Priority Weighted Round Robin Algorithm for Load
Balancing 1n the Cloud

Ajay Katangur

Missouri State University
Springfield, USA
ajaykatangur @missouristate.edu

Abstract—Cloud computing, which helps in sharing resources
through networks, has become one of the most widely used
technologies in recent years. Vast numbers of organizations are
moving to the cloud since it is more cost-effective and easy to
maintain. An increase in the number of consumers using the
cloud, however, results in increased traffic, which leads to the
problem of balancing tasks on the loads. Numerous dynamic
algorithms [1] have been proposed and implemented to handle
these loads in different ways. The performance of these dynamic
algorithms are scaled with different parameters, such as response
time, throughput, utilization, efficiency, etc. The weighted round-
robin algorithm is one of the most widely used load balancing
algorithms. The proposed algorithm is an improvement of the
weighted round-robin algorithm, which considers the priority of
every task before assigning the tasks to different virtual machines
(VMs). The proposed algorithm uses the priority of tasks to
decide to which VMs the tasks should be assigned dynamically.
The same process is used to migrate the tasks from overloaded
VMs to under-loaded VMs. The simulations are conducted using
CloudSim by varying cloud resources. Simulation results show
that the proposed algorithm performs equivalent to the dynamic
weighted round robin algorithm in all the QoS factors, but it
shows significant improvement in handling high-priority tasks.

Index Terms—CloudSim, Cloud computing, Completion Time,
Execution Time, Load balancing, Round-Robin Algorithm,
Turnaround Time, Waiting Time

I. INTRODUCTION

Cloud computing is a technology that helps to provide
services through the internet. SaaS (Software as a Service),
PaaS (Platform as a Service), and IaaS (Internet as a Service)
are the three types of services provided by the cloud [2]. These
services provide resources, such as memory, infrastructure,
software, virtual machines, and so on, through the internet.
Due to various benefits of cloud computing, increasingly more
organizations are moving towards the cloud [1]. As a result of
this growth, the usage and traffic across the cloud becomes
high, which increases the need for more research in load
balancing.

Load balancing is a method of sharing the entire load of a
network to all nodes in the cloud. The goal of load balancing is
to achieve maximum efficiency of the network by increasing
both the throughput and the performance of each node [3].

This material is based upon work supported by the National Science
Foundation under Grant OAC-1828380

Somasheker Akkaladevi
Department of Computer Science Department of Computer Information Systems
Virginia State University
Virginia, USA
sakkaladevi@vsu.edu

Sadiskumar Vivekanandhan
Department of Computer Science
Texas A&M University-Corpus Christi
Corpus Christi, USA
svivekanandhan @islander.tamucc.edu

To achieve this step, many algorithms have been formulated
and implemented. The two most widely used algorithms to
schedule tasks are round-robin (RR) and weighted round-robin
(WRR) algorithms [4]. The round-robin algorithm distributes
tasks in the cyclic order of virtual machines. A RR algorithm
does not consider the processing capacity, length, or priority of
the tasks. The weighted round-robin algorithm is an improved
form of the RR. The WRR considers the processing capacity
of virtual machines (VMs), and it assigns more number of
tasks to the VM with more processing capacity based on the
weight given to each VM. The proposed algorithm, which is
the priority weighted round-robin algorithm (PWRR) is also
an improved version of the WRR algorithm.

In this work, the priority of the tasks is considered as an
important factor to efficiently select the appropriate VM for
scheduling and migrating the tasks, ranging from low to high
priority. The proposed algorithm also considers length of the
task, processing capacity of each node, and number of tasks
assigned to the nodes. In general, when the priority of tasks
is considered, it is used to arrange incoming tasks from high
to low priority. This ensures that the high-priority tasks are
executed before other tasks that come under different priorities.

II. RELATED WORK

Due to drastic growth in cloud computing and growth in
the number of users, researchers have increasingly turned their
focus towards load balancing and scheduling [5] [6] [7]. The
overall performance of an entire cloud network completely
relies on the load balancing techniques [8] [9] [3]. Load
Balancer as a Service (LBaaS) [1] is one of the more popular
methods; rather than building a load balancer for each cloud,
companies prefer to consume LBaaS. In this method, the load
balancer will be utilized through the network, and it requires
information about the entire network, including information
about every node within it. The majority of LBaaS providers
use round-robin or weighted round-robin algorithm as their
static algorithm [1]. These two algorithms work better than
first come first served algorithm(FCFS), shortest job first
algorithm(SJF), MaxMin algorithm, MinMin algorithm, etc.
[4].

Round-Robin Algorithm: The RR algorithm uses the con-
cept of distributing the request to the nodes in circular fashion

[10]. The weighted round-robin algorithm is an improved
version of RR, in which each VM is assigned a weight
[11], which is calculated based on the processing capacity of
each node. Based on the weight, VMs are ordered from high
to low. VMs with more weight are assigned more requests
compared to VMs with less weight. This approach produces
better performance and throughput.

Weighted Round-Robin Algorithm: Many researchers are
also engaged in successive improvisation of the WRR algo-
rithm by using different parameters, such as node processing
power, queue length, job size, and so on, which makes the
WRR algorithm a dynamic load balancing technique [12] [13]
[14] [15]. This helps the algorithm to decide where the request
should land by frequently calculating the load on each VM. In
this process, the weight of each VM is calculated with the help
of the load, which makes this algorithm dynamic. Along with
all these parameters, inclusion of priority reduces the waiting
time for the requests with higher priorities [16] [15].

Dynamic Weighted Round-Robin Algorithm: Recently,
an improvised WRR algorithm was proposed that lifts WRR
algorithms to the next level by handling the unevenness of VM
loads in the network [13] [17]. The dynamic process of the
WRR algorithm considers the load of VMs, along with the
processing capacity and length of the task, to decide which
VM should be allocated with the next job.

III. SYSTEM MODEL

Figure 1 depicts the overall idea of the process of schedul-
ing and load balancing in a cloud. The scheduler and load
balancer are the most important components of any cloud. The
task manager helps to collect information about each task ar-
riving through the task queue. The scheduler and load balancer
are the components that use a load balancing algorithm to
distribute the loads evenly across the resources. The scheduler
is a component that helps in deciding the appropriate VM to
which an arrived task should be allocated. It ensures that the
task is assigned to a VM that takes less time to complete the
task by considering the amount of load in that specific VM
and the total time needed to complete the entire load [13].

INTERFACE

RESOURCE MANGER

LOAD BALANCER

RESOURCES

Fig. 1. Scheduler and Load Balancer of a Cloud Network

The incoming task is provided into the system through
different types of interfaces, such as web applications, servers,
and so on. The task first reaches the task manager, which
identifies the length and priority of the task. The priority
of tasks are given as integers (1-10). A task which has
low priority value is considered as high priority task. The
incoming tasks are then passed to the scheduler, which helps
in allocating the incoming tasks to an appropriate VM by
using the proposed algorithm. The scheduler makes use of the
information about the resources from the resource manager to
find the appropriate VM to handle the incoming task.

The load balancer helps in finding load unevenness in the
system by calculating the ratio between the total number of
jobs in the queue and the number of available VMs. In case
of job migration, the load balancer considers the priority of
the task to be migrated to identify which VM is under-loaded
and has the least number of tasks of equal or higher priorities.

A. Priority Weighted Round Robin Algorithm

The two widely used load balancing algorithms are RR
and weighted RR algorithms. The RR algorithm allocates
the incoming requests to the available resources in a circular
fashion, irrespective of the length of the task or the pro-
cessing capacity of resources. The WRR algorithm considers
the processing capacity of resources, and a higher number
of incoming tasks are assigned to the resource with more
processing power. These two algorithms are used to compare
the performance of the proposed priority weighted round-
robin algorithm. Along with these algorithms, the dynamic
WRR algorithm is also used for comparison. In this algorithm,
whenever a new request is received, it finds an appropriate VM
by calculating the waiting time.

The proposed priority weighted round-robin algorithm uses
the work of the WRR algorithm as a base, but it shifts the
algorithm from static to dynamic. This algorithm helps to
find an appropriate VM with the help of information that
includes the processing power of VM, length of the tasks,
priority of incoming tasks, and processing time required for
VMs to complete the tasks of equal or higher priorities. Once
a task arrives in the system, information about the task, such
as the length and the priority of the task is noted. Then the
weight of each VM is calculated, as mentioned earlier. Next,
the incoming task is forwarded to the VM with more weight.
Basically, the weight of a VM refers to the amount of time
that specific VM requires to complete the tasks with equal
or higher priorities in its queue. The weight of VM increases
if the completion time is shorter, and vice versa. In general,
the time taken to process a task can vary in runtime; in that
situation, task migration is performed. The high priority task
from the queue of the overloaded VM is migrated to the under-
loaded or ideally loaded VM, by finding out which VM has
fewer of equal or higher priority tasks. This helps the high-
priority tasks to be completed faster, and the migration helps
in increasing the proper utilization of resources.

IV. SYSTEM IMPLEMENTATION

To implement the proposed priority weighted round-robin
algorithm and to compare its effectiveness with the existing
algorithms, the CloudSim 3.0.3 (hereinafter referred to as
”CloudSim”) simulation tool has been utilized. CloudSim is
a framework used to simulate the cloud environment and
its services [18]. This section provides information about
the hardware and software used for the implementation. It
also provides a detailed explanation of the architecture of
CloudSim and important components involved, followed by
the implementation of the round-robin algorithm, weighted
RR algorithm, dynamic weighted RR algorithm, and priority
weighted RR algorithm.

A. Implementation of RR Algorithm, Weighted RR Algorithm,
and Dynamic Weighted RR Algorithm

The RR algorithm is implemented as in [10]. The weighted
RR algorithm is implemented as in [8]. The dynamic weighted
RR algorithm is implemented as in [13].

B. Implementation of Priority Weighted RR Algorithm

Algorithm 1 lists the step-by-step approach for the priority
weighted RR algorithm. This algorithm is an improvement of
the dynamic weighted RR algorithm. In the dynamic weighted
RR algorithm, the waiting time of each VM is calculated for
each request, and an incoming cloudlet is assigned to VM with
less waiting time. But in this algorithm, the priority of each
task is considered while calculating the waiting time of VMs.

Algorithm 1 Priority Weighted RR Algorithm Pseudocode

(1) Identify the priority of an incoming task.
(2) Calculate waiting time for each VM based on the priority
on an incoming tasks.
(3) A weight is given to each VM based on the waiting
time, VM with less waiting time should have more weight.
(4) Assign an incoming task to VM which has less waiting
time based on priority.
(5) Once the incoming task is assigned, calculate threshold
and load in each VM.
(6) If any VM is found to be overloaded

(a) Pick high priority task from the task waiting

queue of the VM.

(b) Identity the under loaded VMs.

(c) Select the VM which has less number of tasks

of same or higher priority.

(d) Continue till it has overloaded VMs.
(7) Process the high priority task from the waiting queue.
(8) If the low priority task is waiting for more than fixed
number of iterations, increase the priority of the waiting
task by one level
(9) Allow the VM to pick the next task from the waiting
queue, it should select the high priority task from the queue
and scheduler will continue from step 1 simultaneously

TABLE I
DATA CENTER SPECIFICATIONS
Architecture oS VMM | Processing Cost | Memory Cost | Storage Cost | BW Cost
x86 Linux | Xen 3.0 0.05 0.01 0.1
x86 Linux Xen 3.0 0.05 0.01 0.1
TABLE II
CONFIGURATIONS OF HOSTS
RAM (in MB) | Bandwidth (in Mbps) | Storage (in MB) | No. Of Cores
163,840 100,000 10,000,000 quad-core
163,840 100,000 10,000,000 dual-core

V. RESULTS AND EVALUATION

This chapter features a detailed discussion about the cloud
model and its setup for performing simulations and explains
the results of each simulation. The quality of service (QoS)
parameters used to compare the performance of the proposed
algorithm with the existing algorithms are execution cost,
overall execution time of each algorithm in milliseconds(ms),
average execution time for one cloudlet of each algorithm in
ms, time taken to complete level 1 priority tasks in ms, time
taken to complete level 2 priority tasks and, time taken to
complete level 5 priority tasks in ms.

A. Experimental Setup

This experiment focuses on scheduling the incoming tasks
based on the priority of the tasks, along with the task length
and the processing capacity of each resource. In CloudSim, the
incoming tasks are also known as cloudlets. Each cloudlet has
its own size, length, id, priority, and so on. In this experiment,
different numbers of cloudlets with different sizes and different
priorities, ranging from 1 to 10, are used. Each cloudlet
is submitted to the datacenter broker, which is responsible
for submitting the cloudlets to the data centers. Each data
center has its own characteristics, such as architecture, OS,
virtual machine monitor (VMM), processing cost, memory
cost, storage cost, and bandwidth cost, as shown in Table
I. Load to the cloud is also given dynamically by providing
varying number of cloudlets of different sizes and priorities,
as shown in Table IV.

As mentioned earlier, the QoS parameters considered in
this experiment to compare the proposed algorithm with the

TABLE III
CONFIGURATIONS OF VMS
MIPS | No. of CPUs | RAM (in MB) | Bandwidth (in Mbps) | Image Size (in MB) | VMM
250 1 512 1000 10000 Xen
500 1 512 1000 10000 Xen
500 1 512 1000 10000 Xen
750 1 512 1000 10000 Xen

TABLE IV
CONFIGURATIONS OF CLOUDLETS

Length (in MI) | FileSize (in bytes) | OutputSize (in bytes) | Priority (range)
400 300 300 1-10
800 300 300 1-10
2000 300 300 1-10
4000 300 300 1-10

existing algorithms are execution cost, total completion time,
total waiting time, total turnaround time, average execution
time of one cloudlet, and time taken to complete level 1, level
2 and level 5 priority tasks.

B. Execution Cost

The execution cost refers to the total cost of executing
a cloudlet. In this experiment, the total execution cost is
calculated for the proposed algorithm in comparison with
the existing algorithms. Execution cost is calculated using
“(1)”, where k represents the number of cloudlets in the cloud
network, S; represents the cloudlet size (in MI), V,, represents
the processing capacity of a VM (in MIPS), and C; represents
cost per second required to process a cloudlet.

k S,
Cp=Y_ vl % O (1)
i=1 ™

C. Total Completion Time

Total completion time refers to the total time taken for the
cloud network to complete the executions of all the cloudlets
submitted to the network. The total completion time in ms
is calculated using “(2)”, where k represents the number of
cloudlets in the cloud network, S; represents the cloudlet size
(in MI), V,, represents the processing capacity of a VM (in
MIPS), and Ny represents the total network delay (in ms).

k
-y
i=1

Si
Vin

+ Ny 2)

D. Total Waiting Time

The total waiting time refers to the total time taken by all the
cloudlets during processing in the cloud network. Total waiting
time in ms is calculated using “(3)”, where k represents the
number of cloudlets in the cloud network, T¢, represents
completion time of a cloudlet (in ms), Ta, represents arrival
time of a cloudlet to the network (in ms), and Tp, represents
the burst time of the cloudlet (in ms).

k
Tw =Y (To, = (Ta, + T5,)) (3)

i=1
E. Total Turnaround Time

Turnaround time refers to the total time taken by all
cloudlets to complete processing in the cloud network. Total
turnaround time in ms is calculated using “(4)”, where k
represents the number of cloudlets in the cloud network, T,
represents completion time of a cloudlet (in ms), and Ty,
represents arrival time of a cloudlet to the network (in ms).

Tra = Z(Tci —Ta,) 4

TABLE V
RR PERFORMANCE WITH DIFFERENT VMS
QoS 20 VMs | 25 VMs [35 VMs | 50 VMs | 60 VMs | 70 VMs | 80 VMs
Execution Cost 23874.99 | 327675 32274.4 | 23874.99 | 23874.99 | 23874.99 | 23874.99
Tot. Comp. Time | 7835.33 10811.71 | 10644.55 | 7838.51 7838.51 7838.51 7838.51
Avg. Exec. Time 3.74 4.32 4.25 3.73 3.73 3.73 3.73
TABLE VI
DWRR PERFORMANCE WITH DIFFERENT VMS
QoS 20 VMs | 25 VMs | 35 VMs | 50 VMs | 60 VMs | 70 VMs | 80 VMs
Execution Cost 27458.42 | 27997.2 | 27833.3 | 2220542 | 22817.8 | 22932.21 | 23003.43
Tot. Comp. Time | 9068.95 9258.97 9226.8 7364.9 73753 7401.92 7432.7
Avg. Exec. Time 3.68 3.7 3.69 3.63 3.64 3.64 3.65

F. Average Execution Time of a Cloudlet

The average execution time of a cloudlet refers to the
average time taken to complete the execution of a cloudlet.
Average execution time of a cloudlet is calculated using
“(5)”, where T represents the total time taken to complete
all cloudlets, as represented in equation (3.2) (in ms), and N
represents the total number of cloudlets.

T
TAvg = N (5)

G. Execution Time of Priority Tasks

The execution time of priority tasks refers to the total time
taken by a cloud model to complete the execution of all the
cloudlets belonging to a specific priority. In this experiment,
all level-1 priority, level-2 priority and level-5 priority tasks
are considered for comparing and analyzing the performance
of the proposed algorithm against the existing algorithms. This
QoS parameter is the most important in the current experiment
since it is the main motive of the proposed algorithm to prove
its effectiveness compared to other existing algorithms

To find the best possible number of VMs for the simulation,
performance evaluation of different algorithms with different
VMs are performed as shown in Table V, VI and VII. From
these tables, it is evident that the performance is better with
50 VMs in all the compared algorithms. So, for the rest of
the experiments, the same set of VMs are considered for
performance evaluation.

H. Experiment Results and Performance Analysis

The performance of the priority weighted RR algorithm has
been implemented, and the analysis was performed using the
CloudSim tool. The implementation is achieved by extending
the classes already available in the simulation tool. The follow-
ing illustrations of the execution cost, total completion time,
total waiting time, total turnaround time, average execution
time of a cloudlet, execution time of level-1 priority tasks,
execution time of level-2 priority tasks and, execution time

TABLE VII
PWRR PERFORMANCE WITH DIFFERENT VMS
QoS 20 VMs | 25 VMs | 35 VMs | 50 VMs | 60 VMs | 70 VMs | 80 VMs
Execution Cost | 27511.12 | 281085 | 279645 | 22299.42 | 234235 | 23789.1 | 237914
Tot. Comp. Time | 9080.86 | 9296.69 | 9259 7388.14 | 7392.72 | 742132 | 746521
Avg. Exec. Time 3.68 371 37 3.67 3.68 3.68 3.69

60000
50000

40000

2
£ 300
g
£
200
10000
0

2500 2750 3000 3250 3500 3750 4500 4750 5000
No. of Cloudlets

WRR WSttcWRR WRR = PWRR

Fig. 2. Execution Cost of RR, WRR, DWRR and PWRR

20000
18000
16000
14000

12000

g
£ 10000
E
8000
0
- “‘ |
0
0

2500 2750 3000 3250 3500 3750 4500 4750 5000
No. of Cloudlets

i

g

H

WRR WSttcWRR WRR = PWRR

Fig. 3. Total Completion Time (in ms) of RR, WRR, DWRR and PWRR

of level-5 priority tasks are analyzed in round-robin (RR),
weighted round-robin (WRR), dynamic weighted round-robin
(DWRR), and priority weighted round-robin (PWRR) algo-
rithms in heterogeneous conditions.

The execution cost of the all the algorithms is calculated
with the cloud model of 50 VMs and different sets of hetero-
geneous cloudlets. Figure 2 shows the comparative analysis of
all the algorithms. The proposed PWRR experiences a similar
level of execution cost when compared to the DWRR.

Total completion times (in ms) of all the algorithms were
calculated with the cloud model of 50 VMs and different sets
of heterogeneous cloudlets. Figure 3 shows the analysis of all
the algorithms. The proposed PWRR took the same amount
of time to complete all the tasks when compared to DWRR.

Total waiting times (in ms) of the all the algorithms were
calculated with the cloud model of 50 VMs and different sets
of heterogeneous cloudlets. Figure 4 shows the comparative
analysis of all the algorithms. The proposed PWRR performed
better when compared to the DWRR.

Total turnaround times (in ms) of the all the algorithms were
calculated with the cloud model of 50 VMs and different sets
of heterogeneous cloudlets. Figure 5 shows the comparative
analysis of all the algorithms. The proposed PWRR performed
better when compared to the DWRR.

Average execution times of a cloudlet (in ms) for all the
algorithms were calculated with the cloud model of 50 VMs
and different sets of heterogeneous cloudlets. Figure 6 shows
the comparative analysis of all the algorithms. The proposed
PWRR took the same amount of time to complete a cloudlet
when compared to the DWRR.

40000
35000
30000

25000

2
£ 200
g
£
15000
10000
0 I I
o

2500 2750 3000 3250 3500 3750 4500 4750 5000
No. of Cloudlets

WRR WStatcWRR WWRR = PWRR

Fig. 4. Total Waiting Time (in ms - Time Shared) of RR, WRR, DWRR and
PWRR

80000
70000
60000

50000

3
< 40000
13
£
30000
20000
10000 I I
o

2500 2750 3000 3250 3500 3750 4500 4750 5000
No. of Cloudlets

8
g

HRR EStatic WRR SWRR =PWRR

Fig. 5. Total Turnaround Time (in ms - Time Shared) of RR, WRR, DWRR
and PWRR

The time taken to complete level 1, level 2 priority tasks
and level 5 priority tasks (in ms) of the all the algorithms
was calculated with the cloud model of 50 VMs and different
sets of heterogeneous cloudlets. Figure 7, Figure 8 and Figure
9 show the comparative analysis of all the algorithms. The
proposed PWRR shows a significant difference in completing
the high priority tasks when compared to the DWRR. The time
taken by PWRR is so much lower than RR, WRR and DWRR.

From the results and analysis, the proposed PWRR algo-
rithm in terms of execution cost, total time taken to execute all
the cloudlets, waiting time, turnaround time, and the average
time taken to complete a single cloudlet is similar to that of
the DWRR algorithm, that is widely used as a scheduling
algorithm by popular cloud providers. But when it comes

57
s
2
£
E
£
a6t
0
3
s

2500 2750 3000 3250 3500 3750 4500 4750 5000
No. of Cloudlets

HRR EStaticWRR =WRR = PWRR

Fig. 6. Average Execution Time of a Cloudlet (in ms) of RR, WRR, DWRR
and PWRR

Timein ms
8

=

g

m ‘ | | | ‘| ‘| ||

2500 2750 3000 3250 3500 3750 4500 4750 5000
No. of Cloudlets

WRR WStaticWRR WWRR ©PWRR

Fig. 7. Completion Time of Level 1 Cloudlets (in ms) of RR, WRR, DWRR

and PWRR

1400
1200

1000

600

400

) I I |
0

2500 2750 3000 3250 3500 3750 4500 4750 5000
No. of Cloudlets

Time in ms

HRR EStaticWRR EWRR = PWRR

Fig. 8. Completion Time of Level 2 Cloudlets (in ms) of RR, WRR, DWRR

and PWRR

to handling the tasks with priorities, the PWRR algorithm

outperforms the DWRR algorithm by a noticeable margin.

VI. CONCLUSION

This work provides a new scheduling algorithm, the PWRR
algorithm, to efficiently handle the incoming tasks of different
priorities. In general, it performs better than the RR and WRR
algorithms in terms of QoS parameters: execution cost, total
waiting time, total turnaround time, average time taken to
complete a single task, and total time taken to complete all
tasks. It also performs equivalent to the DWRR algorithm,
which is widely used by cloud providers for task scheduling,
in terms of the above QoS parameters. In terms of handling
the tasks with priority, the PWRR algorithm shows significant
improvement when compared to all the three (RR, WRR, and

1200
1000

800

0

2500 2750 3000 3250 3500 3750 4500 4750 5000
No. of Cloudlets

Time in ms

HRR EStaticWRR EWRR = PWRR

Fig. 9. Completion Time of Level 5 Cloudlets (in ms) of RR, WRR, DWRR

and PWRR

DWRR) algorithms. From the results, it can be concluded
that the PWRR algorithm performs equivalent to the DWRR
algorithm in all the QoS factors, but it shows significant
improvement over the DWRR algorithms when handling high-
priority tasks. Hence, the PWRR algorithm is more suitable
than the DWRR algorithm for task scheduling, which has the
ability to handle tasks with and without priority.

[1]

[2]

[3]

[4]

—
wn
=

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

REFERENCES

M. Rahman, S. Igbal, and J. Gao, “Load balancer as a service in cloud
computing,” in 2014 IEEE 8th International Symposium on Service
Oriented System Engineering, April 2014, pp. 204-211.

R. Support, “Understanding the cloud computing stack: Saas,
paas, iaas,” 2017, [Online; accessed 05-Nov-2017]. [Online].
Available: https://support.rackspace.com/whitepapers/understanding-the-
cloud-computing-stack-saas-paas-iaas/

A. K. sidhu and S. Kinger, “Analysis of load balancing techniques in
cloud computing,” in International Journal of Advanced Research in
Computers and Technology, April 2013, pp. 737-741.

H. singh and R. C. Gangwar, “Comparative study of load balancing
algorithms in cloud environment,” in International Journal on Recent
and Innovation Trends in Computing and Communication, vol. 2,
October 2014.

M. Anicas, “An introduction to haproxy and load balanc-
ing concepts,” 2014, [Online; accessed 26-July-2017]. [On-
line]. Available: https://www.digitalocean.com/community/tutorials/an-
introduction-to-haproxy-and-load-balancing-concepts

S. Joshi and U. Kumari, “Load balancing in cloud computing: Chal-
lenges issues,” in 2016 2nd International Conference on Contemporary
Computing and Informatics (IC3I), Dec 2016, pp. 120-125.

P. Kaur and D. P. D. Kaur, “Efficient and enhanced load balancing algo-
rithms in cloud computing,” in International Journal of Grid Distribution
Computing, vol. 8, 2015, pp. 9-14.

G. Megharaj and D. M. K.G., “A survey on load balancing techniques
in cloud computing,” in IOSR Journal of Computer Engineering (IOSR-
JCE), vol. 18, April 2016, pp. 737-741.

D. Puthal, B. P. S. Sahoo, S. Mishra, and S. Swain, “Cloud computing
features, issues, and challenges: A big picture,” in 2015 International
Conference on Computational Intelligence and Networks, Jan 2015, pp.
116-123.

M. B. J and K. B. R, “Review on round robin algorithm for task
scheduling in cloud computing,” in International Journal of Emerging
Technologies and Innovative Research, vol. 2, March 2015, pp. 788-793.
M. M. Alipour and M. R. F. Derakhshi, “Two level fuzzy approach
for dynamic load balancing in the cloud computing,” in Journal of
Electronic Systems, vol. 6, March 2016, pp. 17-31.

D. C. Devi and V. R. Uthariaraj, “Improved round robin algorithm
for data center selection in cloud computing,” in INTERNATIONAL
JOURNAL OF ENGINEERING SCIENCES AND RESEARCH TECH-
NOLOGY, vol. 2014, February 2014.

D. Devi and V. R. Uthariaraj, “Load balancing in cloud computing
environment using improved weighted round robin algorithm for non-
preemptive dependent tasks,” in The Scientific World Journal), vol. 2016,
October 2016.

G.THEJESVI and T.ANURADHA, “Distribution of work load at bal-
ancer level using enhanced round robin scheduling algorithm in a
public cloud,” in International Journal of Advances in Electronics and
Computer Science, vol. 3, Feb 2016.

A. Manirabona, S. Boudjit, and L. C. Fourati, “A priority-weighted round
robin scheduling strategy for a wban based healthcare monitoring sys-
tem,” in 2016 13th IEEE Annual Consumer Communications Networking
Conference (CCNC), Jan 2016, pp. 224-229.

G. T. Hicham and E. A. Chaker, “Cloud computing cpu allocation
and scheduling algorithms using cloudsim simulator,” in International
Journal of Electrical and Computer Engineering (IJECE), vol. 6, August
2016, pp. 1866-1879.

H. G. Tani and C. E. Amrani, “Smarter round robin scheduling algorithm
for cloud computing and big data,” in Journal of Data Mining and
Digital Humanities, Jan 2017.

R. D. 1 and S.Sujan, “A survey on application of cloudsim toolkit in
cloud computing,” in International Journal of Innovative Research in
Science, Engineering and Technology, vol. 3, June 2014, pp. 3—4.

