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Abstract

Background: The use of systems science methodologies to understand complex environmental and human health
relationships is increasing. Requirements for advanced datasets, models, and expertise limit current application of
these approaches by many environmental and public health practitioners.

Methods: A conceptual system-of-systems model was applied for children in North Carolina counties that includes
example indicators of children’s physical environment (home age, Brownfield sites, Superfund sites), social environ-
ment (caregiver’s income, education, insurance), and health (low birthweight, asthma, blood lead levels). The web-
based Toxicological Prioritization Index (ToxPi) tool was used to normalize the data, rank the resulting vulnerability
index, and visualize impacts from each indicator in a county. Hierarchical clustering was used to sort the 100 North
Carolina counties into groups based on similar ToxPi model results. The ToxPi charts for each county were also super-
imposed over a map of percentage county population under age 5 to visualize spatial distribution of vulnerability
clusters across the state.

Results: Data driven clustering for this systems model suggests 5 groups of counties. One group includes 6 counties
with the highest vulnerability scores showing strong influences from all three categories of indicators (social environ-
ment, physical environment, and health). A second group contains 15 counties with high vulnerability scores driven
by strong influences from home age in the physical environment and poverty in the social environment. A third
group is driven by data on Superfund sites in the physical environment.

Conclusions: This analysis demonstrated how systems science principles can be used to synthesize holistic insights
for decision making using publicly available data and computational tools, focusing on a children’s environmental
health example. Where more traditional reductionist approaches can elucidate individual relationships between envi-
ronmental variables and health, the study of collective, system-wide interactions can enable insights into the factors
that contribute to regional vulnerabilities and interventions that better address complex real-world conditions.

Keywords: Chemical exposure, ANOVA, ToxPi, Children’s health, Environmental health, Systems approach,
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environmental health is influenced by a complex system
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public health challenges require complex ecological
thinking. They advocate for the need to address inher-
ent complexity across four dimensions of existence; the
material, biological, cultural, and social. Little, et al. [3]
propose a modeling framework that would enable inte-
gration of complex information across multiple social,
economic and environmental systems. Rosenthal, et al.
[4] argue that a systems science approach offers powerful,
underutilized tools to develop guidance for intervention
design and implementation to address global environ-
mental health priorities. These researchers identify sys-
tems dynamic modeling methodologies and chart a path
for applying these tools to address complex environmen-
tal health problems. The goal of these proposals is to
extend the scope of considerations that support robust
policy decisions and actions.

Though important limits remain to fully realize the
potential for using system science to enable environ-
mental health policy [5-7], available data and modeling
infrastructure is rapidly advancing. Currently, significant
investments are focused on providing researchers access
to biomedical data required to translate from basic to
public health science [8, 9]. Significant technological and
methodological advancements have been made in the use
of complex systems modelling in the health sector [10].
Environmental health researchers are turning to these
data and methods to infer actionable insights that cannot
be obtained through more reductionists and static ana-
lytical approaches.

An immediate challenge is to demonstrate that accessi-
ble data and tools can provide systems-based insights and
be used today by environmental and public health policy
makers and practitioners to inform actions. Here we
demonstrate application of a general systems model for
assessing children’s environmental health using publicly
available data on social environment, physical environ-
ment, and health outcomes. The model is implemented
using a publicly accessible tool designed to integrate dis-
parate data streams and weight indicators for complex
systems in a semiquantitative fashion to inform environ-
mental health decisions across a range of dimensions and
perspectives. Results of this approach are compared to a
more reductionist approach (i.e., ANOVA) and advan-
tages for policy makers are discussed.

Methods

Children’s Environmental Health (CEH) Systems Model

A conceptual system-of-systems modeling approach
for assessing children’s environmental health was pre-
viously described in Cohen Hubal, et al. [11], based
on the approach described in Little, et al. [3]. Briefly, a
supreme orienter, or a goal of managing a complex soci-
oenvironmental problem, is defined. Basic orienters,
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or contributors to achieving the goal, are then defined
to help characterize the supreme orienter. Where basic
orienters can be abstract and broad, operational orient-
ers represent a range of more specific goals and concepts
encompassed by the basic orienters that can be more
easily quantified. Finally, indicators, or associated quan-
tifiable data, are identified that can be compared to the
operational orienters to assess progress. The system-of-
systems model used for assessing children’s environmen-
tal health in this demonstration is shown in Fig. 1.

In this model the desired goal, optimal children’s envi-
ronmental health in North Carolina counties, is embod-
ied in the following basic orienters: a healthy physical
environment, a healthy social environment, and a healthy
child or group of children. Operational orienters for a
healthy physical environment include clean air, clean
water, healthy food, and safe products. Quality of a social
environment is a function of the social and economic
resources available to children. The operational orienter
for a healthy child is the realization of their full poten-
tial and developing physically and emotionally within a
normal range. Key indicators can be identified and meas-
ured to characterize the actual state of these operational
orienters such as chemical occurrence in the physical
environment orienter, income level in the social envi-
ronment orienter, or presence of disease in the normal
developmental orienter. Indicators like these allow evalu-
ation of the impacts of environmental health decisions
and actions on the orienters and on the overall complex
system governing children’s environmental health. A set
of example indicators for each of the basic orienters were
selected to demonstrate this approach as described below
and as presented again in Fig. S1.

Physical environment

The three indicators selected to represent chemicals in
the physical environment in North Carolina counties
were: (1) number of Brownfield locations, (2) number of
Superfund sites, and (3) percentage of homes built before
1979. Data on Brownfield locations in each county were
obtained from the North Carolina Department of Envi-
ronmental Quality [12] and were manually recorded in an
Excel file. Where counties reported duplicate Brownfield
locations with the same name and address, only one loca-
tion was recorded. Data on the number and locations of
Superfund sites were obtained from the Environmental
Protection Agency’s National Priorities List [13]. Data
were filtered to North Carolina locations and addresses
were used to manually match locations to the corre-
sponding counties. The number of Brownfield locations
and Superfund sites were summed for each county. Data
on the percent of homes built before 1979 in each county
were downloaded from PolicyMap [14].
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Social environment

The three indicators selected to represent the social envi-
ronment in North Carolina counties were (1) percentage
of residents below 18 years of age living in poverty, (2)
percentage of residents under the age of 19 living without
health insurance, and (3) percentage of heads of house-
hold without a high school diploma. These data were
all collected from the Kids Count database through the
Annie E. Casey Foundation [15]. Data on percentage of
heads of household without a high school diploma were
downloaded as 5-year averages from 2010 to 2014. A
5-year average was calculated across years 2011 to 2015
for percent uninsured minors in each county and percent
of minors in poverty in each county.

Population size for children ages 0-4, ages 5-9, and
ages 10-14 for each county were obtained from the 2019
American Community Survey through Social Explorer
[16]. This database also provided a total population size
for each county including both children and adults of any
age. Percentage of children under age 5 in each county
was calculated by dividing the population of children
ages 0-4 by the total (children and adult) population.

Health outcomes

The three indicators selected to represent children’s
health in North Carolina counties were (1) percentage of
low birthweight births, (2) percentage of children under
age 2 with elevated blood lead levels (> 5 pg), and (3)
percentage of children under age 15 who were reported

as asthma-related hospital discharges. These data were
all obtained from the Kids Count database through the
Annie E. Casey Foundation [15]. The blood lead data
were downloaded as 5-year averages over years 2014 to
2018. Asthma discharge data for each county were down-
loaded as 5-year averages over years 2010 to 2014 and
were divided by the total population of children (under
age 19) in each county. Percentage of low birthweights in
each county was downloaded for years 2011 to 2015 and
calculated as a 5-year average.

ANOVA analysis

Analysis of variance ((ANOVA) tests are commonly
used to help determine which predictor variable data
best explain variability in the response data. Here we use
ANOVA to investigate potential drivers of variability in
children’s health outcome data from physical environ-
ment factors, social environmental factors, and other
health outcomes. The normality assumption for all data
described above was confirmed using QQ-plots. One-
way ANOVAs were conducted for each health outcome
variable against the remaining variables. The p-values
were considered significant if less than 0.05. The ANOVA
tests returned p-values for the social, physical, and health
outcome variables in relation to one children’s health
outcome, which indicates how likely the hypotheses of
correlation between these different outcomes are. All
calculations described in this and previous sections were
performed in R (version 4.0.3).
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ToxPi Analysis

To demonstrate how integrating disparate data streams
and weighing indicators for complex systems in a semi-
quantitative fashion can inform environmental health
decisions, the ToxPi framework was used as a compara-
tive analysis to extend univariate ANOVA results. All
physical environment, social environment, and health
data outlined above were loaded into the ToxPi Graphical
User Interface (GUI) tool [17] and analyzed within the
program’s unique statistical framework [18]. This frame-
work provided a dimensionless index score (ToxPi score)
for each county in North Carolina that is the cumulative
representation of vulnerability based on the collective
values of the respective vulnerability metrics. The ToxPi
chart for each county is presented as a unit circle sepa-
rated into different colored slices that represent each data
metric. For each slice, distance from the origin is pro-
portional to the normalized value of the component data
points comprising that slice, while the width indicates the
relative weight of that slice in the overall ToxPi calcula-
tion [18]. In this study, all data metrics were weighted
equally, as visualized by equivalent radial widths for each
slice.

Knowledge-driven exploration of the individual metrics
was facilitated through ToxPi’s ranking and visualization
of each of the counties. The ToxPi output was imported
into R, where K-means cluster plots (Fig. S3) were used
to determine the optimal number of groups for the North
Carolina counties. A hierarchical clustering analysis
within ToxPi (Fig. S4) was used to confirm the decision
to use 5 groups of counties and perform the grouping.
The grouped county data were exported from ToxPi to
be mapped via the ToxPi*GIS web application (https://
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toxpi.org/gis/webapp/), using the latitude and longitude
coordinates for the center of each North Carolina county.
To visualize the relationship between the vulnerability
indicators (physical environment, social environment,
and health outcomes) and the distribution of children
in North Carolina, the ToxPi results were plotted over a
base map showing the percent of population under age
5 in each county. The base map was created in ArcMap
Online, then transferred into ToxPi*GIS. The hierarchi-
cal clusters from the ToxPi analysis were then overlayed
on the base map to visualize trends in the social environ-
ment, physical environment, and health outcomes across
the state.

Results

ANOVA

Table 1 shows the results of the ANOVA analysis for
three health outcomes used as dependent variables — low
birthweight rates, asthma hospital discharges, and blood
lead levels. The results describe relationships between
each of these health outcomes and the remaining physi-
cal environment, social environment, and health out-
come variables for all counties in North Carolina. Two
social environment factors, percent in poverty under age
19 and percent uninsured under age 19, as well as the
percent of children’s asthma hospital discharges were sta-
tistically significant in describing low birthweight rates.
The same two social environment factors, percent in pov-
erty under age 19 and percent uninsured under age 19, as
well as the number of Brownfield sites and the percent of
low birthweights were statistically significant in describ-
ing children’s asthma hospital discharge rates. One social
environment factor, percent in poverty under age 19, and

Table 1 Pairwise ANOVA Results for Social Environment, Physical Environment, and Health Outcome Variables (bold indicates

statistical significance as p <0.05)

Indicators Low Birthweight Rates Asthma Hospital Discharges,, Blood Lead Levels,
Poverty, 2.00E-16 3.32E-07 1.01E-05
Uninsured 2.89E-06 1.34E-03 0.34

Highschool Education, 0.1 0.17 0.07

Superfund Sites 0.54 0.12 0.055

Brownfield Sites 0.16 4.0E-02 0.54

Homes Built Before 1979 0.82 0.17 7.0E-03

Low Birthweight Rates - 1.1E-02 0.52

Asthma Hospital Discharges 1.2E-02 - 0.97

Blood Lead Levels 097 0.53 -

2 Children under age 15 released from the hospital due to asthma
b Children under age two with elevated blood lead levels (> 5 ug)
¢ Children under age 19 living below the poverty line

d Children under age 19 living without insurance

¢ Head of household without a high school education
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one physical environment factor, percent of homes built
before 1979, are statistically significant in describing chil-
dren’s elevated blood lead level rates. Neither of the other
two health outcomes were statistically significant in the
elevated blood lead model results.

Systems approach

A dimensionless index score was calculated in ToxPi for
each county in North Carolina. This ToxPi score is the
cumulative representation of optimal children’s health in
the systems model or vulnerability based on the physical
environment, social environment, and health outcome
metrics used in this study as presented in Fig. S1. A vul-
nerability ranking of all counties is determined based on
these scores, where a higher ranking indicates greater
vulnerability. The ToxPi ranking of the 100 North Caro-
lina Counties is presented in Fig. S2. This ranking may be
most important when considering all attributes equally
as a measure of total vulnerability. Tyrrell County, Robe-
son County, and Scotland County are ranked highest
(highest vulnerability), while Orange County, Currituck
County, and Union County are ranked lowest (lowest
vulnerability).

ToxPi charts are produced for each county as a unit
circle, on which the size (distance from origin) of the
colored pie slices in the charts indicate which metrics are
driving vulnerability scores (Fig. 2). The highest ranked
county, Tyrrell County, is largely influenced by the per-
cent of homes built before 1979, all three of the social
environment metrics, and the percent of babies born at
low birthweights (Fig. S2). The lowest ranking county,
Union County, is not strongly influenced by any of the
metrics used in the study (Fig. S2).

Results of the K-means clustering analysis to deter-
mine the optimal number of groups of counties with
similar vulnerability characteristics is shown in Fig. S3.
Along with visual investigation of similar characteristics
between county charts in a hierarchical clustering anal-
ysis in ToxPi (Fig. S4), the K-means clustering analysis
suggested that 5 groups of counties optimally describe
this dataset (minimize within-cluster variation). A list of
counties that were assigned to each of the 5 groups based
on ToxPi’s hierarchical clustering analysis is shown in
Table S1.

Group 1 contains 6 counties with some of the high-
est ToxPi vulnerability scores, all ranking 89 or greater
out of the 100 North Carolina counties. These counties
are located mainly along the central southern border of
North Carolina except for Edgecombe and Lenoir coun-
ties that are northeast of the others, and their ToxPi
charts show strong influences from all three categories of
operational orienters (Fig. S5). In the social environment,
these counties are influenced by percent of household
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heads without a high school diploma and percent of chil-
dren living in poverty. The physical environment contrib-
utes to their vulnerability from percent of homes built
before 1979, and health outcomes influence the ToxPi
scores from percent of babies born at low birthweights
and percent of children discharged from the hospital
from asthma. The percent of the population that are chil-
dren less than age five in these counties ranges from 5.4
to 7.8% (Fig. S5).

Group 2 contains 15 counties that have higher ToxPi
vulnerability scores, with all counties ranking 67 or
greater out of 100. These counties are located mainly in
the northeast section of North Carolina except for Bladen
and Anson counties in the southern part of the state and
Graham County in the western part of the state (Fig. S6).
The ToxPi charts in this group are generally characterized
by strong influences from percent of homes built before
1979 in the physical environment and percent of children
living in poverty in the social environment. While other
influences vary between counties, many have contribu-
tions to vulnerability from percent of household heads
without a high school diploma, percent of babies born at
a low birthweight, and percent of children with elevated
blood lead levels. The percent of the population that are
children in these counties is generally below 6.3%, except
for Graham and Vance counties where children under
age five range from 6.3 to 7.8% of the population (Fig. S6).

The third group contains 14 counties that span a wide
range of ToxPi rankings and locations across the state
(Fig. S7). The ToxPi charts in this group are primar-
ily characterized by their physical environment impact
from Superfund sites, as well as a strong influence from
Brownfield sites in Mecklenburg County. Of the three
health indicators, percent of children discharged from
the hospital from asthma appears to have more influence
on vulnerability in many of these counties. The percent
of children under age five in the total population of each
county ranges from 4.5% up to 9.9% in Onslow and Cum-
berland counties (Fig. S7).

The fourth group contains 20 counties that have a
lower range of ToxPi rankings spanning from 1 to 42 out
of 100. Like the third group, these counties are located
across the state but also include coastal counties in the
eastern part of the state (Fig. S8). While small in magni-
tude, vulnerability in many of these counties has stronger
influences from social environment indicators or percent
of homes built before 1979 than the other data metrics.
The percent of children in the total population of each
county ranges from 3.6% up to 9.9% in Hoke and Harnett
counties (Fig. S8).

Group 5 contains the remaining 45 North Caro-
lina counties with mid-range ToxPi rankings from 17
to 84 of out 100 that span the state (Fig. S9). The ToxPi
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vulnerability in this group mainly has contributions from
percent of homes built before 1979 and social environ-
ment indicators like percent of household heads with-
out a high school diploma and percent of children living
without health insurance. Percent of children discharged
from the hospital with asthma is a strong influence on
vulnerability in Swain County in the western part of the
state. The percent of children under age five in these
counties ranges from 3.6 to 7.8% (Fig. S9).

Discussion

Comparison of ANOVA and ToxPi Analyses

The associations between each of the health indicators
and the social and physical environment indicators on
the state-level from the ANOVA analyses (Table 1) were
compared to observations from the ToxPi charts for each
cluster of counties. At the state-level using ANOVA, the
percent of low birthweights health indicator was statisti-
cally significant in relation to the percent of children in
poverty, percent of children without health insurance,
and percent of children’s asthma discharges from the
hospital. At the county-level using ToxPi, a cluster of
counties (Group 1, Fig. S5) had associations between vul-
nerability from low birthweights and percent of house-
hold heads without a high school diploma, percent of
homes built before 1979, percent of children in poverty,
and percent of children discharged from the hospital
from asthma. ToxPi analyses showed that another cluster
of counties (Group 2, Fig. S6) had associations between
vulnerability from low birthweights and percent of homes
built before 1979, percent of children living in poverty,
and percent of household heads without a high school
diploma. Unlike the ANOVA analyses, ToxPi results for
these two groups of counties did not show associations
between vulnerability from percent of low birthweights
and percent of children without insurance. Only Group
1 showed the association between low birthweights
and asthma discharges that were found in the ANOVA
analysis.

At the state-level using ANOVA, the health indicator
describing percent of children’s asthma discharges from
the hospital was statistically significant in relation to per-
cent of children in poverty, percent of children without
insurance, number of Brownfield sites in each county and
percent of low birthweights. At the county-level using
ToxPi, a cluster of counties (Group 3, Fig. S7) also had
an association between vulnerability from asthma hos-
pital discharge rates and a physical environment indi-
cator. However, the indicator shown to be significant in
the ANOVA results (Brownfield sites) was different than
the indicator in the ToxPi results (Superfund sites). The
ToxPi results for this group did not show associations
between asthma discharge rates and percent of children
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in poverty, percent of children without insurance, or
percent of low birthweights. Another group of counties
(Group 1, Fig. S5) had associations between vulnerabil-
ity from asthma hospital discharge rates and percent of
household heads without a high school diploma, per-
cent of children living in poverty, percent of homes built
before 1979, and percent of low birthweights. Unlike the
ANOVA, the ToxPi results for this group did not show
associations between vulnerability from asthma hospital
discharge rates and percent of children without insurance
or the number of Brownfield sites in the counties. A third
group (Group 5, Fig. S9) in the ToxPi analysis results
contained one county (Swain County) that showed the
association between percent of children’s asthma hospital
discharges and percent of children living without insur-
ance that was found to be statistically significant in the
ANOVA analysis results.

When investigating relationships between social envi-
ronment, physical environment, and health outcome
indicators and elevated blood lead levels in children, the
state-level ANOVA results showed statistical significance
with percent of children in poverty and percent of homes
built before 1979. County-level ToxPi results showed one
group (Group 2, Fig. S6) with associations between ele-
vated blood lead levels and percent of children in poverty,
percent of homes built before 1979, percent of house-
hold heads without a high school diploma, and percent
of low birthweights. The associations between percent
of children with elevated blood lead levels and percent
of household heads without a high school diploma and
percent of low birthweights in this group were not repre-
sented in ANOVA results.

Implementing a Systems Approach

More generally, systems science enables researchers to
integrate the rapidly expanding body of information on
children’s environments with advancing insights on child
development and health (Rosenthal, Payne-Sturges). In
the systems-of-systems approach described by Little
(Little et al. [3] and adapted in the CEH systems model
considered here [11], progress towards achieving the goal
(e.g., children’s environmental health) is assessed by com-
paring the operational orienters (the desired state of the
complex system) to the associated indicators (the actual
state of the complex system) and evaluating the extent
of orienter satisfaction. This orienter-based approach
provides a flexible and systematic method that can be
expanded and adjusted as systems are added to consider
additional interactions.

To fully implement a systems approach in this way, sig-
nificant investments in data collection, computational
model development, and expertise is required. The exam-
ple presented here demonstrates that while researchers
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work to build these capabilities, environmental and
public health practitioners can begin to apply a systems
approach using accessible data and available tools. In this
way, systems thinking can facilitate translating scientific
information on key factors across multiple spatial and
temporal scales to support decisions that promote and
protect children’s health.

Conclusions

In this study, a systems approach was presented to
build on a traditional reductionist approach (pair-wise
ANOVA) for evaluating children’s environmental health
and gleaning insights on differences in regional vulner-
abilities. An example set of indices drawn from publicly
available data were used to characterize the three systems
model orienters of physical environment, social environ-
ment, and health. While the ANOVA here enabled an
understanding of important relationships on the State
level, the ToxPi analysis allowed a view of factors influ-
encing vulnerability at the county level. Because the sys-
tems model (ToxPi) includes indices representing both
independent and dependent variable of the traditional
model (ANOVA, Table 1) a direct comparison of these
two analyses is not informative. Rather both approaches
provide important information.

Where more traditional reductionist approaches can
elucidate individual relationships between environmen-
tal variables and health, the study of collective, system-
wide interactions can enable insights into the factors that
contribute to regional vulnerabilities and interventions
that better address complex real-world conditions. Visu-
alization of both independent and dependent variables is
a strength of this approach by pointing to problems, the
driving set of factors, and potentially to interventions.
When scaled up for large numbers of modifiable varia-
bles in each metric category (health, physical, social), the
approach demonstrated here could be extremely valuable
in supporting decisions and actions that consider chil-
dren’s environmental health holistically.
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