Autonomous Surface Vehicle Energy-Efficient and Reward-Based Path
Planning using Particle Swarm Optimization and Visibility Graphs

Evan Krell*, Scott A. King

Control of Robots and Autonomous Agents Laboratory (CORAL)
Texas AEM University — Corpus Christi
6300 Ocean Dr, Corpus Christi, Tezas

Innovation in Computing Research Labs (ICORE)
Texas AEM University — Corpus Christi

6300 Ocean Dr, Corpus Christi, Tezxas

Luis Rodolfo Garcia Carrillo

Klipsch School of Electrical and Computer Engineering
New Mezxico State University
1780 E University Ave, Las Cruces, New Mezico

Abstract

Autonomous Surface Vehicles require path planning that considers complex shoreline obstacles and dynamic
forces such as water currents. Here, path planning is used to achieve an energy-efficient route based on
water current forecasts. Graph-based algorithms such as Dijkstra’s Shortest-Path First generate an optimal
solution, but scale exponentially with search space size. Metaheuristic algorithms such as Particle Swarm
Optimization (PSO) sacrifice guaranteed optimality to substantially reduce computation. We compare PSO
to Dijkstra and A* for energy-efficient planning in a high resolution coastal environment with dynamic
water current forecasts. Observing high solution variance, we use Visibility Graphs (VGs) to generate a set
of initial candidate solutions for PSO. We demonstrate that starting with feasible paths that include that
with shortest-distance allows PSO to reliably converge to near-optimal paths much faster than Dijkstra. We
also consider a path’s data collection reward. The goal is to allow the vehicle to take advantage of nearby
observation opportunities. Again, VGs are shown to aid convergence to fitter solutions.

Keywords: Path planning, ASV navigation, Autonomous, Particle swarm optimization, Visibility graph

1. Introduction

A primary Autonomous Surface Vehicle (ASV) task is to navigate in the marine environment toward a

given location. Substantial research effort has been devoted to the NP-hard path planning problem. The

*Corresponding author
Email addresses: evan.krell@tamucc.edu (Evan Krell), scott.king@tamucc.edu (Scott A. King), luisillo@nmsu.edu
(Luis Rodolfo Garcia Carrillo)

Preprint submitted to Elsevier August 24, 2022



20

conventional criteria is distance minimization, but environmental forces such as wind and water currents
increase the complexity. It may also be reasonable to sacrifice some efficiency to take advantage of ob-
servation opportunities. The vehicle might be traversing over nothing but sand on a shorter path, while
interesting habitat is nearby. Taking advantage of opportunistic sampling reward increases the solution

space complexity. The goal is to develop a planner to optimize path efficiency and reward (Figure 1).

T ___ T YN T4 O

@@ Start Il Waypoint X Goal

Figure 1: Planning for energy efficiency and sampling reward yields a sequence of waypoints forming a set of straight-line
segments between start and goal. The shortest path would have led the ASV below the island. Instead, the path avoids strong

currents and deviates slightly to collect seagrass observations.

This research expands on our work presented at the American Control Conference 2020 (Krell et al.,
2020b). The PSO fitness function has been improved and we use Visibility Graphs (VGs) to seed the PSO
initial population for improved performance. New experiments compare our algorithm with graph-based
algorithms Dijkstra and A*. A companion to this paper is a software repository called conch (Krell, 2021a)
that contains the planning software, experiment results, and scripts for replication. Other work by the
authors in this area include shortest distance path planning for indoor mobile robots using PSO (Krell
et al., 2020a), and a game-theoretic ASV planner for the worst-case water currents based on forecast uncer-
tainty (Krell et al., 2019).

Classic graph algorithms such as Dijkstra’s Shortest Path First algorithm can find an optimal path (Di-
jkstra, 1959). However, the complexity of the algorithm is O(V *log V') where V is the number of vertices,
assuming that the graph is densely connected as typical for planning tasks. Planning over large, high-
resolution space demands faster methods.

The A* algorithm employs a heuristic to constrain the search space for improved efficiency (Nosrati et al.,
2012). An admissible heuristic is one that never overestimates the cost to reach the goal; this guarantees
that A* will yield an optimal solution (Nosrati et al., 2012). With additional criteria beyond distance, the

2



25

30

35

40

45

50

55

cost function is not guaranteed to be admissible. In sufficiently complex currents, the optimal path may
deviate significantly from the shortest. Studies have shown that A* with inconsistent heuristics may or may
not offer improved performance over Dijkstra (Zhang et al., 2009).

An alternative is planning with metaheuristic algorithms. These include evolutionary-based approaches
such as Genetic Algorithm (GA) (Forrest, 1993) and Differential Evolution (DE) (Storn and Price, 1997),
as well as colony-based algorithms such as PSO (Eberhart and Kennedy, 1995) and Artificial Bee Colony
(ABC) (Karaboga, 2010). Nature-inspired behaviors speed up the search, but sacrifice the guarantee of
finding the global optimum. Complicated search spaces may have numerous local optima. The goal is to
reliably converge to near-optimal solutions while meeting time constraints. Metaheuristic algorithms have
been applied to multi-objective path planning applications (Jones et al., 2002) including energy efficient
marine path planning. Research in this area is more commonly focused on Autonomous Underwater Vehicle
(AUV) planning, but very often only considering navigation on a 2D plane in the water column much like
boats dealing with surface currents.

Yang and Zhang (2009) presented Adapted Inertia-weight PSO for AUV planning. The inertia weight is a
PSO hyperparameter that directs the balance of exploration and exploitation (Bansal et al., 2011). Adaptive
strategies have become common, where the weight is modified over the course of the search. An experiment
was done using an electronic chart with complex island shapes and spatially-varying water currents.

Liu et al. (2011) presented a PSO-based AUV planner. Two modifications were made to avoid local
minima. Inertia weight is again adaptive, but also the cognitive and social coefficients. At first, the cognitive
(local information) is more important, but the weights are shifted so that over time the social information
dominates. Experiments were performed based on a chart with polygonal islands. Water currents were
based on the region’s monthly average currents.

A system for AUV online replanning was developed by Zeng et al. (2015). The planner uses spatio-
temporal water currents and uncertain obstacle locations. Objects are sensed rather than known beforehand.
The planner is intended to ensure safe navigation despite imperfect sensor readings. Rather than reacting to
the dynamic ocean environment by planning from scratch, replanning takes advantage of previous planning
to speed up the computation. The search algorithm is Quantum-behaved PSO (QPSO) where the movement
of the particles is inspired by quantum mechanics rather than conventional Newtonian physics. Experiments
were performed on a 100x100 grid with dynamic circular obstacles and irregular static island shapes.

Another PSO implementation with dynamic hyperparameters was presented by Xu et al. (2018). Their
improvements included varying the particle acceleration over time to again shift emphasis from global to
local search as well as using a slowly-varying function to expand the search and maintain diversity in new
candidates. Experiments occurred on a 2D plane with elliptical obstacles. No water currents are used, but
the work is of interest because of the large 10,000x10,000 grid.

Lim et al. (2019) combined DE and PSO for both quantum-behaved and adaptive PSO. Not only energy-

3



60

65

70

75

80

85

90

efficient, their system incorporates smooth, feasible control for a REMUS-100 AUV. Adaptive and quantum
versions have several variants based on combinations of hard and soft constraints. Hard constraints guarantee
solution properties, such as obstacle-free paths, but at higher computational cost. Soft constraints use a
penalty function to (ideally) converge to meet the constraints. Both 2D and 3D environments with spatio-
temporal currents and elliptical or spherical obstacles were used. Results suggest that the best choice is
quantum with hard vehicle motion constraints and soft obstacle constraints.

Kuhlemann and Tierney (2020) modified GA for ASV planning. Wind, waves and piracy risk were
incorporated for smooth paths minimizing fuel and risk while meeting arrival time constraints. Custom
mutation and crossover operators were developed based on the structure of paths. Rather than vector fields,
wind and waves are represented by their Beaufort number (Barua, 2005). Typical metaheuristic planners
solve for an arbitrary number of waypoints, but here GA solutions are variable length. Experiments were
on a world map with spatio-temporal wind and waves, perturbing the known weather to generate imperfect
forecasts to test the algorithm under uncertainty. The initial GA population was generated from feasible
solutions instead of the usual random population.

Usually, metaheuristic algorithms were compared to other metaheuristics instead of an optimal solution.
For example by comparing an improved PSO to a canonical PSO. Dijkstra is a reasonable benchmark since it
is guaranteed to be optimal. However, the optimality is with respect to the input graph. In a fully-connected
graph representation of a search space, adjacent nodes are typically connected to 4, 8, or 16 neighbors so
that the solution path cannot include arbitrary heading angles. In practice, 4-way yields jagged, sub-optimal
paths. Increasing the neighborhood increases fitness at the cost of a much larger search space. Still, the
Dijkstra solution is a useful benchmark since the optimal metaheuristic result should be at least as fit given
a sufficient solution dimension. Fixed-length metaheuristic solutions limit the number of possible waypoints,
restricting the possible path complexity and fitness.

By default, most metaheuristic solvers are initialized with a random set of candidate solutions. Given a
fitness function, the solutions are modified over each iteration. VGs are graphs that include only the edges
that could make up the shortest-distance path (Shah and Gupta, 2019). Here, we use VGs to generate an
initial population that includes the shortest-distance and many other feasible paths. Using VGs significantly
speeds up finding the shortest path at the cost of a set-up time to build the graph; it can be reused for as
long as the map remains static.

Experiments are performed with realistic scenarios. A raster of Boston Harbor with complex islands is
used for static obstacles. Four water current forecasts from the Northeast Coastal Ocean Forecast System
(NECOFS) (Beardsley, 2014) are used to get a spatio-temporal vector field for energy-efficient planning.

Research in marine metaheuristic path planning often have limited reproducability. Hyperparameters,
map resolution, water currents, and tuning steps are often only partially reported. It is difficult to compare
new research to the literature. Here, the software and results have been made available.

4



95

100

105

110

115

120

1.1. Contributions

e A VG is used to initialize the PSO candidate solutions to avoid local optimum. The VG is generated
from the Boston Harbor raster, and A* is used to generate a number of paths that include that with

shortest distance.

e Opportunistic sampling is explored using a synthetic reward raster. Experiments investigate how

tuning the weight of reward interest impacts the planning behavior.

e Dijkstra is used for energy-efficient benchmarks. Results include Dijkstra with 4-way, 8-way, and
16-way neighborhoods using both graph-based and raster-based implementations. A* is also briefly

evaluated to check performance given the non-admissible heuristic.

2. Materials and Methods

This research compares PSO to Dijkstra for energy efficient planning, with and without using VGs to
initialize the PSO population. Additional experiments evaluate the use of PSO for opportunistic sampling.
The graph search algorithms are discussed in section 2.1, followed by a description of VG in section 2.2.

PSO is described in section 2.3. Finally, section 2.4 gives the fitness function for energy and reward.

2.1. Dijkstra’s Shortest-Path First and A* algorithms

Dijkstra generates benchmark solutions, with the input graph limitations previously discussed. A* is
also used since, for shortest-distance, it is guaranteed to match Dijkstra, but using a distance heuristic
to reduce the search space. However, it remains to be seen if A* is effective when incorporating water
currents since there is not an admissible heuristic. Here, the cost function is calculated based on energy
expenditure, but the heuristic for node priority is the distance. It is assumed that the region has been
projected into an appropriate 2D coordinate system. The distance measurement error depends on the
accuracy of the projection and is assumed here to be sufficiently accurate for operational planning. In the
following, Distance(p1,p2) represents the distance between points p; and ps. For example, the Euclidean
distance for a metric coordinate system and Haversine for latitude and longitudes.

Dijkstra and A* are implemented together, using a conditional statement to choose how the next node is
selected. A* is enabled by using the distance heuristic. Otherwise, the behavior is Dijkstra’s. Two versions
are implemented: one solving directly on the occupancy grid and the other on a graph representation. Using
the grid, cell neighborhoods are calculated at run time by checking if the adjacent nodes are obstacles. For
the graph-based solver, the input raster has already been converted to a graph where each edge is to a valid
neighbor. By checking at run time, only the cells actually encountered by the algorithm are evaluated. Using

the graph-solver requires precomputing the entire graph, but this graph can be reused. Another advantage



125

130

135

140

145

150

155

of the graph-based solver is that it is not limited to a uniformly connected graph. For example, Dijkstra
and A* may be applied to a VG for a potential savings in solution cost and computation.

Algorithm 1 GraphSolver uses an energy-based cost function, extending a conventional shortest-
distance implementation by Patel (2014). The pseudocode highlights computational details needed for
the water currents. The main inputs are a graph G and start and goal locations, s and g, in (row, col)
coordinates. Here, the rows and columns correspond to cells in the raster even though this algorithm is
applied to a graph. The graph is implemented as a python dictionary where a (row, col) tuple is a key to
query neighbor cells. The reason for preserving these locations is that the water current rasters are in the
same dimensions as the environment raster and are used to access the water velocities on all cells between
two nodes.

Work is calculated with fitness function CalcWork, discussed in Section 2.4. It requires additional inputs
including the water current rasters (collectively referred to as C), the boat’s target speed, and geospatial
metadata ¢t. Also, a time offset from the start time of the water currents forecast is used. GridSolver only

differs by runtime checking for neighbor nodes instead of querying precomputed values.

2.2. Visibility Graph

A VG’s nodes and edges are only those potential segments of the shortest path (Niu et al., 2018). It is
generated from a set of polygons where each vertex is added as a node in the VG. The edges are added by
checking the visibility (obstacle-free, straight line), between all node pairs. To compute a path from a start
to goal location, the start and goal are also added to the VG along with edges for all visible vertices from
those points.

The pyvisgraph library is used for making VGs (Reksten-Monsen, 2018). Lee’s Visibility Graph Al-
gorithm is used which has a complexity of O(n?log,n) (Coleman, 2012). It is more complex than that of
Ghosh and Mount (O(e + nlog, n) (Kitzinger and Moret, 2003), but supports adding nodes after initial
creation. Here, the user provides a raster occupancy grid, and obstacles are converted into the polygons.
The VG is used both as a graph for Dijkstra and A* and for generating the PSO initial population.

To generate the initial PSO population, A* extracts paths from the VG. A* only finds the shortest path,
so the VG is modified between each A* run. The middle waypoint of each path is removed from the VG.
This prevents finding this same path again as well as others with that waypoint to increase path diversity.
Since this scheme generates several shortest paths using A*, it is only useful if finding an energy efficient

path with Dijkstra or A* is significantly more time consuming than finding a shortest path on a VG.

2.8. Particle Swarm Optimization
PSO is a metaheuristic algorithm inspired by biological colony behavior (Eberhart and Kennedy, 1995). A

group of particles share information to find an optimal solution. Each particle has position and velocity in the

6



Algorithm 1: GraphSolver

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Input: graph G, start coords s, goal coords g, water currents vector field C, elapsed time e,

geographic transform ¢, number of raster rows r, target vehicle speed v, algorithm choice a

Output: cameFrom, costSoFar, timeSoFar

F <« PriorityQueue()

F.put(s, 0) // start graph search from s

cameFrom, costSoFar, timeSoFar = ()

cameFrom[s] = NULL // s is the start of the path

costSoFar[s] = 0 // no cost to reach s

timeSoFar[s] = e // elapsed time for correctly accessing temporal water currents

while F # () do

¢+ F.get() // get current location to search
if ¢ = g then
t BREAK // reached goal

E < G|c] // get all nodes connected to current

for n € £ do

d + Distance(c,n) // distance between current and next node

dw, de < CalcWork(cy,ng,C,v,t, timeSoFar(c]) // cost, time between current and
next

cost < costSoFar(c] + dw // cost to reach next from start

if ng & costSoFar & cost < costSoFar[n] then

costSoFar[n] = cost // update cost to reach next with minimal found so far

if a = 7dijkstra” then

p < cost // use cost as priority
F.put(n, p)

if @ = 74*” then

p < cost + Distance(s, n) // add distance heuristic to priority

F.put(n, p) // add to priority queue

cameFrom[n] = ¢ // link current and next node to generate path

timeSoFar[n] = e+ de // time to reach next node

return cameFrom, costSoFar, timeSoFar




160

165

170

175

180

185

search space. Each iteration, these are updated based on local and neighborhood information discovered so
far. Balancing exploration and exploitation is critical to success, and is influenced by the cognitive coefficient
¢y and social coefficient ¢y that weight the attraction to the local and neighborhood best, respectively. The
speed at which it can change its trajectory is controlled by a constriction coefficient w where a higher value
causes slower change of direction. The constriction coefficient may be constant or adapted over the PSO
iterations. The adaptive version is intended to gradually shift the particle’s attention from exploration to
exploitation which promotes convergence. Similar to the constriction coefficient is the inertia weight, playing
the same role in the velocity update equations but requiring a maximum velocity w,q, to be specified.
Various neighborhood topologies exist, including global and adaptive random strategies. Innocente and
Sienz (2010) provide parameter value suggestions.

The fitness function calculates the relative energy needed across a collision-free sequence of waypoints
at constant speed in the presence of water currents. It is possible to write a complex fitness function
that modifies solutions to be collision-free before calculating the score. The more common alternative is
a soft constraint — an arbitrarily high penalty cost. Hard constraints ensures feasibility, but may require
conditional statements and loops that make it difficult to use vectorized operations. Lim et al. (2019) found
soft obstacle avoidance constraints faster and more effective.

Typically the initial population is from a random or uniform distribution. Alternatively, pre-processing
can produce realistic or at least feasible solutions. Kuhlemann and Tierney (2020) generated collision-free
paths for their initial GA population. PSO is implemented with pagmo, a C++ library with implementations
of biologically-inspired search algorithms. The library is focused on efficient implmentations and providing
a consistent API to apply numerous search algorithms with a single fitness function. The path planning
software developed here is written in python, taking advantage of the bindings to PaGMO provided by the
PyGMO python bindings. PaGMO’s PSO includes 6 variants on the velocity update and 4 variants on the
neighborhood topology. Here, the defaults of both are used, based on initial trials that did not demonstrate
significant difference for this problem. The velocity update rule is controlled by the constriction coefficient.
The neighborhood topology is adaptive random: when the global optimum fails to improve, each particles

randomly selects k others as neighbors irrespective of their distance (Zambrano-Bigiarini et al., 2013).

2.4. Fitness function

Planning takes place in an environment represented with an M x N binary occupancy grid G.. Water
currents are vector fields represented by M x N x T rasters where T' corresponds to discrete time intervals.
These are the magnitude and direction of the water velocity called G,, and G4 respectively. The reward
assigned to each cell is stored in an M x N raster G,..

A candidate solution path is represented as a sequence of n waypoints where each element is a tuple with



190

195

200

an z and y coordinate into the environment grids as

path = [(l'hyl)v($27y2)7"'7(1’n,yn)} (1)

The fitness function is designed to minimize collisions, distance, and energy expenditure (work). However,
some efficiency is sacrificed to maximize path reward. Weights are used to influence the importance of each
criteria. High weight on reward should cause the vehicle to be less concerned with path efficiency, while a
smaller reward weight emphasizes efficiency. The fitness function’s result, Fjqp, is the weighted sum of the
four optimization attributes.

Path distance Pp is the sum of distances between each pair of adjacent waypoints, (z;, y;) and (241, Yi+1),
as

n—1

Pp = Z Distance(x;, Y, Tit1, Yit1) 2)
i=1 2

V(zi,yi) € (x1,91), (T2, Y2)5 s (Trm1, Yn—1)
The attribute Pp is the number of occupied cells along a straight line between adjacent path waypoints.
The Bresenham algorithm (Bresenham, 1965) is used to select all cells along a line in G.. Free and occupied
cells in G have values of 0 and 1, respectively. Thus, a summation of G, values in the calles returned by

Bresenham is the obstacle count.

n—1

Po = o(xi,yi Tit1, Yit1)
i=1 (3)

v(xmyz) € (‘rlvyl)v ($2»y2)7 (a3 ("Enflaynfl)

where

O(xiay%xja y]) = Z Ge(xlayl)

Va,y; € Bresenham(z;, y;, ;,y;)

(4)

The path reward Pg is the sum of reward values in G, between each pair of adjacent waypoints. The
function r(z;, y;, x;,y;) sums the reward of a single segment, again using Bresenham to check all intersected

cell in G,..

n—1

P = Z v(Zi, Yis Tit1, Yit1)
2 (5)

V(xivyi) € (xlvyl)a (x2ay2)7 neey (xn—layn—l)

where

r(@i,vi 25, 95) = Y Grel(xr, 01)]

Vay,y; € Bresenham(z;, v, 25, ;)

(6)

The work exerted by the vehicle Py is the sum of work required along the path segments as it deals
with water currents to maintain a constant speed spqq¢. Calculating the work is based on the robot’s applied

9



205

force vector as it adjusts in response to the influence of water currents. This component is dependent on the
elapsed time of all previous planning. The elapsed duration d and time resolution [ of each band is used to
select the bands in G, and G4. The water velocity is calculated by interpolating between the two nearest
bands. For example, if the forecast begins at 00:00, [ is 1 hour and d is 25 minutes, then the weighted
interpolation combines 75% of the nearer, first band and 25% of the further, second.

The cell size d° is used to estimate the distance that the vehicle’s resultant force is applied. Bresenham
is used by the function w(z;,y;, x;,y;) to sum the work required along a single path segment. Within, the

function w°(x;,y1, 2, y;) calculates the work required to traverse a single cell.

n—1

Py = Zw(xiayiaxi+l>yi+1)
i—1 (7)

v(xmyz) € (xlayl)ﬂ (:L'Qa yZ)a a3 (xn—la yn—l)

where
W@, ys wj,y;) = > w (@, u, 75, 95) @
Va,y; € Bresenham(z;, yi, x;,y;)
The work w° at an individual cell requires the nearest discrete water currents forecast. The elapsed
duration d is used to select the appropriate water currents raster band at index 7. The elapsed duration d

is divided by the duration of each discrete forecast interval [. Rounding yields the nearest band, and max

avoids the zero band, since the indices start at one.

1 = max (17 round (d/l)) (9)

Next, the boat’s heading angle 6p,4: is calculated based on the boat’s current position (z;,y;) and next
target waypoint (z;,y;) as

eboat = atan2(yj — Y, Tr; — xl) (10)

The boat’s target velocity V%°% can now be determined using the boat’s heading fpoq; and target speed

Sboat AS.

(Vwboat’ V;Oat) = (Sboat Ccos eboah Sboat sin eboat) (1 1)

The water current velocity is determined by looking up the forecasts at the selected band b in environment

grids G,,, and G4 at (z,y;) as

Ve = G (i, 2, 1) cos Gali, z, ) (1 — ((dmod 1)/1))

+ G i,z y)  cosGa(i,xr,y) ((dmodl)/l) 12)
Ve = G (i, y) - sinGaliy i, y) (1 — ((d mod 1)/1))

+ G (i 2, y)  sinGq(i, 2, y) ((dmod1)/1)

10



210

215

220

225

230

The boat’s required applied velocity VePPled to maintain the target V% is calculated using V%" as

Vapplied — Vboat _ Vwater (13)

C

Finally, w® is calculated based on applying the force over the distance d° to traverse a cell as

wC = |Vapplied|dc (14)

The fitness for the entire path is the weighted sum of these values, using weights Wp, Wo, Wy, and
Wg as
Fpatn = WoPo + WpPp + Wyw Py — WrPr (15)

The weight Wy is an arbitrary huge number.

3. Results and Discussion

Experiments are done with only energy optimization and with both energy and reward. Section 3.1
describes the experimental environment and data structure representations. Section 3.2 gives the results of
VG generation. Results of energy-only with graph-based search and PSO is discussed in Section 3.3, and

with energy and reward in Section 3.4.

8.1. Environment

Experiments used Boston Harbor (Figure 2a) because of its complex coastline, numerous islands, and
available water current forecasts. The raster is a binary occupancy grid of land and water, produced from
NGAT’s World Vector Shoreline (1:250,000) data ([dataset] NOAA, 2017) in QGIS (QGIS Development

Team, 2018).
Water current forecasts are from The Northeast Coastal Ocean Forecast System (NECOFS) ([dataset)

Northeast Regional Coastal Ocean Observation System, 2021), provided by the Northeast Regional Coastal
Ocean Observation System (NERCOOS) Program, Massachusetts Fishery Institution, and the MIT sea
grant. Nowcasts and forecasts are available for the region. The forecast horizon is 72 hours at 1-hour
intervals. A collection of python scripts, Whelk(Krell, 2021b), was developed by the authors to access,
store, and visualize the data. Given a start and stop time, and desired attributes, the unstructured grid is
converted to a set of multi-band rasters. Each has a single attribute, such as the eastward water velocity
components where bands are the values at a discrete time steps.

Four scenarios, W = {W;, Wh, W5, W, }, were selected since they exhibit various spatio-temporal behav-
ior (see Figure 3). Each is represented as two rasters (eastward, northward components) with three bands
each for three hours. W indicates that the water currents are ignored.

Experiments are performed for three tasks (start, goal pairs) T = {71, 73, T3} (Table 1). Experiments
assume a constant speed of 0.5mps. The purpose of 71 and 73 is to evaluate PSO in terms of solution cost

11



235

240

245

(a) Boston Harbor. (b) 8-way uniform graph.

Figure 2: Boston Harbor as an occupancy grid raster of water (free) and land (obstacle). It is used to generate three uniformly
connected graphs that differ in the number of neighboring nodes. More nodes allows give greater movement freedom for more

efficient solutions, but at the cost of an increased search space. Experiments are performed with 4, 8, and 16-way graphs.

and variance. Multiple paths exist that navigate around the obstacles, and a better solution reliably chooses
that with lower cost. Task 73 is to check the effectiveness of the soft obstacle constraint. PSO should plan
a route around the peninsula, despite a local minima passing through the few obstacle cells in the narrow

land mass.

Table 1: Path planning tasks.
Task Start Goal

IMG/mass_bay .pdf | 1oo19194 47N 70°59'39.47W | 42°2009.6"N 70°53'14.5"W
T, | 42°19'58.27N 70°58'23.6"W | 42°16718.6"N 70°54'12.3" W
To | 42°21°44.0°N 70°57°22.2°W | 42°21°10.2°N 70°58'46.3" W

3.2. Visibility graphs

A VG was generated using the pyvisgraph library (Reksten-Monsen, 2018). The first output was invalid
with the edges intersecting the obstacles. Based on feedback from pyvisgraph author Christian Reksten-
Monsen, this was caused by round-off errors when using complex polygons. Much of the complexity was from
jagged edges of the occupancy grid, an artifact of the raster representation. The polygons were simplified
until the VG was correct. It was modified for task-specific VGs by adding start and goal for each. The
network size and generation time of the unmodified VG is compared to the three uniform graphs in Table 2.
The runtimes are less meaningful, since the uniform graph generation is performed by a simple, unoptimized
python script, but the topologies are comparable and demonstrate substantial search space reduction.

An initial population of 100 candidate, feasible solutions was generated for 7; in 0.66 secs (Figure 4a),

12



Figure 3: The NECOFS (Beardsley, 2014) water current forecasts used in the experiments. Each row corresponds to a forecast,

and each column to a time (hourly resolution). Each forecast is stored as a 3-channel raster, since 3 hours are sufficient to

(§) Wa, 2020 Aug 31, 00 UTC

include the duration of all the paths produced by the experiments.

(k) Wi, 2020 Aug 31, 01 UTC (1) Wy, 2020 Aug 31, 02 UTC

Table 2: Graph representations of Boston Harbor region.

Graph | Nodes | Edges | Generated (secs)
4-way | 7H1111 | 2991126 4.2
8-way | 751111 | 5975766 7.3
16-way | 751111 | 11911544 13.3
VG 382 7470 3.7

13




250

255

260

265

for T3 in 0.74 secs (Figure 4b), and for 73 in 0.55 secs. All PSO experiments were performed both with a

random and VG initial population. These variants are called PSOg and PSOy g, respectively.

R = py
7N OEOTA7 7N OO TA7 O 70 OO TA7 70 OECTA7

(a) Task Ty (b) Task T2 (c) Task T3

Figure 4: Initial populations for each planning task. These replace the randomly generated initial set of candidate solutions
used by PSO. Thus, PSO improves on these solutions to generate the energy-efficient solution. The set of paths is generated

using A* on VGs, and include the shortest-distance path.

3.3. Energy efficient planning

3.3.1. Dijkstra and A* experiments

A* and Dijkstra solved on a combination of 5 water forecasts (including Wy, no currents), 4 graph
representations, and 3 planning tasks. Further, the 3 uniform graphs were tested with both graph-based
and grid (raster)-based search implementations. Given the distance heuristic, A* was not expected to
perform as effectively for energy-based planning. As expected, A* outperformed Dijkstra in W)y, or, when
the forecasts are ignored for shortest distance planning. However, A* failed to reliably outperform Dijkstra
when using forecasts. This assessment is based not only on the runtimes, but by plotting all nodes visited
by both algorithms. The energy-based cost function caused the A* search space exploration to be almost
identical to Dijkstra.

Dijkstra results are shown in Figure 5. Bars are the solution cost with the 4 graphs. The computation
time is noted for graph-based and grid-based versions. Solution improvements can be substantial. In 77,
for forecasts W; and W, the 16-way cost is less than half of 4-way. However, the computation speed
reflects the increased complexity. VG outperforms 4-way, but does not match the performance of the larger
neighborhood graphs. This is expected since all edges in the graph were selected to aid shortest-distance
planning. Given the closeness in speed to 8-way Dijkstra, the unpredictable VG is not recommended. 16-
way solutions require significantly more time to produce, but the cost is similar to 8-way. This shows the
diminishing return with increased complexity. Dijkstra paths, column one of Figure 6, highlight the poor
4-way solutions. The nature of VG forces each path segment to touch island polygon vertices, limiting its

ability to navigate around the currents in open water as shown in Figure 61.

14



270

275

280

()
w 7
4000 @ =
B
<> " E
% ©
¢ 3000 - g
< s
= =}
& - 108
2000 - 2
o
wn
1000 -0
(a) Task T1 (b) Task T2 (c) Task T3

Figure 5: Dijkstra planning results using 4, 8, and 16-way neighborhood uniform graphs and VGs. Experiments include
uniforms graphs represaariagt directly a*raphs@xchipiplisp]@ezdt,hémegapancy grit‘%ars dotrpalresthe solution cost between
graphs. Stars and diamgarts compare*mput@ai(mrthnsmmﬁed%owﬂw graph anddgrid-béied dosryions, respectively. The

choice of grid or graph impacts the time, but the neighborhood affects both time and solution cost.

3.83.2. PSO parameter tuning

Candidate algorithms were two evolution-inspired (GA and DE) and two colony-inspired (PSO and DE).
Initial tuning was performed to select the algorithm. This was done in previous work reported at ACC
2020 (Krell et al., 2020b). Each algorithm was run with combinations of a range of parameter values,
5 trials each. The GA parameters were crossover (0.2,0.4,...,1.0) and mutation (0.2,0.4,...,1.0) rates.
DE parameters were the weight coefficient (0.2,0.4,...,1.0) and crossover probability (0.2,0.4,...,1.0).
For ABC, only the trial limit (10,20,...,50) was tuned. Finally, tuning PSO involved the constriction w
(0.2,0.4,...1.0), cognitive ¢; (0.6,1.6,...,4.0), and social ¢y (0.6,1.6,...,4.0) coefficients. PSO and ABC
had similar behavior with slightly lower cost than PSO. GA and DE performed poorly, with extremely
slow convergence and high cost variance. Specifically, the percent larger range of costs after 100 iterations
compared PSO for ABC, DE, and GA were 25%, 2.5%, and 4.5%. Further, PSO’s best was the lowest of
the four.

A second round of tuning has been performed with only PSO to account for any changes in hyperparams
needed to better suit the improvements made to the cost function since ACC. All parameter combinations
were evaluated using three trials with task 77 on forecasts Wy and W;. After finding the best results with

the parameter ranges specified, additional finer-tuned local changes were made to hone in on the best. The

15



285

T —
S[RLI} Tf, —
s[etry 1y, I——

(a) Dijkstra legend.

T1, 4-way == m 73, 4-way
T1, 8-way - T3, S-way (b) PSOR, PSOvy ¢ legend.

T 1R vevnvr — = T. 1R wevasr

(1) W4, Dijkstra.

(m) Wa, PSOR. (n) Wa, PSOvyg.

Figure 6: Energy minimization results. With Dijkstra, a larger neighborhood yields a smoother path. PSOpg paths show

much greater variation than PSOy ¢.

best hyperparameters found were w = 0.7,¢; = 2.4,c3 = 2.4. The costs from these trials are within 1% of
those when using the defaults hyperparameters of w = 0.7298, ¢; = 2.05, co = 2.05, which suggests that the

defaults would have been sufficient.

16



290

295

300

305

310

3.3.8. PSO experiments

PSO experiments were performed for all forecast, task combinations using PSOgr and PSOy . Each
experiment was repeated for 10 trials to evaluate reliability. For each run, 5 waypoints were found such that
the search space was 10 dimensional (each has an a and y component). This was based on previous experience
with PSO planning and some trials that showed slower convergence with minimal solution improvements
using 6 waypoints. Figure 6 shows all paths generated. Each row is for a water forecast with columns for

Dijkstra, PSOpg, and PSOy ¢ results.

CostCost Cost,

wergénce of [PSOgr and PSOy to the Dijkstra results in term of solution cost and computation

time. The dashed horizontal lines mark the cost of the 4,"8, and"16-way Dijkstra solutions. The dotted vertical lines mark the
time (in approx. number of PSO iterations) taken for each Dijkstra result. The goal is for PSO to approximate the 16-way

Dijkstra cost while converging in fewer iterations.

For shortest distance (W) planning, both PSOg and PSOy ¢ results are almost identical to the Dijkstra
VG result — the shortest path. A single 75 outlier, using PSOg, aligned with 8-way Dijkstra instead. The
consideration of water currents greatly impacts the solution variance, as evidenced by the remaining results
in Figure 6. The spatio-temporal cost landscape appears to introduce substantial local minima opportunities.
The dynamic cost also makes it harder to visually assess the paths. Unlike the shortest distance, it is not
obvious whether or not two spatially divergent paths may actually have a similar cost based on the currents.

In Wy, the T3 results tend to agree with 16-way Dijkstra. Again, PSOpg has an outlier path that is
closer to Dijkstra’s worst (here, VG). T3 results are similar, but more dramatic. 4-way Dijkstra is very
different from the other Dijkstra results, based on the decision to go the other way around a substantial
island. PSOg has a single path that does the same. In Ws, it is PSOy ¢ that has a single outlier with
significantly different behavior. For W3 and W,, PSOp exhibits high path diversity.

From Figure 6, the overall trend is that the majority of PSO solutions are comparable to Dijkstra’s.
PSOg results have very high path variance, with frequent outliers. Or, in the case of Figure 6m, not even
a single dominant trend for 7; and 75 results. As expected, the use of VGs for the initial population has

decreased L'hwa,ly vl S the PSOvy¢ . _le maj@mw ayﬁre‘ 6h).

Figure 7 shows the evolution of costs over time with Dijkstra benchmarks. The solution costs for the
four graphs W@Mmﬁ Lm T’ comparing! the !nverg PSaost. Tlg%r%l@zfaﬁ}/evs are seconds

elapsed to find that solution. These results highlight the effectiveness of PSOy . The spatial variance is

not reflected in the cost variance, suggesting that the complexity of the currents enable to vehicle to make

17



315

320

325

330

335

340

345

spatially disparate paths with the same approximate cost. In general, PSOy ¢ results match or outperform
8-way. Depending on the task, it might not reach the 16-way solution. Since Dijkstra can make arbitrary
turns and PSO is limited to 5 waypoints, this is expected. On the other hand, PSOp is shown to be
extremely unreliable. The random initial population strongly impacts the rate of convergence. PSOy¢
begins with a lower cost, and quickly converges. Rather than a premature convergence, the solutions tend
to be better than PSOg. Instead, it is the slower PSOp that clearly displays instances of convergence to
local optimum. This is dramatically highlighted with the (72, Wjy) results. While not perfect, still limited by
the sensitivity to local optima and the problem with exponential complexity with the increase in waypoints,

the results suggest that PSOy ¢ has substantial advantage over the default random population.

3.4. Balancing energy expenditure and reward

Reward-based planning is enabled using a reward raster G, scaled by a reward weight Wg. Increasing
Wr decreases the solution cost to encourage the path the intersect higher-reward cells. To explore planning
in their combined, complex solution space, the following experiments incorporate both work (water currents)
and reward. Based on a sweep across a variety of Wg values, two were selected for presenting the results
here. The first, W = 1500, clearly demonstrates paths focused on reward collection. That is, the reward
weight is high enough for visibly obvious path deviations for reward maximization. In practice, smaller
weights are expected be more desirable for more subtle deviations. The second, Wgr = 2000, results are
included to compare how the PSO variants are impacted by the change in search space complexity. For
brevity, the two reward weights will be referred to as 1 and 1.5z, respectively. Experiments are performed
with both PSOgr and PSOv .

From Figure 8, the planning results can be analyzed by comparing PSOgr and PSOy¢ as well as the
effect of Wi values 1z and 1.5z. Columns 1 and 2 show the paths for PSOgr and PSOvy g, respectively,
given Wx = 1z. Columns 3 and 4 show the paths for PSOpr and PSOvy ¢, respectively, given Wr = 1.5z.
The rows correspond to water current scenarios Wy ... Wy. The PSOg, Wg = 1z results demonstrate very
high path variance and large deviations from the energy efficient paths in Figure 6. The paths appear to
be significantly more reliable using PSOy . Not only is the variance constrained, but also the paths are
relatively similar to the energy efficient paths. Consider the paths generated for scenario W, Figures 8f
and 8g. With PSOg, the T5 trials may yield complex paths with large segments going opposite to the goal.
The PSOvy ¢ trials manage to intersect reward cells while aligning with the goal of collecting opportunistic,
along-route reward. Similar comparisons can be made for W3 and Wy. The most dramatic is Wy, comparing
the 75 trials across Figures 8n and 8o. Here, PSOy ¢ trials exhibit some degree of variance, but the variance
is constrained to a segment in the map with reward. Leaving that section, the paths match their energy
efficient counterparts (Figure 6n).

As shown in Figure 8’s columns 2, increasing the value of Wx substantially increased path variance for

18



350

(a) Legend.

(b) W1, PSOR, Wg = 1z. (¢) Wi, PSOvyg, Wg =1z. (d) Wi, PSORr, Wg = 1.52. (e) Wi, PSOyqg, Wgr = 1.5z.

(f) Wz, PSOR, WR = lz. (g) Wz, PSOVg, WR = lz. (h) Wg, PSOR, WR = 1.5x.

(Il) W4, PSOR, WR = lz. (0) W4, PSOVG, WR = lz. (p) W4, PSOR, WR = 1.5z. (q) W4, PSOVG, WR = 1.5z.

Figure 8: Planning results given water forecasts and reward.

tasks 71 and 7T5. In fact, there is one instance where the path is infeasible — intersecting a very narrow piece
of land (Figure 81). While this does highlight that the use of soft constraints for obstacle avoidance requires
care in complex, multi-objective problems, it also shows that the constrained initial population of PSOy ¢
seems to avoid this problem. Comparing columns 2 and 4, PSOy g appears to be much more robust to
the increasingly complex solution space. The paths are similar overall, with the Wxr = 1.5z paths showing

greater coverage of reward cells. This is exactly the desired tunable behavior.

19



355

360

Weather Wy Weather W Weather W5 Weather Wy
Q R Q| 200- R
1.75 1.75
1.6 & o g
O @ @ O 1.75 -
1.50 1.50 1.4 § %
1.50
o ¢ g) S
1.25 1.25 1 127 f
ko]
g g ° d % 1.25 - G
2
g [} 8) 1.0
= 1.00 1.00 A %
o _
2 o o 1.00
% 0.8
g & o © ®
0.75 — 0.75 O 0.75 -
qo 718 o
Co | 06 o@® ° o
O 8
0.50 - 0-50 7 oO 0.50
o 0.4 - o ° ’
(@) o o °g
0.25 % 0.25 7 °O 021 o 0.25 {8
T T T T T T T
2000 4000 2000 4000 2000 4000 2000 4000 6000
Solution cost Solution cost Solution cost Solution cost
Wgr =1z 2 4z Wgr =1z 21 4z
7| © o Olxle % O
7| © o Oln|e % &
7l ° ) Ol nle o &
PSOR PSOva
Figure 9: The influence of reward weight Wg on the path cost and reward. Experiments are performed with reward weights

Wgr = 1z, 1.5z, and 2z.

The influence of modifying the reward weight on the solution in shown in Figure 9. Each point represents

a single trial. This includes the trials when Wi = 1x and 2x, the paths shown in Figure 8, as well as

Wgr = 1.5x. In some scenarios,

Increasing Wpg tends to increase both reward and cost, as expected.
there appears to be a roughly linear relationship between reward and cost. However some scenarios, most
obviously (71, W), the increase in reward slows rapidly.

PSSOy ¢ tends to achieve higher reward than PSOpg. In some scenarios, PSOg and PSOy ¢ solutions are
relatively close to each other, but with the PSOy ¢ results towards the upper-left, indicating more reward
at less cost. This can be observed for all scenarios for tasks 71 and 3/4 for Ta. The PSOy ¢ results also

tend to be better clustered than PSOpg, suggesting greater reliability. An exception is seen in (T3, Ws),

where there is a large variation in both PSOy ¢ and PSOp solutions, the former achieving strictly better

20



365

370

375

380

385

390

395

reward and cost.

With T3, PSOy ¢ tends to achieve substantially more reward, at a larger cost. This is apparent under
each forecast at Wi = 2x. The PSOy ¢ solutions may be > 2x the reward of PSOpg. In this case, we argue
that PSOvy ¢ outperforms PSOpg because it responds more strongly to the tunable Wg. The user could
decide that the PSOv ¢ solutions under Wgr = 2x incur too much cost, and can choose to lower Wg. On
the other hand, PSOp solutions under Wi = 2x are often clustered closely with those under Wr = 1.5x,
less separable with the tuning parameter.

These results suggest that PSOy ¢ outperforms PSOpg in the opportunistic reward task, in terms of the
solution fitness, solution reliability, and response to tuning with Wg. However, both PSOpr and PSOvy ¢
show scenarios with high variation. For a given (task, forecast, weight), individual trials may vary in cost
by 2x. Additional work is required to constrain the costs, without sacrificing the computational speedups

gained with a metaheuristic algorithm under soft constraints.

4. Conclusions

In this work, ASV planning was performed using PSO with and without using VGs to initialize the pop-
ulation. A fitness function was developed for, depending on the weights, both energy efficiency and reward.
The results were compared to the optimal Dijkstra solutions. Dijkstra results showed substantial improve-
ment going from 4-way to 8-way, and subtle improvement with 16-way. VG solutions were slightly faster
than 8-way, but without reliably matching its fitness. PSO experiments were performed with two variants.
PSOpg used a random set of waypoint sequences. PSOy ¢ had feasible solutions, including the shortest
path, extracted from a VG using A*. Experiments were performed for energy efficient planning. PSOg was
unable to reliably produce competitive paths with significant variance, slow convergence, and poor solutions.
However, PSOy ¢ exhibited tight solution bounds with fast convergence and fitness comparable to at least
8-way Dijkstra, but sometimes meeting or surpassing 16-way depending on the scenario.

Reward optimization was added, increasing search complexity. A qualitative assessment showed PSOv ¢
results meeting planning objectives. The paths increased sampling while staying close to efficient paths.
Tuning the reward weight Wx adjusted the balance between efficiency and sampling.

Our next step is to make it easier to control how much efficiency is allowed to be sacrificed when
optimizing opportunistic reward. That is, how much should the solutions deviate from the low cost solution
to be considered opportunistic. We will add a parameter that is the maximum percentage that the reward
maximization can take a solution from the lowest cost found so far (after an initial exploration period). At
each step, the PSO population will be (at least partially) pruned such that only those within a threshold
defined by the most energy efficient individual is allowed. This is expected to lower the cost variance when

considering the path reward.

21



400

405

410

415

420

425

430

435

Acknowledgements

The computations in this study were performed on resources provided by the Island Science and Engi-

neering Research Cloud (ISERC) funded by the National Science Foundation [grant number 1828380].

References

Bansal, J.C., Singh, P.K., Saraswat, M., Verma, A., Jadon, S.S., Abraham, A., 2011. Inertia weight strategies in particle swarm
optimization, in: 2011 Third World Congress on Nature and Biologically Inspired Computing, pp. 633-640. doi:10.1109/
NaBIC.2011.6089659.

Barua, D.K., 2005. Beaufort Wind Scale. Springer Netherlands, Dordrecht. pp. 186-186. doi:10.1007/1-4020-3880-1_45.

Beardsley, R.C. & Chen, C., 2014. Northeast coastal ocean forecast system (necofs): A multi-scale global-regional-estuarine
fvcom model, in: AGU Fall Meeting Abstracts.

Bresenham, J., 1965. Algorithm for computer control of a digital plotter. IBM Syst. J. 4, 25-30. doi:10.1147/sj.41.0025.

Coleman, D., 2012. Lee’s o (n? log n) visibility graph algorithm implementation and analysis.

Dijkstra, E., 1959. A note on two problems in connexion with graphs. Numerische mathematik 1, 269-271.

Eberhart, R., Kennedy, J., 1995. Particle swarm optimization, in: Proceedings of the IEEE international conference on neural
networks, Citeseer. pp. 1942-1948.

Forrest, S., 1993. Genetic algorithms: principles of natural selection applied to computation. Science 261, 872-878.

Innocente, M., Sienz, J., 2010. Coeflicients’ settings in particle swarm optimization: insight and guidelines. Mecanica Com-
putacional 29, 9253-9269.

Jones, D.F., Mirrazavi, S.K., Tamiz, M., 2002. Multi-objective meta-heuristics: An overview of the current state-of-the-art.
European journal of operational research 137, 1-9.

Karaboga, D., 2010. Artificial bee colony algorithm. scholarpedia 5, 6915.

Kitzinger, J., Moret, B., 2003. The visibility graph among polygonal obstacles: a comparison of algorithms. Ph.D. thesis.
University of New Mexico.

Krell, E., 2021a. Conch software. https://github.com/ekrell/conch. Commit: 5582d5bcalcba328d3463965ble9fa69a454708f.

Krell, E., 2021b. Whelk software. https://github.com/ekrell/whelk. Commit: aec3ed3455656755fal6ce9921ecb03685df5e81.

Krell, E., Garcia-Carrillo, L., King, S., Hespanha, J., 2020a. Game theoretic potential field for autonomous water surface
vehicle navigation using weather forecasts, in: 2020 American Control Conf., IEEE. pp. 2112-2117.

Krell, E., King, S., Garcia-Carrillo, L., 2020b. Autonomous water surface vehicle metaheuristic mission planning using self-
generated goals and environmental forecasts, in: 2020 American Controls Conf., IEEE.

Krell, E., Sheta, A., Balasubramanian, A., King, S., 2019. Collision-free autonomous robot navigation in unknown environments
utilizing pso for path planning. Journal of Artificial Intelligence and Soft Computing Research 9, 267—282.

Kuhlemann, S., Tierney, K., 2020. A genetic algorithm for finding realistic sea routes considering the weather. Journal of
Heuristics 26, 801-825.

Lim, H., Fan, S., Chin, C., Chai, S., Bose, N., Kim, E., 2019. Constrained path planning of autonomous underwater vehicle
using selectively-hybridized particle swarm optimization algorithms. IFAC-PapersOnLine 52, 315-322.

Liu, C., Hao, Y., Gao, F., 2011. A path planning method for underwater vehicle based on ocean current information, in: 2011
Fourth International Joint Conf. on Computational Sciences and Optimization, IEEE. pp. 987-991.

Niu, H., Lu, Y., Savvaris, A., Tsourdos, A., 2018. An energy-efficient path planning algorithm for unmanned surface vehicles.
Ocean Engineering 161, 308-321.

[dataset] NOAA, 2017. World vector shorelines. http://www.ngdc.noaa.gov/mgg/shorelines/.

22


http://dx.doi.org/10.1109/NaBIC.2011.6089659
http://dx.doi.org/10.1109/NaBIC.2011.6089659
http://dx.doi.org/10.1109/NaBIC.2011.6089659
http://dx.doi.org/10.1007/1-4020-3880-1_45
http://dx.doi.org/10.1147/sj.41.0025
https://github.com/ekrell/conch
https://github.com/ekrell/whelk
http://www.ngdc.noaa.gov/mgg/shorelines/

440

445

450

455

[dataset] Northeast Regional Coastal Ocean Observation System, 2021. The northeast coastal ocean forecast system. http:
//fvcom.smast.umassd.edu/necofs/.

Nosrati, M., Karimi, R., Hasanvand, H.A., 2012. Investigation of the*(star) search algorithms: Characteristics, methods and
approaches. World Applied Programming 2, 251-256.

Patel, A., 2014. Implementation of a*. www.redblobgames.com/pathfinding/a-star/implementation.html. Accessed on
2021-11-02.

QGIS Development Team, 2018. Qgis geographic information system (version 2.18). http://qgis.osgeo.org.

Reksten-Monsen, C., 2018. pyvisgraph. github.com/TaipanRex/pyvisgraph. Commit:
9472e0df7ca7bfabf45932ca348222bdc1{7e688.

Shah, B., Gupta, S., 2019. Long-distance path planning for unmanned surface vehicles in complex marine environment. IEEE
Journal of Oceanic Engineering .

Storn, R., Price, K., 1997. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces.
Journal of global optimization 11, 341-359.

Xu, J., Gu, H., Liang, H., 2018. Path planning for unmanned underwater vehicle based on improved particle swarm optimization
method. International Journal of Online and Biomedical Engineering (iJOE) 14, 137-149.

Yang, G., Zhang, R., 2009. Path planning of auv in turbulent ocean environments used adapted inertia-weight pso, in: 2009
Fifth International Conf. on Natural Computation, IEEE. pp. 299-302.

Zambrano-Bigiarini, M., Clerc, M., Rojas, R., 2013. Standard particle swarm optimisation 2011 at cec-2013: A baseline for
future pso improvements, in: 2013 IEEE Congress on Evolutionary Computation, IEEE. pp. 2337-2344.

Zeng, Z., Sammut, K., Lammas, A., He, F., Tang, Y., 2015. Efficient path re-planning for auvs operating in spatiotemporal
currents. Journal of Intelligent & Robotic Systems 79, 135-153.

Zhang, Z., Sturtevant, N., Holte, R., Schaeffer, J., Felner, A., 2009. A* search with inconsistent heuristics., in: IJCAI, pp.
634-639.

23


http://fvcom.smast.umassd.edu/necofs/
http://fvcom.smast.umassd.edu/necofs/
http://fvcom.smast.umassd.edu/necofs/
www.redblobgames.com/pathfinding/a-star/implementation.html
http://qgis.osgeo.org
github.com/TaipanRex/pyvisgraph

	Introduction
	Contributions

	Materials and Methods
	Dijkstra's Shortest-Path First and A* algorithms
	Visibility Graph
	Particle Swarm Optimization
	Fitness function

	Results and Discussion
	Environment
	Visibility graphs
	Energy efficient planning
	Dijkstra and A* experiments
	PSO parameter tuning
	PSO experiments

	Balancing energy expenditure and reward

	Conclusions

