1.56 2.09
QAOA-200-20 6059 728 8 2.07 1.79 1.57 2.52
QAOA-300-30 14915 1138 6 2.05 1.69 1.62 2.68
UCCSD-8-4 464 0 4 1.94 1.74 3.97 4.08
UCCSD-12-6 8973 0 4 1.69 1.55 3.10 3.31
UCCSD-16-8 33303 0 5 1.60 1.50 3.02 3.29
Table III

RESULTS OF AUTOCOMM AND ITS COMPARISON TO BASELINES. THE FIRST COLUMN CONTAINS ACRONYMS OF PROGRAMS IN TABLE II.

Improv. factor compared to GP-Cat | LAT-DEC factor compared to GP-Cat

Name Pl1+Cat-Comm | PI+P2 P1+P2 P1+P2+P3
MCTR | 3.05 317 276 330
RCA 188 275 225 225
QFT 222 10.00 714 939
BV 651 651 4355 455
QAOA | 2.08 2.10 165 177
UCCSD | 1.74 174 159 159
Table TV

OPTIMIZATION ANALYSIS FOR AUTOCOMM. RESULTS ARE AVERAGED
OVER PROGRAMS IN TABLE II. ‘P1+P2+P3’ 1S JUST AUTOCOMM.
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Figure 17. The effects of (a) qubit mappings and (b) heterogeneous
nodes. Numbers in (a)(b) are averaged (geometric mean) ‘improv. factor’
of AutoComm to GP-Cat.

0

o

QFT QFT

our framework still achieves significant communication cost
reduction with NoiseAdaptive and SABRE. This indicates
the practicality of AutoComm’s two-step compilation design
(ref. Figure 1), which enables us to focus on communication
optimization while leveraging tons of existing efforts on qubit
mapping.
The effect of heterogeneous nodes:

For this analysis, we consider two settings: the hetero-

geneous setting distributes each 100-qubit program over 4

nodes with 10, 20, 30, and 40 data qubits, respectively; the
homogeneous setting evenly distributes each program over 4
nodes with 25 data qubits per node. As shown in Figure 17(b),
our framework still achieves significant communication cost
reduction on heterogeneous nodes. In the heterogeneous
setting, nodes with few qubits limit the benefits of burst
communication while nodes with many qubits boost them.
These two effects cancel out each other and guarantee the
performance of AutoComm.
VI. DISCUSSION AND FUTURE WORK
To the best of our knowledge, this paper is the first attempt
that formalizes and optimizes burst communication in dis-
tributed quantum programs. Although our framework signifi-
cantly surpasses existing works in optimizing communication,
there is still much space left for potential improvements.
Extending to general collective communication:

This paper only considers the near-term DQC where
communication qubits are supposed to be limited. In such
a case, we are restricted to studying the qubit-to-node burst
communication, which is a special case of general collective
communication that involves a group of nodes. Assuming the
availability of more communication qubits in the future, we
could consider node-to-node collective communication which
offers a potential optimization opportunity as we can now
aggregate small qubit-to-node burst communication blocks
into a large collective communication block.

Adapting to higher-level program abstraction:

This paper works with the low-level circuit language to
maintain compatibility with existing compiling flows. How-
ever, if higher-level program information is provided, more
aggressive communication optimization could be enabled. For
example, if we know one inter-node circuit block is related to
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a controlled-controlled unitary, we could implement it with

at most two EPR pairs as at most two control qubits need

to be shared by Cat-Comm. It is also promising to extend

existing quantum programming languages to provide burst

communication primitives which could expose extra burst

communication that is difficult to uncover at a low level.
Combining with quantum error correction:

Since DQC involves quantum communication which is
far noisier than local quantum gates, reinforcing the whole
distributed quantum system with quantum error correction
(QEC) becomes vital for future DQC. No matter encoding
logical qubits in each node independently or forming a logical
qubit with several nodes [29], [30], the implementation of
logical gates (e.g., the logical CX) would involve a large
number of physical qubits (possibly across several nodes)
and provide great opportunities for burst communication
optimization.

VII. RELATED WORK
Most existing quantum compilers [15]-[19] focus on the
compilation of programs within a single quantum computer.
These works do not consider inter-node communication.
Extending them to DQC cannot achieve high communication
throughput in distributed quantum programs.

Unfortunately, existing compilers for DQC adopt simi-
lar methodologies to single-node quantum compilers. One
compiler design proposed by Ferrari et al. [14] exploits Cat-
Comm to implement each remote CX gate independently,
treating the remote CX like the local CX. Another compiler
design by Ferrari et al. [14] and the compiler by Baker et
al. [10] use remote SWAP gates to transform remote opera-
tions into local operations, resembling SWAP-based routing
(e.g., SABRE [15]) for single-node quantum programs.
Diadamo et al. [20] consider specific optimizations of inter-
node controlled-unitary blocks. However, their work requires
specialized circuit representation and cannot optimize general
quantum programs. All these works do not consider the
burst communication proposed in this paper and thus cannot
achieve high communication throughput.

Another line of work executes distributed quantum pro-
grams without using inter-node quantum communication
protocols [31], [32]. These works run large quantum circuits
in a divide-and-conquer way. To overcome the expressibility
loss due to no inter-node communication, these works rely
heavily on classical post-processing techniques and cannot
be extended to large-scale quantum programs.

There are also works trying to reduce the communication
overhead of distributed quantum programs by exploring
various circuit partition/qubit mapping techniques [8], [33]-
[36]. These works are orthogonal to our work and can be
easily merged into our framework.

VIII. CONCLUSION
As in classical distributed computing, the inter-node commu-
nication overhead bottlenecks distributed quantum computing.
Existing compilers [10], [14], [20] for distributed programs

either treat the inter-node communication like the local
communication or only provide optimization for gates in
the controlled-unitary form. These works fail to utilize
the hidden communication patterns in distributed quantum
programs. To overcome the shortcomings of existing DQC
compilers, this paper explores various distributed quantum
programs and identifies burst communication for the first time.
Burst communication is a qubit-node communication pattern
that widely exists in many distributed quantum programs.
Based on burst communication, we propose the framework,
AutoComm, which is demonstrated to be efficient in cutting
down inter-node communication overhead. The proposed
framework can be easily integrated into existing compiling
flows of quantum programs and would benefit near-term
distributed quantum computing.
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