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Abstract 

Background:  The use of systems science methodologies to understand complex environmental and human health 
relationships is increasing. Requirements for advanced datasets, models, and expertise limit current application of 
these approaches by many environmental and public health practitioners.

Methods:  A conceptual system-of-systems model was applied for children in North Carolina counties that includes 
example indicators of children’s physical environment (home age, Brownfield sites, Superfund sites), social environ-
ment (caregiver’s income, education, insurance), and health (low birthweight, asthma, blood lead levels). The web-
based Toxicological Prioritization Index (ToxPi) tool was used to normalize the data, rank the resulting vulnerability 
index, and visualize impacts from each indicator in a county. Hierarchical clustering was used to sort the 100 North 
Carolina counties into groups based on similar ToxPi model results. The ToxPi charts for each county were also super-
imposed over a map of percentage county population under age 5 to visualize spatial distribution of vulnerability 
clusters across the state.

Results:  Data driven clustering for this systems model suggests 5 groups of counties. One group includes 6 counties 
with the highest vulnerability scores showing strong influences from all three categories of indicators (social environ-
ment, physical environment, and health). A second group contains 15 counties with high vulnerability scores driven 
by strong influences from home age in the physical environment and poverty in the social environment. A third 
group is driven by data on Superfund sites in the physical environment.

Conclusions:  This analysis demonstrated how systems science principles can be used to synthesize holistic insights 
for decision making using publicly available data and computational tools, focusing on a children’s environmental 
health example. Where more traditional reductionist approaches can elucidate individual relationships between envi-
ronmental variables and health, the study of collective, system-wide interactions can enable insights into the factors 
that contribute to regional vulnerabilities and interventions that better address complex real-world conditions.

Keywords:  Chemical exposure, ANOVA, ToxPi, Children’s health, Environmental health, Systems approach, 
Multivariate analysis, Data-driven
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Background
Although the research community is recognizing that 
environmental health is influenced by a complex system 
of interdependent physical and social systems, appli-
cation of systems science to support policy decisions 
remains limited [1]. Lang and Rayner [2] argue that big 
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public health challenges require complex ecological 
thinking. They advocate for the need to address inher-
ent complexity across four dimensions of existence; the 
material, biological, cultural, and social. Little,  et al. [3] 
propose a modeling framework that would enable inte-
gration of complex information across multiple social, 
economic and environmental systems. Rosenthal,  et al. 
[4] argue that a systems science approach offers powerful, 
underutilized tools to develop guidance for intervention 
design and implementation to address global environ-
mental health priorities. These researchers identify sys-
tems dynamic modeling methodologies and chart a path 
for applying these tools to address complex environmen-
tal health problems. The goal of these proposals is to 
extend the scope of considerations that support robust 
policy decisions and actions.

Though important limits remain to fully realize the 
potential for using system science to enable environ-
mental health policy [5–7], available data and modeling 
infrastructure is rapidly advancing. Currently, significant 
investments are focused on providing researchers access 
to biomedical data required to translate from basic to 
public health science [8, 9]. Significant technological and 
methodological advancements have been made in the use 
of complex systems modelling in the health sector [10]. 
Environmental health researchers are turning to these 
data and methods to infer actionable insights that cannot 
be obtained through more reductionists and static ana-
lytical approaches.

An immediate challenge is to demonstrate that accessi-
ble data and tools can provide systems-based insights and 
be used today by environmental and public health policy 
makers and practitioners to inform actions. Here we 
demonstrate application of a general systems model for 
assessing children’s environmental health using publicly 
available data on social environment, physical environ-
ment, and health outcomes. The model is implemented 
using a publicly accessible tool designed to integrate dis-
parate data streams and weight indicators for complex 
systems in a semiquantitative fashion to inform environ-
mental health decisions across a range of dimensions and 
perspectives. Results of this approach are compared to a 
more reductionist approach (i.e., ANOVA) and advan-
tages for policy makers are discussed.

Methods
Children’s Environmental Health (CEH) Systems Model
A conceptual system-of-systems modeling approach 
for assessing children’s environmental health was pre-
viously described in Cohen Hubal, et  al. [11], based 
on the approach described in Little, et  al. [3]. Briefly, a 
supreme orienter, or a goal of managing a complex soci-
oenvironmental problem, is defined. Basic orienters, 

or contributors to achieving the goal, are then defined 
to help characterize the supreme orienter. Where basic 
orienters can be abstract and broad, operational orient-
ers represent a range of more specific goals and concepts 
encompassed by the basic orienters that can be more 
easily quantified. Finally, indicators, or associated quan-
tifiable data, are identified that can be compared to the 
operational orienters to assess progress. The system-of-
systems model used for assessing children’s environmen-
tal health in this demonstration is shown in Fig. 1.

In this model the desired goal, optimal children’s envi-
ronmental health in North Carolina counties, is embod-
ied in the following basic orienters: a healthy physical 
environment, a healthy social environment, and a healthy 
child or group of children. Operational orienters for a 
healthy physical environment include clean air, clean 
water, healthy food, and safe products. Quality of a social 
environment is a function of the social and economic 
resources available to children. The operational orienter 
for a healthy child is the realization of their full poten-
tial and developing physically and emotionally within a 
normal range. Key indicators can be identified and meas-
ured to characterize the actual state of these operational 
orienters such as chemical occurrence in the physical 
environment orienter, income level in the social envi-
ronment orienter, or presence of disease in the normal 
developmental orienter. Indicators like these allow evalu-
ation of the impacts of environmental health decisions 
and actions on the orienters and on the overall complex 
system governing children’s environmental health. A set 
of example indicators for each of the basic orienters were 
selected to demonstrate this approach as described below 
and as presented again in Fig. S1.

Physical environment
The three indicators selected to represent chemicals in 
the physical environment in North Carolina counties 
were: (1) number of Brownfield locations, (2) number of 
Superfund sites, and (3) percentage of homes built before 
1979. Data on Brownfield locations in each county were 
obtained from the North Carolina Department of Envi-
ronmental Quality [12] and were manually recorded in an 
Excel file. Where counties reported duplicate Brownfield 
locations with the same name and address, only one loca-
tion was recorded. Data on the number and locations of 
Superfund sites were obtained from the Environmental 
Protection Agency’s National Priorities List [13]. Data 
were filtered to North Carolina locations and addresses 
were used to manually match locations to the corre-
sponding counties. The number of Brownfield locations 
and Superfund sites were summed for each county. Data 
on the percent of homes built before 1979 in each county 
were downloaded from PolicyMap [14].
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Social environment
The three indicators selected to represent the social envi-
ronment in North Carolina counties were (1) percentage 
of residents below 18 years of age living in poverty, (2) 
percentage of residents under the age of 19 living without 
health insurance, and (3) percentage of heads of house-
hold without a high school diploma. These data were 
all collected from the Kids Count database through the 
Annie E. Casey Foundation [15]. Data on percentage of 
heads of household without a high school diploma were 
downloaded as 5-year averages from 2010 to 2014. A 
5-year average was calculated across years 2011 to 2015 
for percent uninsured minors in each county and percent 
of minors in poverty in each county.

Population size for children ages 0-4, ages 5-9, and 
ages 10-14 for each county were obtained from the 2019 
American Community Survey through Social Explorer 
[16]. This database also provided a total population size 
for each county including both children and adults of any 
age. Percentage of children under age 5 in each county 
was calculated by dividing the population of children 
ages 0-4 by the total (children and adult) population.

Health outcomes
The three indicators selected to represent children’s 
health in North Carolina counties were (1) percentage of 
low birthweight births, (2) percentage of children under 
age 2 with elevated blood lead levels (≥ 5  µg), and (3) 
percentage of children under age 15 who were reported 

as asthma-related hospital discharges. These data were 
all obtained from the Kids Count database through the 
Annie E. Casey Foundation [15]. The blood lead data 
were downloaded as 5-year averages over years 2014 to 
2018. Asthma discharge data for each county were down-
loaded as 5-year averages over years 2010 to 2014 and 
were divided by the total population of children (under 
age 19) in each county. Percentage of low birthweights in 
each county was downloaded for years 2011 to 2015 and 
calculated as a 5-year average.

ANOVA analysis
Analysis of variance ((ANOVA) tests are commonly 
used to help determine which predictor variable data 
best explain variability in the response data. Here we use 
ANOVA to investigate potential drivers of variability in 
children’s health outcome data from physical environ-
ment factors, social environmental factors, and other 
health outcomes. The normality assumption for all data 
described above was confirmed using QQ-plots. One-
way ANOVAs were conducted for each health outcome 
variable against the remaining variables. The p-values 
were considered significant if less than 0.05. The ANOVA 
tests returned p-values for the social, physical, and health 
outcome variables in relation to one children’s health 
outcome, which indicates how likely the hypotheses of 
correlation between these different outcomes are. All 
calculations described in this and previous sections were 
performed in R (version 4.0.3).

Fig. 1  Systems thinking in children’s environmental health (Cohen Hubal et al. 2020). On the left is thesystems thinking framework to which the 
CEH flowchart on the right corresponds.Each level breaks down across the physical environment, social environment, andchild’s health to outline 
the necessary components of a healthy environment forchild development and the relative indicators of environmental health for eachof the basic 
orienters
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ToxPi Analysis
To demonstrate how integrating disparate data streams 
and weighing indicators for complex systems in a semi-
quantitative fashion can inform environmental health 
decisions, the ToxPi framework was used as a compara-
tive analysis to extend univariate ANOVA results. All 
physical environment, social environment, and health 
data outlined above were loaded into the ToxPi Graphical 
User Interface (GUI) tool [17] and analyzed within the 
program’s unique statistical framework [18]. This frame-
work provided a dimensionless index score (ToxPi score) 
for each county in North Carolina that is the cumulative 
representation of vulnerability based on the collective 
values of the respective vulnerability metrics. The ToxPi 
chart for each county is presented as a unit circle sepa-
rated into different colored slices that represent each data 
metric. For each slice, distance from the origin is pro-
portional to the normalized value of the component data 
points comprising that slice, while the width indicates the 
relative weight of that slice in the overall ToxPi calcula-
tion [18]. In this study, all data metrics were weighted 
equally, as visualized by equivalent radial widths for each 
slice.

Knowledge-driven exploration of the individual metrics 
was facilitated through ToxPi’s ranking and visualization 
of each of the counties. The ToxPi output was imported 
into R, where K-means cluster plots (Fig. S3) were used 
to determine the optimal number of groups for the North 
Carolina counties. A hierarchical clustering analysis 
within ToxPi (Fig. S4) was used to confirm the decision 
to use 5 groups of counties and perform the grouping. 
The grouped county data were exported from ToxPi to 
be mapped via the ToxPi*GIS web application (https://​

toxpi.​org/​gis/​webapp/), using the latitude and longitude 
coordinates for the center of each North Carolina county. 
To visualize the relationship between the vulnerability 
indicators (physical environment, social environment, 
and health outcomes) and the distribution of children 
in North Carolina, the ToxPi results were plotted over a 
base map showing the percent of population under age 
5 in each county. The base map was created in ArcMap 
Online, then transferred into ToxPi*GIS. The hierarchi-
cal clusters from the ToxPi analysis were then overlayed 
on the base map to visualize trends in the social environ-
ment, physical environment, and health outcomes across 
the state.

Results
ANOVA
Table  1 shows the results of the ANOVA analysis for 
three health outcomes used as dependent variables – low 
birthweight rates, asthma hospital discharges, and blood 
lead levels. The results describe relationships between 
each of these health outcomes and the remaining physi-
cal environment, social environment, and health out-
come variables for all counties in North Carolina. Two 
social environment factors, percent in poverty under age 
19 and percent uninsured under age 19, as well as the 
percent of children’s asthma hospital discharges were sta-
tistically significant in describing low birthweight rates. 
The same two social environment factors, percent in pov-
erty under age 19 and percent uninsured under age 19, as 
well as the number of Brownfield sites and the percent of 
low birthweights were statistically significant in describ-
ing children’s asthma hospital discharge rates. One social 
environment factor, percent in poverty under age 19, and 

Table 1  Pairwise ANOVA Results for Social Environment, Physical Environment, and Health Outcome Variables (bold indicates 
statistical significance as p <0.05)

a  Children under age 15 released from the hospital due to asthma
b  Children under age two with elevated blood lead levels (≥ 5 µg)
c  Children under age 19 living below the poverty line
d  Children under age 19 living without insurance
e  Head of household without a high school education

Indicators Low Birthweight Rates Asthma Hospital Dischargesa Blood Lead Levelsb

Povertyc 2.00E-16 3.32E-07 1.01E-05
Uninsuredd 2.89E-06 1.34E-03 0.34

Highschool Educatione 0.11 0.17 0.07

Superfund Sites 0.54 0.12 0.055

Brownfield Sites 0.16 4.0E-02 0.54

Homes Built Before 1979 0.82 0.17 7.0E-03
Low Birthweight Rates - 1.1E-02 0.52

Asthma Hospital Discharges 1.2E-02 - 0.97

Blood Lead Levels 0.97 0.53 -
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one physical environment factor, percent of homes built 
before 1979, are statistically significant in describing chil-
dren’s elevated blood lead level rates. Neither of the other 
two health outcomes were statistically significant in the 
elevated blood lead model results.

Systems approach
A dimensionless index score was calculated in ToxPi for 
each county in North Carolina. This ToxPi score is the 
cumulative representation of optimal children’s health in 
the systems model or vulnerability based on the physical 
environment, social environment, and health outcome 
metrics used in this study as presented in Fig. S1. A vul-
nerability ranking of all counties is determined based on 
these scores, where a higher ranking indicates greater 
vulnerability. The ToxPi ranking of the 100 North Caro-
lina Counties is presented in Fig. S2. This ranking may be 
most important when considering all attributes equally 
as a measure of total vulnerability. Tyrrell County, Robe-
son County, and Scotland County are ranked highest 
(highest vulnerability), while Orange County, Currituck 
County, and Union County are ranked lowest (lowest 
vulnerability).

ToxPi charts are produced for each county as a unit 
circle, on which the size (distance from origin) of the 
colored pie slices in the charts indicate which metrics are 
driving vulnerability scores (Fig.  2). The highest ranked 
county, Tyrrell County, is largely influenced by the per-
cent of homes built before 1979, all three of the social 
environment metrics, and the percent of babies born at 
low birthweights (Fig. S2). The lowest ranking county, 
Union County, is not strongly influenced by any of the 
metrics used in the study (Fig. S2).

Results of the K-means clustering analysis to deter-
mine the optimal number of groups of counties with 
similar vulnerability characteristics is shown in Fig. S3. 
Along with visual investigation of similar characteristics 
between county charts in a hierarchical clustering anal-
ysis in ToxPi (Fig. S4), the K-means clustering analysis 
suggested that 5 groups of counties optimally describe 
this dataset (minimize within-cluster variation). A list of 
counties that were assigned to each of the 5 groups based 
on ToxPi’s hierarchical clustering analysis is shown in 
Table S1.

Group 1 contains 6 counties with some of the high-
est ToxPi vulnerability scores, all ranking 89 or greater 
out of the 100 North Carolina counties. These counties 
are located mainly along the central southern border of 
North Carolina except for Edgecombe and Lenoir coun-
ties that are northeast of the others, and their ToxPi 
charts show strong influences from all three categories of 
operational orienters (Fig. S5). In the social environment, 
these counties are influenced by percent of household 

heads without a high school diploma and percent of chil-
dren living in poverty. The physical environment contrib-
utes to their vulnerability from percent of homes built 
before 1979, and health outcomes influence the ToxPi 
scores from percent of babies born at low birthweights 
and percent of children discharged from the hospital 
from asthma. The percent of the population that are chil-
dren less than age five in these counties ranges from 5.4 
to 7.8% (Fig. S5).

Group 2 contains 15 counties that have higher ToxPi 
vulnerability scores, with all counties ranking 67 or 
greater out of 100. These counties are located mainly in 
the northeast section of North Carolina except for Bladen 
and Anson counties in the southern part of the state and 
Graham County in the western part of the state (Fig. S6). 
The ToxPi charts in this group are generally characterized 
by strong influences from percent of homes built before 
1979 in the physical environment and percent of children 
living in poverty in the social environment. While other 
influences vary between counties, many have contribu-
tions to vulnerability from percent of household heads 
without a high school diploma, percent of babies born at 
a low birthweight, and percent of children with elevated 
blood lead levels. The percent of the population that are 
children in these counties is generally below 6.3%, except 
for Graham and Vance counties where children under 
age five range from 6.3 to 7.8% of the population (Fig. S6).

The third group contains 14 counties that span a wide 
range of ToxPi rankings and locations across the state 
(Fig. S7). The ToxPi charts in this group are primar-
ily characterized by their physical environment impact 
from Superfund sites, as well as a strong influence from 
Brownfield sites in Mecklenburg County. Of the three 
health indicators, percent of children discharged from 
the hospital from asthma appears to have more influence 
on vulnerability in many of these counties. The percent 
of children under age five in the total population of each 
county ranges from 4.5% up to 9.9% in Onslow and Cum-
berland counties (Fig. S7).

The fourth group contains 20 counties that have a 
lower range of ToxPi rankings spanning from 1 to 42 out 
of 100. Like the third group, these counties are located 
across the state but also include coastal counties in the 
eastern part of the state (Fig. S8). While small in magni-
tude, vulnerability in many of these counties has stronger 
influences from social environment indicators or percent 
of homes built before 1979 than the other data metrics. 
The percent of children in the total population of each 
county ranges from 3.6% up to 9.9% in Hoke and Harnett 
counties (Fig. S8).

Group 5 contains the remaining 45 North Caro-
lina counties with mid-range ToxPi rankings from 17 
to 84 of out 100 that span the state (Fig. S9). The ToxPi 

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Page 6 of 9Cohen Hubal et al. BMC Public Health          (2022) 22:313 

Fig. 2  ToxPicharts overlaid on map of North Carolina Counties. A All Counties, B Group 1 results ofK-means cluster analysis, C Group 3 results of 
K-means cluster analysis
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vulnerability in this group mainly has contributions from 
percent of homes built before 1979 and social environ-
ment indicators like percent of household heads with-
out a high school diploma and percent of children living 
without health insurance. Percent of children discharged 
from the hospital with asthma is a strong influence on 
vulnerability in Swain County in the western part of the 
state. The percent of children under age five in these 
counties ranges from 3.6 to 7.8% (Fig. S9).

Discussion
Comparison of ANOVA and ToxPi Analyses
The associations between each of the health indicators 
and the social and physical environment indicators on 
the state-level from the ANOVA analyses (Table 1) were 
compared to observations from the ToxPi charts for each 
cluster of counties. At the state-level using ANOVA, the 
percent of low birthweights health indicator was statisti-
cally significant in relation to the percent of children in 
poverty, percent of children without health insurance, 
and percent of children’s asthma discharges from the 
hospital. At the county-level using ToxPi, a cluster of 
counties (Group 1, Fig. S5) had associations between vul-
nerability from low birthweights and percent of house-
hold heads without a high school diploma, percent of 
homes built before 1979, percent of children in poverty, 
and percent of children discharged from the hospital 
from asthma. ToxPi analyses showed that another cluster 
of counties (Group 2, Fig. S6) had associations between 
vulnerability from low birthweights and percent of homes 
built before 1979, percent of children living in poverty, 
and percent of household heads without a high school 
diploma. Unlike the ANOVA analyses, ToxPi results for 
these two groups of counties did not show associations 
between vulnerability from percent of low birthweights 
and percent of children without insurance. Only Group 
1 showed the association between low birthweights 
and asthma discharges that were found in the ANOVA 
analysis.

At the state-level using ANOVA, the health indicator 
describing percent of children’s asthma discharges from 
the hospital was statistically significant in relation to per-
cent of children in poverty, percent of children without 
insurance, number of Brownfield sites in each county and 
percent of low birthweights. At the county-level using 
ToxPi, a cluster of counties (Group 3, Fig. S7) also had 
an association between vulnerability from asthma hos-
pital discharge rates and a physical environment indi-
cator. However, the indicator shown to be significant in 
the ANOVA results (Brownfield sites) was different than 
the indicator in the ToxPi results (Superfund sites). The 
ToxPi results for this group did not show associations 
between asthma discharge rates and percent of children 

in poverty, percent of children without insurance, or 
percent of low birthweights. Another group of counties 
(Group 1, Fig. S5) had associations between vulnerabil-
ity from asthma hospital discharge rates and percent of 
household heads without a high school diploma, per-
cent of children living in poverty, percent of homes built 
before 1979, and percent of low birthweights. Unlike the 
ANOVA, the ToxPi results for this group did not show 
associations between vulnerability from asthma hospital 
discharge rates and percent of children without insurance 
or the number of Brownfield sites in the counties. A third 
group (Group 5, Fig. S9) in the ToxPi analysis results 
contained one county (Swain County) that showed the 
association between percent of children’s asthma hospital 
discharges and percent of children living without insur-
ance that was found to be statistically significant in the 
ANOVA analysis results.

When investigating relationships between social envi-
ronment, physical environment, and health outcome 
indicators and elevated blood lead levels in children, the 
state-level ANOVA results showed statistical significance 
with percent of children in poverty and percent of homes 
built before 1979. County-level ToxPi results showed one 
group (Group 2, Fig. S6) with associations between ele-
vated blood lead levels and percent of children in poverty, 
percent of homes built before 1979, percent of house-
hold heads without a high school diploma, and percent 
of low birthweights. The associations between percent 
of children with elevated blood lead levels and percent 
of household heads without a high school diploma and 
percent of low birthweights in this group were not repre-
sented in ANOVA results.

Implementing a Systems Approach
More generally, systems science enables researchers to 
integrate the rapidly expanding body of information on 
children’s environments with advancing insights on child 
development and health (Rosenthal, Payne-Sturges). In 
the systems-of-systems approach described by Little 
(Little et  al.  [3] and adapted in the CEH systems model 
considered here [11], progress towards achieving the goal 
(e.g., children’s environmental health) is assessed by com-
paring the operational orienters (the desired state of the 
complex system) to the associated indicators (the actual 
state of the complex system) and evaluating the extent 
of orienter satisfaction. This orienter-based approach 
provides a flexible and systematic method that can be 
expanded and adjusted as systems are added to consider 
additional interactions.

To fully implement a systems approach in this way, sig-
nificant investments in data collection, computational 
model development, and expertise is required. The exam-
ple presented here demonstrates that while researchers 
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work to build these capabilities, environmental and 
public health practitioners can begin to apply a systems 
approach using accessible data and available tools. In this 
way, systems thinking can facilitate translating scientific 
information on key factors across multiple spatial and 
temporal scales to support decisions that promote and 
protect children’s health.

Conclusions
In this study, a systems approach was presented to 
build on a traditional reductionist approach (pair-wise 
ANOVA) for evaluating children’s environmental health 
and gleaning insights on differences in regional vulner-
abilities. An example set of indices drawn from publicly 
available data were used to characterize the three systems 
model orienters of physical environment, social environ-
ment, and health. While the ANOVA here enabled an 
understanding of important relationships on the State 
level, the ToxPi analysis allowed a view of factors influ-
encing vulnerability at the county level. Because the sys-
tems model (ToxPi) includes indices representing both 
independent and dependent variable of the traditional 
model (ANOVA, Table  1) a direct comparison of these 
two analyses is not informative. Rather both approaches 
provide important information.

Where more traditional reductionist approaches can 
elucidate individual relationships between environmen-
tal variables and health, the study of collective, system-
wide interactions can enable insights into the factors that 
contribute to regional vulnerabilities and interventions 
that better address complex real-world conditions. Visu-
alization of both independent and dependent variables is 
a strength of this approach by pointing to problems, the 
driving set of factors, and potentially to interventions. 
When scaled up for large numbers of modifiable varia-
bles in each metric category (health, physical, social), the 
approach demonstrated here could be extremely valuable 
in supporting decisions and actions that consider chil-
dren’s environmental health holistically.
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author on reasonable request.
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