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A B S T R A C T   

Humanity is facing major societal challenges that are complex and systemic in the nature of their drivers, in
teractions, and impacts. Because buildings and cities play a substantial role in these societal challenges, we need 
reliable approaches that can be used to assess their resilience and sustainability. Given that building and urban 
systems are usually tightly coupled, we critically review nine building-scale assessment frameworks and seven 
urban-scale assessment frameworks, ranking them from high to low in terms of the causality among component 
systems. We identify four major knowledge gaps that, to varying degrees, span the entire range of assessment 
frameworks: (1) causality among component systems and their subsystems is limited; (2) sustainability and 
resilience are too narrowly defined; (3) social systems are inadequately addressed; and (4) building- and urban- 
scale assessments are poorly connected. To address these limitations, we briefly introduce several closely-related 
fields of research including integrated assessment and modeling, social-ecological systems research, land systems 
science, socio-environmental systems modeling, modeling of human behavior, multi-scale modeling, and multi- 
fidelity modeling. Building on these rapidly emerging research domains, we conclude by proposing a more 
holistic, multi-scale, system-of-systems approach that connects across building and urban scales using several 
common systems.   

1. Introduction 

Many of the world’s greatest societal challenges, including those 
associated with climate change, interdependent infrastructure systems, 
coastal and inland flooding, renewable energy, and disaster manage
ment, are complex and systemic in the nature of their drivers, in
teractions and impacts. Often framed in terms of resilience and 
sustainability, these challenges require integration across a wide range 
of environmental, economic, and social systems (Little, Hester, & Carey, 
2016). 

Many assessment frameworks have been developed in an attempt to 
integrate data and knowledge in buildings and cities. Examples include 
green buildings, building rating systems, building information 
modeling, urban resilience, and urban metabolism. Many of these 
frameworks have been the subject of detailed reviews (Alyami & 
Rezgui, 2012; Ribeiro & Pena Jardim Gonçalves, 2019; Seyis, 2020; 
Zhang et al., 2019; Zheng, Yuan, Zhu, Zhang, & Shao, 2020; Zhou & 
Williams, 2013), but existing reviews typically focus on comparisons 
within a single framework (e.g., comparing one rating system to 

another) and comparisons among the different approaches are limited. 
Many of the frameworks are interrelated with considerable overlap, and 
the building and urban environment are intimately connected, but are 
usually considered entirely separately. Overall, there is no overarching 
review that categorizes and compares the various frameworks and dis
cusses their collective strengths and limitations. 

In this critical review, we compare nine building-scale assessment 
frameworks and seven urban-scale assessment frameworks, ranking 
them from high to low in terms of the causality among component 
systems, as shown in Fig. 1. We then identify four major knowledge gaps 
that, to varying degrees, span the entire range of assessment frame
works. Finally, to address those gaps, we briefly outline a more holistic, 
multi-scale, system-of-systems approach that could be used to connect 
across building and urban scales to more systematically inform the 
policy and decision-making process. 
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2. Assessment frameworks at building and urban scales 

2.1. Ranking of assessment frameworks 

It is increasingly recognized that a building or a city can be 
conceptualized as a system of systems (Bašić, Strmo, & Sladoljev, 2019; 
Jin, Gubbi, Marusic, & Palaniswami, 2014; Schoonenberg, Khaya, & 
Farid, 2019; Sharifi, 2019). Thus, a building or a city may have systems 
that interact with multiple other systems based on complex, dynamic, 
and causal relationships (Iwanaga et al., 2021; Little et al., 2019). 
Additionally, building-scale systems can strongly interact with 
urban-scale systems because buildings are among the most important 
components of a city. The complex dynamics and interdependencies 
among the systems mean that realistically assessing either sustainability 
or resilience is extremely challenging. These complex problems are 
usually related to multiple social, environmental, and economic systems 
that are tightly coupled, constantly changing over space and time, and 
governed by feedbacks (Reyers, Folke, Moore, Biggs, & Galaz, 2018), 
and it is usually the case that our understanding of those problems is 
overwhelmed by their complexity. For example, seemingly obvious so
lutions to problems involving such complex systems frequently create 
unintended consequences that worsen the situation (Bray & McCurry, 
2006; Homsy & Hart, 2019). 

Many assessment frameworks at the building and urban scale divide 
the overarching goal (for example, achieving sustainability or resilience) 
into multiple independent goals with corresponding assessment criteria. 
The criteria are typically used to identify indicators, which are then used 
to quantify the gap between desired and existing conditions. By dividing 
a complex problem into smaller domains of knowledge, experts then 
work to close the gap between desired and existing conditions in their 
respective knowledge domains. However, when considered within the 
context of the societal challenges listed above, the systems within a 
building or a city are almost always highly interdependent. Changes to 
one system may negatively or positively impact other systems. Negative 
impacts are referred to as trade-offs, while positive impacts are referred 
to as synergies or co-benefits, assuming the impacts can even be 

identified in advance. Negative impacts are generally referred to as 
unintended consequences when they cannot be identified in advance. 
Identifying synergies and trade-offs without causing unintended conse
quences is a significant challenge for decision-making across multiple 
complex systems. 

The multi-purpose nature of buildings, which satisfy the needs of 
occupants for safety (Böke, Knaack, & Hemmerling, 2018), function
ality, comfort (Iwaro & Mwasha, 2013), and aesthetics (Winters, 2007), 
while maintaining high efficiency in resource consumption (IEA, 2008), 
will inevitably create opportunities for synergies and trade-offs among 
the various systems. For example, goals in the building energy system 
can potentially be in conflict with those in the health and comfort sys
tem. Room air recirculation is beneficial to achieve high energy effi
ciency in buildings, but the strategy may reduce the amount of fresh air 
brought into the indoor environment, thus worsening indoor air quality. 
At the urban scale, the building sector is an important factor in climate 
change mitigation because buildings contribute about 40 percent of 
greenhouse gas emissions globally (United Nations Environment Pro
gramme, 2020). On the other hand, buildings are one of the most crucial 
aspects for adapting to climate change because structurally reliable and 
resilient buildings are necessary to shelter occupants from extreme 
weather. The important role of buildings in mitigating and adapting to 
climate change requires that building construction, operation, and 
maintenance are optimized for multiple goals. Nevertheless, this con
siders climate change alone, while other potentially interdependent 
societal challenges are ignored. 

Given the complexity of the societal challenges described above, 
assessment across building and urban scales cannot simply rely on 
assigning scores to indicators. In many cases, these indicator scores are 
so aggregated in nature that it is not clear how an engineer can intervene 
to positively improve the indicator score. Assessment frameworks 
should instead focus on establishing causal relationships between the 
systems in a building or a city and on the desired measures of perfor
mance and effectiveness (Group, 2015). Such causal links are estab
lished either by a data-driven or a model-based approach (Schoonenberg 
& Farid, 2020). In the former, input data is tied to measures of 

Fig. 1. Ranking of building- and urban-scale assessment frameworks based on the degree of causality among systems of a building or a city.  

C. Bi and J.C. Little                                                                                                                                                                                                                            



Sustainable Cities and Society 82 (2022) 103915

3

performance through statistically derived functions that describe how 
the building and/or urban area behaves. In the latter, the statistically 
derived functions are replaced with mechanistic models. Interventions 
that seek to change a system’s structure ultimately require the causal 
relationships found in model-based approaches whereas interventions 
that seek to change only the system’s behavior can rely on either 
data-driven or model-based approaches. Assessment frameworks that 
rely on indicators without causal relationships describing how the 
building or city behaves do not enable engineering interventions 
(Schoonenberg & Farid, 2020). 

We therefore roughly rank the assessment frameworks based on the 
degree of causality among the systems and/or indicators within the 
framework (Fig. 1), although we acknowledge that we are unable to 
comprehensively examine each framework in this brief overarching re
view. Nevertheless, our review clearly identifies four major knowledge 
gaps that, to varying degrees, span the entire range of assessment 
frameworks:  

1) Causality among component systems and their subsystems is limited.  
2) Sustainability and resilience are too narrowly defined.  
3) Social systems are inadequately addressed.  
4) Building- and urban-scale assessments are poorly connected. 

2.2. Assessment frameworks at the building scale 

Buildings serve many purposes that are associated with building 
systems. For example, building envelope systems protect occupants from 
outdoor weather; water and energy systems support basic building op
erations; economic systems are associated with building operation and 
construction costs; and social systems involve occupant behavior and 
human comfort. Given that those building systems are likely to be 
interdependent, achieving goals at the building scale requires the inte
gration of multiple systems to minimize trade-offs and maximize syn
ergies. Although there has been considerable progress in developing 
approaches to holistically evaluate complex problems at the building 
scale, the specific boundaries and areas of application are not well- 
defined, and in some circumstances, the approaches are essentially 
interchangeable. In an attempt to compare existing approaches, we 
briefly review low-carbon buildings, zero energy buildings, sustainable 
human-building ecosystems, building rating systems, green buildings, 
healthy buildings, building life cycle assessment, smart buildings, and 
building information modeling. 

2.2.1. Low-carbon buildings 
Low-carbon buildings are designed and engineered to reduce carbon 

emissions and improve energy performance, including the use of low 
carbon materials, low carbon techniques, and renewable energy during 
the entire building life cycle (Zhang, Li, & Zhou, 2017). By definition, 
the assessment of low-carbon buildings is constrained to a single indi
cator (greenhouse gas emissions) although this is one of the most 
important factors contributing to climate change. It is reported that the 
building sector represents 28% of global energy-related CO2 emissions, 
rising to 39% when construction industry emissions are included (IEA & 
UNEP, 2019). Since the two main methods to reduce greenhouse gas 
emissions are to decrease total energy consumption and to increase 
renewable energy use (IPCC, 2014), low-carbon buildings focus heavily 
on energy. 

Although the low carbon concept is straightforward to understand, 
there is no consensus on the detailed framework and methodology to 
assess and evaluate low-carbon buildings. Luo, Tan, Langston, and Xue 
(2019) identified five main themes in low-carbon building research 
focusing on policy and practice, life cycle assessment, building design, 
technology innovation, and building material. They also found that 
those themes were investigated separately and rarely studied in a con
nected and systematic way. Additionally, the energy-centric focus on 
low-carbon inevitably overemphasizes the influence of energy 

consumption and greenhouse gas emission, but energy saving is not the 
only goal, even within the context of climate change. For example, 
resilient buildings are needed to withstand more frequent extreme 
weather events (Charoenkit & Kumar, 2014), and socio-economic im
pacts of building energy retrofits need to be included in assessment 
frameworks (Amini Toosi, Lavagna, Leonforte, Del Pero, & Aste, 2020). 
Overall, the low-carbon framework clearly targets energy in buildings, 
but the definition of sustainability is limited to climate-related aspects. 

2.2.2. Zero-energy buildings 
The International Energy Agency defines zero-energy buildings as 

buildings that do not use fossil fuels, while the building should obtain 
energy from solar and other renewable resources (IEA, 2008). Hence, 
zero-energy buildings focus on minimizing energy consumption and 
maximizing energy produced by renewable energy systems (Li, Yang, & 
Lam, 2013). While more details are provided by Marszal et al. (2011) 
and Sartori, Napolitano, and Voss (2012), zero-energy buildings are not 
substantially different from low-carbon buildings, which also focus on 
energy, and share the drawbacks discussed above. 

2.2.3. Sustainable human building ecosystem 
Due to the lack of socio-economic systems in earlier building 

assessment frameworks, a sustainable human building ecosystem 
framework was developed to blend occupant comfort and behavior with 
social and monetary sciences and the design, engineering and meteo
rology of buildings (Talele et al., 2018). Although at an early stage, the 
framework improves the understanding of occupant behavior (ener
gy-related occupant behavior, thermo-physical behavior related to 
thermal comfort (diet, clothing, movement) and energy usage patterns) 
and also contextual factors which directly or indirectly influence all 
behavior (Talele et al., 2018). However, similar to low-carbon and 
zero-energy buildings, the sustainable human building ecosystem 
framework remains energy-centric. The social and economic dimensions 
are included in the framework only when they directly impact building 
energy consumption or vice versa. 

2.2.4. Building rating systems 
Rating systems are closely associated with green buildings and are 

commonly used to evaluate building sustainability. There have been 
extensive developments in integrated building assessment rating sys
tems such as the Building Research Establishment Assessment Method 
(BREEAM), Sustainable Building Tool (SBTool), Leadership in Energy 
and Environmental Design (LEED), and Comprehensive Assessment 
System for Building Environment Efficiency (CASBEE) (Alyami & 
Rezgui, 2012; Kajikawa, Inoue, & Goh, 2011). The rating systems assess 
building sustainability based on a list of evaluation criteria with “water”, 
“material”, “energy”, “indoor environment”, “site”, “land and outdoor 
environment”, and “innovation” as the most popular criteria (Shan & 
Hwang, 2018). Many broader criteria contain a subset of criteria that 
enables assessment of construction phase or building type. For example, 
LEED includes LEED Building Design and Construction (BD + C), LEED 
Interior Design and Construction (ID + C), LEED Building Operations 
and Maintenance (O + M), and more (Zhang et al., 2019). Multiple in
dicators are used to evaluate each criterion of interest and calculate an 
overall score based on the summation or weighted summation of credits 
in each category (Cordero, Melgar, & Márquez, 2019; Shan & Hwang, 
2018; Wen et al., 2020). 

In contrast to low-carbon buildings, zero-energy buildings, and sus
tainable human building ecosystems, which all focus strongly on energy, 
building rating systems cover more aspects of sustainability by dividing 
a building into many independent criteria for which indicators can be 
established and quantified. The indicator-based rating systems divide a 
complex assessment framework into a series of simple evaluation 
criteria thus creating a semi-quantitative method to evaluate sustain
ability. However, there is no causal relationship among the individual 
building criteria. Because the linear combination of indicators, either 
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weighted or not, is a fixed aggregation method, the assessment frame
work cannot capture the dynamic relationships among constituent sys
tems. Additionally, rating systems are typically designed based on expert 
judgment that is context specific, and the applicability of the approach 
depends on whether the rating system design aligns with the context of a 
specific country, region, or city. In this case, rating systems are not 
generalizable and it has been suggested that every country needs to 
develop rating systems that are best suited to their specific conditions 
(World Green Building Council). 

2.2.5. Green buildings 
Green buildings are closely associated with, and typically certified 

by, building rating systems. Although building rating systems are 
developed to assess green buildings, in this review we assume that green 
buildings include, but are not limited to, the green building certification 
programs using rating systems as the assessment framework. Green 
building is the practice of creating structures and using processes that 
are environmentally responsible and resource-efficient throughout a 
building’s life cycle, from siting to design, construction, operation, 
maintenance, renovation and deconstruction (US EPA). Green buildings 
cover a wide range of sustainability dimensions such as reduced 
life-cycle cost, reduced use of energy, water, and other resources, 
enhanced occupant health and comfort, improved productivity, and 
better aesthetic appearance (Darko, Chan, Owusu, & Antwi-Afari, 
2018). 

Nevertheless, the major portion of green building practice only 
evaluates the environmental dimensions of sustainability (Darko, Chan, 
Huo, & Owusu-Manu, 2019). Although the political (e.g., disruption to 
existing regulatory frameworks) and social (e.g., public acceptance of 
new technology) dimensions of green building assessments received 
more attention recently and are integrated into a framework (Franco, 
Pawar, & Wu, 2021), their assessments are conducted separately from 
the environmental dimension of sustainability (Olukoya & Atanda, 
2020) and/or remain as qualitative analyses (Franco et al., 2021). 
Moreover, although green buildings are considered important compo
nents of urban-scale assessment frameworks (Liu, Sun, Sun, Shi, & Liu, 
2019), building-scale assessments ofter overlook the influence of urban 
policy on building management. 

2.2.6. Healthy buildings 
A healthy building is one that adversely affects neither the health of 

its occupants nor the larger environment (Levin, 1995). Although there 
are initial efforts investigating health aspects of green buildings, Allen 
et al. (2015) suggest that those studies rely on self-reported and sub
jective measures of health. To address the lack of health indicators in 
green buildings, the concept of green buildings was expanded to healthy 
buildings by defining health performance indicators that are quantifi
able measures of human health and can be used to identify drivers of 
negative and positive impacts of buildings on health, productivity and 
well-being of occupants. Allen et al. (2017) summarized the nine foun
dations of healthy buildings as air quality, ventilation, lighting and 
views, noise, water quality, safety and security, dust and pests, moisture, 
and thermal health. Additionally, Kim and Todorovic (2013) proposed a 
healthy building sustainability index, which is a weighted rating system 
with three levels of aggregation, to evaluate the sustainability of healthy 
buildings. Since current healthy building frameworks were built on 
building rating systems by adding health performance indicators, they 
share the same drawbacks as those of building rating systems. 

2.2.7. Building life cycle assessment 
Life cycle assessment (LCA) can be defined as the assembly and 

estimation of resource inputs, outputs and the potential environmental 
impacts of a product system, including their processes and designs, 
throughout its life cycle (Grant, Ries, & Kibert, 2014; Iso, 2003). Nwodo 
and Anumba (2019) reviewed life cycle assessment of buildings and 
found that current studies focus on the embodied and operational 

energy/carbon in the building life cycle including product, construction, 
use, and end-of-life stages. Therefore, LCA has the advantage of causally 
representing the flow of energy and carbon associated with building 
materials and activities throughout the building life cycle. LCA has also 
been used in combination with other assessment frameworks such as 
building rating systems (Alshamrani, Galal, & Alkass, 2014) and build
ing information modeling (Lu, Jiang, Yu, Tam, & Skitmore, 2021). While 
most LCA studies use carbon emission or energy consumption as a single 
environmental indicator, others cover multiple environmental in
dicators such as ozone creation potential and human health respiratory 
effects potential (Lu et al., 2021). 

Current LCA studies are subject to some limitations. Although LCA 
was used in combination with life cycle cost analysis and social LCA to 
integrate the environmental dimension with economic and social di
mensions (Finkbeiner, Schau, Lehmann, & Traverso, 2010), it was found 
that social LCA was limited to thermal comfort, human life risk, and 
social feasibility (Amini Toosi et al., 2020). Moreover, the bottom-up 
nature of LCA requires the user to aggregate resource consumption 
and pollutant production of individual materials and operations of a 
building throughout its life cycle. However, materials and operations 
may differ significantly between buildings and doing such analysis for 
every building is costly and sometimes impossible due to the lack of 
data. Even if the required data are available, building LCA only allows 
the comparison of specific products or processes without taking a sys
tems approach and does not fully capture dynamic causal relationships 
among building systems over space and time. 

2.2.8. Smart buildings 
Smart buildings use smart service systems to optimize the use of 

resources and goods and increase the quality of life of residents and users 
(Bašić et al., 2019). Smart buildings feature technology-driven sensing 
and control of building systems such as energy management system, 
HVAC system, lighting system, water system, waste management sys
tem, air quality system, and health monitoring system (Verma, Prakash, 
Srivastava, Kumar, & Mukhopadhyay, 2019; Vijayan, Rose, Arvindan, 
Revathy, & Amuthadevi, 2020). Since nearly half of building energy is 
consumed by HVAC systems (Shi, Yu, & Yao, 2017), smart control 
strategies for energy-efficient HVAC systems are an important part of 
smart buildings (Gholamzadehmir, Del Pero, Buffa, Fedrizzi, & Aste, 
2020). Beyond technology-driven smart building strategies, 
occupant-centric control needs to be developed to holistically integrate 
technologies, policies, and industrial processes for smart buildings and 
satisfy the needs of occupants (Stopps, Huchuk, Touchie, & O’Brien, 
2021). 

While building LCA is useful at estimating embodied carbon, energy, 
and other environmental impacts of building materials, smart buildings 
have advantages in capturing the operational consumption of materials 
in real time through deployment of sensors. Sensors can monitor 
quantifiable physical parameters (e.g., occupancy, temperature, 
pollutant concentration, sound volume, and air/water flow rates) that 
can be used for systemic modeling (Stopps et al., 2021). However, 
existing smart building frameworks emphasize data collection more 
than transforming the data into a decision-support strategy. Addition
ally, parameters that are not directly measurable by sensors (e.g., human 
behavior, cost of consumer products, and the concentration of specific 
organic contaminants) are difficult to integrate into the current smart 
building frameworks. 

2.2.9. Building information modeling based framework 
BIM is a digital representation of the physical and functional char

acteristics of a facility, and a shared knowledge resource for information 
about a facility, forming a reliable basis for decisions during the life 
cycle, which extends from earliest conception to demolition (National 
BIM Standard-US). We note that BIM is generally considered a tool 
instead of a framework (Lu, Wu, Chang, & Li, 2017), but due to its ad
vantages of managing information across multiple building systems, we 
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review BIM-based frameworks separately from others in this work. Some 
of the early attempts to implement BIM focused primarily on a particular 
aspect of a building such as construction (Lopez, Chong, Wang, & Gra
ham, 2016), energy-saving (Gao, Koch, & Wu, 2019), and safety man
agement (Martínez-Aires, López-Alonso, & Martínez-Rojas, 2018). 
Although those efforts helped to inform the sustainability of buildings to 
some extent, it was only recently that researchers began to incorporate 
sustainability assessment criteria into BIM standards and guidelines 
(Chong, Lee, & Wang, 2017). For example, Yahya, Boussabaine, and 
Alzaed (2016) proposed including eco-indicators in BIM to quantify the 
sustainability of building construction products. 

Since data-driven assessment approaches rely on the availability of 
data, an advantage of BIM is the integration of physical and functional 
characteristics into a software platform. In this case, approaches such as 
LCA, requiring the quantity and type of building materials as input 
variables, can be used based on information provided by the BIM plat
form to accelerate the evaluation process (Lu et al., 2021). Besides the 
embodied cost and environmental impacts assessed in LCA, building 
operational costs and impacts monitored in smart buildings have the 
potential to be stored in real-time with BIM, further enhancing the 
availability of data in the software (Ang, Berzolla, Letellier-Duchesne, 
Jusiega, & Reinhart, 2022; Ang, Berzolla, & Reinhart, 2020). Although 
BIM is still at an early stage of development and mostly used in the 
construction industry, it has the potential to become a software platform 
that connects building systems in a causal way and that integrates other 
assessment frameworks such as LCA and smart buildings. 

2.3. Assessment frameworks at the urban scale 

A city, from both ecological and societal perspectives, can be rep
resented as a collection of coupled human and natural systems (Mar
cotullio & Solecki, 2013). The coupled systems include social, 
technological, and environmental dimensions which may evolve over 
time and space, making urban-scale sustainability assessment even more 
challenging than at the building scale. Clearly, the increase in 
complexity for urban-scale assessment means that existing attempts are 
mostly at a conceptual and qualitative level. Here, we briefly review 
assessment frameworks including urban ecological infrastructure, 
eco-cities, low-carbon cities, urban rating systems, smart cities, urban 
resilience, and urban metabolism. 

2.3.1. Urban ecological infrastructure 
Urban ecological infrastructure is defined as the organic integration 

of blue (water-based), green (vegetated), and grey (non-living) land
scapes, combined with “exits” (outflows, treatment, or recycling) and 
“arteries” (corridors) at an ecosystem scale (Li et al., 2017). In contrast 
to a classic definition of infrastructure, which refers mainly to the built 
environment, urban ecological infrastructure includes earlier “urban 
nature” concepts such as green infrastructure and urban green space and 
emphasizes the non-built urban environment (Childers et al., 2019). 
Although previous work on impacts of urban ecological infrastructure 
has covered a wide range of topics including human and environmental 
health, climate, stormwater management, urban planning, social 
behavior, and urban economy (Parker & Zingoni de Baro, 2019), only a 
limited number of studies mentioned causal influence (Venkatar
amanan et al., 2019). Tzoulas et al. (2007) provided conceptual and 
experimental evidence to show that there are causal interactions be
tween ecosystem and human well-being in a city. Felappi, Sommer, 
Falkenberg, Terlau, and Kotter (2020) further qualitatively identified 
synergies and trade-offs between wildlife support and mental health 
based on green infrastructure indicators. However, those studies mostly 
focus on connections between two components (e.g., nearby trees visible 
from apartment buildings are associated with mental fatigue reduction 
of residents) and more holistic assessments integrating multiple com
ponents involving ecosystems, technological systems, and 
socio-economic systems are lacking. 

2.3.2. Eco-cities 
Eco-cities were developed based on earlier neighborhood planning 

movements, including garden city, neighborhood units, modernism, and 
neo-traditionalism (Sharifi, 2016). An eco-city is built on the principles 
of living within the means of the environment. The ultimate goal of 
many eco-cities is to eliminate carbon waste (zero-carbon city), to pro
duce energy entirely through renewable resources, and to incorporate 
environmental health (Amakpah, Larbi, Liu, & Zhang, 2016). Zhou and 
Williams (2013) summarized eight major eco-city indicators including 
energy and climate, water, air quality, waste, transportation, economic 
health, land use and land form, and social health. The concept of eco-city 
is widely promoted in China leading to the creation of multiple 
world-first eco-city projects that were later questioned over whether 
ecological goals were achieved (Ghiglione & Larbi, 2015). Prominent 
eco-city projects include Abu Dhabi Masdar City project (Grey, 2018), 
Japanese eco-town projects (Van Berkel, Fujita, Hashimoto, & Geng, 
2009), the Sino-Singapore Tianjin Eco-city project (Caprotti, 2014), but 
each project has its own assessment criteria and no consensus on a 
general assessment approach has been reached (Dong et al., 2016). 

2.3.3. Low-carbon cities 
A low-carbon city focuses on curtailing the anthropogenic carbon 

footprint of cities by minimizing or abolishing the use of energy from 
fossil fuels (Abubakar & Bununu, 2020). Low-carbon cities have 
emerged as the latest sustainable urban strategy in response to climate 
change impacts, particularly for China, where low carbon city planning 
was treated as one of the most important goals of city development with 
three batches of low carbon pilot cities established (Hunter, Sagoe, 
Vettorato, & Jiayu, 2019). A variety of indicators were developed to 
assess the pilot low-carbon cities (Lin, Jacoby, Cui, Liu, & Lin, 2014; Tan 
et al., 2017; Zhou, He, Williams, & Fridley, 2015). 

However, low-carbon city development has been biased towards 
economic and technological innovations (Hunter et al., 2019). Addi
tionally, while the building sector contributes 40% of carbon emission 
(IEA & UNEP, 2019) and may impact the urban environment in many 
ways, the low-carbon city framework often overly simplifies the build
ing sector. In addition, a limited number of indicators such as the 
number of energy-efficient or green buildings per capita are used 
(Harris, Weinzettel, & Levin, 2020; Zhou et al., 2015), which may not 
reflect actual building energy use. The influence of buildings on other 
urban-scale indicators such as air quality and human health is rarely 
considered. 

2.3.4. Urban rating systems 
During the last two decades, a number of well-known building-scale 

assessment frameworks, including LEED and BREEM, have been 
expanded to the community scale (Sharifi & Murayama, 2013). 
Early-stage implementation of those rating systems was usually limited 
to the development of a single city block or multiple collective blocks 
with publicly accessible spaces (Tam, Karimipour, Le, & Wang, 2018), 
while recent work has scaled up the frameworks to city-wide assessment 
(Ali-Toudert, Ji, Fährmann, & Czempik, 2020; Pedro, Silva, & Pinheiro, 
2018). In addition, other indicator-based urban rating systems have 
been proposed to tackle the challenges in cities from a variety of per
spectives (Ameen & Mourshed, 2019; Huovila, Bosch, & Airaksinen, 
2019; Lützkendorf & Balouktsi, 2017; McDonald & Patterson, 2007; 
Verma & Raghubanshi, 2018). Similar to building rating systems, urban 
rating systems rely on assigning scores to pre-defined indicators and 
aggregating indicators using a weighting system (Ameen, Mourshed, & 
Li, 2015). Additionally, while those rating systems cover a wide range of 
sustainability-related dimensions, their focus on energy, water, recy
cling, and other environmental aspects is stronger than on social and 
economic aspects, which represent an essential part of urban commu
nities (Ameen, Mourshed, & Li, 2015). 
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2.3.5. Smart cities 
A smart city utilizes information communication technology and 

other technologies to improve quality of life, competitiveness, and 
operational efficacy of urban services, while ensuring the resource 
availability for present and future generations in terms of social, eco
nomic, and environmental dimensions (Farid, Alshareef, Badhesha, 
Boccaletti, Cacho, Carlier, Corriveau, Khayal, Liner, Martins, Rahimi, 
Rossett, et al., 2021; Farid, Alshareef, Badhesha, Boccaletti, Cacho, 
Carlier, Corriveau, Khayal, Liner, Martins, Rahimi, Rossetti, et al., 2021; 
Kondepudi et al., 2014). The foundation of a smart city is the extensive 
use of information communication technology that enables the collec
tion and analysis of big data from urban services. The collected infor
mation can be used to improve quality of life with a focus on sustainable 
and efficient solutions for energy management, transportation, health 
care, and governance (Silva, Khan, & Han, 2018). However, the notion 
of a smart city, despite some promising attempts to include citizen 
participation (Malek, Lim, & Yigitcanlar, 2021), has not been 
adequately conceptualized, mainly due to perceiving the “smart” in 
smart cities as technological smartness rather than human smartness 
(Yigitcanlar, Han, Kamruzzaman, Ioppolo, & Sabatini-Marques, 2019). 
The technological-smartness approach typically focuses on the use of 
smart technologies in cities while the relationship between sustain
ability and those techniques is sometimes overlooked (Bibri & Krogstie, 
2017). 

A conceptual framework has been developed to model a smart city as 
a system of systems. For example (Naphade, Banavar, Harrison, Para
szczak, & Morris, 2011) proposed to integrate and optimize a set of 
interdependent public and private systems to achieve a new level of 
effectiveness and efficiency. Measurable information in different urban 
systems can be monitored through smart technologies and the integra
tion of information models across multiple systems allows a 
monitor-control-optimization cycle to plan and manage urban opera
tions (Cavalcante, Cacho, Lopes, & Batista, 2017). While this approach 
has the potential to establish causal connections among systems, it may 
overlook important information that is difficult to monitor (e.g., specific 
pollutant levels or human behavior). In other words, achieving the 
proposed urban-scale integration of information models relies on the 
collection of massive amounts of data in physical environments by 
deploying smart devices throughout the various urban systems. 

2.3.6. Urban resilience 
Urban resilience is the capacity of a city and its urban systems (social, 

economic, natural, human, technical, physical) to absorb strong per
turbations, to reduce the impacts (changes, tensions, destruction or 
uncertainty) from a disturbance (shocks, disasters, changing weather, 
crises or disruptive events), to adapt to change and to improve systems 
that limit current or future adaptive capacity (Ribeiro & Pena Jardim 
Gonçalves, 2019). While applications of urban resilience to climate 
change have attracted most attention (Tyler & Moench, 2012), other 
areas such as urban planning (Masnavi, Gharai, & Hajibandeh, 2018), 
urban infrastructure (Liu & Song, 2020), energy (Sharifi & Yamagata, 
2016), and human or natural disasters (Cariolet, Vuillet, & Diab, 2019) 
have also been investigated. While some quantitative assessments still 
use weighted indicators (Zhang et al., 2019; Zhang, Yang, Li, & van Dijk, 
2020), other studies couple models across multiple urban systems, 
usually limited to water, electricity, and transportation systems, to 
connect model variables that are associated with civil infrastructure 
resilience as summarized by Bozza, Asprone, and Fabbrocino (2017). A 
further attempt to include human behavior (Cavallaro, Asprone, Latora, 
Manfredi, & Nicosia, 2014) and quality of life (Renschler et al., 2010) in 
coupled system modeling was made to understand the perception of 
urban stakeholders on civil infrastructure systems. 

2.3.7. Urban metabolism 
Urban metabolism refers to “a complexity of socio-technical and 

socio-ecological processes by which flows of materials, energy, people 

and information shape the city, service the needs of its populace, and 
impact the surrounding hinterland” (Currie & Musango, 2017). Ferrão 
and Fernandez (2013) present a conceptual framework through a 
multi-layered examination of (i) urban bulk mass balance, (ii) urban 
material flow analysis, (iii) product dynamics, or life cycle assessment, 
(iv) material intensity by economic sector, (iv) environmental pressure 
of material consumption, (vi) spatial location of resource use, and (vii) 
transportation dynamics. Kennedy, Stewart, Ibrahim, Facchini, and 
Mele (2014) introduce a multi-layered and standardized indicator set for 
collecting urban metabolism data in megacities. 

As reviewed by Zhang, Yang, and Yu (2015), multiple causal ac
counting and modeling approaches have been used in urban metabolism 
research, including substance- and material-flow analysis, input-output 
analysis, and ecological network analysis. Those approaches can inte
grate internal mechanisms of urban systems and consider their in
teractions with the surrounding environment at scales ranging from 
local to global. Zhang, Yang, and Yu (2015) further suggested that a 
systems engineering approach should be introduced to unify and inte
grate the methods from different fields of research and to design ap
proaches that will provide solutions for specific social policy problems. 
Based mostly on material flow analysis, urban metabolism studies intend 
to capture the interlinkage and interdependence among different aspects 
of urban networks, represented by indicators within a weighted matrix 
(Ko & Chiu, 2020; Maranghi et al., 2020). Finally, Cristiano, Zucaro, Liu, 
Ulgiati, and Gonella (2020) designed a circular arrangement of pro
duction and consumption by integrating recovery of resources such as 
solid waste, wastewater, and food residuals. 

3. Gaps in existing assessment approaches 

3.1. Causality among component systems and their subsystems is limited 

Due to the complexity of causally integrating multiple systems and 
the affordability of simulating a complex, coupled problem, many 
assessment approaches at building and urban scales, including green 
buildings, healthy buildings, low-carbon buildings/cities, eco-cities, and 
rating systems, simplify the integration and use indicators that are in
tegrated based on a simple summation of credits, weighting systems 
(Shan & Hwang, 2018), or an analytical hierarchy/network process 
(Ding, Niu, Liu, Wu, & Zuo, 2020). Those multi-criteria assessment 
methods are simple and easy to use, but rely on expert judgment in a 
specific context (e.g., a type of building or a geographic region) and 
cannot account for implicit causal relationships among indicators. For 
example, building energy consumption, indoor particulate matter con
centration, and filtration efficiency of filters in HVAC systems are 
treated as independent indicators in some building rating systems. 
Nevertheless, the indicators are causally connected because better 
filtration efficiency may simultaneously result in higher energy con
sumption and lower particulate matter concentration. Aggregating the 
credits assigned to the indicators may, to some extent, capture quanti
tative relationships among the indicators for a specific building at a 
given operating condition, but cannot represent the change in causal 
relationships when the scenario changes. In these out-of-context situa
tions, applying weighted approaches will likely result in unintended 
consequences. 

The lack of causal connections among indicators in assessment 
frameworks has received growing attention and some early attempts 
have been made to quantitatively describe the interdependence among 
indicators. Approaches based on material flow analysis including 
building life cycle assessment and urban metabolism have advantages in 
linking multiple systems using mass and energy balances. By tracking 
the consumption of resources and emission of pollutants along the life 
cycle of a product or a process, these approaches incorporate the 
mechanisms by which resources are consumed and enable the inclusion 
of feedback loops, but may have limited temporal and spatial resolution 
(Hester & Little, 2013). 
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Although establishing causal relationships among coupled systems 
(often hindered by the interoperability of models) is more challenging 
than a rating framework, some pioneering work has been conducted to 
couple models at the building scale. Recent work has sought to bring 
building-level energy models to the neighborhood scale (Buckley, Mills, 
Letellier-Duchesne, & Benis, 2021; Buckley, Mills, Reinhart, & Berzolla, 
2021; Cerezo Davila, Reinhart, & Bemis, 2016; Reinhart & Cerezo 
Davila, 2016). Another recent example couples building energy (e.g., 
EnergyPlus model) and indoor air quality systems (e.g., contaminant 
transport model (CONTAM)) (Underhill, Dols, Lee, Fabian, & Levy, 
2020). In addition, an asthma risk model was coupled to assess building 
energy retrofits on asthma outcomes (Tieskens et al., 2021). At the urban 
scale, smart city frameworks advocate the monitoring of physical in
formation and integrated information models to treat a city as a system 
of systems (Jin et al., 2014), and urban resilience frameworks apply 
coupled systems models to predict model variables in civil infrastructure 
(Bozza et al., 2017; Liu & Song, 2020). However, despite moving to
wards more causally connected building and urban systems, the appli
cation of those approaches are constrained to a limited number of 
systems. 

3.2. Sustainability and resilience are too narrowly defined 

Many frameworks such as low-carbon buildings/cities and zero- 
energy buildings heavily emphasize the impact of greenhouse gas 
emissions on sustainability, while other important aspects of buildings 
and cities are ignored. Although one of the biggest societal challenges is 
climate change, and reducing greenhouse gas emissions is one of the 
most important strategies to mitigate climate change, climate change is 
not the only societal challenge. Other challenges such as food security, 
biodiversity, and disaster resilience are also important. While mitigating 
climate change and adapting to the impacts of a changing climate, there 
is a need to more holistically evaluate the effects of policies so that 
unintended consequences can be avoided. For example, building-scale 
energy retrofit strategies such as increasing building air-tightness can 
reduce energy consumption but may worsen indoor air quality by 
reducing the amount of fresh air entering the building (Dovjak, Slo
bodnik, & Krainer, 2020). Additionally, pursuing energy-efficient 
buildings may increase the use of insulation materials containing 
potentially toxic chemicals that can slowly permeate into indoor envi
ronments and increase human exposure (Poppendieck, Schlegel, Con
nor, & Blickley, 2017). 

Preliminary efforts have been made to cover broader dimensions of 
sustainability and resilience. At the building scale, the sustainable 
human building ecosystem framework was built on the low carbon 
building and zero energy building frameworks (still focusing on energy) 
by emphasizing occupant behavior as an important component of 
building energy analysis (Talele et al., 2018). Healthy buildings broad
ened the green building assessment framework by adding health per
formance indicators (Allen et al., 2017). LCA was combined with life 
cycle cost analysis and social LCA to integrate economic and social di
mensions of sustainability (Finkbeiner et al., 2010). At the urban scale, a 
circular economy was coupled with urban metabolism by integrating 
recovery of resources such as solid waste, wastewater, and food re
siduals (Cristiano et al., 2020). 

3.3. Social systems are inadequately addressed 

While many strategies to improve building and urban environments 
focus on technological innovations, limited consideration has been 
given to the social systems, which center on individuals living in a 
building or a city. Human behavior can play important roles in deter
mining whether intervention or mitigation strategies can be effective. 
For example, window-opening is a commonly observed behavior 
impacting building energy consumption and indoor environmental 
quality (Fabi, Andersen, Corgnati, & Olesen, 2012), with 

window-opening behavior driven by physical environment conditions 
such as indoor and outdoor temperature (Fabi et al., 2012). The opening 
and closing of windows may, in turn, influence air exchange between 
indoor and outdoor environments. The feedback loop between human 
behavior and indoor environment parameters requires integration of 
social systems into assessment frameworks, particularly when exam
ining human-intervention strategies. 

In fact, many building- and urban-scale assessment frameworks 
mention the need to develop a human-centered approach, emphasizing 
social systems. For example, smart buildings equipped with smart HVAC 
systems can simultaneously satisfy energy saving and human comfort 
(Stopps et al., 2021), while urban resilience frameworks attempt to 
include human behavior and quality of life (Bozza et al., 2017). How
ever, most existing approaches poorly integrate social systems or do not 
treat social dimensions as component systems. Instead, social indicators 
are usually included in a simple attempt to check the triple bottom line, 
but fall short when trying to achieve a more holistic assessment. 

3.4. Building- and urban-scale assessments are poorly connected 

While buildings are one of the most important components in a city, 
building- and urban-scale assessments typically evaluate building and 
urban environments separately. In fact, building and urban environ
ments are connected in many ways and cross-scale impacts often involve 
feedback loops. For example, indoor emission of volatile chemicals 
contributes significantly to the formation of particulate matter in urban 
environments (McDonald et al., 2018), which may in turn infiltrate into 
buildings and consequently raise indoor exposure to particulate matter 
of outdoor origin. Many urban-scale frameworks use top-down ap
proaches thus neglecting the individual characteristics of buildings. The 
lack of individually assessed buildings in urban-scale assessment 
frameworks may mean that spatially resolved impacts of buildings on 
urban environments cannot be included. 

To make connections across building and urban scales, approaches 
are needed that connect across scales. To address this knowledge gap, 
some preliminary work has been done to expand the scope of LCA from 
single buildings to urban building stocks using a bottom-up approach. 
For example, Mastrucci, Marvuglia, Benetto, and Leopold (2020) pro
posed a spatio-temporal LCA framework to assess renovation scenarios 
of urban housing stocks by integrating (1) a geospatial 
building-by-building stock model based on geographical information 
systems, (2) an energy demand model, and (3) a product-based LCA 
model (Pomponi & D’Amico, 2020). Beyond the expansion of LCA 
framework, Al-Humaiqani and Al-Ghamdi (2022) pointed out the needs 
of incorporating resilience requirements into the built environment for 
promptly responding to climate change related disruptions. Caprotti and 
Romanowicz (2013) considered the design of individual buildings as one 
of the central components in the urban metabolism framework. How
ever, further work is needed to evaluate the impacts of buildings on 
urban sustainability and, in turn, the influence of urban policies on 
building-scale assessments. For example, Apanaviciene, Vanagas, and 
Fokaides (2020) integrated smart building assessments into a smart city 
framework, emphasizing that the main challenge for the integration is to 
ensure that functionalities proposed in the smart domain of a city are 
applied in smart buildings and vice versa. Souza and Bueno (2022) 
proposed the concept of City Information Modeling (CIM) based on the 
integration of BIM, geographic information system, and an urban 
database. 

4. More holistic approaches to assess sustainability and 
resilience across building and urban scales 

4.1. Potential integration of existing approaches 

As already emphasized, existing assessment frameworks typically 
have limited causal connections among constituent systems, cover 
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limited dimensions of sustainability and resilience, do not include social 
systems, and rarely connect building-scale with urban-scale assess
ments. However, the drawbacks in some assessment approaches may be 
overcome in others and the integration of existing frameworks may be 
valuable as an achievable next step. For example, LCA can be coupled 
with rating systems to strengthen the analysis of structural and building 
envelope systems by including the embodied resource consumption 
(Alshamrani et al., 2014). While LCA requires extensive data, it can be 
integrated with BIM and used as a software platform to collect and 
manage data for LCA (Lu et al., 2021). The data storage and manage
ment capability of BIM can be strengthened by incorporating real-time 
physical parameters of building operations monitored by smart build
ing techniques. Life cycle resource consumption captured via the 
coupling of LCA and BIM could be further enhanced by replacing static 
building operational impacts with dynamic connections using coupled 
multi-system models (Tieskens et al., 2021; Underhill et al., 2020). 

4.2. More holistic approaches 

Although it is increasingly recognized that the integration of multi
ple systems for a more holistic assessment is necessary, interdisciplinary 
integration is impeded by the complexity of the problem. Fortunately, 
much can be learned from several other closely-related fields of research 
including integrated assessment and modeling, social-ecological systems 
research, land systems science, and socio-environmental systems 
modeling, and we briefly introduce each of these emerging research 
domains below. 

In contrast to traditional planning approaches employing a combi
nation of professional expertise, scientific methods, and well-defined 
goals (Rotmans et al., 2000), integrated assessment and modeling is 
designed to synthesize diverse knowledge, data, methods, and per
spectives in an overarching framework to address complex societal 
problems (Hamilton, ElSawah, Guillaume, Jakeman, & Pierce, 2015). 
Integrated assessment has been used to evaluate environmental science, 
technology, and policy problems including climate change (Robertson, 
2020; Rose, 2014), human ecological impacts (Harfoot et al., 2014), the 
food-energy-water nexus (Kling, Arritt, Calhoun, & Keiser, 2017), and 
greenhouse gas emissions (Gambhir, Butnar, Li, Smith, & Strachan, 
2019; Roh & Tae, 2017). 

Social-ecological systems (SES) research is an emerging field that 
focuses on the interdependence between humans and nature (Schlüter, 
Müller, & Frank, 2019), with an emphasis on resilience and sustain
ability. SES models can serve many purposes including understanding 
system responses that emerge from complex interactions of subsystems, 
supporting participatory processes, which include the active involve
ment of experts, managers, stakeholders and policy makers in the 
modeling process, and analyzing the consequences of human behavior 
(Schlüter et al., 2019). Although the diversity of purpose, types, and 
applications of models offers great potential for social-ecological sys
tems research, several challenges remain because modeling approaches 
originate in different disciplines, are based on different assumptions, 
focus on different levels of analysis, and use different analytical methods 
(Schlüter et al., 2019). 

One of the modeling challenges is the multi-scale and multi-level 
nature of SES and models usually need to discriminate among scales 
(e.g., spatial and temporal), which may also be referred to as levels (e.g., 
jurisdictional (building, local, urban, regional, national) and institu
tional (rules, laws and constitutions)) (Cash et al., 2006; Gibson, 
Ostrom, & Ahn, 2000). The use of both system dynamics models (Elsa
wah et al., 2017) and agent-based models (An et al., 2021; Schulze, 
Muller, Groeneveld, & Grimm, 2017) is common when developing and 
implementing models of SES, and the use of agent-based models to 
simulate SES across scales is an active area of research (Lippe et al., 
2019). 

Land systems science (Meyfroidt et al., 2018; Rounsevell et al., 2012; 
Verburg et al., 2019), which might be thought of as an SES subdiscipline, 

focuses on monitoring and describing patterns of land-cover change and 
explaining the various drivers of change. Land system change, which can 
be monitored and modeled at increasingly fine spatial and temporal 
resolution, deepens the understanding of land-use displacements and the 
associated trade-offs (le Polain de Waroux et al., 2021), and is especially 
relevant at the urban scale. 

Although closely related to social-ecological systems, socio- 
environmental systems (the two fields can be conveniently repre
sented with the same acronym, SES) modeling integrates knowledge and 
perspectives into conceptual and computational tools that explicitly 
recognize how human decisions affect the environment (Elsawah et al., 
2020). As with social-ecological systems, participatory processes sup
port social learning and decision-making for achieving improved envi
ronmental and social outcomes (Elsawah et al., 2020). Several 
challenges associated with developing integrated SES models were 
recently identified, including bridging epistemologies across disciplines, 
multi-dimensional uncertainty assessment and management, scales and 
scaling issues, combining qualitative and quantitative methods and 
data, furthering the adoption and impacts of SES modeling on policy, 
capturing structural changes, representing human dimensions in SES, 
and leveraging new data types and sources (Elsawah et al., 2020). 

With regard to the human dimensions of SES, social science is 
fortunately entering a golden age, marked by explosive growth in new 
data and analytic methods, interdisciplinary approaches, and a recog
nition that these ingredients are necessary to address our most chal
lenging societal problems (Buyalskaya, Gallo, & Camerer, 2021). 
Indeed, the development of models that represent human behavior in 
social systems and decision-making within a policy context (Polhill 
et al., 2019; Schlüter et al., 2017; Malik et al., 2022; Schwarz et al., 
2020) is a growing area of research with considerable potential for in
clusion in building and urban systems. 

4.3. A multi-scale, system-of-systems approach 

As shown in Table 1, there are many societal challenges that need to 
be addressed at both building and urban scales. If the goal is to address 
each of the challenges separately, we must merge disciplines, method
ologies, and technologies for every one of the challenges, and we must 
do this separately, which is likely an impossible task. Taking one of the 
societal challenges (i.e., adapt to climate change) as an example, in
teractions among at least 10 systems (e.g., land-use, agriculture, 
watershed, climate, energy, transportation, communication, economic, 
governance and other social systems) need to be considered. Further
more, each of the 10 individual systems has many subsystems that not 
only create the internal dynamics specific to that system, but also 
interact with subsystems in the other systems. The presence (or absence) 
of an interaction would need to be characterized. If these interactions 
among the subsystems are studied two or three at a time, which is 
usually the case, we will need thousands of research projects to identify 
the interactions among the subsystems, and in the end, we will still not 
understand how the individual systems interact. To make matters worse, 
such an incremental approach entirely overlooks the fact that the soci
etal challenges are interdependent (Wang, Guan, & Cai, 2019) because 
several of the relevant systems within a building or urban area are the 
same across many of the challenges. 

While our review highlighted some early attempts to develop 

Table 1 
Examples in a family of societal challenges across building and urban scales  

Stabilize carbon emissions 
Provide access to clean water 
Adapt to climate change 
Improve infrastructure for an urbanized population 
Feed a growing global population sustainably 
Supply human needs for energy sustainably 
Provide healthy living environments  
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integrated models at building (tens of meters) and urban (tens of kilo
meters) scales, those efforts typically focus on the integration of only 
two or three systems at either scale, generally omit social systems, and 
do not connect across building and urban scales. A more generic, sys
tematic, and modular approach is needed. Fortunately, however, the 
family of societal challenges shown in Table 1 share the abstract com
mon characteristics of broad scope, complex interdependencies, and 
multi-faceted causality, and also share several common systems, as 
shown in Fig. 2. Seizing on this conceptual opportunity, we are inspired 
by system-of-systems (SoS) approaches (Iwanaga et al., 2021; Little 
et al., 2019) where scientists and engineers work across disciplines to 
combine the structural, behavioral, and technological approaches 
needed to address large-scale societal challenges (Clark & Harley, 2020; 
Little, Hester, and Carey, 2016; Scoones et al., 2020). 

A natural way to achieve this is to decompose building and urban 
environments into unique and common systems, with a preliminary 
listing of examples shown in Fig. 2. Then, building on rapidly accumu
lating knowledge in the fields of integrated assessment and SES 
modeling, we propose a multi-scale, system-of-systems framework 
(Iwanaga et al., 2021; Little et al., 2019) that could be used to integrate 
systems within buildings, to integrate systems within urban areas, and to 
connect some of the common systems across building and urban scales. 

We would begin with the more conventional common systems, 
including energy, water and air, but connect them in a modular 
framework that can be extended to include other common systems later. 
As shown in Fig. 2, models could be coupled at the building and urban 
scale while the cross-scale integration of the common systems could be 
achieved by identifying aggregated versions of the common systems, 
which requires a taxonomy of building types. For example, we could 
identify a representative model for each common system in residential, 
commercial, and industrial buildings, respectively, and aggregate the 
building-scale model outputs to obtain urban-scale information. This is 
similar to the “urban cell” approach in which spatial coupling of 
buildings is achieved by aggregating neighborhood units including 
building stocks (Perera, Javanroodi, Wang, & Hong, 2021). 
Spatially-resolved building information at the urban scale could be 
handled using GIS (geographic information system) with the various 
types of buildings located spatially within the urban environment. 
Meanwhile, individual building-scale assessments could connect with 
common systems at the urban scale, including the influence of the urban 
environment on a specific building of interest, with building systems in 
this case that are not aggregated, but are specific to the building. 

The implementation of a system-of-systems framework can take 
advantage of existing assessment frameworks in which causality among 
constituent systems is already represented, especially LCA, BIM and 
urban metabolism. As already mentioned, those frameworks also have 
the ability to store large sets of data within a software platform thus 
increasing the possibility of linking common systems across scales. 
Although we acknowledge the daunting nature of the task, we must 
simultaneously acknowledge the limitations of the current suite of 
assessment frameworks, and begin to implement a more systematic 
approach. 

When developing a system of systems based on mathematical 
models, we need to distinguish between the modeling approach and the 
software framework (Little et al., 2019). The models themselves operate 
naturally at different temporal and spatial scales, and individual models 
have different mathematical foundations. Although the systems are 
coupled through information exchange, their models may have different 
inputs and outputs, which must be logically connected and scaled. In 
contrast, software frameworks (Lloyd et al., 2011) provide a reusable 
design, which guides software developers in partitioning functionality 
into software components, and specify how components communicate 
and manage the order of execution. Recent advances in model integra
tion frameworks and interoperability standards have lowered the tech
nical barriers to achieving model integration, and frameworks are 
largely programming language agnostic (Little et al., 2019). 

Furthermore, generic methods to design, implement and execute 
multi-scale simulations that encompass several component systems are 
available (Chopard, Borgdorff, & Hoekstra, 2014; Hoekstra, Chopard, & 
Coveney, 2014; Hoekstra, Portegies Zwart, & Coveney, 2019). 

When simulating a system of systems, the computational cost of 
integrating many models directly can be prohibitive, especially at the 
urban scale, and when there is a need to run thousands of simulations to 
evaluate sensitivity and uncertainty and explore future scenarios. By 
creating simpler emulation or surrogate models (Little et al., 2019), the 
interdependent dynamics of many individual systems can be captured 
providing vital information about system-level drivers. Indeed, 
multi-fidelity methods (Peherstorfer, Willcox, & Gunzburger, 2018) are 
being developed that combine high-fidelity and low-fidelity model 
evaluations, where the low-fidelity evaluations arise from an explicit 
low-fidelity model (e.g., a simplified mechanistic approximation, a 
reduced-order model, or a data-fit surrogate) that approximates the 
same output quantity as the high-fidelity model. The premise is that the 
low-fidelity models are leveraged for computational speed while the 
high-fidelity model is kept in the loop to establish accuracy (Peher
storfer et al., 2018). 

Finally, a decision-support system (Walling & Vaneeckhaute, 2020) 
is often used to facilitate participatory processes which enable the close 
involvement of experts, managers, stakeholders and policy makers in the 
modeling process. This may involve the engagement of the community 
through mutual social learning (Norström et al., 2020; Turnhout, Metze, 
Wyborn, Klenk, & Louder, 2020) and the co-production of knowledge, 
something that is especially important when developing and integrating 
models of social systems. The decision-support system may include 
participatory modeling, stakeholder engagement, adaptive manage
ment, and scenario analysis to characterize hypothetical future path
ways (Little et al., 2019). In addition, problems involving multiple 
complex systems are generally characterized by deep uncertainty 
(Lempert, Groves, Popper, & Bankes, 2006) and many approaches to 
decision-making under deep uncertainty have been developed to enable 
quantitative analyses that support deliberation among multiple parties 
(Kwakkel & Haasnoot, 2019; Wilby & Dessai, 2010). These methods 
generally identify robust or low regret management strategies that 
perform well across a wide range of uncertain conditions. 

4.4. An illustrative example 

Here, we briefly illustrate the potential use of the system-of-systems 
framework across building and urban scales focusing on indoor and 
outdoor air pollution. Air pollution is responsible for about 8% of global 
deaths each year (Babatola, 2018). The release of volatile organic 
compounds (VOCs) is of great concern in air pollution because VOCs can 
react with oxidants in the atmosphere to form fine particulate matter 
(PM2.5) and ozone, which have significant adverse health effects. Those 
VOCs emitted from indoor materials and products to outdoor environ
ments can contribute to the production of outdoor PM2.5 and ozone 
(McDonald et al., 2018) that may, in return, enter the indoor environ
ment and consequently impact human health and comfort. The finding 
raises a critical need to study the complex interactions of pollutant 
transport between indoor and outdoor environments, and more gener
ally, between building and urban environments, for reducing human 
exposure to air pollutants. 

In this example, the source of VOCs is the use of various materials 
and products in buildings. Air is the medium transferring airborne pol
lutants (e.g., VOCs, PM2.5, and ozone) between building and urban en
vironments via building envelope systems and interacting with other 
systems within different types of buildings. At the building scale, 
building filtration system should be coupled in the example because 
filtration can remove PM2.5 and the associated particle-phase organic 
compounds. Because the filtration system requires energy to operate, 
building energy system needs to be considered. At the urban scale, the 
formation of ozone in the atmospheric system is facilitated by the 
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Fig. 2. A conceptual illustration of systems integration across building and urban scales with aggregated versions of the common systems connected based on a 
taxonomy of buildings (e.g., residential, commercial, and industrial buildings). Note that the specific systems included are for illustrative purposes only, and are not 
intended to cover all relevant systems across building and urban scales. 

C. Bi and J.C. Little                                                                                                                                                                                                                            



Sustainable Cities and Society 82 (2022) 103915

11

presence of nitrogen oxides (NOx), which are primarily emitted by ve
hicles in the transportation system. By establishing connections among 
inputs and outputs for the various systems, it should be possible to 
simultaneously increase human health and comfort, minimize building 
energy consumption, and improve urban air quality using the system-of- 
systems framework. 

Since the problem mainly focuses on the transport of airborne pol
lutants, we could take advantage of existing indoor VOC emission 
models (Liu, Ye, & Little, 2013) to build the emission inventory in 
buildings. We could utilize atmospheric air quality models (Byun & 
Schere, 2006) to study the formation of ozone and PM2.5 and the 
consequent impacts on climate and ecosystems. To represent social 
systems, we could consider the influence of human behavior since a 
significant portion of VOC emissions is related to the use of personal care 
products. The emission of VOCs from building and industrial sectors can 
be characterized based on the emission factors and purchase of indus
trial products from the economic system (McDonald et al., 2018). The 
initial system models would form the foundation of a system of systems 
for both the building and urban environment. Once an initial set of 
systems are being successfully coupled and simulated, we could consider 
other systems that are relevant to the socio-environmental problem. For 
example, vegetation in urban ecosystems may reduce ozone and PM2.5 
through deposition, while the change in atmospheric PM2.5 may influ
ence the penetration of solar radiation and the rate of chemical reactions 
in the urban atmosphere. 

5. Conclusion 

We briefly reviewed several assessment frameworks that integrate 
data and knowledge at building and urban scales, primarily based on the 
degree of causality among systems. We found that the connections 
among component systems and their subsystems in existing frameworks 
were poorly represented, particularly for rating frameworks that assign 
scores to pre-weighted indicators. The weighting of indicators is typi
cally based on expert judgment and can be unreliable when used out of 
context. Although some pioneering efforts have been proposed to 
address the causal connections among systems at building and urban 
scales, they generally ignore temporal and spatial resolution and are 
constrained to a limited number of coupled systems or subsystems. Some 
frameworks have narrow definitions of sustainability, while many are 
redundant and focus heavily on topics related to climate change and 
green-house gas emissions, ignoring other important dimensions of 
sustainability. Additionally, although many assessment frameworks 
emphasize the need to include social systems, they are nevertheless 
poorly represented. Finally, while buildings are one of the most 
important and intimately connected components of a city, building- and 
urban-scale assessments typically evaluate buildings and urban envi
ronments separately. 

To overcome these obstacles, we briefly introduced several closely- 
related areas of research including integrated assessment and 
modeling, social-ecological systems research, land systems science, 
socio-environmental systems modeling, modeling of human behavior, 
multi-scale modeling, and multi-fidelity modeling. Building on the 
rapidly accumulating knowledge in these emerging research domains, 
we proposed a more holistic, multi-scale, system-of-systems approach to 
systematically address complex societal challenges that span building 
and urban scales. We further provided an illustrative example to 
demonstrate the potential integration of systems across building and 
urban scales to simultaneously increase human health and comfort, 
minimize building energy consumption, and improve urban air quality. 
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