
Threshold Based Load Balancing Algorithm in
Cloud Computing

Shusmoy Chowdhury
Department of Computer Science

Missouri State University
Springfiield, USA

sc26s@missouristate.edu

Ajay Katangur
Department of Computer Science

Missouri State University
Springfiield, USA

ajaykatangur@missouristate.edu

Abstract—Cloud computing has become an emerging trend for
the software industry with the requirement of large infrastructure
and resources. The future success of cloud computing depends
on the effectiveness of instantiation of the infrastructure and
utilization of available resources. Load Balancing ensures the
fulfillment of these conditions to improve the cloud environment
for the users. Load Balancing dynamically distributes the work-
load among the nodes in such a way that no single resource is
either overwhelmed with tasks or underutilized. In this paper we
propose a threshold based load balancing algorithm to ensure
the equal distribution of the workload among the nodes. The
main objective of the algorithms is to stop the VMs in the cloud
being overloaded with tasks or being idle for lack allocation
of tasks, when there are active tasks. We have simulated our
proposed algorithm in the Cloudanalyst simulator with real
world data scenarios. Simulation results shows that our proposed
threshold based algorithm can provide a better response time for
the task/requests and data processing time for the datacenters
compared to the existing algorithms such as First Come First
Serve (FCFS), Round Robin(RR) and Equally Spread Current
Execution Load Balancing algorithm(ESCELB).

Index Terms—Cloudanalyst, Cloud computing, Load balanc-
ing, Round Robin, Threshold policy

I. INTRODUCTION

Cloud computing has substituted traditional computing tech-
nologies and provides services to clients at any time and any
location on a pay-per-use basis [1], [2]. Many cloud computing
providers like Amazon Web Services (AWS), Microsoft Azure,
Google, IBM cloud, Rackspace, Red Hat, Verizon cloud,
VMware [3] provide facilities for the user to access various
configurable computing resources (servers, storage, networks).
Users can easily access information using various computing
devices such as desktops, laptops, cell phones, and tablets.
The efficiency and effectiveness of cloud computing service
depends on how effectively load balancing is managed.

Load Balancing is the process of assigning the tasks in an
effective and efficient way using proper resource allocation
and minimizing the response time of the machine. An efficient
load balancing algorithm or policy tries to ensure equal work
distribution among the resources. The objective of load balanc-
ing is enhancing the cloud performance by balancing the load
among various resources like network links, central processing

This material is based upon work supported by the National Science
Foundation under Grant OAC-1828380

units, disk drives etc. to achieve optimal resource utilization,
maximum throughput, minimum response time, and avoiding
overloading of resources. Load Balancing is used in the data
centers to distribute and execute the tasks among the VM’s
and provide faster and efficient services to clients [4].

Load Balancing algorithms play a key role in achieving
the objective of cloud computing. A number of factors have
to be considered when designing an efficient load balancing
algorithm. The nodes in the data center as well as the data
centers are geographically distributed. So, there can be factors
like network delay, communication delay, distance between
the distributed computing nodes, distance between user and
resources, and so on. Load Balancing algorithms are often
designed in such a way that a single node makes all the
decisions. The biggest drawback of this approach is failure
of this node. If a physical machine gets overloaded, some
Virtual Machines (VMs) need to transfer to a distant location
using a VM migration load balancing approach. User require-
ments also can change dynamically which requires executing
them on heterogeneous nodes for effective resource utilization
and to minimize response time. Storage management is also
important for effectively utilizing the resources. On-demand
availability and scalability of cloud services allows users to
access these services any time and scale up or scale down
quickly. Finally, the load balancing algorithm cannot be overly
complex using a large number of resources.

Although we listed several challenges in designing a load
balancing algorithm, most load balancing algorithms focus
mostly on response time, proper resource utilization and
throughput of the datacenter. User satisfaction depends on
these features. The load balancing algorithms are designed in
a way so that the load is distributed among the processors
and maximizes the resource utilization at the same time
minimizing the execution time of the tasks [5]–[7].

Utilizing fully all the available resources of parallel and
distributed systems are one of the main prerequisites of load
balancing. Load Balancing algorithms distribute the workload
across the servers, datacenters(DCs), hard drives other com-
puter resources and provide the cloud service providers (CSP)
a mechanism to distribute application requests across multi-
ple applications deployed in different DCs. Load Balancing
algorithms can be classified as centralized or decentralized,



dynamic or static, and periodic or non-periodic.
In this paper we have used a modified threshold based load

balancing algorithm as detailed in Section III to achieve better
performance in cloud computing. This algorithm will mark the
Virtual machines as Underloaded or Overloaded and assign
tasks according to the current load on the VMs. Cloudanalyst
- A CloudSim based Visual Modeler is used to simulate the
real-world scenarios and to analyse the performance of the
algorithm. The performance of the algorithm is compared
with the most commonly used scheduling algorithms, First
Come First Serve (FCFS), Round Robin (RR) and Equally
Spread Current Execution Load Balancing (ESCELB). The
rest of the paper is organized as follows. Section II provides
the summary of related work performed using several other
algorithms for load balancing in the cloud. Section III provides
all the details regarding the proposed threshold based load
balancing algorithm. Section IV details the system design of
the proposed algorithm. The system implementation details
are provided in Section V. Section VI provides the details
on the experimental setup using Cloudanalyst, which is used
to simluate several scenarios to evaluate the correctness and
accuracy of the proposed algorithm. Section VII provides a
detailed analysis of comparing the proposed threshold based
load balnacing algorithm against other algorithm like FCFS,
RR, ESCELB. Finally, Section VIII concludes this paper with
a summary of our work and future extension of this research.

II. RELATED WORK

Load Balancing on cloud computing has graved the attention
of the researchers around the world to provide an effective
and efficient cloud environment for the users. Load Balancing
algorithms play an essential role in increasing the performance
of the cloud datacenter.

Amandeep Kaur Sidhu et al. [8] gave a detailed analysis
of distinct kinds of load balancing techniques and the chal-
lenges of these load balancing techniques in cloud computing.
According to their paper load balancing algorithms follow
two different classifications based on system load and system
topology. Based on the system load there are three types of
approach employed; static, dynamic and mixed. The system
topology is classified into two types, 1)load balancing with
defined static rules, 2) dynamic load balancing which adapts
which adapts the load distribution to system status changes,
by changing their parameters and algorithms dynamically. The
authors mentioned the metrics of an efficient load balancing
algorithm in the cloud such as scalability of a system with
any finite number of nodes, optimized resource utilization, im-
proved performance at a reasonable cost, minimized response
time and overhead associated with each node. To design a good
load balancing algorithm, one needs to consider some major
goals like cost effectiveness of the technique, scalability and
flexibility of the system and prioritization of the resources or
tasks. The authors did not analyse any algorithm and just pro-
vided advantages and the problems associated with a number
of load balancing algorithms currently used such as Round
Robin, Connection Mechanism, Randomized, Equally Spread

Current Execution Load Balancing Algorithm, Throttled Load
Balancing Algorithm, Biased Random Sampling, Min-Min
Algorithm, Max-Min Algorithm, Token Routing.

Syed Hamid Hussain Madni et al. [9] has analyzed the
resource allocation methods in the cloud. The authors pro-
vided the parameters to increase the performance in a cloud.
This paper gave a detailed analysis about the importance of
allocating resources in the cloud, requiring resource allocation
policies, strategies, and algorithms to distribute and migrate
resources to best support both suppliers and user.

Katyal Mayank et al. [10] provided an excellent comparative
study on distinct kinds of load balancing algorithms depending
on the various aspects of the cloud computing environment.
This paper provides a brief introduction to diverse types of
load balancing algorithm schemes and comparison with their
advantages and drawbacks. The authors here provide four
interesting case scenarios, 1) one host and VM both in space
sharing manner, 2) both in time sharing manner, 3) host in
time sharing and VM in space sharing, and 4) VM in time
sharing and host in space sharing. The authors classified the
load balancing algorithms based on cloud environment, spatial
distribution of nodes and hierarchy of tasks.

Shahbaz Afzal et al [11] provided a detailed review of
the load balancing techniques and highlighted the crucial
challenges to develop efficient load balancing algorithms.

Armstrong et. al. [12] uses Minimum Execution Time
(MET) of a task to randomly assign it to the nodes on which
it is expected to be executed the fastest, regardless of the
current load on that node. Use of some existing scheduling
techniques like Min-Min, RR and FCFS for load balancing
also are presented in their paper.

Yang Xu et. al. [13] discussed an intelligent method for
load balancing. It is designed with a novel model to balance
data distribution to improve cloud computing performance in
data-intensive applications, such as distributed data mining.

Einollah Jafarnejad Ghomi et al [14] provides background
on task scheduling and load-balancing algorithms and pro-
poses new classification based on seven categories which are
1) Hadoop MapReduce load balancing, 2) natural phenomena-
based load balancing, 3) agent-based load balancing, 4) gen-
eral load balancing, 5) application-oriented, 6) network-aware,
and 7) workflow specific. The authors focus on studying
the existing load balancing mechanisms, providing a new
classification, and clarifying the advantages and disadvantages
of the load-balancing algorithms in each class and finally
discussing the aspects to improve load balancing algorithms.

III. PROPOSED ALGORITHM

The main goal of our algorithms is to distribute the task
load equally among all the Virtual machines in the datacenter.
Often, we can see that some of the Virtual machines are
overcrowded with an enormous number of tasks, on the other
hand some machines remain idle. As a result, the overall
processing time of the DCs is increased although there are
enough resources available to process the tasks. We try to



address the issue and balance the load among the nodes. We
will used two kinds of threshold values in our algorithm.

• Overload Threshold: Overload threshold value as shown
in “Fig. 1” is the no. of tasks used to define a VM
as overloaded. When the VM reaches or exceeds the
overload threshold we try not to assign tasks to it.

• Underload Threshold: The underload threshold value as
in “Fig. 1” is used to track the underloaded VMs. When
the no. of tasks in a VM decreases down to the underload
threshold value we start assigning tasks to that VM.

Fig. 1. Distinct kinds of VM’s in Threshold algorithm

We divide the VMs into two distinct categories.

• Underloaded VM’s: If the no. of tasks in a VM is under
the underload threshold, then it is called an underloaded
VM. In our algorithm we will focus more on tracking the
underloaded nodes so that the task load can be distributed
equally thereby not overcrowding the VMs.

• Overloaded VM’s: Overloaded VMs are those that are
crowded by enormous no. of tasks. When the no. of tasks
is more than the overload threshold, we declare it as an
overloaded VM. Our algorithm focuses on moving the
workload of the overloaded VMs to underloaded VMs.

Although we can use single threshold value to find the
underloaded and overloaded VMs, there is a motivation to
use two values. With the two threshold approach we can
have a safe zone where tasks are executed without constantly
going through the hassle of being designated as an overloaded
or underloaded VM. When the VM’s exceed the overload
threshold we will stop assigning tasks to that VM and find
another underloaded VM. But as soon as the overloaded
VM finishes one task it would become an underloaded VM
if we used a single threshold value. Now as we are using
two threshold values, the overloaded node will not become
underloaded VM. It has to finish a certain number of assigned
tasks and go down to the underload threshold value and then
will be designated as an underloaded VM. It will take some
time to finish the tasks and then become an underloaded
VM. The overload and underload threshold values for this
paper are determined by trial error process. A better way to
determine the thresholds is with machine learning and adaptive
algorithms which will be our future work.

Fig. 2. Flow chart of Threshold algorithm

IV. SYSTEM DESIGN

Our proposed algorithm as shown in “Fig. 2” starts with
creating the user base and the VMs in the Cloudanalyst. When
the DCs are created, we mark all VMs in the datacenter as
underloaded VMs as there are no tasks assigned on these VMs.
When a task arrives in the datacenter, we choose a VM from
the underloaded VMs. Then we check if the current VMs load
is equal to or greater than the overload threshold. If the current
load of the VM is less than the overload threshold, then it is an
underloaded VM and we can allocate the task to it. But if the
current load of the VM is equal to or greater than the overload
threshold then it is an overloaded VM. If it is an overloaded
VM, then we will remove it from the underloaded VM list
and add it in overloaded VMs list. We then look again in the
underloaded VM list for another underloaded VM to assign
the task. But if there are no underloaded VMs then we will
choose the overloaded VM with less task count to assign the
new task. Whenever the VMs finish a task, we will decrease
the task count and then check whether it is an overloaded VM.
If it is an overloaded VM, we then check if the current task
load is under the underload threshold value. If it is less than the
underload threshold value, then we remove the VM from the
overloaded VM and add it in the underloaded VMs list. The
gap between the underloaded threshold value and the overload
threshold value ensures the availability of the resources in the
VMs and blocks the overcrowding of tasks in the VMs.



V. SYSTEM IMPLEMENTATION

We need an appropriate simulation environment to measure
the efficiency and effectiveness of a load balancing algorithm.
CloudSim [15] is the one of the first tools that can be used to
model cloud simulation. CloudSim allows VMs to be managed
by hosts which in turn are managed by DCs. But CloudSim
does not provide any user interface to create the userbases or
configuration to design the datacenter. Also, it is a console-
based application, so we cannot generate or store the reports
of our simulations for future analysis.

Cloudanalyst [16] addresses these problems of CloudSim
and therefore is used to simulate the cloud environment for
testing the efficiency and effectiveness of our proposed algo-
rithm. Cloudanalyst is built on top of CloudSim extending its
features in a GUI format. It provides an opportunity to set the
parameters for setting a simulation environment for research
problems. So Cloudanalyst can provide a real-world simulation
environment to check the effectiveness of our algorithms.
Cloudanalyst also provides us with GUI based results which
makes it easier for us to compare and analyse the results.

VI. EXPERIMENT SETUP

A. User Base:

In Cloudanalyst the world is divided into six regions which
represent the six main continents in the world as shown in
Table I. The six regions are numbered from 0 to 5. We have
created six userbases from each region. We also defined the
peak hours for each userbase. Peak hours means the time of
the day when a maximum number of users of that userbase
will try to access the cloud. Our algorithm needs to be efficient
while handling the enormous number of requests during that
time. In Table I the number of requests at peak hour and off-
peak hour are shown. The number of requests at off-peak hour
will be less compared to that at peak hour.

TABLE I
USER BASE DATASET FOR THE EXPERIMENT

User
Base
Name

Region

User
Requests

per
Hour

Data
Size
per

Request
(Bytes)

Peak
Hour
Start

(GMT)

Peak
Hour
End

(GMT)

No. of
Average

Peak
Hour

Requests

No. of
Average
Off-Peak

Hour
Requests

UB1 0 12 100 13 15 400000 40000
UB2 1 12 100 15 17 100000 10000
UB3 2 12 100 20 22 300000 30000
UB4 3 12 100 1 3 150000 15000
UB5 4 12 100 21 23 50000 5000
UB6 5 12 100 9 11 80000 8000

B. Datacenter Configuration

Datacenters are an especially important part of cloud com-
puting. The VMs in the DCs are responsible for performing
tasks in the cloud environment. In Cloudanalyst, for this paper
we have configured the DCs to align with real world scenarios.
Datacenter is nothing but a combination of physical servers.
In cloud computing the datacenter creates an abstraction over
the physical hardware. It is called Virtual Machine (VM). The
VM’s configuration can either be the same as the physical

servers or can be created with less resources to create more
VM’s over the physical hardware. We cannot create more
VM’s than the available resources or physical servers. Tasks
are scheduled onto the VM’s using the load balancing algo-
rithms. The datacenter for this paper has been configured with
the following specifications:

• Region (The region where the datacenter is located): 0-5
• Architecture (Architecture of the servers used in the data

center): X86
• Operating System: Linux
• Virtual Machine Monitor (VMM): XEN hypervisor
• Cost per VM Hour: $ 0.1
• Cost per 1Mb Memory Hour: $ 0.05
• Storage cost per 1 GB Hour: $ 0.1
• Data Transfer cost per Gb: $ 0.1
• Number of Physical servers: 20

We will use twenty physical servers in every datacenter we
use. Each physical server is configured as defined below:

• Memory: 2048 MB (2 GB)
• Storage: 100000 MB (100 GB)
• Available Bandwidth: 10000 Mbps (10 Gbps)
• Number of Processors: 4
• Processor Speed: 100 Mhz
• Virtual Machine Policy: Time Shared/ Space Shared

We will use the same configuration for all the physical servers.
The VMs are created on these physical servers.They will all
have the same memory 1024 MB (1 GB), 10000 MB (10 GB)
image size and 1000 Mbps (1 Gbps) bandwidth. The load
balancer selects an appropriate VM based on the task load for
optimal cloud computing performance.

Amazon Web Services [17] is a widely used cloud platform
across the world. Many companies [18] as well as the devel-
opers use the Amazon Elastic Compute Cloud (AWS EC2)
for deploying their applications. Most of them [19] use the
free tire instances of the AWS EC2. The overall datacenter
in our experiments reflects the free tier configuration of AWS
EC2. Many users all round the world choose this configuration
to deploy small applications in cloud. So, our datacenter
configuration chosen is very similar to real world datacenter
configuration.

C. Service Broker Policy

Service broker policy defines how a connection is estab-
lished between the userbase and the DCs. Service broker
policies defines the rules for the userbase to chose a datacenter.
There are two service broker policies available in the Cloud-
analyst platform. In this paper we use the closest datacenter
service broker policy. In this service broker policy, the user
base will choose the nearest datacenter available. If there is
a datacenter available in the same region of the userbase, it
will choose the datacenter irrespective off the task load or the
response time of the datacenter. In other cases, the userbase
will calculate the distance and choose the nearest datacenter.



TABLE II
AVERAGE RESPONSE TIME (RT) IN MILLISECONDS USING ONE

DATACENTER (CLOSEST DATACENTER SERVICE BROKER POLICY).

Configuration
Name

Datacenter
Configuration

RT using
Threshold

RT using
RR

RT using
FCFS

RT using
ESCELB

CC1 25 VMs 12733.38 16533.76 108241212.21 16531.72
CC2 50 VMs 6024.58 7965.21 10824125.67 7965.50
CC3 75 VMs 3939.70 5242.87 10824120.43 5242.87

TABLE III
AVERAGE DATA PROCESSING TIME (PT) IN MILLISECONDS USING ONE

DATACENTER (CLOSEST DATACENTER SERVICE BROKER POLICY).

Configuration
Name

Datacenter
Configuration

PT using
Threshold

PT using
RR

PT using
FCFS

PT using
ESCELB

CC1 25 VMs 12439.64 16221.21 108241212.21 16219.15
CC2 50 VMs 5762.75 7692.23 10824125.67 7692.53
CC3 75 VMs 3688.10 4983.51 10824120.43 4983.53

VII. RESULTS AND EVALUATION

Table II and Table III shows the comparison of average
response time of the tasks and average data processing time of
one datacenter for the proposed threshold based algorithm and
the other algorithms. We have used the user base configuration
mentioned in the experiment setup. In this case we used a
single datacenter containing 25, 50 and 75 VMs to process
the tasks or requests of the userbases. The datacenter is in
region 0. From Tables II and III we can see that if we increase
the number of VMs the response time as well as the data
processing time decreases. In this scenario the response time
and data processing using 50 VMs is almost half compared
to the time using 25 VMs. So, with more VMs we can get
more improved performance in the cloud. From Table II and
Table II it is clear that our proposed threshold based load
balancing algorithm outperformed the existing load balancing
algorithms such as RR, FCFS and ESCELB. From the results,
we can see that FCFS response time and data processing times
compared to threshold based load balancing algorithm as well
as the other load balancing algorithms are very high. For
this reason, in this paper we have decided to not consider
FCFS load balancing algorithm for the rest of our evaluation
scenarios. Table IV and Table V shows the results of average

TABLE IV
AVERAGE RESPONSE TIME (RT) IN MILLISECONDS USING TWO

DATACENTERS (CLOSEST DATACENTER SERVICE BROKER POLICY).

Configuration
Name

Datacenter
configuration

RT using
Threshold

RT using
RR

RT using
ESCELB

CC1 DCs with 25 VMs 12811.41 15277.95 15278.45
CC2 DCs with 50 VMs 6030.81 7628.07 7627.89
CC3 DCs with 75 VMs 3901.94 5066.38 5066.43
CC4 DCs with 25 and 50 VMs 10195.31 12215.88 12216.30
CC5 DCs with 50 and 75 VMs 5235.28 6589.05 6589.18
CC6 DCs with 25 and 75 VMs 5217.67 11177.46 11177.28

response time and data processing time of the tasks using
three DCs. From the results, it is obvious that using two
DCs does not greatly improve the performance of the load
balancing algorithms. This is due to the service broker policy.
The service broker policy provides the rules and norms for
choosing a datacenter by the userbases. We have used the

TABLE V
AVERAGE DATA PROCESSING TIME (PT) IN MILLISECONDS USING TWO

DATACENTERS (CLOSEST DATACENTER SERVICE BROKER POLICY).

Configuration
Name

Datacenter
configuration

PT using
Threshold

PT using
RR

PT using
ESCELB

CC1 DCs with 25 VMs 12612.21 15068.82 15069.32
CC2 DCs with 50 VMs 5872.29 7461.07 7460.89
CC3 DCs with 75 VMs 3756.34 4914.23 4914.26
CC4 DCs with 25 and 50 VMs 10007.24 12018.99 12019.40
CC5 DCs with 50 and 75 VMs 5080.01 6426.66 6426.79
CC6 DCs with 25 and 75 VMs 9157.97 10985.16 10985.15

closest datacenter service broker policy where the userbase
looks for the nearest DCs and assigns the tasks there. So, the
total number of tasks is divided between these DCs. But as
the userbase peek time does not overlap with one another, the
performance is almost same as that of the single datacenter.
But as stated earlier, the greater number of VMs increases the
performance of the load balancing algorithm. From the results
in Table IV and Table V it is clear that two DCs with 75 VMS
on each produces the best response time as well as the best
data processing time. From Table IV and Table V it is clear
that the proposed threshold based load balancing algorithm
outperforms all other algorithms.

TABLE VI
AVERAGE RESPONSE TIME (RT) IN MILLISECONDS USING THREE

DATACENTERS (CLOSEST DATACENTER SERVICE BROKER POLICY).

Configuration
Name

Datacenter
Configuration

RT using
Threshold

RT using
RR

RT using
ESCELB

CC1 DCs with 25 VMs 11323.38 13703.41 13702.71
CC2 DCs with 50 VMs 5361.71 6645.13 6645.18
CC3 DCs with 75 VMs 3461.46 4451.34 4451.24
CC4 DCs with 25, 25 and 50 VMs 11321.18 13697.68 13698.39
CC5 DCs with 25, 50 and 50 VMs 9367.58 11463.96 11464.07
CC6 DCs with 25, 25 and 75VMs 11338.31 13696.80 13696.72
CC7 DCs with 25, 75 and 75 VMs 8737.38 10734.06 10734.31
CC8 DCs with 50, 50 and 75 VMs 5371.60 6643.52 6643.61
CC9 DCs with 75, 75 and 50 VMs 4274.63 5914.52 5914.63

CC10 DCs with 25, 50 and 75 VMs 9294.84 11463.17 11463.14

TABLE VII
AVERAGE DATA PROCESSING TIME (PT) IN MILLISECONDS USING THREE

DATACENTERS (CLOSEST DATACENTER SERVICE BROKER POLICY).

Configuration
Name

Datacenter
Configuration

PT using
Threshold

PT using
RR

PT using
ESCELB

CC1 DCs with 25 VMs 11176.48 13545.48 13544.78
CC2 DCs with 50 VMs 5244.05 6521.03 6521.09
CC3 DCs with 75 VMs 3353.24 4337.64 4337.54
CC4 DCs with 25, 25 and 50 VMs 11174.34 13539.75 13540.45
CC5 DCs with 25, 50 and 50 VMs 9230.16 11316.41 11316.51
CC6 DCs with 25, 25 and 75VMs 11191.21 13538.85 13538.78
CC7 DCs with 25, 75 and 75 VMs 8602.83 10589.94 11315.57
CC8 DCs with 50, 50 and 75 VMs 5253.79 6519.41 6519.50
CC9 DCs with 75, 75 and 50 VMs 4610.00 5793.88 5793.98

CC10 DCs with 25, 50 and 75 VMs 9157.74 11315.59 11315.57

Table VI and Table VII shows the results of average
response time and data processing time of the tasks using three
DCs. We can see that the results are almost identical with the
results of the two DCs. Increasing the VM numbers in DCs
increases the performance of the DCs.

Table VIII provides a comparison of the Response Time and
Data Processing Time for various datacenter configurations.
The response times for one data center and two data centers are



TABLE VIII
COMPARISON OF RESPONSE TIME AND DATA PROCESSING TIME IN

THRESHOLD BASED ALGORITHM FOR DIFFERENT DATACENTER WITH 75
VMS.

One Datacenter Two Datacenter Three Datacenter
Response Time 3939.7 3901.94 3461.46

Data Processing time 3688.10 3756.34 3353.24

identical, but the response time is greatly improved with three
data centers. “Fig. 3” gives us the graphical representation of
our hypothesis. The graph curves downward for three DCs.
All the previous experiments are conducted by choosing the
closest datacenter service broker policy.

Fig. 3. Comparison of response time in Threshold based algorithm for
different Datacenter with 75 VMs

VIII. CONCLUSION

In this paper a threshold based load balancing algorithm is
designed and implemented for cloud computing for achieving a
promising tendency towards solving high demanding applica-
tions and many kinds of problems. The main objective of the
threshold based load balancing algorithm is to achieve high
performance in cloud computing using real-world scenarios.
In the proposed threshold based load balancing algorithm, we
used two pre-determined threshold values, overload threshold
and underload threshold to determine the overloaded and un-
derloaded VMs. The uniqueness of using two threshold values
is to ensure efficient utilization of the VMs. An overloaded
VM has to finish a certain number of assigned tasks and then
go down to the underloaded threshold value for it to be desig-
nated as an underloaded VM. Analysis of the results shows that
our proposed algorithm has outperformed the most commonly
used load balancing algorithms like round robin, first come
first serve and equally spread load balancing algorithms. The
threshold based load balancing algorithm performs better when
there are a large number of tasks, where other load balancing
algorithms fail because of the large number of tasks on the
VMs.

In future extension of the algorithm, we can use machine
learning techniques to find out the optimal threshold values.
We can analyze the total assigned tasks and use machine

learning techniques like super position, neural networks, deep
learning etc. to find out the overload and underload threshold
values. We can dynamically change the threshold values for
the overloaded and underloaded VMs with the progress of
the simulations. We will also try to combine multiple service
broker policies with our algorithm to obtain even better results.
We will also implement fault tolerance policy on the algorithm
so that the algorithm can automatically recover if it fails for
huge workloads.

REFERENCES

[1] E. Brown, “Different types of cloud computing service models,” 2015.
[Online]. Available: https://www.bluepiit.com/blog/different-types-of-
cloud-computing-service-models/.

[2] R. Buyya, J. Broberg, and A. M. Goscinski, Cloud computing: Principles
and paradigms. John Wiley & Sons, 2010.

[3] “Top 10 cloud computing service providers in 2017,” 2017. [Online].
Available: https://www.technavio. com/blog/top-10-cloud-computing-
service-providers-2017

[4] K. Dasgupta, B. Mandal, P. Dutta, J. K. Mandal, and S. Dam, “A genetic
algorithm (ga) based load balancing strategy for cloud computing,”
Procedia Technology, vol. 10, pp. 340–347, 2013.

[5] S. H. Bokhari, “On the mapping problem,” IEEE Trans. Computers,
vol. 30, no. 3, pp. 207–214, 1981.

[6] S. Salleh and A. Y. Zomaya, Scheduling in parallel computing systems:
fuzzy and annealing techniques. Springer Science & Business Media,
2012, vol. 510.

[7] A. Y. Zomaya, “Parallel and distributed computing: The scene, the props,
the players,” Parallel and Distributed Computing Handbook, vol. 1,
no. 1, pp. 5–23, 1996.

[8] A. K. Sidhu and S. Kinger, “Analysis of load balancing techniques in
cloud computing,” International Journal of computers & technology,
vol. 4, no. 2, pp. 737–741, 2013.

[9] S. H. H. Madni, M. S. A. Latiff, Y. Coulibaly, and S. M. Abdulhamid,
“Recent advancements in resource allocation techniques for cloud com-
puting environment: a systematic review,” Cluster Computing, vol. 20,
no. 3, pp. 2489–2533, 2017.

[10] M. Katyal and A. Mishra, “A comparative study of load balanc-
ing algorithms in cloud computing environment,” arXiv preprint
arXiv:1403.6918, 2014.

[11] S. Afzal and G. Kavitha, “Load balancing in cloud computing–a hierar-
chical taxonomical classification. j. cloud comput. 8 (1), 1–24 (2019).”

[12] R. Armstrong, D. Hensgen, and T. Kidd, “The relative performance
of various mapping algorithms is independent of sizable variances in
run-time predictions,” in Proceedings Seventh Heterogeneous Computing
Workshop (HCW’98). IEEE, 1998, pp. 79–87.

[13] Y. Xu, L. Wu, L. Guo, Z. Chen, L. Yang, and Z. Shi, “An intelligent load
balancing algorithm towards efficient cloud computing,” in Workshops
at the Twenty-Fifth AAAI Conference on Artificial Intelligence, 2011.

[14] E. J. Ghomi, A. M. Rahmani, and N. N. Qader, “Load-balancing
algorithms in cloud computing: A survey,” Journal of Network and
Computer Applications, vol. 88, pp. 50–71, 2017.

[15] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,
“Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Soft-
ware: Practice and experience, vol. 41, no. 1, pp. 23–50, 2011.

[16] B. Wickremasinghe, R. N. Calheiros, and R. Buyya, “Cloudanalyst: A
cloudsim-based visual modeller for analysing cloud computing environ-
ments and applications,” in 2010 24th IEEE international conference on
advanced information networking and applications. IEEE, 2010, pp.
446–452.

[17] S. Mathew and J. Varia, “Overview of amazon web services,” Amazon
Whitepapers, 2014.

[18] M. Cunha, N. Mendonca, and A. Sampaio, “Investigating the impact
of deployment configuration and user demand on a social network
application in the amazon ec2 cloud,” in 2011 IEEE Third International
Conference on Cloud Computing Technology and Science. IEEE, 2011,
pp. 746–751.

[19] J. Xiong, S.-H. Shi, and S. Zhang, “Build and evaluate a free virtual
cluster on amazon elastic compute cloud for scientific computing.”
International Journal of Online Engineering, vol. 13, no. 8, 2017.


