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Abstract

Autonomous Surface Vehicles require path planning that considers complex shoreline obstacles and dynamic

forces such as water currents. Here, path planning is used to achieve an energy-efficient route based on

water current forecasts. Graph-based algorithms such as Dijkstra’s Shortest-Path First generate an optimal

solution, but scale exponentially with search space size. Metaheuristic algorithms such as Particle Swarm

Optimization (PSO) sacrifice guaranteed optimality to substantially reduce computation. We compare PSO

to Dijkstra and A* for energy-efficient planning in a high resolution coastal environment with dynamic

water current forecasts. Observing high solution variance, we use Visibility Graphs (VGs) to generate a set

of initial candidate solutions for PSO. We demonstrate that starting with feasible paths that include that

with shortest-distance allows PSO to reliably converge to near-optimal paths much faster than Dijkstra. We

also consider a path’s data collection reward. The goal is to allow the vehicle to take advantage of nearby

observation opportunities. Again, VGs are shown to aid convergence to fitter solutions.

Keywords: Path planning, ASV navigation, Autonomous, Particle swarm optimization, Visibility graph

1. Introduction

A primary Autonomous Surface Vehicle (ASV) task is to navigate in the marine environment toward a

given location. Substantial research effort has been devoted to the NP-hard path planning problem. The
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conventional criteria is distance minimization, but environmental forces such as wind and water currents

increase the complexity. It may also be reasonable to sacrifice some efficiency to take advantage of ob-5

servation opportunities. The vehicle might be traversing over nothing but sand on a shorter path, while

interesting habitat is nearby. Taking advantage of opportunistic sampling reward increases the solution

space complexity. The goal is to develop a planner to optimize path efficiency and reward (Figure 1).

SeagrassLand Water
GoalStart Waypoint

SeagrassLand Water
GoalStart Waypoint

Figure 1: Planning for energy efficiency and sampling reward yields a sequence of waypoints forming a set of straight-line

segments between start and goal. The shortest path would have led the ASV below the island. Instead, the path avoids strong

currents and deviates slightly to collect seagrass observations.

This research expands on our work presented at the American Control Conference 2020 (Krell et al.,

2020b). The PSO fitness function has been improved and we use Visibility Graphs (VGs) to seed the PSO10

initial population for improved performance. New experiments compare our algorithm with graph-based

algorithms Dijkstra and A*. A companion to this paper is a software repository called conch (Krell, 2021a)

that contains the planning software, experiment results, and scripts for replication. Other work by the

authors in this area include shortest distance path planning for indoor mobile robots using PSO (Krell

et al., 2020a), and a game-theoretic ASV planner for the worst-case water currents based on forecast uncer-15

tainty (Krell et al., 2019).

Classic graph algorithms such as Dijkstra’s Shortest Path First algorithm can find an optimal path (Di-

jkstra, 1959). However, the complexity of the algorithm is O(V ∗ log V ) where V is the number of vertices,

assuming that the graph is densely connected as typical for planning tasks. Planning over large, high-

resolution space demands faster methods.20

The A* algorithm employs a heuristic to constrain the search space for improved efficiency (Nosrati et al.,

2012). An admissible heuristic is one that never overestimates the cost to reach the goal; this guarantees

that A* will yield an optimal solution (Nosrati et al., 2012). With additional criteria beyond distance, the
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cost function is not guaranteed to be admissible. In sufficiently complex currents, the optimal path may

deviate significantly from the shortest. Studies have shown that A* with inconsistent heuristics may or may25

not offer improved performance over Dijkstra (Zhang et al., 2009).

An alternative is planning with metaheuristic algorithms. These include evolutionary-based approaches

such as Genetic Algorithm (GA) (Forrest, 1993) and Differential Evolution (DE) (Storn and Price, 1997),

as well as colony-based algorithms such as PSO (Eberhart and Kennedy, 1995) and Artificial Bee Colony

(ABC) (Karaboga, 2010). Nature-inspired behaviors speed up the search, but sacrifice the guarantee of30

finding the global optimum. Complicated search spaces may have numerous local optima. The goal is to

reliably converge to near-optimal solutions while meeting time constraints. Metaheuristic algorithms have

been applied to multi-objective path planning applications (Jones et al., 2002) including energy efficient

marine path planning. Research in this area is more commonly focused on Autonomous Underwater Vehicle

(AUV) planning, but very often only considering navigation on a 2D plane in the water column much like35

boats dealing with surface currents.

Yang and Zhang (2009) presented Adapted Inertia-weight PSO for AUV planning. The inertia weight is a

PSO hyperparameter that directs the balance of exploration and exploitation (Bansal et al., 2011). Adaptive

strategies have become common, where the weight is modified over the course of the search. An experiment

was done using an electronic chart with complex island shapes and spatially-varying water currents.40

Liu et al. (2011) presented a PSO-based AUV planner. Two modifications were made to avoid local

minima. Inertia weight is again adaptive, but also the cognitive and social coefficients. At first, the cognitive

(local information) is more important, but the weights are shifted so that over time the social information

dominates. Experiments were performed based on a chart with polygonal islands. Water currents were

based on the region’s monthly average currents.45

A system for AUV online replanning was developed by Zeng et al. (2015). The planner uses spatio-

temporal water currents and uncertain obstacle locations. Objects are sensed rather than known beforehand.

The planner is intended to ensure safe navigation despite imperfect sensor readings. Rather than reacting to

the dynamic ocean environment by planning from scratch, replanning takes advantage of previous planning

to speed up the computation. The search algorithm is Quantum-behaved PSO (QPSO) where the movement50

of the particles is inspired by quantum mechanics rather than conventional Newtonian physics. Experiments

were performed on a 100x100 grid with dynamic circular obstacles and irregular static island shapes.

Another PSO implementation with dynamic hyperparameters was presented by Xu et al. (2018). Their

improvements included varying the particle acceleration over time to again shift emphasis from global to

local search as well as using a slowly-varying function to expand the search and maintain diversity in new55

candidates. Experiments occurred on a 2D plane with elliptical obstacles. No water currents are used, but

the work is of interest because of the large 10,000x10,000 grid.

Lim et al. (2019) combined DE and PSO for both quantum-behaved and adaptive PSO. Not only energy-
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efficient, their system incorporates smooth, feasible control for a REMUS-100 AUV. Adaptive and quantum

versions have several variants based on combinations of hard and soft constraints. Hard constraints guarantee60

solution properties, such as obstacle-free paths, but at higher computational cost. Soft constraints use a

penalty function to (ideally) converge to meet the constraints. Both 2D and 3D environments with spatio-

temporal currents and elliptical or spherical obstacles were used. Results suggest that the best choice is

quantum with hard vehicle motion constraints and soft obstacle constraints.

Kuhlemann and Tierney (2020) modified GA for ASV planning. Wind, waves and piracy risk were65

incorporated for smooth paths minimizing fuel and risk while meeting arrival time constraints. Custom

mutation and crossover operators were developed based on the structure of paths. Rather than vector fields,

wind and waves are represented by their Beaufort number (Barua, 2005). Typical metaheuristic planners

solve for an arbitrary number of waypoints, but here GA solutions are variable length. Experiments were

on a world map with spatio-temporal wind and waves, perturbing the known weather to generate imperfect70

forecasts to test the algorithm under uncertainty. The initial GA population was generated from feasible

solutions instead of the usual random population.

Usually, metaheuristic algorithms were compared to other metaheuristics instead of an optimal solution.

For example by comparing an improved PSO to a canonical PSO. Dijkstra is a reasonable benchmark since it

is guaranteed to be optimal. However, the optimality is with respect to the input graph. In a fully-connected75

graph representation of a search space, adjacent nodes are typically connected to 4, 8, or 16 neighbors so

that the solution path cannot include arbitrary heading angles. In practice, 4-way yields jagged, sub-optimal

paths. Increasing the neighborhood increases fitness at the cost of a much larger search space. Still, the

Dijkstra solution is a useful benchmark since the optimal metaheuristic result should be at least as fit given

a sufficient solution dimension. Fixed-length metaheuristic solutions limit the number of possible waypoints,80

restricting the possible path complexity and fitness.

By default, most metaheuristic solvers are initialized with a random set of candidate solutions. Given a

fitness function, the solutions are modified over each iteration. VGs are graphs that include only the edges

that could make up the shortest-distance path (Shah and Gupta, 2019). Here, we use VGs to generate an

initial population that includes the shortest-distance and many other feasible paths. Using VGs significantly85

speeds up finding the shortest path at the cost of a set-up time to build the graph; it can be reused for as

long as the map remains static.

Experiments are performed with realistic scenarios. A raster of Boston Harbor with complex islands is

used for static obstacles. Four water current forecasts from the Northeast Coastal Ocean Forecast System

(NECOFS) (Beardsley, 2014) are used to get a spatio-temporal vector field for energy-efficient planning.90

Research in marine metaheuristic path planning often have limited reproducability. Hyperparameters,

map resolution, water currents, and tuning steps are often only partially reported. It is difficult to compare

new research to the literature. Here, the software and results have been made available.
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1.1. Contributions

• A VG is used to initialize the PSO candidate solutions to avoid local optimum. The VG is generated95

from the Boston Harbor raster, and A* is used to generate a number of paths that include that with

shortest distance.

• Opportunistic sampling is explored using a synthetic reward raster. Experiments investigate how

tuning the weight of reward interest impacts the planning behavior.

• Dijkstra is used for energy-efficient benchmarks. Results include Dijkstra with 4-way, 8-way, and100

16-way neighborhoods using both graph-based and raster-based implementations. A* is also briefly

evaluated to check performance given the non-admissible heuristic.

2. Materials and Methods

This research compares PSO to Dijkstra for energy efficient planning, with and without using VGs to

initialize the PSO population. Additional experiments evaluate the use of PSO for opportunistic sampling.105

The graph search algorithms are discussed in section 2.1, followed by a description of VG in section 2.2.

PSO is described in section 2.3. Finally, section 2.4 gives the fitness function for energy and reward.

2.1. Dijkstra’s Shortest-Path First and A* algorithms

Dijkstra generates benchmark solutions, with the input graph limitations previously discussed. A* is

also used since, for shortest-distance, it is guaranteed to match Dijkstra, but using a distance heuristic110

to reduce the search space. However, it remains to be seen if A* is effective when incorporating water

currents since there is not an admissible heuristic. Here, the cost function is calculated based on energy

expenditure, but the heuristic for node priority is the distance. It is assumed that the region has been

projected into an appropriate 2D coordinate system. The distance measurement error depends on the

accuracy of the projection and is assumed here to be sufficiently accurate for operational planning. In the115

following, Distance(p1, p2) represents the distance between points p1 and p2. For example, the Euclidean

distance for a metric coordinate system and Haversine for latitude and longitudes.

Dijkstra and A* are implemented together, using a conditional statement to choose how the next node is

selected. A* is enabled by using the distance heuristic. Otherwise, the behavior is Dijkstra’s. Two versions

are implemented: one solving directly on the occupancy grid and the other on a graph representation. Using120

the grid, cell neighborhoods are calculated at run time by checking if the adjacent nodes are obstacles. For

the graph-based solver, the input raster has already been converted to a graph where each edge is to a valid

neighbor. By checking at run time, only the cells actually encountered by the algorithm are evaluated. Using

the graph-solver requires precomputing the entire graph, but this graph can be reused. Another advantage
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of the graph-based solver is that it is not limited to a uniformly connected graph. For example, Dijkstra125

and A* may be applied to a VG for a potential savings in solution cost and computation.

Algorithm 1 GraphSolver uses an energy-based cost function, extending a conventional shortest-

distance implementation by Patel (2014). The pseudocode highlights computational details needed for

the water currents. The main inputs are a graph G and start and goal locations, s and g, in (row, col)

coordinates. Here, the rows and columns correspond to cells in the raster even though this algorithm is130

applied to a graph. The graph is implemented as a python dictionary where a (row, col) tuple is a key to

query neighbor cells. The reason for preserving these locations is that the water current rasters are in the

same dimensions as the environment raster and are used to access the water velocities on all cells between

two nodes.

Work is calculated with fitness function CalcWork, discussed in Section 2.4. It requires additional inputs135

including the water current rasters (collectively referred to as C), the boat’s target speed, and geospatial

metadata t. Also, a time offset from the start time of the water currents forecast is used. GridSolver only

differs by runtime checking for neighbor nodes instead of querying precomputed values.

2.2. Visibility Graph

A VG’s nodes and edges are only those potential segments of the shortest path (Niu et al., 2018). It is140

generated from a set of polygons where each vertex is added as a node in the VG. The edges are added by

checking the visibility (obstacle-free, straight line), between all node pairs. To compute a path from a start

to goal location, the start and goal are also added to the VG along with edges for all visible vertices from

those points.

The pyvisgraph library is used for making VGs (Reksten-Monsen, 2018). Lee’s Visibility Graph Al-145

gorithm is used which has a complexity of O(n2 log2 n) (Coleman, 2012). It is more complex than that of

Ghosh and Mount (O(e + n log2 n) (Kitzinger and Moret, 2003), but supports adding nodes after initial

creation. Here, the user provides a raster occupancy grid, and obstacles are converted into the polygons.

The VG is used both as a graph for Dijkstra and A* and for generating the PSO initial population.

To generate the initial PSO population, A* extracts paths from the VG. A* only finds the shortest path,150

so the VG is modified between each A* run. The middle waypoint of each path is removed from the VG.

This prevents finding this same path again as well as others with that waypoint to increase path diversity.

Since this scheme generates several shortest paths using A*, it is only useful if finding an energy efficient

path with Dijkstra or A* is significantly more time consuming than finding a shortest path on a VG.

2.3. Particle Swarm Optimization155

PSO is a metaheuristic algorithm inspired by biological colony behavior (Eberhart and Kennedy, 1995). A

group of particles share information to find an optimal solution. Each particle has position and velocity in the
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Algorithm 1: GraphSolver

Input: graph G, start coords s, goal coords g, water currents vector field C, elapsed time e,

geographic transform t, number of raster rows r, target vehicle speed v, algorithm choice a

Output: cameFrom, costSoFar, timeSoFar

1 F ← PriorityQueue()

2 F .put(s, 0) // start graph search from s

3 cameFrom, costSoFar, timeSoFar = ∅

4 cameFrom[s] = NULL // s is the start of the path

5 costSoFar[s] = 0 // no cost to reach s

6 timeSoFar[s] = e // elapsed time for correctly accessing temporal water currents

7 while F 6= ∅ do

8 c← F .get() // get current location to search

9 if c = g then

10 BREAK // reached goal

11 E ← G[c] // get all nodes connected to current

12 for n ∈ E do

13 d← Distance(c, n) // distance between current and next node

14 δw, δe ← CalcWork(cg, ng, C, v, t, timeSoFar[c]) // cost, time between current and

next

15 cost← costSoFar[c] + δw // cost to reach next from start

16 if ng 6∈ costSoFar & cost < costSoFar[n] then

17 costSoFar[n] = cost // update cost to reach next with minimal found so far

18 if a = ”dijkstra” then

19 p← cost // use cost as priority

20 F .put(n, p)

21 if a = ”A*” then

22 p← cost + Distance(s, n) // add distance heuristic to priority

23 F .put(n, p) // add to priority queue

24 cameFrom[n] = c // link current and next node to generate path

25 timeSoFar[n] = e+ δe // time to reach next node

26 return cameFrom, costSoFar, timeSoFar
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search space. Each iteration, these are updated based on local and neighborhood information discovered so

far. Balancing exploration and exploitation is critical to success, and is influenced by the cognitive coefficient

c1 and social coefficient c2 that weight the attraction to the local and neighborhood best, respectively. The160

speed at which it can change its trajectory is controlled by a constriction coefficient w where a higher value

causes slower change of direction. The constriction coefficient may be constant or adapted over the PSO

iterations. The adaptive version is intended to gradually shift the particle’s attention from exploration to

exploitation which promotes convergence. Similar to the constriction coefficient is the inertia weight, playing

the same role in the velocity update equations but requiring a maximum velocity wmax to be specified.165

Various neighborhood topologies exist, including global and adaptive random strategies. Innocente and

Sienz (2010) provide parameter value suggestions.

The fitness function calculates the relative energy needed across a collision-free sequence of waypoints

at constant speed in the presence of water currents. It is possible to write a complex fitness function

that modifies solutions to be collision-free before calculating the score. The more common alternative is170

a soft constraint — an arbitrarily high penalty cost. Hard constraints ensures feasibility, but may require

conditional statements and loops that make it difficult to use vectorized operations. Lim et al. (2019) found

soft obstacle avoidance constraints faster and more effective.

Typically the initial population is from a random or uniform distribution. Alternatively, pre-processing

can produce realistic or at least feasible solutions. Kuhlemann and Tierney (2020) generated collision-free175

paths for their initial GA population. PSO is implemented with pagmo, a C++ library with implementations

of biologically-inspired search algorithms. The library is focused on efficient implmentations and providing

a consistent API to apply numerous search algorithms with a single fitness function. The path planning

software developed here is written in python, taking advantage of the bindings to PaGMO provided by the

PyGMO python bindings. PaGMO’s PSO includes 6 variants on the velocity update and 4 variants on the180

neighborhood topology. Here, the defaults of both are used, based on initial trials that did not demonstrate

significant difference for this problem. The velocity update rule is controlled by the constriction coefficient.

The neighborhood topology is adaptive random: when the global optimum fails to improve, each particles

randomly selects k others as neighbors irrespective of their distance (Zambrano-Bigiarini et al., 2013).

2.4. Fitness function185

Planning takes place in an environment represented with an M ×N binary occupancy grid Ge. Water

currents are vector fields represented by M ×N × T rasters where T corresponds to discrete time intervals.

These are the magnitude and direction of the water velocity called Gm and Gd respectively. The reward

assigned to each cell is stored in an M ×N raster Gr.

A candidate solution path is represented as a sequence of n waypoints where each element is a tuple with
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an x and y coordinate into the environment grids as

path = [(x1, y1), (x2, y2), ..., (xn, yn)] (1)

The fitness function is designed to minimize collisions, distance, and energy expenditure (work). However,190

some efficiency is sacrificed to maximize path reward. Weights are used to influence the importance of each

criteria. High weight on reward should cause the vehicle to be less concerned with path efficiency, while a

smaller reward weight emphasizes efficiency. The fitness function’s result, Fpath, is the weighted sum of the

four optimization attributes.

Path distance PD is the sum of distances between each pair of adjacent waypoints, (xi, yi) and (xi+1, yi+1),195

as

PD =
n−1∑
i=1

Distance(xi, yi, xi+1, yi+1)

∀(xi, yi) ∈ (x1, y1), (x2, y2), ..., (xn−1, yn−1)

(2)

The attribute PO is the number of occupied cells along a straight line between adjacent path waypoints.

The Bresenham algorithm (Bresenham, 1965) is used to select all cells along a line in Ge. Free and occupied

cells in Ge have values of 0 and 1, respectively. Thus, a summation of Ge values in the calles returned by

Bresenham is the obstacle count.200

PO =
n−1∑
i=1

o(xi, yi, xi+1, yi+1)

∀(xi, yi) ∈ (x1, y1), (x2, y2), ..., (xn−1, yn−1)

(3)

where

o(xi, yi, xj , yj) =
∑

Ge(xl, yl)

∀xl, yl ∈ Bresenham(xi, yi, xj , yj)
(4)

The path reward PR is the sum of reward values in Gr between each pair of adjacent waypoints. The

function r(xi, yi, xj , yj) sums the reward of a single segment, again using Bresenham to check all intersected

cell in Gr.

PR =
n−1∑
i=1

r(xi, yi, xi+1, yi+1)

∀(xi, yi) ∈ (x1, y1), (x2, y2), ..., (xn−1, yn−1)

(5)

where

r(xi, yi, xj , yj) =
∑

Gr[(xl, yl)]

∀xl, yl ∈ Bresenham(xi, yi, xj , yj)
(6)

The work exerted by the vehicle PW is the sum of work required along the path segments as it deals

with water currents to maintain a constant speed sboat. Calculating the work is based on the robot’s applied
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force vector as it adjusts in response to the influence of water currents. This component is dependent on the

elapsed time of all previous planning. The elapsed duration d and time resolution l of each band is used to

select the bands in Gm and Gd. The water velocity is calculated by interpolating between the two nearest205

bands. For example, if the forecast begins at 00:00, l is 1 hour and d is 25 minutes, then the weighted

interpolation combines 75% of the nearer, first band and 25% of the further, second.

The cell size dc is used to estimate the distance that the vehicle’s resultant force is applied. Bresenham

is used by the function w(xi, yi, xj , yj) to sum the work required along a single path segment. Within, the

function wc(xl, yl, xj , yj) calculates the work required to traverse a single cell.

PW =
n−1∑
i=1

w(xi, yi, xi+1, yi+1)

∀(xi, yi) ∈ (x1, y1), (x2, y2), ..., (xn−1, yn−1)

(7)

where

w(xi, yi, xj , yj) =
∑

wc(xl, yl, xj , yj)

∀xl, yl ∈ Bresenham(xi, yi, xj , yj)
(8)

The work wc at an individual cell requires the nearest discrete water currents forecast. The elapsed

duration d is used to select the appropriate water currents raster band at index i. The elapsed duration d

is divided by the duration of each discrete forecast interval l. Rounding yields the nearest band, and max

avoids the zero band, since the indices start at one.

i = max
(

1, round
(
d/l
))

(9)

Next, the boat’s heading angle θboat is calculated based on the boat’s current position (xl, yl) and next

target waypoint (xj , yj) as

θboat = atan2(yj − yl, xj − xl) (10)

The boat’s target velocity V boat can now be determined using the boat’s heading θboat and target speed

sboat as.

(V boat
x , V boat

y ) = (sboat cos θboat, sboat sin θboat) (11)

The water current velocity is determined by looking up the forecasts at the selected band b in environment

grids Gm and Gd at (xl, yl) as

V water
x = Gm(i, xl, yl) cosGd(i, xl, yl) (1− ((d mod l)/l))

+Gm(i, xl, yl) cosGd(i, xl, yl) ((d mod l)/l)

V water
y = Gm(i, xl, yl) sinGd(i, xl, yl) (1− ((d mod l)/l))

+Gm(i, xl, yl) sinGd(i, xl, yl) ((d mod l)/l)

(12)
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The boat’s required applied velocity V applied to maintain the target V boat is calculated using V water as

V applied = V boat − V water (13)

Finally, wc is calculated based on applying the force over the distance dc to traverse a cell as

wc = |V applied|dc (14)

The fitness for the entire path is the weighted sum of these values, using weights WD, WO, WW , and

WR as

Fpath = WOPO +WDPD +WWPW −WRPR (15)

The weight WO is an arbitrary huge number.

3. Results and Discussion

Experiments are done with only energy optimization and with both energy and reward. Section 3.1210

describes the experimental environment and data structure representations. Section 3.2 gives the results of

VG generation. Results of energy-only with graph-based search and PSO is discussed in Section 3.3, and

with energy and reward in Section 3.4.

3.1. Environment

Experiments used Boston Harbor (Figure 2a) because of its complex coastline, numerous islands, and215

available water current forecasts. The raster is a binary occupancy grid of land and water, produced from

NGAI’s World Vector Shoreline (1:250,000) data ([dataset] NOAA, 2017) in QGIS (QGIS Development

Team, 2018).
Water current forecasts are from The Northeast Coastal Ocean Forecast System (NECOFS) ([dataset]

Northeast Regional Coastal Ocean Observation System, 2021), provided by the Northeast Regional Coastal220

Ocean Observation System (NERCOOS) Program, Massachusetts Fishery Institution, and the MIT sea

grant. Nowcasts and forecasts are available for the region. The forecast horizon is 72 hours at 1-hour

intervals. A collection of python scripts, Whelk(Krell, 2021b), was developed by the authors to access,

store, and visualize the data. Given a start and stop time, and desired attributes, the unstructured grid is

converted to a set of multi-band rasters. Each has a single attribute, such as the eastward water velocity225

components where bands are the values at a discrete time steps.

Four scenarios, W = {W1,W2,W3,W4}, were selected since they exhibit various spatio-temporal behav-

ior (see Figure 3). Each is represented as two rasters (eastward, northward components) with three bands

each for three hours. W0 indicates that the water currents are ignored.

Experiments are performed for three tasks (start, goal pairs) T = {T1, T3, T3} (Table 1). Experiments230

assume a constant speed of 0.5mps. The purpose of T1 and T2 is to evaluate PSO in terms of solution cost
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IMG/mass_bay.pdf

(a) Boston Harbor. (b) 8-way uniform graph.

Figure 2: Boston Harbor as an occupancy grid raster of water (free) and land (obstacle). It is used to generate three uniformly

connected graphs that differ in the number of neighboring nodes. More nodes allows give greater movement freedom for more

efficient solutions, but at the cost of an increased search space. Experiments are performed with 4, 8, and 16-way graphs.

and variance. Multiple paths exist that navigate around the obstacles, and a better solution reliably chooses

that with lower cost. Task T3 is to check the effectiveness of the soft obstacle constraint. PSO should plan

a route around the peninsula, despite a local minima passing through the few obstacle cells in the narrow

land mass.235

Table 1: Path planning tasks.

Task Start Goal

T1 42°19’24.4”N 70°59’39.4”W 42°20’09.6”N 70°53’14.5”W

T2 42°19’58.2”N 70°58’23.6”W 42°16’18.6”N 70°54’12.3”W

T3 42°21’44.0”N 70°57’22.2”W 42°21’10.2”N 70°58’46.3”W

3.2. Visibility graphs

A VG was generated using the pyvisgraph library (Reksten-Monsen, 2018). The first output was invalid

with the edges intersecting the obstacles. Based on feedback from pyvisgraph author Christian Reksten-

Monsen, this was caused by round-off errors when using complex polygons. Much of the complexity was from

jagged edges of the occupancy grid, an artifact of the raster representation. The polygons were simplified240

until the VG was correct. It was modified for task-specific VGs by adding start and goal for each. The

network size and generation time of the unmodified VG is compared to the three uniform graphs in Table 2.

The runtimes are less meaningful, since the uniform graph generation is performed by a simple, unoptimized

python script, but the topologies are comparable and demonstrate substantial search space reduction.

An initial population of 100 candidate, feasible solutions was generated for T1 in 0.66 secs (Figure 4a),245
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Figure 3: The NECOFS (Beardsley, 2014) water current forecasts used in the experiments. Each row corresponds to a forecast,

and each column to a time (hourly resolution). Each forecast is stored as a 3-channel raster, since 3 hours are sufficient to

include the duration of all the paths produced by the experiments.

Table 2: Graph representations of Boston Harbor region.

Graph Nodes Edges Generated (secs)

4-way 751111 2991126 4.2

8-way 751111 5975766 7.3

16-way 751111 11911544 13.3

VG 382 7470 3.7
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for T2 in 0.74 secs (Figure 4b), and for T3 in 0.55 secs. All PSO experiments were performed both with a

random and VG initial population. These variants are called PSOR and PSOV G, respectively.
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Figure 4: Initial populations for each planning task. These replace the randomly generated initial set of candidate solutions

used by PSO. Thus, PSO improves on these solutions to generate the energy-efficient solution. The set of paths is generated

using A* on VGs, and include the shortest-distance path.

3.3. Energy efficient planning

3.3.1. Dijkstra and A* experiments

A* and Dijkstra solved on a combination of 5 water forecasts (including W0, no currents), 4 graph250

representations, and 3 planning tasks. Further, the 3 uniform graphs were tested with both graph-based

and grid (raster)-based search implementations. Given the distance heuristic, A* was not expected to

perform as effectively for energy-based planning. As expected, A* outperformed Dijkstra in W0, or, when

the forecasts are ignored for shortest distance planning. However, A* failed to reliably outperform Dijkstra

when using forecasts. This assessment is based not only on the runtimes, but by plotting all nodes visited255

by both algorithms. The energy-based cost function caused the A* search space exploration to be almost

identical to Dijkstra.

Dijkstra results are shown in Figure 5. Bars are the solution cost with the 4 graphs. The computation

time is noted for graph-based and grid-based versions. Solution improvements can be substantial. In T1,

for forecasts W1 and W2, the 16-way cost is less than half of 4-way. However, the computation speed260

reflects the increased complexity. VG outperforms 4-way, but does not match the performance of the larger

neighborhood graphs. This is expected since all edges in the graph were selected to aid shortest-distance

planning. Given the closeness in speed to 8-way Dijkstra, the unpredictable VG is not recommended. 16-

way solutions require significantly more time to produce, but the cost is similar to 8-way. This shows the

diminishing return with increased complexity. Dijkstra paths, column one of Figure 6, highlight the poor265

4-way solutions. The nature of VG forces each path segment to touch island polygon vertices, limiting its

ability to navigate around the currents in open water as shown in Figure 6l.
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(c) Task T3
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Figure 5: Dijkstra planning results using 4, 8, and 16-way neighborhood uniform graphs and VGs. Experiments include

uniforms graphs represented directly as graphs and implicitly with an occupancy grid. Bars compare the solution cost between

graphs. Stars and diamonds compare computation time required for the graph and grid-based solutions, respectively. The

choice of grid or graph impacts the time, but the neighborhood affects both time and solution cost.

3.3.2. PSO parameter tuning

Candidate algorithms were two evolution-inspired (GA and DE) and two colony-inspired (PSO and DE).

Initial tuning was performed to select the algorithm. This was done in previous work reported at ACC270

2020 (Krell et al., 2020b). Each algorithm was run with combinations of a range of parameter values,

5 trials each. The GA parameters were crossover (0.2, 0.4, . . . , 1.0) and mutation (0.2, 0.4, . . . , 1.0) rates.

DE parameters were the weight coefficient (0.2, 0.4, . . . , 1.0) and crossover probability (0.2, 0.4, . . . , 1.0).

For ABC, only the trial limit (10, 20, . . . , 50) was tuned. Finally, tuning PSO involved the constriction w

(0.2, 0.4, . . . 1.0), cognitive c1 (0.6, 1.6, . . . , 4.0), and social c2 (0.6, 1.6, . . . , 4.0) coefficients. PSO and ABC275

had similar behavior with slightly lower cost than PSO. GA and DE performed poorly, with extremely

slow convergence and high cost variance. Specifically, the percent larger range of costs after 100 iterations

compared PSO for ABC, DE, and GA were 25%, 2.5%, and 4.5%. Further, PSO’s best was the lowest of

the four.

A second round of tuning has been performed with only PSO to account for any changes in hyperparams280

needed to better suit the improvements made to the cost function since ACC. All parameter combinations

were evaluated using three trials with task T1 on forecasts W0 and W1. After finding the best results with

the parameter ranges specified, additional finer-tuned local changes were made to hone in on the best. The
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Figure 6: Energy minimization results. With Dijkstra, a larger neighborhood yields a smoother path. PSOR paths show

much greater variation than PSOV G.

best hyperparameters found were w = 0.7, c1 = 2.4, c2 = 2.4. The costs from these trials are within 1% of

those when using the defaults hyperparameters of w = 0.7298, c1 = 2.05, c2 = 2.05, which suggests that the285

defaults would have been sufficient.
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3.3.3. PSO experiments

PSO experiments were performed for all forecast, task combinations using PSOR and PSOV G. Each

experiment was repeated for 10 trials to evaluate reliability. For each run, 5 waypoints were found such that

the search space was 10 dimensional (each has an a and y component). This was based on previous experience290

with PSO planning and some trials that showed slower convergence with minimal solution improvements

using 6 waypoints. Figure 6 shows all paths generated. Each row is for a water forecast with columns for

Dijkstra, PSOR, and PSOV G results.
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Figure 7: Convergence of PSOR and PSOV G, compared to the Dijkstra results in term of solution cost and computation

time. The dashed horizontal lines mark the cost of the 4, 8, and 16-way Dijkstra solutions. The dotted vertical lines mark the

time (in approx. number of PSO iterations) taken for each Dijkstra result. The goal is for PSO to approximate the 16-way

Dijkstra cost while converging in fewer iterations.

For shortest distance (W0) planning, both PSOR and PSOV G results are almost identical to the Dijkstra

VG result — the shortest path. A single T2 outlier, using PSOR, aligned with 8-way Dijkstra instead. The295

consideration of water currents greatly impacts the solution variance, as evidenced by the remaining results

in Figure 6. The spatio-temporal cost landscape appears to introduce substantial local minima opportunities.

The dynamic cost also makes it harder to visually assess the paths. Unlike the shortest distance, it is not

obvious whether or not two spatially divergent paths may actually have a similar cost based on the currents.

In W1, the T3 results tend to agree with 16-way Dijkstra. Again, PSOR has an outlier path that is300

closer to Dijkstra’s worst (here, VG). T2 results are similar, but more dramatic. 4-way Dijkstra is very

different from the other Dijkstra results, based on the decision to go the other way around a substantial

island. PSOR has a single path that does the same. In W2, it is PSOV G that has a single outlier with

significantly different behavior. For W3 and W4, PSOR exhibits high path diversity.

From Figure 6, the overall trend is that the majority of PSO solutions are comparable to Dijkstra’s.305

PSOR results have very high path variance, with frequent outliers. Or, in the case of Figure 6m, not even

a single dominant trend for T1 and T2 results. As expected, the use of VGs for the initial population has

decreased the solution variance. The PSOV G results include only a single major outlier (Figure 6h).

Figure 7 shows the evolution of costs over time with Dijkstra benchmarks. The solution costs for the

four graphs are horizontal lines for comparing to the converged PSO cost. The vertical lines are seconds310

elapsed to find that solution. These results highlight the effectiveness of PSOV G. The spatial variance is

not reflected in the cost variance, suggesting that the complexity of the currents enable to vehicle to make
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spatially disparate paths with the same approximate cost. In general, PSOV G results match or outperform

8-way. Depending on the task, it might not reach the 16-way solution. Since Dijkstra can make arbitrary

turns and PSO is limited to 5 waypoints, this is expected. On the other hand, PSOR is shown to be315

extremely unreliable. The random initial population strongly impacts the rate of convergence. PSOV G

begins with a lower cost, and quickly converges. Rather than a premature convergence, the solutions tend

to be better than PSOR. Instead, it is the slower PSOR that clearly displays instances of convergence to

local optimum. This is dramatically highlighted with the (T2,W4) results. While not perfect, still limited by

the sensitivity to local optima and the problem with exponential complexity with the increase in waypoints,320

the results suggest that PSOV G has substantial advantage over the default random population.

3.4. Balancing energy expenditure and reward

Reward-based planning is enabled using a reward raster Gr scaled by a reward weight WR. Increasing

WR decreases the solution cost to encourage the path the intersect higher-reward cells. To explore planning

in their combined, complex solution space, the following experiments incorporate both work (water currents)325

and reward. Based on a sweep across a variety of WR values, two were selected for presenting the results

here. The first, WR = 1500, clearly demonstrates paths focused on reward collection. That is, the reward

weight is high enough for visibly obvious path deviations for reward maximization. In practice, smaller

weights are expected be more desirable for more subtle deviations. The second, WR = 2000, results are

included to compare how the PSO variants are impacted by the change in search space complexity. For330

brevity, the two reward weights will be referred to as 1x and 1.5x, respectively. Experiments are performed

with both PSOR and PSOV G.

From Figure 8, the planning results can be analyzed by comparing PSOR and PSOV G as well as the

effect of WR values 1x and 1.5x. Columns 1 and 2 show the paths for PSOR and PSOV G, respectively,

given WR = 1x. Columns 3 and 4 show the paths for PSOR and PSOV G, respectively, given WR = 1.5x.335

The rows correspond to water current scenarios W1 . . .W4. The PSOR,WR = 1x results demonstrate very

high path variance and large deviations from the energy efficient paths in Figure 6. The paths appear to

be significantly more reliable using PSOV G. Not only is the variance constrained, but also the paths are

relatively similar to the energy efficient paths. Consider the paths generated for scenario W2, Figures 8f

and 8g. With PSOR, the T2 trials may yield complex paths with large segments going opposite to the goal.340

The PSOV G trials manage to intersect reward cells while aligning with the goal of collecting opportunistic,

along-route reward. Similar comparisons can be made forW3 andW4. The most dramatic isW4, comparing

the T2 trials across Figures 8n and 8o. Here, PSOV G trials exhibit some degree of variance, but the variance

is constrained to a segment in the map with reward. Leaving that section, the paths match their energy

efficient counterparts (Figure 6n).345

As shown in Figure 8’s columns 2, increasing the value of WR substantially increased path variance for
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Figure 8: Planning results given water forecasts and reward.

tasks T1 and T2. In fact, there is one instance where the path is infeasible — intersecting a very narrow piece

of land (Figure 8l). While this does highlight that the use of soft constraints for obstacle avoidance requires

care in complex, multi-objective problems, it also shows that the constrained initial population of PSOV G

seems to avoid this problem. Comparing columns 2 and 4, PSOV G appears to be much more robust to350

the increasingly complex solution space. The paths are similar overall, with the WR = 1.5x paths showing

greater coverage of reward cells. This is exactly the desired tunable behavior.
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Figure 9: The influence of reward weight WR on the path cost and reward. Experiments are performed with reward weights

WR = 1x, 1.5x, and 2x.

The influence of modifying the reward weight on the solution in shown in Figure 9. Each point represents

a single trial. This includes the trials when WR = 1× and 2×, the paths shown in Figure 8, as well as

WR = 1.5×. Increasing WR tends to increase both reward and cost, as expected. In some scenarios,355

there appears to be a roughly linear relationship between reward and cost. However some scenarios, most

obviously (T1, W2), the increase in reward slows rapidly.

PSOV G tends to achieve higher reward than PSOR. In some scenarios, PSOR and PSOV G solutions are

relatively close to each other, but with the PSOV G results towards the upper-left, indicating more reward

at less cost. This can be observed for all scenarios for tasks T1 and 3/4 for T2. The PSOV G results also360

tend to be better clustered than PSOR, suggesting greater reliability. An exception is seen in (T2, W2),

where there is a large variation in both PSOV G and PSOR solutions, the former achieving strictly better
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reward and cost.

With T3, PSOV G tends to achieve substantially more reward, at a larger cost. This is apparent under

each forecast at WR = 2×. The PSOV G solutions may be > 2× the reward of PSOR. In this case, we argue365

that PSOV G outperforms PSOR because it responds more strongly to the tunable WR. The user could

decide that the PSOV G solutions under WR = 2× incur too much cost, and can choose to lower WR. On

the other hand, PSOR solutions under WR = 2× are often clustered closely with those under WR = 1.5×,

less separable with the tuning parameter.

These results suggest that PSOV G outperforms PSOR in the opportunistic reward task, in terms of the370

solution fitness, solution reliability, and response to tuning with WR. However, both PSOR and PSOV G

show scenarios with high variation. For a given (task, forecast, weight), individual trials may vary in cost

by 2×. Additional work is required to constrain the costs, without sacrificing the computational speedups

gained with a metaheuristic algorithm under soft constraints.

4. Conclusions375

In this work, ASV planning was performed using PSO with and without using VGs to initialize the pop-

ulation. A fitness function was developed for, depending on the weights, both energy efficiency and reward.

The results were compared to the optimal Dijkstra solutions. Dijkstra results showed substantial improve-

ment going from 4-way to 8-way, and subtle improvement with 16-way. VG solutions were slightly faster

than 8-way, but without reliably matching its fitness. PSO experiments were performed with two variants.380

PSOR used a random set of waypoint sequences. PSOV G had feasible solutions, including the shortest

path, extracted from a VG using A*. Experiments were performed for energy efficient planning. PSOR was

unable to reliably produce competitive paths with significant variance, slow convergence, and poor solutions.

However, PSOV G exhibited tight solution bounds with fast convergence and fitness comparable to at least

8-way Dijkstra, but sometimes meeting or surpassing 16-way depending on the scenario.385

Reward optimization was added, increasing search complexity. A qualitative assessment showed PSOV G

results meeting planning objectives. The paths increased sampling while staying close to efficient paths.

Tuning the reward weight WR adjusted the balance between efficiency and sampling.

Our next step is to make it easier to control how much efficiency is allowed to be sacrificed when

optimizing opportunistic reward. That is, how much should the solutions deviate from the low cost solution390

to be considered opportunistic. We will add a parameter that is the maximum percentage that the reward

maximization can take a solution from the lowest cost found so far (after an initial exploration period). At

each step, the PSO population will be (at least partially) pruned such that only those within a threshold

defined by the most energy efficient individual is allowed. This is expected to lower the cost variance when

considering the path reward.395
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