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We attempt to generate Reduced Order Models to predict wind data for testing of small
Unmanned Air Vehicles (UAV) or Unmanned Aircraft Systems (UAS) in the context of the
urban environment. We aim to utilize and explore two different methodologies using specialized
techniques and networks in machine learning like Convolutional Auto-Encoders and Long
Short-Term Memory networks to create a framework for prediction of wind field data. We
intend to use the data generated from Large Eddy Simulations as high-fidelity input data for
training the above mentioned ML techniques and evaluate their performance in generating
wind data in a simple urban environment setup. The objective of this work is to compare the
two methods and ultimately develop a robust framework for close to real-time or real-time
prediction of wind field in urban spaces.

I. Introduction

In the recent years there has been an unprecedented level of growth in use of Unmanned Aerial Vehicles (UAV) for
numerous diverse applications. They are being used for mission profiles ranging from disaster management[1], remote

sensing[2], agriculture[3], law enforcement[4], 3D mapping of complex terrains[5], urban mapping[6] to in near future
for fast moving consumer goods delivery and food catering services[7]. Isolated operation of Unmanned Aerial Vehicle
is now outdated and is slowly being replaced with an Unmanned Aerial Systems (UAS) for enhancing their ease of
operation and increased efficiency. Although increasing complexity, these systems incorporate enhancements for UAV
operation like using local weather data, topology information, path planners and utilizing ground control stations (GCS),
command/communication links for their remote or autonomous operation.

With extensive penetration of Unmanned Aerial Vehicle (UAV) operations in civilian applications, there has been
a growing need for UAS implementation in urban areas. In order to extensively use urban air spaces, there has
been significant research into enabling high-density UAS operations[8][9]. This imparts significant size and weight
restrictions leading to small Unmanned Aerial Systems (sUAS). However, due to their minimal size and weight they
are highly susceptible to both local turbulent effects like building wakes and meso-scale atmospheric effects in urban
boundary layers. Notable research has been done in the recent years into urban effects in applications like climate
predictions[10][11], and recently for planning and mitigation of urban heat islands[12][13] but only limited amount
into investigation of their influence on flight planning, control and trajectories [14][15][16]. There is significant need
for urban wind-field data to develop various control strategies to minimize the effects. While, Reynolds-Averaged
Navier-Stokes(RANS) equations could be used to simulate the urban flow fields, they do not depict the unsteady nature
of the flow, especially in constricted spaces like urban canyons and dense urban skylines. Large Eddy Simulations
(LES), unlike the RANS provide a more accurate depiction, closely resembling realistic wind conditions in atmopsheric
and urban boundary layers[17][18][19]. But, Large Eddy Simulations are computationally more expensive than RANS
and any real-time wind aware strategies cannot be widely adopted.

Reduced Order Models (ROMs) could be key enablers and important part of developing wind-aware strategies and
necessary framework for UAS operation. They have been used in diverse applications ranging from process simulation
and optimisation [20], flow control [21] to fluid flows[22]. With advent of machine learning, Machine Learning based
Reduced Order Models (ML-ROMs) could be generated with relative ease and Non-Intrusively[23]. In our previous
work we used Proper Orthogonal Based Decomposition (POD) coupled with LSTM networks to generate Non-Intrusive
Reduced Order Models (NIROM)[24][25]. Convolutional Auto Encoders (CAE) could be used to project the data to a
latent space similar to POD, make predictions and project it back to the spatio-temporal physical space [26][27][28].
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Convolutional Neural Networks allow the spatial information to be learned by the neural networks by applied self
learned convolutional filters on the training data. This spatial information could deem to be helpful to make accurate
predictions. The modes from latent space could be trained on specialized networks like LSTMs to make predictions in
time[29] or the CAE could directly be used to make predictions. We explore the two methods and make observations for
a simple case of flow across a building.

II. Methodology
In this section we discuss the methodology for our approach which includes generating Large Eddy Simulation data

from numerical solvers and, the Non-intrusive Convolutional Auto-Encoders/Convolutional Auto-Encoders coupled
with LSTM approaches to predict the flow field in a given domain of interest.

A. LES simulation setup
Large Eddy Simulation data is obtained using Parallelized Large-Eddy Simulation Model (PALM)[30]. PALM is a

turbulence-resolving, Large Eddy Simulation solver for atmospheric and oceanic boundary-layer flows. The model is
based on solving non-hydrostatic, filtered, incompressible Navier-Stokes equations in Boussinesq-approximated form
on a cartesian grid. Implicit separation of sub-grid scales and resolved scales is achieved by averaging the governing
equations over discrete grid volumes as proposed by Schumann[31].

1. Governing Equations
The model solves for six prognostic quantities, the velocity components 𝑢, 𝑣, 𝑤, the potential temperature 𝜃, specific

humidity 𝑞𝑣 and the SGS turbulent kinetic energy 𝑒. The potential temperature is defined as

Θ =
𝑇

Π
(1)

from absolute temperature 𝑇 and the Exner function,

Π =

(
𝑝

𝑝0

) 𝑅𝑑
𝐶𝑝

(2)

where, 𝑝 is the hydrostatic pressure, 𝑝0 is the reference pressure 1000 hPa, 𝑅𝑑 is the gas constant for dry air and 𝐶𝑃 is
the specific heat of dry air at constant pressure. Furthermore a virtual potential temperature could be calculated using
the relation,

Θ𝑣 = Θ

[
1 +

(
𝑅𝑣

𝑅𝑑

− 1
)
𝑞𝑣 − 𝑞𝑙

]
(3)

where 𝑅𝑣 is the gas constant for water vapor and 𝑞𝑙 is the liquid water specific humidity calculated based on a chosen
cloud micro-physics model. (Note: for the present study dry atmospheric boundary conditions with neutral stratification
are considered eliminating the need for cloud multi-physics and also making the absolute temperature, potential
temperature and virtual potential temperature the same value) The governing equations for the conservation of mass,
momentum, energy and moisture filtered over a cartesian grid are expressed below in Einstein summation notation,
where angle brackets denote horizontal domain average, over-bar indicates filtered quantities and double-prime indicates
SGS variables.

𝜕𝑢𝑖

𝜕𝑡
= −

𝜕𝑢𝑖𝑢 𝑗

𝜕𝑥 𝑗

− 𝜀𝑖 𝑗𝑘 𝑓 𝑗𝑢𝑘 + 𝜀𝑖3 𝑗 𝑓3𝑢𝑔, 𝑗 −
1
𝜌0

𝜕Π∗

𝜕𝑥𝑖
+ 𝑔

Θ𝑣− < Θ𝑣 >

< Θ𝑣 >
𝛿𝑖3 −

𝜕

(
𝑢′′
𝑖
𝑢′′
𝑗
− 2

3 𝑒𝛿𝑖 𝑗

)
𝜕𝑥 𝑗

(4)

𝜕𝑢 𝑗

𝜕𝑥 𝑗

= 0 (5)

𝜕Θ

𝜕𝑡
= −

𝜕𝑢 𝑗Θ

𝜕𝑥 𝑗

−
𝜕

(
𝑢′′
𝑗
Θ′′

)
𝜕𝑥 𝑗

− 𝐿𝑣

𝐶𝑝Π
Ψ𝑞𝑣 (6)
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𝜕𝑞𝑣

𝜕𝑡
= −

𝜕𝑢 𝑗𝑞𝑣

𝜕𝑥 𝑗

−
𝜕𝑢′′

𝑗
𝑞′′𝑣

𝜕𝑥 𝑗

+ Ψ𝑞𝑣 (7)

where,
𝑢𝑖 (𝑖 = 1, 2, 3) represents the components of velocities, 𝑓𝑖 is the Coriolis parameter,𝐿𝑣 is latent heat of vaporisation,
𝑔 is the gravitational acceleration, 𝑢𝑔,𝑘 are the geostrophic wind components, 𝜌0 is the density of dry air, 𝑝∗ is the
perturbation pressure, Π∗ = 𝑝∗ + 2/3𝜌0𝑒 is the modified perturbation pressure, and SGS TKE is represented by 𝑒.

2. Turbulence closure
The closure includes a prognostic equation for the filtered SGS-TKE 𝑒 given below, the SGS terms are parametrized

using 1.5 order closure following Deardorff[32] , using a modified version of Wyngaard et al.[33] and Saiki et al.[34].
For further information regarding the parameterization of various terms in the equation, the reader is referred to [30].

𝜕𝑒

𝜕𝑡
= −𝑢 𝑗

𝜕𝑒

𝜕𝑥 𝑗

− 𝑢′′
𝑖
𝑢′′
𝑗

𝜕𝑢𝑖

𝜕𝑥 𝑗

+ 𝑔

Θ𝑣,0
𝑢′′3 Θ

′′
𝑣 −

𝜕

[
𝑢′′
𝑗

(
𝑒 + 𝑝′′

𝜌0

)]
𝜕𝑥 𝑗

− 𝜖 (8)

where,
𝜖 is the SGS dissipation rate.

B. Non-Intrusive Convolutional Auto-Encoder Methodology

1. CAE-LSTM approach
As outlined in Algorithm 1, we initially obtain the time dependent modal coefficients by performing a Convolutional

Encoder transformation on the snapshot data of the velocity fluctuation field obtained from the LES data. An optimal
number of these modal coefficients are chosen in the latent space encoded by the trained Convolutional Auto Encoder
network. We could now learn these modes using Neural networks to make predictions in time. Recurrent Neural
Networks are a widely used neural network architecture in cases where the output information is dependent on current
input as well as characteristics learnt from previous observations. RNNs contain cyclic or recurrent connections that
enable them to continuously learn characteristics from a series of data and predict future outcomes. We use Long
Short-Term Memory (LSTM) neural networks[35], a special variant of RNN architecture better suited for learning
long-term dependencies in the input data. After the network is trained we predict the modal coefficients for required
number of snapshots. These are then used as input to the decoder to project the modes back to fluctuation field snapshots.
We can then calculate the data field by summing it to the previous average calculated.

2. CAE only approach
Unlike previous case where the Encoder and Decoder are trained on the same snapshot as both the input and output

data. We instead employ the CAE to make prediction for the next timestep based on current snapshot information. We
closely follow the methodology as described in Algorithm 2 to generate the "CAE only" based ML-ROM. This method
is relatively easier to train compared to CAE-LSTM network since it has lesser number of parameters to train. Similar
Encoder, Decoder structures were used for both the cases to make better comparison for their predicted data.
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Algorithm 1 CAE-LSTM approach
1: Obtain solution data from Large Eddy Simulations for the domain of interest.
2: Compute the fluctuation flow field for the given number of snapshots at the 2D region of interest, i.e. mean-subtracted

flow field, at center of domain and xz plane

𝑢(𝑥, 𝑦, 𝑧, 𝑡𝑛) =
1
𝑁

𝑁∑︁
𝑛=1

𝑢(𝑥, 𝑦, 𝑧, 𝑡𝑛)

𝑢′(𝑥, 𝑦, 𝑧, 𝑡𝑛) = 𝑢(𝑥, 𝑦, 𝑧, 𝑡𝑛) − 𝑢(𝑥, 𝑦, 𝑧, 𝑡𝑛)

3: Train the Convolutional Auto-Encoder network with the snapshots of the data from the fluctuation flow field, scaled
appropriately for optimal performance.

4: Compute the modal coefficients for the data matrix over time from the encoder portion of the Auto-Encoder.
5: Pre-process the data by scaling and re-arranging data for LSTM training with appropriate look-back window.
6: Predict the modal coefficients with the trained network for future snapshots.
7: Using the decoder portion of the Auto-Encoder, project the modal coefficients back to the spatio-temporal domain.
8: Compute the predicted flow field by adding the mean value to the predicted snapshot data.

Algorithm 2 CAE Only approach
1: Obtain solution data from Large Eddy Simulations for the domain of interest.
2: Compute the fluctuation flow field for the given number of snapshots at the 2D region of interest, i.e. mean-subtracted

flow field, at center of domain and xz plane

𝑢(𝑥, 𝑦, 𝑧, 𝑡𝑛) =
1
𝑁

𝑁∑︁
𝑛=1

𝑢(𝑥, 𝑦, 𝑧, 𝑡𝑛)

𝑢′(𝑥, 𝑦, 𝑧, 𝑡𝑛) = 𝑢(𝑥, 𝑦, 𝑧, 𝑡𝑛) − 𝑢(𝑥, 𝑦, 𝑧, 𝑡𝑛)

3: Train the Convolutional Auto-Encoder network with the snapshots of the data from the fluctuation flow field, scaled
appropriately for optimal performance. However, the expected output is the next snapshot of data in time, rather
than current snapshot like the CAE-LSTM approach.

4: Compute the predicted flow field by adding the mean value to the predicted snapshot data.

III. Results and Discussion
In this section we briefly talk about the simulation setup for generating the Large Eddy Simulation data for generating

the ML-ROMs and additionally compare the results between the two different methodologies adopted for generating the
ML-ROM.

A. Simulation Setup
A cubic building of height 𝐻 in a three-dimensional computational domain is used for generating the Large Eddy

Simulation data. For setting up the CFD domain to prevent the influence of boundary conditions, we closely follow the
recommendations of Franke et al.[36], Murakami and Mochida[37]. Furthermore the flow conditions at the inlet follow
the recommendation of [37] where a vertical profile proportional to 𝑧1/4 till a height of 2H is used, similar to the setup
of Tutar and Oguz was used for x-component of velocity 𝑢. The other two components 𝑣, 𝑤 are set to zeros, so the flow
is dominant in x-direction. Isotropic mesh of resolution 𝐻/10 was used. The wind velocity at height H is set to be as
8𝑚/𝑠, similar to typical high wind conditions. More details about the domains used for CFD is tabulated in table 1 and
also depicted in Fig 1. Neutral and dry atmospheric conditions were chosen with Coriolis parameter of 7.3 × 10−5 with
boundary conditions on the top and bottom (z-direction) as free-slip and no-slip, left and right (x-direction) as inflow
and outflow, front and back (y-direction) as outflows respectively.
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Domain size Specification
upstream (x-direction) 2H

downstream (x-direction) 7H
lateral (y-direction) 2.5H

above building (z-direction) 5H
Table 1 Domain details

Fig. 1 Left-Top view (xy-plane); Right-Side view(xz-plane) of the domain;
Green-domain of interest where 2D snapshots(xz plane) at center of domain are taken , Red-total domain for LES

The data used for ML-ROM was only from the xz plane in the center of the domain and for simplicity only the
u-velocity component is chosen to demonstrate the method. Two different approaches are tried below, one using
CAE-LSTM and one using only CAE and both the results are presented. The models are trained for 600 snapshots of
data and predictions are made for 600 future snapshots. Similar Encoder and Decoder structures were used across the
both the methods as shown in table 2. For both the methods terrain map of 2D domain is given in a secondary channel
to the CAE. The information on the building’s location in the 2D snapshot is provided as 0’s on grid points in absence
of the building and 1’s for grid points inside building.

Parameter Specifications
Encoder [4,(8,8,8),(16,16,16),16,16,8,4] (2 Channel)
Decoder [8,16,20,24,32]
Modes 24

Skip connections 2[Encoder only, segments depicted by "()"]
Skip connection 1 after 1 to before 5
Skip connection 2 after 1 to before 8

Table 2 CAE details
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B. CAE-LSTM Results

Parameter Specification
Number of hidden layers 2

Number of neurons in each hidden layer 64
Activation function tanh

Lookback time-window 20
Recurrent dropout 0.2
Neuron dropout 0.2
Loss function MSE

Optimiser ADAM
Training-testing ratio 4:1

Table 3 LSTM Neural Network details

Fig. 2 Comparison between True and CAE-LSTM (ML) for first 8 modes for demonstration;
Background colors: Tan/Orange - Training, White - Prediction

We notice good agreement between the results and the actual data in the predictions from the auto encoder coupled
with LSTM. We also notice the predictions for the 24 modes in the latent space is also in good agreement as shown in
figure 2. We do notice minor differences in the velocity field predicted. This is expected and could be attributed to the
errors from both the LSTM network and the Auto-Encoder.
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(a) u-velocity contour for xz plane in center of domain for 100th snapshot

l
(b) u-velocity contour for xz plane in center of domain for 200th snapshot

(c) u-velocity contour for xz plane in center of domain for 300th snapshot

Fig. 3 u-velocity contour for xz plane in center of domain for training phase of AutoEncoder
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(a) u-velocity contour for xz plane in center of domain for 700th snapshot

l
(b) u-velocity contour for xz plane in center of domain for 900th snapshot

(c) u-velocity contour for xz plane in center of domain for 1100th snapshot

Fig. 4 u-velocity contour for xz plane in center of domain for prediction phase
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C. CAE Only results

(a) u-velocity contour for xz plane in center of domain for 100th snapshot

l
(b) u-velocity contour for xz plane in center of domain for 200th snapshot

(c) u-velocity contour for xz plane in center of domain for 300th snapshot

Fig. 5 u-velocity contour for xz plane in center of domain for training phase of Auto-Encoder

Unlike the CAE-LSTM case we use the Auto-Encoder network to predict for the next snapshot and this prediction is
then used as input for the next prediction after that and so on. However, since we are using predictions are input for
future snapshots, error accumulation might lead to worse predictions overtime compared to CAE-LSTM approach. This
is reflected in the results depicted in the prediction phase as shown in figure 6.
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(a) u-velocity contour for xz plane in center of domain for 700th snapshot

l
(b) u-velocity contour for xz plane in center of domain for 900th snapshot

(c) u-velocity contour for xz plane in center of domain for 1100th snapshot

Fig. 6 u-velocity contour for xz plane in center of domain for prediction phase of Auto-Encoder

IV. Conclusions and Future work
In this work we try to utilise Machine Learning based Reduced Order Models to generate ROMs for flow of wind

around a building in a flow domain. We use techniques like Convolutional Auto-Encoders and LSTM networks to
generate this ML-ROM. However this was pursued as a preliminary work and only 2 dimensional data snapshots were
used to generate the 2D ROM. We aim to further extend this to the full 3D domain of interest. Furthermore since our
aim was to demonstrate the method and its capability to generate efficient ROMs for our application, we use only the
x-component of velocity for generating these models. This work could be futher extended especially for the CAE only
approach, by using multiple previous snapshot data to predict the future snapshot, instead of just the current snapshot
information. The predictions could also be improved over time with Data-Assimilation and incorporating physics of the
flow into the Neural Network layers.
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