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Abstract
Static analysis tools find defects in code, checking code against rules to reveal potential
defects. Many studies have evaluated these tools by measuring their ability to detect known
defects in code. But these studies measure the current state of tools rather than their future
potential to find more defects. To investigate the prospects for tools to find more defects, we
conducted a study where we formulated each issue raised by a code reviewer as a violation
of a rule, which we then compared to what static analysis tools might potentially check. We
first gathered a corpus of 1323 defects found through code review. Through a qualitative
analysis process, for each defect we identified a violated rule and the type of Static Analysis
Tool (SAT) which might check this rule. We found that SATs might, in principle, be used
to detect as many as 76% of code review defects, considerably more than current tools
have been demonstrated to successfully detect. Among a variety of types of SATs, Style
Checkers and AST Pattern Checkers had the broadest coverage of defects, each with the
potential to detect 25% of all code review defects. We found that static analysis tools might
be able to detect more code review defects by better supporting the creation of project-
specific rules. We also investigated the characteristics of code review defects not detectable
by traditional static analysis techniques, which to detect might require tools which simulate
human judgements about code.
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1 Introduction

Modern code review is central to identifying an important and diverse range of software
defects (Bacchelli and Bird 2013; Wagner et al. 2005; Runeson et al. 2006). But it has long
been envisioned that more of this work might be done by tools which can reliably, quickly,
and accurately identify defects as soon as they occur or even offer automated support for
fixing defects (Mao et al. 2016). In pursuit of this vision, Static Analysis Tools (SATs)
have been devised using a wide range of static analysis techniques to detect behavioral
defects, code smells (van Emden and Moonen 2002), code style violations, code clones,
build issues, poor test coverage, and other types of defects. After being identified by tools,
most defects are addressed by developers (Balachandran 2013), demonstrating the value of
the defects found by these tools to developers (Habib and Pradel 2018). Beyond detecting
a defect, some tools suggest a cause or propose fixes, as many developers expect (Johnson
et al. 2013). For example, Style Checkers propose edits to fix style defects and Syntax and
Semantic Analyzers propose corrections to address syntax errors.

To assess the state of this vision, SATs are often evaluated in their ability to detect known
defects. For example, studies have systematically compared the lines with defects with the
defect lines reported by FindBugs, JLint, and PMD, revealing that 35% to 95% of defects
reported through issue trackers might be detected (Thung et al. 2012). Manually mapping
known defects in Defects4J to the defects found by Error Prone (Aftandilian et al. 2012),
Infer (Calcagno et al. 2015), and SpotBugs (the successor to FindBugs (Hovemeyer and
Pugh 2004)) revealed that these tools could detect 4.5% of defects (Habib and Pradel 2018).
A comparison of defects found in code review to those found by PMD revealed that it could
detect 16% of issues. By adding project-specific rules, it might detect an additional 17% of
the issues (Singh et al. 2017).

While these studies offer important evidence about the effectiveness of contemporary
tools, they offer less insight into the potential to continue to improve the effectiveness of
SATs. Of the 70% of code review defects (Singh et al. 2017) or 95% of known Defects4J
defects not detectable by current tools (Habib and Pradel 2018), what types of static anal-
ysis techniques might be necessary to identify these defects? Answers to these questions
offer important evidence helping motivate investments in creating tools, help to prioritize
investment in specific techniques based on their potential impact, and identify specific use
cases where these tools might be successfully applied.

Answering these questions requires investigating the potential of future SATs to detect
defects. Rather than examine which defects can be found by existing tools, these questions
requires examining the type of defects which may exist and the corresponding types of static
analysis tools which might be required to detect these defects, whether these tools exist
today or do not. In particular, answering these questions requires an alternative approach
to assessing static analysis tools. Rather than run static analysis tools that exist today, it is
necessary to instead examine the defects which exist today and then carefully consider how
these might potentially be detected by current and future tools.

In this paper, we investigate the potential of SATs to find more defects. Rather than
conservatively measure which defects can be detected by current tools, we are optimistic,
characterizing an upper bound of defects which might be deterministically detectable
through static analysis techniques. We focus on the defects which may be identified through
code review, which identify a broad range of functional and non-functional issues (Beller
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et al. 2014). By examining the reasoning code reviewers give to authors through their code
review comments, we formulate each issue raised by a code reviewer as a violation of a rule.
We then compare each rule against the rules which SATs might check, generalizing across
similar specific tools to focus on the expressiveness of the underlying techniques behind
these tools. In some cases, this may include rules that cannot, in fact, yet be checked by
any current tool. For example, checking these rules might require a more precise static anal-
ysis than is currently available. In other cases, these defects may correspond to rules that
could be checked by current tools, but which are simply not implemented. In this way, we
examine the potential of static analysis techniques to find defects, rather than their current
realization by contemporary tools or the rules developers choose to write.

We also examine the characteristics of defects which cannot be detected by static anal-
ysis tools, even assuming current techniques reach their full potential. These defects are
characterized by issues which require human judgement to identify. For example, a code
reviewer might find that, following inspection of the uses of a constant, its identifier is
inaccurate. Or a developer might decide that, after examining a new event, it should be
logged in a different way. These defects reflect issues which cannot be deterministically
identified through the formal channel of code (Casalnuovo et al. 2020), encompasses infor-
mation specifying computer execution and derives its meaning from the semantics of code.
In these cases, human developers make judgements, using information in the natural lan-
guage channel of code (Casalnuovo et al. 2020) such as identifiers, comments, or artifacts
like documentation, as well as their own knowledge. While traditional static analysis tools
are limited to considering only information in the formal channel, future ML or NLP based
tools might potentially detect some of these defects through use of the natural language
channel.

To investigate these questions, we examined the characteristics of defects found in code
review. We first collected 1323 review comments from 493 pull requests across projects
written in 33 different programming languages. We then used qualitative data analysis to
systematically identify a static analysis technique which might detect the issue raised in each
of the review comments. To organize the types of static analysis-based tools which might
be relevant, we created a new taxonomy characterizing the representation of code used to
check for defects (e.g., abstract syntax tree, program execution, string literals), the origin
of the rule (e.g., programming language, project conventions), and the consequences of its
violation (behavioral changes or code quality). We also classified each defect based on their
impacts on the project (e.g., maintainability, user interface). Using these two taxonomies,
we then coded each of the 1323 review comments.

We found that current static analysis techniques using the formal channel may be capable
of detecting 76% of the defects found through code reviews. This fraction is considerably
higher than the 16% detected by PMD (Singh et al. 2017) and 4.5% detected by Error
Prone, Infer, and SpotBugs (Habib and Pradel 2018), offering evidence that current SATs
might find more defects if used to their full potential. SATs leveraging simpler program
representations, such as AST Pattern Checkers and Style Checkers, were the most broadly
applicable, each identifying 25% of the defects reported, and together accounted for more
than two thirds of the defects which might be found by SATs. Examining these defects,
we identified specific features required to detect them. We also found that code review
defects not detectable by traditional static analysis techniques are mainly maintainability
and implementation defects.
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2 RelatedWork

Our work builds on prior work proposing defect taxonomies, examining the ability of SATs
to detect defects, examining developers’ experience with SATs, using machine learning
techniques to detect defects, and examining the practices of code review.

A defect may be defined narrowly as code which may lead to a system failure (e.g., Lait-
enberger 1998; Wiegers 2002; Burnstein 2002; Group and et al 2010; Runeson et al. 2006)
or more broadly as code that reduces the quality of the codebase (Gilb et al. 1993; Humphrey
1995; Laitenberger and DeBaud 2000; Runeson and Wohlin 1998). Mäntylä and Lassenius
(2009) broadly define defects as deviations from the viewpoint of a code reviewer. We adopt
this definition in this paper. Defect taxonomies generally focus on describing the causes of
defects (Basili and Selby 1987; Runeson et al. 2006). The Orthogonal Defect Classification
(ODC) (Chillarege et al. 1992) classifies defects along two dimensions: defect type (e.g.,
function, interface, checks) and defect trigger, specifying the conditions under which the
defect surfaces based on the development phase (e.g., review, test, deployment). One study
of defects found in code reviews identified three categories: evolvability defects which make
code hard to read and maintain, functional defects which result in incorrect behavior, and
false positives (Mäntylä and Lassenius 2009), influencing a later taxonomy (Beller et al.
2014). Similarly, the General Defect Classification (GDC) categorizes warnings generated
by Static Analysis Tools into functional and maintainability defects.

Static Analysis Tools (SATs) encompass a wide range of tools. SATs have been used
to detect violations of coding style (e.g., CheckStyle (2004); JSlint (Crockford 2011),
JSNose (Fard and Mesbah 2013)), detect instances of ‘bug patterns’ (e.g., PMD (Copeland
2005) and FindBugs (Hovemeyer and Pugh 2004)), detect violations of architectural style
rules (e.g., Structure101 (2019), SAVE (Knodel and Popescu 2007), ArchJava (Aldrich et al.
2002), Darcy (Ghorbani et al. 2019)) or design rules (e.g., ActiveDocumentation (Mehrpour
et al. 2019)), identify code smells (Sharma and Spinellis 2018), or detect behavioral defects
(e.g., CPAchecker (Beyer and Keremoglu 2011)). Thung et al. (2012) investigated 3 defect
detection tools, FindBugs, JLint, and PMD, on 3 programs, Lucene, Rhino, and AspectJ.
For 200 fixed defects, they compared the lines containing a fix with warnings generated by
the tools and found that between 1.9% to 50% of lines relating to defects were missed by
tools, with numbers varying greatly between projects and how completely the defect was
detected. Habib and Pradel (2018) investigated the ability of Error Prone (Google), Infer
(Facebook), and SpotBugs (the successor to FindBugs) to detect 594 real-world defects
across 15 software projects. They found that the tools were able to find 4.5% of these
defects. The undetected defects were mainly related to project-specific rules.

A number of studies have examined how developers use SATs. One study found that
59% of open-source projects use SATs, with projects written in dynamically-typed lan-
guages benefiting most (Beller et al. 2016). An early study at Google found that while the
warnings generated by FindBugs were not causing serious problems in production, early
identification makes them low-cost to fix (Ayewah and Pugh 2010). When SATs break the
build, in most cases developers fix the code rather than changing the configuration of the
tool (Zampetti et al. 2017). Developers prioritize warnings of SATs based on development
contexts (Vassallo et al. 2018). A number of studies have found usability challenges with
SATs. Developers face barriers using SATs due to poor presentation of output, lack of sup-
port for collaborative environments to share tool settings, complexity using customization,
unclear results, and disjointed process (Johnson et al. 2013). Tools often have a high false
positive rate, and developers wish to have the ability to prioritize errors, suppress warn-
ings, and get accurate results (Christakis and Bird 2016). Compiler error messages may
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be improved by being written using new and more usable structures that more effectively
meet developers’ information needs (Barik et al. 2018). Disabling errors and warnings not
marked as useful can help maintain developer trust in tools (Sadowski et al. 2018b).

More recently, research has begun to explore the use of machine learning (ML) and nat-
ural language processing (NLP) techniques to detect defects in code (Shafiq et al. 2021).
ML-based defect detection tools first build a model using traditional classifiers or neural
networks, training the model with data from code from different projects or older versions
of the same project. Next, the tools compare the target source code against the computed
model to find defects or predict the existence of defects. ML-based tools may build models
from semantic information in code such as comments (Huo et al. 2018), AST tokens such
as identifier names and operators (Wang et al. 2020), or source code changes (Wang et al.
2020). This can then be used to identify defects, such as missing authentication for smtp
connections (Huo et al. 2018) or missing IOException handling when reading files (Wang
et al. 2020). Other ML-based tools use models built from code metrics such as the lines
of code or number of methods (Nam and Kim 2015) to predict the existence of defects in
code. Other ML-based tools transform code into intermediate representations before build-
ing models. For example, DeepBugs (Pradel and Sen 2018) maps identifiers to semantic
representation vectors using NLP techniques and neural networks and detects name-based
defects such as incorrect orders of input parameters. Some tools analyze semantic infor-
mation in code such as argument names using NLP techniques such as string distance and
detect defects like incorrect order of input parameters (Rice et al. 2017).

Code review remains one of the most important techniques for finding defects, despite
being less effective and efficient compared to techniques such as testing (Runeson et al.
2006). Modern Code Review is a regular, informal, tool-based process (Bacchelli and Bird
2013). Developers review code to improve understandability and maintainability (Sad-
owski et al. 2018b), find defects, transfer knowledge, offer alternative solutions, and track
rationale (Bacchelli and Bird 2013; Ebert et al. 2018). Developers sometimes, but gener-
ally rarely, discuss design during code review (Viviani et al. 2018). Code review practices
have commonality, even across projects and organizations (Rigby and Bird 2013). Code
reviewers need information including rationale and code context (Pascarella et al. 2018).

Researchers have used code reviews as a lens with which to understand defects and fixes.
One study found that 75% of found defects are evolvability defects, most of which cannot
be fixed directly by tools (Mäntylä and Lassenius 2009). Another study again found that
75% of the changes made after code review were related to the evolvability of code, and
35% of review comments are discarded (Beller et al. 2014). Other studies used code reviews
to investigate the role of defect detectors in software development. One study found that
defects found by SATs are different from those found by tests, but are a subset of those
found in code review (Wagner et al. 2005). Another study found many code review defects
concern code improvements and suggested the need for tools to eliminate these defects and
free time for finding more important defects (Bacchelli and Bird 2013). One study found
that during code reviews, some of the warnings generated by well-known SATs are resolved,
and that using SATs helps in fixing these warnings and thus speeds up the code review pro-
cess (Panichella et al. 2015). Another study found that PMD could be used to identify 16%
of the defects found through code review and that, by implementing and integrating 4 new
rulesets, can cover an additional 17% of defects (Singh et al. 2017). Developers choose to
approve 93% of the review comments generated by PMD, FindBugs, and Checkstyle (Bal-
achandran 2013). Contributors repeatedly introduce the same types of manually detectable
issues, while they repeat automatically detectable issues at most 3 times (Ueda et al. 2018).
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3 Analyzing Review Comments

In this paper, we consider the potential for future Static Analysis Tools (SATs) that use the
formal channel (Casalnuovo et al. 2020) to detect defects. To explore the ability of SATs to
detect more defects, we sought to investigate:

RQ1: What types of existing SATs are necessary to identify defects?
RQ2: What features in SATs are necessary to detect defects?
RQ3: Which defects cannot be detected by only using the formal channel?

To answer these research questions, we conducted a qualitative study of defects identified
in review comments. We manually examined defects identified, investigating the potential
to prevent each defect from occurring by creating a rule which could be checked by a SAT.
Throughout this process, we considered in detail a broad range of tools which use the for-
mal channel and might be relevant and the features necessary in these tools to detect each
defect. This enables examining the potential impact of increasing the power of existing anal-
ysis techniques, as well as highlighting defects which would require new forms of analysis
beyond the traditional use of the formal channel. Running existing SATs would not answer
these questions, as it would report issues discovered by a tool as it is configured and exists
today.

In this paper, we adapt a broad definition of a defect as a deviation of code from a
quality standard from the point of view of a reviewer (Mäntylä and Lassenius 2009). This
encompasses a wide variety of defects, including defects that alter the behavior, quality,
and performance of code. We exclude documentation defects, which have been studied
elsewhere (Aghajani et al. 2019)).

We analyzed defects found in code reviews and examined which SATs might detect
these defects and how these defects impact their projects. To organize the types of SAT
which might be relevant, we require a taxonomy of tools. We first looked at existing defect
classifications. Defect classifications classify defects based on their technical properties
(function, interface, checks, assignment, timing, building and merging, documentation, and
algorithms) (e.g. Board 1993; Chillarege et al. 1992; Mäntylä and Lassenius 2009; Beller
et al. 2016), their severity and impact on the user (e.g. Thelin et al. 2003), and the artifacts
from which the defects originate (e.g. Runeson et al. 2006). As these taxonomies do not
categorize the analysis tools themselves, we created a new taxonomy of SATs for defect
detection, characterizing the representation of code used to check for defects, the origin of
the rule, and the consequences of violations. In addition, we created a second taxonomy to
characterize the type of impact that each violation had, which adapted several categories
from existing taxonomies.

3.1 Data Collection

The process of data collection and cleaning is illustrated in Fig. 1. To obtain an initial corpus
of code review comments, we first examined code reviews posted in pull requests of public
repositories. To encompass a broad range of projects with varying programming languages
and levels of complexity, we selected the GHTorrent (Gousios 2013) dataset, a widely-used
dataset of GitHub data (e.g., Brunet et al. 2014). We examined a subset of the GHTorrent
dataset containing 36,185 pull requests (PRs) from public GitHub repositories on May 5,
2019. As the original dataset includes too many PRs to manually inspect, we systematically
selected a subset of PRs for further analysis. We first used GitHub labels, provided by con-
tributors, to identify PRs that might potentially describe defects. Each GitHub pull request
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Include PRs with
Change Requests

Collect review 
comments

36185 PRs 2343 RCs795 PRs

Remove potentially 
uninformative PRs

493 PRs

2343 RCs

Remove 
uninformative RCs

1323 RCs

Open 
Coding

Fig. 1 We employed a systematic process to identify defects from informative review comments (RC) in pull
requests (PR) and code each defect

(PR) may include one or more reviews, each labeled with approve (change approved by
the reviewer), comment (feedback by the reviewer), or change request (feedback to address
before merging). For our study, we only considered change requests, as they were most
likely to describe defects to be addressed. 795 PRs with at least one change request were
identified and considered for further analysis. There are several potential explanations for
the infrequency of PRs containing a review with the change request label. First, many PRs
lack reviews and contain only comments. Second, change requests contain feedback needed
to be addressed for merging the PR and so are made before merging the PR. Considering the
high number of rejected PRs (20% to 93% Silva et al. 2016), many PRs are not considered
by reviewers and do not receive change request feedback.

We next performed two rounds of data cleaning. In the first round, we manually inspected
each PR and filtered out PRs which were irrelevant or missing required information. We
removed PRs with non-English comments with reviews from the github-learning-lab (used
for learning purposes) which related to homework assignments, which focused on word-
ing and grammatical issues in documents, and with inaccessible repository links. All links
existed at the time of data collection, but some later became unavailable. After this process,
493 PRs remained. These pull requests spanned approximately 400 distinct projects in at
least 33 different programming languages.

In the second round of data cleaning, we identified and filtered review comments. We
first systematically collected the discussions of change requests for each of the 493 PRs
through the GitHub API. In total, 2343 review comments were collected. We manually ana-
lyzed each review comment and excluded from our analysis review comments that were not
detailed enough for analysis (Section 4). This included review comments with no text, which
included directions for GitHub actions (e.g., merging), which were not written in English,
included only non-informative text such as emojis, were generated by automated tools (e.g.,
bots), were not directly associated with specific lines of code, or which lacked context, code,
or sufficient explanation. After this process, 1323 review comments remained. Our dataset
is publicly available.1

1https://doi.org/10.6084/m9.figshare.14925222

https://doi.org/10.6084/m9.figshare.14925222
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3.2 Analysis

To identify the relationship between SATs and the defects they might find, we identified a
rule for each defect. Rules express a constraint on a specific representation of code and its
execution, including its Abstract Syntax Tree (e.g., Copeland 2005, clone detectors), exe-
cution paths (e.g., code coverage tools for test suites JCov 2014), and string literal values
(e.g., tools using regular expressions to check for valid filepaths). Rules may express uni-
versal constraints (e.g., do not use a variable after it has been freed, avoid fields)
or project-specific constraints (e.g., use loggers instead of ). Rule constraints may
describe prohibited or required conditions in code (Kruchten 2004), which may enable tools
to use rule violations to identify defects as well as suggest fixes (Section 8).

We first mapped each defect described in code review comments to a rule which might
prevent the defect. To formulate rules, we used all available artifacts and information in
the review comments. In addition to the text of the comment, we considered other artifacts
such as previous or followup discussions (if they existed), the code to which the comment
applied, and the final code commit (if accessible) to see how the feedback was addressed.
For example, the review comment in Fig. 2 describes a defect involving a misplaced method
which should be relocated to another file. From the name of the proposed file, it can be
inferred that the file contains utility methods. Another available artifact is the implemen-
tation of the method, revealing that the method only uses the input arguments to read data
(using another utility method) and writes the sorted data using another input argument.
Using this information, we can describe this defect as a violation of a rule: “If a method uses
only its arguments and other utility methods, then it should be located in a utility class.”
While we cannot quantify how frequently rules apply, we found many rules which were

Fig. 2 Wemapped each review comment to a rule. To do so, we examined artifacts and information including
the (A) the description of the PR, (B) committed changes in the PR before the review, (C) faulty lines of
code, (D) the review comment, (E) followup discussions, and (F) changes made after the review
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violated several times in the same PR. Review comments also referenced other review com-
ments to describe how to fix an issue. This suggests that some rules are not one-off and
reflect recurring issues.

Next, we mapped the formulated rules to SATs. To find this mapping, we employed a sys-
tematic qualitative data analysis process (Saldaña 2015; Seaman 1999), adapting methods
previously used to study code reviews (Sadowski et al. 2018b). We used a two-step coding
process (Saldaña 2015) to identify categories of SATs and to map each review comment to
a SAT.

In the first step, we applied open coding to generate a list of tool definitions. We began
with an initial list of well-known SATs that check rules against code such as clone detectors,
dead code detectors, and linters and created definitions for these categories. As we applied
these codes, we created codes for new tool types when these were not applicable. The tool
categories include both the means and the purpose of the analysis. We considered three
orthogonal dimensions of tools as well as the purpose of tools to categorize SATs (defined
in Section 4 and Table 1). We considered SATs independent of programming language (e.g.,
language-specific style checkers such as JSLint (Crockford 2011) as Style Checkers). We
ignored tools that do not check rules, such as those that require developers to write code
(e.g, keyword programming tools Little and Miller 2007).

In the second step, we applied focused coding, grouping similar tools identified in the
previous step into categories through an iterative process. We identified 12 types of SATs
(Fig. 4). Next we annotated review comments by extracting rules’ properties and matching
them against the dimensions and purposes of SATs. For example, the rule we identified for
the issue in Fig. 2 requires that utility methods, which only use data from their arguments
and only call other utility methods, be located in utility classes. To check this rule, method
bodies may be examined for the variables referenced (i.e., only arguments and not global
variables or fields) and the methods invoked (only other utility methods). These checks
might be implemented through a tool which examines the AST of this code. Therefore, we
labeled this issue as one which might be detected by an AST Pattern Checker (Section 4).
Next, we used the final codes to annotate each review comment with tools able to check
them (closed coding).

To investigate the impact of the defects on their projects, we built a second taxonomy. We
followed a similar approach and first applied open coding on the rules for each defect iden-
tified from review comments. We used open coding and annotated the data in two phases.
In the first phase, the first author applied descriptive coding and summarized each review
comment in a word or a short phrase. In the second phase, all authors discussed the theme
of the labels obtained and applied pattern coding iteratively. In each phase, authors dis-
cussed relationships between labels to clarify differences and grouped similar themes. To
ensure consistency, we established coding guidelines. For example, if a reviewer explicitly
asked for a “fix,” we coded the defect as an implementation defect. Or if the reviewer asked
for “consistency,” we coded the defect as code quality. When a defect may belong to sev-
eral defect types, we considered the most specific as the type of the defect. For example,
we always considered defects involving the user interface as user interface defects, defects
involving the performance of the codebase as performance defects, and defects involving
test suites as test suite defects. We identified 7 defect types, identifying distinct impacts of
a defect on a project (Fig. 3).

To ensure the reliability and repeatability of our classifications, we conducted an inter-
rater reliability check. Two authors individually labeled 3 sets of 70 randomly selected
review comments using code definitions. After each round, the authors compared the labels,
identified divergences, and clarified the definitions to refine the scope of labels. Finally, the
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Fig. 3 We classified defects based on their impacts on the project

authors applied the coding scheme to an additional 70 randomly selected review comments.
The calculated Cohen’s κ for the SAT labels was κ = 0.53, showing that the agreement
between the two raters is “Moderate” (Landis and Koch 1977). For the defect classification
labels, the final calculated Cohen’s κ was 0.68, showing that the agreement between the two
raters is “Substantial” (Landis and Koch 1977). Disagreements mainly arose from differing
interpretations of the reviewers’ intent when the artifacts available in the review comments
were limited.

What is the origin of the rules 
checked by the tool?

SpecificationsProgramming Language

What are the representations of 
the rules checked by the tool?

AST Code Execution

Syntax and 
Semantic Analyzers

Memory Leak 
Detectors

What is the purpose of the tool?

Checking Build 
and Config Files

Checking the Quality 
of Test Suites

Checking String 
Literals in Source Files

Continuous 
Integration Tools

Test Suite 
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Code Execution

Best Practices

What is the purpose of the tool?

Checking String 
Literals in Source Files

String Literal 
Checkers

Finding Dead Code Dead Code 
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Checking Coding 
Style Conventions

Style 
Checkers

Finding Code Clone Code Clone 
Detectors

Finding Code Smell Code Smell 
Detectors

Static Execution 
SimulatorsChecking Source Files

Fig. 4 Our SAT taxonomy categorizes the types of SATs based on the origin of the rules they check, the
purpose of the tool, and the representations of the rules they check (nodes with italic text)
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4 SAT Classification

We categorize SATs in our taxonomy through three orthogonal dimensions and their purpose
(Fig. 4). The three orthogonal dimensions are Representation, Origin, and Consequence.
Representation specifies whether rules are represented by checking an AST representation
of the source code, checking String literals in source files, or Code Execution and tracking
and monitoring paths in code. Origin indicates whether rules originated in the definition
of the programming Language, are imposed by project Specifications, or are generated by
Best Practices. Consequence indicates the impact of violations on code, by decreasing the
quality and maintainability or by impacting its behavior by changing its output. We clas-
sified SATs first based on the Origin dimension, and next based on the purpose of the
tools (e.g., finding dead code or finding code clones). In the last step, SATs are classified
based on the Representation of the rules checked by the tools (Fig. 4). We also exam-
ined the Consequences of rules checked by SATs, but this dimension did not differentiate
between any additional types of tools. Many real world static analysis tools, such as Sonar-
Qube (SonarSource 2022), Coverity (Bessey et al. 2010), Tricorder (Sadowski et al. 2015),
and Infer (Calcagno et al. 2015), combine several of these categories together.

Here we define each SAT category (Table 1). As many SATs encompass hundreds of
related tools (e.g., Static Execution Simulators), we illustrate each with seminal examples
of tools.

Style Checkers ensure the readability of code by checking code style conventions (e.g.,
CheckStyle 2004). Violations decrease code quality. Rules may be expressed through con-
straints on a program’s AST, through formatting and style conventions for comments, or for
typos in comments and identifiers.

Table 1 Our SAT taxonomy includes 12 categories of tools. Each is specified through three dimensions:
Representation, Origin, and Consequences. (A: AST, CE: Code Execution, ST: Strings, L: Language, SP:
Specifications, BP: Best Practices, CQ: Code Quality, B: Behavioral). The ∼ symbol indicates indirect
influence
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Continuous Integration Tools ensure a successful build and integration process of compo-
nents, such as by checking rules related to the availability and compatibility of libraries and
the correctness of configuration settings in build and configuration files (e.g., Jenkins 2019,
Travis CI 2019). These rules may be expressed as constraints on an AST representation, the
execution of code, or on string literals. Rules are project-specific, and violations change the
program’s behavior.

Static Execution Simulators check rules by data flow analysis, control flow analysis,
model checking, type checking, abstract interpretation, separation logic, or symbolic execu-
tion (e.g., CPAchecker Beyer and Keremoglu 2011). They may generate representations of
execution such as call graphs or dependency graphs (e.g., Reacher LaToza andMyers 2011).
Rules are expressed through project-specific specifications or programming languages, and
checked through analysis of the code execution. Violations impact the behavior or quality
of code.

Architectural Style Checkers check the as built software architecture of code against the
intended as designed architecture, and may include rules that encompass many components
(e.g., ArchJava Aldrich et al. 2002). They impose constraints on the names and locations of
elements as well as their dependencies and communication. Rules are specified per-project
and may be checked against the AST or by code execution.

Test Suite Quality Checkers check the quality of test suites, such as by evaluating code
coverage or testing critical inputs (e.g., JCov 2014). Rules are expressed through constraints
on the AST of tests, the execution behavior of tests, or the allowable values of string literals.
Rules are project-specific, and violations may indirectly impact the program’s behavior and
code quality.

Dead Code Detectors detect code fragments that are never executed because they are
unused or unreachable (e.g., JSNose Fard and Mesbah 2013, DUM Romano et al. 2016).

Code Clone Detectors identify contiguous segments of source code that are syntactically
and semantically similar (Svajlenko and Roy 2015) (e.g., CCFinder Kamiya et al. 2002).
Code clones include (1) identical code fragments, (2) identical code fragments with different
user-defined identifiers and literal values, (3) similar code fragments with statements added,
removed, or changed, and (4) semantically similar code fragments implementing the same
functionality (Roy and Cordy 2007). The presence of code clones is often considered poor
coding practice, violating code quality standards. Code Clone Detectors detect code clones
by analyzing ASTs or code execution.

Syntax and Semantic Analyzers check code for conformance to a programming language’s
syntax and semantics. This includes constructing the AST of the program and checking
it against the language grammar (syntax) as well as type checking and verifying the con-
sistency of the AST with rules defined by the programming language (semantic analysis).
Violations of these rules impact the behavior of the code.

String Literal Checkers check for the compliance of string literals in code with standard
formats, such as for log messages or addresses of external hosts (e.g., Regex checkers).
Rules are project-specific, and may be specified through grammars or regular expressions.
Violations may impact the quality or behavior of code.
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Code Smell Detectors identify defects that violate best practices and decrease the main-
tainability of code (van Emden and Moonen 2002) (e.g., PMD Copeland 2005, Find-
bugs Hovemeyer and Pugh 2004, JSNose Fard and Mesbah 2013). They may rely on rules
concerning the program’s AST or execution. In some taxonomies, code smells also include
code clones and dead code fragments. In our taxonomy, we separate these from code smells.

Memory Leak Detectors identify memory that is allocated but not released (e.g., SABER
Sui et al. 2012, LeakChecker Yan et al. 2014). For example, a rule may specify where a spe-
cific variable must be allocated and then later released. Rules may be checked through code
execution, are imposed by programming language semantics, and their violation impacts
program behavior.

AST Pattern Checkers check code against rules expressible through a pattern which may
be represented through the AST of a program. These rules are specified by project specifi-
cations and affect the behavior or the quality of the code. AST Pattern Checkers may check
rules which require the presence of code, prohibit code, or express alternatives. If a rule is
checkable by both AST Pattern Checkers and another category of tools (e.g., Architectural
Style Checkers), we label the rule with the latter category.

4.1 Defects Not Detectable by SATs

Checking some rules required additional information beyond the information found in the
formal channel used by SATs. These rules required human judgement, which might be based
on information from the natural language channel in code found in identifiers or comments,
in design documents, or from a developers’ own knowledge and judgement. While static
analysis tools using the formal channel alone are unable to check these rules, future tools
using the natural language channel might potentially be able to check some of these rules.

5 Defect Classification

We identified 7 types of defects; Requirements, User Interface, Implementation, Main-
tainability, Performance, Test Suite, and Build Config (Fig. 3). The Maintainability and
Implementation categories are similar to the Evolvability and Functional defects identified
by Mäntylä and Lassenius (2009).

Maintainability defects impact the quality, rather than the behavior, of code. Maintainabil-
ity defects encompass defects universally applicable to all projects, such as code smells,
as well as project-specific defects. For example, refactoring improves the readability of the
code, and defects that require refactoring are Maintainability defects. This category includes
a subset of Evolvability defects (Mäntylä and Lassenius 2009) that contains a broader range
of defects that “make the code less compliant with standards, more error-prone, or more
difficult to modify, extend, or understand”.

Implementation defects (also known as Functional Defects Mäntylä and Lassenius 2009)
occur when code does not satisfy its requirements.

Rules preventing implementation defects are defined per-project and their violations
change the behavior of code. This category of defects contains a subset of Functional
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defects (Mäntylä and Lassenius 2009) which “may cause system failure when the code is
executed.”.

Build Config defects encompass anything that may cause the build and integration of the
codebase to break, such as missing scripts or inconsistent external libraries. This includes
defects in scripts and config settings that configure how a compiler and other tools integrate
source code into a running application. For example, incorrect local or external addresses
of libraries are Build Config defects. Defects such as using methods from incorrect libraries
does not break the build and thus they does not fall in this category.

Test Suite defects encompass all defects in test suites. These include incorrect and inef-
fective test suites, such as an incorrect assertion that makes the test suite incorrect or
insufficient code coverage. As tests checks the correctness of applications, Test Suite defects
may be related to behavioral defects. Tests can check code, and therefore, indirectly impact
code quality.

User Interface defects encompass visual appearance and the ways in which elements
behave. Defects impact the interface displayed to the user and the resulting usability of the
application for the user. We label a defect as a User Interface defect if it directly changes
the user interface and the way the user interacts with it. For example, an inappropriate ele-
ment color is a User Interface defect. However, an incorrect implementation used to set a
color (e.g., specificity, inheritance, or cascading in CSS) is not a User Interface defect.

Requirements defects involve missing consideration or misinterpretation of project
requirements. If through review comments or code changes the contributor indicates that
they understood the requirements but implemented them incorrectly, the identified defect is
not a Requirements defect. We differentiate misinterpreting requirements from incorrectly
implementing requirements. For example, if persisting specific data is a requirement, then
keeping the data in a cache or disposing the data are misinterpretation and ignoring the
requirements. An incomplete or incorrect implementation is an incorrect implementation of
the requirements.

Performance defects encompass issues impacting runtime or memory usage, such as
unnecessary computation or poorly optimized memory allocation.

For example, performance defects include unnecessary queries to the database which
reduce application performance.

5.1 Comparison with Other Defect Taxonomies

Our taxonomy adapts some categories from existing defect taxonomies but differs in
its goal. Our taxonomy focuses on the impact of the defect, while most existing defect
taxonomies focus on the cause of the defect (Section 2). Our taxonomy has important sim-
ilarities to ODC (Chillarege et al. 1992) and the classification of defects found in code
reviews by Mäntylä and Lassenius (2009). ODC (Chillarege et al. 1992) has 8 main defect
types based on the immediate cause of the defect (e.g., incorrect data validation, assign-
ment errors). Our taxonomy instead organizes defects based on the impact of the defect on
the project. For example, ODC does not explicitly identify Maintainability or Performance
defects. The main difference in Mäntylä and Lassenius (2009) is the major categories, which
are Functional and non-Functional defects.
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Table 2 The percentage of defects which might potentially be detected (FC), by tool category and by defect
type. The Count column is the number of defects. The Overall % column for All Defects lists the percent-
age of all defects found in review comments of that type. The Tool Type % column lists the percentage of
defects found by the tool of that defect type. The Overall % of Defects Detectable by SATs column lists the
percentage of detectable defects found in review comments
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6 RQ1: What Types of Existing SATs are Necessary to Identify Defects?

To investigate the potential of SATs to find more defects, we first examined the defects
which are detectable through the use of the formal channel (Casalnuovo et al. 2020) or
FC. The formal channel of code encompasses information specifying computer execution
and derives its meaning from the semantics of code. We found 12 types of SATs necessary
to identify more defects (Sections 6.1 to 6.12). We found that AST Pattern Checkers and
Style Checkers were the most broadly applicable, encompassing 25.70% and 25.62% of all
defects, respectively. Our results are listed in Table 2.

6.1 AST Pattern Checkers

Among all tool types, AST Pattern Checkers had the broadest potential applicability
(25.70% of all defects, 33.70% of FC defects) to detect defects. Many of the defects poten-
tially detectable concern incorrect implementations of requirements or the maintainability
of code.

Among all defects potentially detectable by AST Pattern Checkers, many involved viola-
tions of rules defined by implementation rules (55.29% of defects potentially detectable by
AST Pattern Checkers). Some were caused by incorrect usage of existing code (e.g., incor-
rect method calls) or extra implementation (e.g., extra check for an input). For example, one
defect required a specific method invocation for every instance of an object:

Another frequent type of defect which might be detectable by AST Pattern Checkers
involve maintainability defects (24.41% of defects potentially detectable by AST Pattern
Checkers). These include code conventions and best practices (e.g., using ‘ ’ instead
of ‘ ’ for comparing String literals) true across projects as well as project-specific rules.
For example, one rule stipulated use of a logger instead of print to signal errors (Ex. 2).

Other defects involved the user interface of the program (9.71% of defects potentially
detectable by AST Pattern Checkers). These concerned violations of the intended visual
design of the user interface or potential negative impacts for the usability of the software
for end-users. For example, one review comment concerned a defect where an external link
on the system website had an incorrect setting in which the browser was directed to leave
the website. This setting impacted the usability of the system for the user and could be
addressed by changing an HTML tag attribute ( ). The review comment specified that
this attribute should be applied in a specific set of enumerated circumstances (all external
links).
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Some potentially detectable defects negatively impacted performance or memory use
(2.35% of defects detectable by AST Pattern Checkers). For instance, one defect involved
persisted data that was retained in-memory. The reviewer specified that persisted data should
only be retrieved on demand from the database rather than retained in memory (Ex. 4).

6.2 Style Checkers

We found that Style Checkers had a high potential to detect defects (25.62% of all defects
and 33.60% of all FC defects). Style Checkers check a wide range of maintainability rules,
such as best practices and universal coding conventions. For example, reviews frequently
surfaced defects involving violations of indentation and spacing conventions or universal
naming conventions (Ex. 5).

6.3 Continuous Integration Tools

Continuous Integration Tools might be used to detect defects that break the build and the
integration of the codebase (5.06% of all defects). For example, these tools can detect
whether incorrect versions of a library is used by checking configuration files (Ex. 6).

6.4 Static Execution Simulators

Static Execution Simulators might potentially be used to detect 4.91% of all defects. We
found that many of these defects concern incorrect implementation of requirements or
maintainability defects. These tools may also sometimes be relevant to detecting defects
involving system performance. Static Execution Simulators can detect incorrect, incom-
plete, or extra implementations of requirements through code abstraction (66.15% of defects
detectable by Static Execution Simulators). For examples, these tools can check if a variable
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correctly holds one of a set of permitted values or if a temporal property holds for events in
code. In Example 7, a defect in a system with publish/subscribe architecture can be detected
by checking the order in which method calls occur.

Static Execution Simulators might also be used to detect maintainability defects (24.62%
of defects potentially detectable by Static Execution Simulators). For example, a rule might
describe how specifiers on mutability might be applied based on a variable’s usage (Ex. 8).

Static Execution Simulators might also be applied to performance defects (7.69% of
defects detectable by Static Execution Simulators). Defects that impact runtime or memory
usage might be specified by tracing values assigned to variables and fields. For example,
static execution simulation might be used to determine whether a variable is needed by
identifying where it is assigned values and how it is used (Ex. 9).

6.5 Architectural Style Checkers

Architectural Style Checkers might potentially be used to detect 4.54% of the defects in
our dataset. These tools might check maintainability rules specifying allowed architectural
styles. For example, a tool might check if classes within a component follows its policy on
the correct level of accessibility (Ex. 10).

They might also check rules concerning where elements should be located, specifying
necessary refactorings (Ex. 11).
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6.6 Test Suite Quality Checkers

Test Suite Quality Checkers (2.19%) might be used to find defects affecting the correctness
and effectiveness of test suites, such as low code coverage ormissing or redundant tests (Ex. 12).

6.7 Code Clone Detectors

Code Clone Detectors (2.12%) may be used to find code which duplicates other function-
ality. Most of the code clone defects resulted from re-implementing functionality found in
parts of the program with which the contributor was less familiar. Others were introduced
by repeatedly implementing short code fragments within the same pull request (Ex. 13).

6.8 Dead Code Detectors

Dead Code Detectors (2.04%) might be used to detect code which is never executed. Dead
code was often caused by unawareness by the developer of the potential states of the application
(Ex. 14). Other causes of dead code included code migration and refactoring of functionality.

6.9 Syntax and Semantic Analyzers

Syntax and Semantic Analyzers (1.51%) may be able to detect defects such as incorrect
import statements, missing or extra characters in code, and typos in identifiers (Ex. 15).

6.10 String Literal Checkers

String Literal Checkers (1.51%) may be able to detect defects in string literals that lead
to incorrect implementation of requirements or reduce code maintainability. String Literal
Checkers may be used to detect incorrect string literals violating system requirements and
altering system behavior (50.00% of defects detectable by String Literal Checkers). For
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example, String Literal Checkers can check whether a correct host name is used for client-
server applications. They can also check whether strings literals assigned to variables are
among approved lists of strings (Ex. 16).

String Literal Checkersmight also check custommaintainability rules where specified for-
mats are defined for string literals (50.00% of defects detectable by String Literal Checkers).
For example, they can check whether log messages are printed consistently (Ex. 17).

6.11 Code Smell Detectors

Code Smell Detectors might potentially detect 0.76% of all defects, such as code which is
unnecessarily long or complex (Ex. 18).

6.12 Memory Leak Detectors

We found that Memory Leak Detectors have the potential to detect the fewest of the defects
found through code review (0.30% of all defects). These tools can detect defects like unfreed
memory allocations (Ex. 19). There are several reasons why memory leak defects were
infrequently observed. One may be support by modern programming languages in automat-
ically managing memory has resulted in few defects. Another may be that these defects are
simply rarely found through code review, instead surfacing only through testing.
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7 RQ2: What Features in SATs are Necessary to Detect Defects?

To find the required features in SATs to detect defects, we looked at defects detectable by
SATs and identified important required features for each type of SAT.

7.1 AST Pattern Checkers

The most broadly applicable tools were AST Pattern Checkers: 25.70% of all defects. Many
of these defects involved violations of project-specific rules (Ex. 20). To detect AST-based
project-specific defects, AST Pattern Checkers should enable developers to author custom
AST-based rules, as in extensible checkers such as PMD and RulePad (Mehrpour et al.
2020).

While most defects concerned a single element (e.g., block, method, or file), some
involved rules crosscutting several elements. For example, one reviewer suggested that to
define new REST URL endpoints through a specific REST framework, overriding super-
class methods is enough and there is no need to assign annotations to the methods (Ex. 21).
Tools can identify violations of this rule by checking the AST of classes and methods. To
detect crosscutting and more complex AST-based defects, AST Pattern Checkers should
support complex and crosscutting rules.

To identify necessary features for checking AST-based rules, we analyzed the defects
potentially detectable by AST Pattern Checkers in detail. AST-based rules can be formulated
in two parts: when the rule should apply (the quantifier of the rule) and how the rule should
apply (the constraints of the rule). A defect occurs when a snippet of code satisfies the rule
quantifier and violates the rule constraints. Tools such as ActiveDocumentation (Mehrpour
et al. 2019) identify code snippets where only the quantifier applies as well as where both
the quantifier and the constraints apply and compares the results to identify defects. More
traditional defect detectors such as PMD and FindBugs detect defects by checking for the
co-occurrence of both parts of the rule. For example, the rule “UseIndexOfChar” of PMD
states that when the index of a single character of a string is looked for, then it is more
efficient to use .2 PMD checks this rule by checking the called meth-
ods ( and ) and the type of input argument (String or Char) and throws
errors if it detects a violation.3

2https://pmd.github.io/latest/pmd rules java performance.html#useindexofchar
3https://github.com/pmd/pmd/blob/master/pmd-java/src/main/java/net/sourceforge/pmd/lang/java/rule/
performance/UseIndexOfCharRule.java

https://pmd.github.io/latest/pmd_rules_java_performance.html#useindexofchar
https://github.com/pmd/pmd/blob/master/pmd-java/src/main/java/net/sourceforge/pmd/lang/java/rule/performance/UseIndexOfCharRule.java
https://github.com/pmd/pmd/blob/master/pmd-java/src/main/java/net/sourceforge/pmd/lang/java/rule/performance/UseIndexOfCharRule.java
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Based on the characteristics of the rule constraints we observed in our dataset, we identi-
fied three categories of AST-based rule violations: Incorrect (45.29% of defects potentially
detectable by AST Pattern Checkers), Extra (25.88%), and Missing Code (28.82%) vio-
lations. An Incorrect Code violation occur when a code snippet follows the quantifier
conditions but the implemented constraints contain incorrect code (Ex. 22). An Extra Code
violations occur when a code snippet follows the quantifier conditions but the implemented
code contains extra unwanted code (Ex. 20). A Missing Code violation occur when a code
snippet follows the quantifier constraints but the implemented constraints are incomplete
(Ex. 3).

To check for these three categories of rule violations, tools should support multi-step
rule verification. In the first step, tools should find the code snippets on which rules are
applied by checking code against the conditions of rule quantifiers. In the next step, tools
should verify the constraints of the rules on the code snippets found in the previous steps.
And finally, tools should report code snippets violating the constraints. For some AST-based
rules, the quantifier and constraints are applied on the same part of the AST. To check these
rules, existing tools such as PMD or FindBugs are capable of executing a single AST query
to check each rule (Fig. 5). However, more complex and crosscutting rules may require
executing multiple AST queries.

7.2 Style Checkers

Style Checkers were the second most broadly applicable tools, potentially detecting 25.62%
of all defects in our dataset. Almost half of these related to rules about the format of code,
including rules about spacing, indentation, and empty lines. Less common defects related
to typos in comments, naming conventions such as camel-case or lowercase letters, and
program language conventions such as lambdas.

Fig. 5 In PMD, AST-based rules can be configured as queries of unwanted code snippets on the AST of code
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Fig. 6 CheckStyle checks sets of universal coding style rules on code, such as format of code or general
naming conventions

Many defects were violations of common best practices, such as defects related to code
formatting (Ex. 23 to 25), typos in comments (Ex. 26), or naming conventions (Ex. 27).
Others were violations of project-specific rules defined by developers, such as imports with
wildcards (Ex. 30), incorrectly structured comment blocks (Ex. 31), or missing required
prefixes for method names (Ex. 32). Many of these defects are detectable by simple local
checks on code as is done in CheckStyle (CheckStyle 2004) (Fig. 6).

Some defects require more complex rules to detect. For example, some projects may
declare a style rule that commented code should instead be removed (Ex. 29). Syntactically
valid commented code from other comments can be distinguished by simple checks,4 but
detecting unparsable commented code requires further computation and a more complex
parser. Other defects concerned how code elements are ordered and grouped, such as orga-
nizing internal and external library imports (Ex. 33) or sorting methods to match the order
in which they are invoked (Ex. 34). To detect ordering defects, Style Checkers might use
both static analysis as well dynamic analysis to determine the order of elements (Table 3).

7.3 Less Frequent Tools

Defects potentially detectable by Continuous Integration Tools encompassed 5.06% of all
defects. Most were violations of universal rules, such as outdated or inconsistent versions
of libraries, missing scripts when adding or using a library or a framework, incorrect paths,
or an incorrect config file format. Others were violations of project-specific rules, such as
extra scripts ( or commands), required scripts for failed steps, and required libraries.
Many of these might be detected by static checks.

Static Execution Simulators might potentially detect 4.91% of all defects in our dataset.
By tracking data flow, these tools may help in identifying the mutability of variables (Ex. 8),
confirming the need for variables (Ex. 9), and detecting possible overflow or underflow

4https://github.com/checkstyle/checkstyle/issues/2982

https://github.com/checkstyle/checkstyle/issues/2982
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Table 3 Style Checkers are able to detect violations of common best practices as well as violations of project-
specific rules. We included examples from our dataset for each category of rules

(Ex. 35). Some defects also required the ability to detect undesired sequences of events
(Ex. 7).

Architectural Style Checkers might potentially identify 4.54% of all defects in our
dataset. These defects were mostly project-specific. Tools might check for violations of
naming conventions (both universal and project-specific), the correct location of code ele-
ments (e.g., classes, methods, etc.), the correct visibility of code elements, and the correct
location of functionality within elements (Ex. 36).
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Test Suite Quality Checker might potentially detect 2.19% of all defects in our dataset.
The majority of concern the coverage of newly implemented functionalities in tests. Code
coverage in tests can be checked by dynamic analysis as it is already covered in existing off-
the-shelf tools like JCov (2014). Other required features include parameterizing the tests,
verifying the correctness of tests (e.g., always passed or failed tests), and identifying test
cases testing the same condition.

Other types of SATs are well-defined in the literature, with well-known necessary fea-
tures. For example, Code Clone Detectors and Dead Code Detectors might potentially detect
2.12% and 2.04% of all defects. To detect these defects, these tools should be able to detect
unreachable or unexecuted code as well as syntactic or semantic code clones through static
or dynamic analysis. Syntax and Semantic Analyzers might potentially detect 1.51% of
all defects by performing static analysis. String Literal Checkers might potentially detect
1.51% of all defects by identifying the String locations by static analysis and applying
pattern checking techniques such as Regex to find violations. Code Smell Detectors and
Memory Leak Detectors might potentially detect the least frequent defects (0.76% and
0.30% of all defects) by applying static or dynamic analysis.

8 RQ3: Which Defects Cannot be Detected by Only Using the Formal
Channel?

In order to detect defects, SATs traditionally rely exclusively on interpreting code based
on its syntax and semantics. Throughout the paper, we refer to tools which rely on this
information about code, such as traditional SATs, as making use of the formal channel.
However, in some cases, this information may be insufficient to determine the intended
behavior of code. During code review, human developers may make use of additional
information to identify defects. For example, a developer might read the comment of a
method and, based on this, decide that the code does not correctly implement this behavior.
To understand the nature of defects not detectable through the use of the formal channel
alone, as used by traditional SATs, we examined defects which require more information
to detect, which we label as ‘defects not detectable by using only the formal channel’ NFC
(Section 4.1). We specifically examined the types of human judgments necessary to interpret
these defects and the information in the natural language channel of code such as comments
and identifiers (Casalnuovo et al. 2020) or in artifacts other than code that supports this.

An NFC defect may require information from various artifacts or even tacit knowledge
known only by the developer themselves to be detected. For example, a developer may
identify incorrect logic implemented in a method by looking at the method identifier and
comments which are in the natural language channel of code (Ex. 49). Or a developer might
identify an incorrect constant identifier by inspecting the use cases of the constant (the
formal channel) and then comparing this to comments and identifiers describing the intent of
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Table 4 Percentage of code review defects not detectable by SATs through the formal channel (NFC) by
defect type. The Count and Overall % Columns are defined as in Table 2

the constant (the natural language channel) (Ex. 37). A developer may also use information
beyond the code to detect a defect. For example, a developer might choose between several
possible ways of logging an event by considering the meaning and importance of the event,
which cannot be determined from the formal channel of code (Ex. 42). This information
may be instead be described in documentation or rely on information about the project
tacitly held by the developer.

Investigating defects not detectable through the formal channel alone is helpful to inves-
tigate the potential for future tools which use information beyond the formal channel in their
analysis of code. Through the use of ML or NLP techniques, future tools might perform
some of the same analysis as a human developer, inferring intent from the natural language
channel information found in code identifiers or comments or through other artifacts.

We found that NFC defects involve maintainability defects such as incorrectly named
identifiers (Ex. 37), implementation defects like incorrect implementations (Ex. 41), and
requirement defects like incomplete implementations (Ex. 43). We found that, among all
NFC defects, maintainability defects are the most frequent, encompassing 49.04% of all
NFC defects, followed by implementation defects (28.03% of NFC defects). Our results are
summarized in Table 4.

8.1 Maintainability

The most frequent type of NFC defects were maintainability defects (49.04% of NFC
defects). Many concerned identifier naming. Compared to issues such as camel-case letters
in method names (Ex. 27), which might be detected by Style Checkers, these defects did
not involve a list of rules which could be easily enumerated and instead required human
judgment and common-sense knowledge. For example, a developer may view an identifier
as not correctly communicating the purpose of a variable.

Another common issue was in the use of comments, including comments which were
missing, unnecessary, incorrect, incomplete, or misplaced. For example, one defect con-
cerned a missing inline comment. This was not universally prohibited or required, but
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necessary only in cases where code was hard to understand. This requires developer
judgement to ascertain.

Others issues concerned the readability of code, particularly those that dealt with its
organization and how this communicated intent and whether code constituted one intent or
multiple intents.

8.2 Implementation

The second most common category of NFC defects involved incorrect implementations
(28.03% of NFC defects). These involved identifying incomplete, unnecessarily complex, or
incorrect implementations. For example, one reviewer identified a defect where they found
that a specific value should never be passed as an argument but should instead be computed
from a different argument (Ex. 40).

Other implementations were incomplete, and reviewers suggested additional work to be
done based on their understanding of what functionality was needed. One reviewer found
that an error was particularly important, and required a new API error to signal it (Ex. 41).

Identifying this defect requires evaluating the meaning and significance of errors which
occur.

Other implementations were incorrect. One reviewer identified an event that was logged
at an incorrect level, based on their understanding of the importance of the data to the user
(Ex. 42).
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Identifying this defect requires making a human judgement about the importance of an
event to the user.

8.3 Requirements

9.55% of NFC defects concerned incorrect implementation of requirements. These included
implementations that were incorrect, incomplete, or which violated constraints. For exam-
ple, one reviewer felt that checks which signaled failures too frequently should be avoided
when possible, with the condition logged rather than signaling a failure (Ex. 43).

Other requirements defects concerned incomplete implementations which required addi-
tional code. Viewing it as necessary that when important events occur, a user should be
notified, one reviewer found a case where this did not occur (Ex. 44).

Requirements defects also concerned constants which were incorrectly chosen. One
reviewer felt that a constant allocating resources was incorrectly chosen, in light of the
amount of resources which they expected might be required (Ex. 45).

8.4 Less Frequent Defect Types

User interface defects (5.73% of NFC defects) involved incomplete, incorrect, or undesired
implementations of user interface features. Defects involved an incorrect implementation of
a user interface element (Ex. 47) or an incorrect color scheme for user interface elements
(Ex. 48). For example, one reviewer felt that, whenever the user rejected an action, they
should be given a timer to revert it before it is finalized (Ex. 46).
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We found that 4.46% ofNFC defects concerned incorrect, missing, and hard-to-read tests.
Defects involved issues such as test suites which had not been updated to match the imple-
mentation (Ex. 49), incorrect use of boundary values (Ex. 50), unreadable tests (Ex. 51),
and additional needed tests (Ex. 52).

Build configuration defects encompassed 1.91% of NFC defects in our dataset and con-
cerned incorrect or incomplete configuration code. One reviewer had a rule that a specific
configuration file was only expected to be listing the tests that were expected to fail (Ex. 53).
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The least frequent category of NFC defects were performance defects (1.27%). For exam-
ple, one reviewer identified a case where a performance optimization was possible, and a
slow method called many times might be called just once. (Ex. 54).

9 Threats to Validity

Our study has several important limitations and internal and external threats to validity.

Internal Validity A potential threat to the internal validity of our results is the accuracy
of our coding. To create our coding scheme, we first applied two cycles of open cod-
ing, creating a definition for each code. To ensure our coding scheme could be accurately
and repeatably applied, we applied and refined the definitions, clarifying ambiguity across
multiple cycles of closed coding. To label each code review comment, we needed to under-
stand reviewers’ intent as well as the context of the review comment. To gain insight into
the review comments, we used all available artifacts included and referenced by the pull
requests. However, the complexity of the projects, and the unavailability of some artifacts,
sometimes made this challenging. It was also necessary for us to interpret the intent of each
comment. To do this accurately, we consulted previous and subsequent review comments in
the same pull request to add additional context. Reviewers may also express multiple defects
stated in a single review comment. In our coding process, we selected the most emphasized
defect in each comment.

External Validity Our dataset of PR comments was taken exclusively from open source
projects. Our findings might potentially differ for commercial projects. However, our dataset
is diverse in the types of the projects, number of contributors, and programming languages.
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The repositories in the dataset range from group projects with a small number of contribu-
tors to open source projects with many contributions. A limitation of our study comes from
focusing on defects found through code review. It is possible that some defects are sim-
ply never, or only very rarely, found by code review, but are instead revealed only through
testing or other quality assurance measures. Further work is needed to determine how the
types of defects found in code review, which we examine, are similar or different from those
found by other quality assurance measures.

10 Discussion

In this paper, we investigated the potential of SATs to find more defects. We found that SATs
have the potential to detect 76% of defects identified in code reviews, considerably more
than the 4.5% of defects found to be detectable by Error Prone, Infer, and Spotbugs (Habib
and Pradel 2018) or 16% of code review defects found by PMD (Singh et al. 2017). There
are several potential interpretations of this divergence. Defects may have occurred in code
written in programming languages not supported by these tools. The defects might be able to
be detected by these tools, but require additional rules which had not been written to detect.
Finally, some of the defects might, in principle, be found through the use of these techniques,
but might require more powerful static analysis techniques with greater precision than is
possible today.

10.1 Analyzing Code Review Defects

Code review defects have long been used as a proxy to evaluate the ability of defect detectors
to find defects (Singh et al. 2017;Wagner et al. 2005; Beller et al. 2016). The goal of a defect
detector must be to check for defects as defined by a project’s developers. While developers
reviewing code may have different definitions of correctness (Sadowski et al. 2018a) or
even suggest changes that might seemingly be viewed as unnecessary or inconsistent, we
believe that measuring the success of a tool against what its users, the developers, wish it
might find is still the most important metric with which to define its success.

When we marked defects as being potentially detectable by static analysis techniques,
this does not imply that this is possible with today’s static analysis tools. Our analysis is
aimed at motivating future tools, and is consequently inherently optimistic in considering
what might be possible. In practice, some of these defects may require much more powerful
analysis techniques, or might, in fact, require analysis techniques that are impossible to
create.

10.2 Using SATs to Detect More Defects

Many of the rules we identified were project-specific, necessitating developers in specific
projects to write them rather than relying on the creators of the SAT to have already written
them. Whereas today’s tools are known for general rules but are extensible to project-
specific rules (e.g., PMD, Tricorder), our results strongly suggest that future defect detectors
would greatly increase their ability to identify defects by embracing project-specific rules.
Making it easier for developers to themselves quickly author project-specific rules might
help bridge this gap. Our findings can guide practitioners to better understand and prioritize
different types of SATs.
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We found AST Pattern Checkers to have wide applicability, able to potentially detect
25% of all code review defects. This is again higher than the 16% of code review defects that
have been identified to be detectable found by PMD, a commonAST Pattern Checker (Singh
et al. 2017). As Static Analysis Tools, AST Patterns Checkers are comparatively simple,
relying on syntactic checks rather than tracking data flow or more complex rules. Our
results suggest several important ways that these tools might be extended to identify more
defects. We found three types of AST-based violations detectable by AST Pattern Check-
ers, including Incorrect Code violations, which are not directly supported by existing SATs.
This suggests the value of investing more in further improving AST Pattern Checkers, where
the important barriers remain primarily in what rules are supported and the difficulty of
supporting individual developers in authoring project-specific rules.

Beyond simply identifying the presence of a defect, developers also increasingly expect
Static Analysis Tools to help in the process of proposing a fix (Johnson et al. 2013). While
current SATs can detect 2 out of the 3 types of AST-based rule violations we identified,
many are not yet capable of proposing fixes. To propose fixes to Missing or Extra Code vio-
lations, tools may suggest code by using separate AST patterns for a quantifier (when the
rule applies) and a constraint (what the code must satisfy). For example, ActiveDocumen-
tation (Mehrpour et al. 2019) compares code against two separate AST patterns, enabling
it to identify Missing Code violations. PMD (Copeland 2005) and FindBugs (Hovemeyer
and Pugh 2004) can detect undesired code snippets, and thus, may detect Missing or Extra
Code violations. However, they are not able to differentiate Incorrect code and other types
of violations. In addition, they are not always able to suggest fixes.5

SATs such as Memory Leak Detectors that only detect a small percentage of the defects
found in code review, might still be valuable to developers in some cases. Deciding on
using a SAT requires the developers to make an engineering trade-off to balance the cost
of running the tool and against the potential benefits of using the tool. In some cases, even
infrequent defects may be severe enough that they warrant substantial effort to prevent.

In this study, we used a new qualitative method to investigate the potential of tools to
identify defects. Specifically, we focused on evaluating the potential of static analysis tools
to detect defects found in code reviews. While static analysis tools are widely used to detect
defects, many non-static analysis techniques, such as mutation testing or ML-based tech-
niques, have also increased in popularity in recent years. Comparing the ability of static
and non-static analysis techniques would help weigh the cost of applying non-SAT defect
detection techniques against the benefits gained through the defects found by each anal-
ysis method. Future studies might make use of our qualitative method to examine other
types of analysis techniques such as unit tests and compare the types and quantity of defects
potentially detectable by a variety of analysis techniques.

10.3 DetectingNFCDefects

We found that 24% of code review defects cannot be detected by existing types of SATs,
as these defects require human judgment to identify and information beyond the formal
channel information that traditional SATs use to identify defects. However, these defects
may not be entirely impossible for tools to detect. Tools which employ techniques from

5E.g., some tools offer quick fixes for limited types of defects found by FindBugs, https://github.com/
kjlubick/fb-contrib-eclipse-quick-fixes

https://github.com/kjlubick/fb-contrib-eclipse-quick-fixes
https://github.com/kjlubick/fb-contrib-eclipse-quick-fixes
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machine learning and natural language processing may make it possible to simulate the pro-
cess human developers use to make judgements about the correctness of code. Recent work
has begun to explore the potential for tools to utilize machine learning techniques to detect
defects in code (e.g., Nam and Kim 2015; Huo et al. 2018). ML-based defect detectors use
information other than the formal channel of code such as comments (Huo et al. 2018), iden-
tifier names (Pradel and Sen 2018), or previous defect fixes (Wang et al. 2020) to predict
defects offering optimism to detect NFC defects. Natural language processing techniques
may also be used to process source code information and detect NFC defects such as input
parameter misplacement(Rice et al. 2017). Recent progress in designing deep learning-
based tools, such as GitHub CoPilot (GitHub 2021), demonstrate the great potential of the
natural language channel in working with code.

10.4 Documentation and SATs

Our findings also suggest the potential for a closer relationship between documentation and
SATs. A common challenge developers face is the inaccessibility and incompleteness of
information in code. Code review is an important approach for on-boarding and helping
developers gain knowledge about code. In many cases, this knowledge is not explicitly
structured or documented. Source code knowledge is often written down by developers only
in code reviews, leaving it scattered in pull requests and buried in review comments. Rather
than simply address issues in each individual commit, developers who find issues in code
review might instead write checkable rules to find future issues of the same form. Tools
such as Getafix (Bader et al. 2019) have already begun to explore the potential for this
interaction paradigm. Our work suggests the broad potential for a variety of types of SATs
to be constantly used by developers to create rules which capture important project-specific
knowledge.

10.5 Future of Code Review

In current practice, the code review process has little to no connection with defect detectors,
as code reviewers examine the submitted code manually to identify defects. In some soft-
ware development teams, developers work to write style rules and ask contributors to check
their code against them before submitting the code. Our results suggest that many of the
issues developers are finding during code review might be written as rules at the time devel-
opers perform code review. For example, a developer finding an issue during code review
might see an issue in one place, write a new rule to check this, and then, as part of their code
review, detect other violations of the rule. The code review might then include a new rule
and highlight current violations of the rule. Our results suggest a potential for code review
tools to more directly integrate rule checkers, in particular supporting easy authoring of new
rules. This would save code reviewers from repeatedly applying rules to code, pushing this
work onto tools, making rules more consistently checked, potentially decreasing the number
of defects in code, and reducing the cost of code review.
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