
1.  Introduction
The hyporheic zone connects streams and rivers with groundwater, and it is recognized as critical for nutrient 
management and the proper functioning of stream ecosystems (Stegen et al., 2018), especially for slowly moving 
or small stream systems. Transport and transformation of many solutes, including nutrients, in stream corridors 
result from the interplay between biogeochemical processes and solute exchange between the stream channels 
and the metabolically active hyporheic zone (Clark et al., 2019; Meghdadi & Javar, 2018; Trauth et al., 2014).

Abstract  Hyporheic exchange in streams is critical to ecosystem functions such as nutrient cycling along 
river corridors, especially for slowly moving or small stream systems. The transient storage model (TSM) has 
been widely used for modeling of hyporheic exchange. TSM calibration, for hyporheic exchange, is typically 
used to estimate four parameters, including the mass exchange rate coefficient, the dispersion coefficient, 
stream cross-sectional area, and hyporheic zone cross-sectional area. Prior studies have raised concerns 
regarding the non-uniqueness of the inverse problem for the TSM, that is, the occurrence of different parameter 
vectors resulting in TSM solution that reproduces the observed in-stream tracer break through curve (BTC) 
with the same error. This leads to practical non-identifiability in determining the unknown parameter vector 
values even when global-optimal values exist, and the parameter optimization becomes practically non-unique. 
To address this problem, we applied the simulated annealing method to calibrate the TSM to BTCs, because it 
is less susceptible to local minima-induced non-identifiability. A hypothetical (or synthetic) tracer test data set 
with known parameters was developed to demonstrate the capability of the simulated annealing method to find 
the global minimum parameter vector, and it identified the “hypothetically-true” global minimum parameter 
vector even with input data that were modified with up to 10% noise without increasing the number of iterations 
required for convergence. The simulated annealing TSM was then calibrated using two in-stream tracer tests 
conducted in East Fork Poplar Creek, Tennessee. Simulated annealing was determined to be appropriate for 
quantifying the TSM parameter vector because of its search capability for the global minimum parameter 
vector.

Plain Language Summary  Hyporheic exchange is critical for biogeochemical and ecological 
processes in river corridors, and in-stream tracer testing and modeling are commonly used for exchange 
characterization. Non-uniqueness of inverse modeling parameter estimation is a concern for the transient 
storage model (TSM) for hyporheic exchange as gradient-based parameter estimation methods tend to get 
trapped in local minima of the difference between observation and model results, which limits our ability 
to locate global minimum parameters that provide the closest match between model and data. We used 
a hypothetical (or synthetic) tracer test data set with known parameters to test simulated annealing as an 
alternative inverse modeling approach, which was also compared to the results of the commonly used TSM 
code, OTIS-P, a modified version of one-dimensional transport with inflow and storage (OTIS) code, couples 
the solution of the governing equation of OTIS with a nonlinear regression package (Runkel, 1998a). The 
simulated annealing method identified the “hypothetically-true” global minimum parameter vector even with 
variations in initial guesses of the parameter vector values and input observation data that were modified to 
include up to 10% noise to account for experimental error. The simulated annealing inverse TSM was also 
able to identify reasonable/comparable parameters for two tracer tests conducted in East Fork Poplar Creek, 
Tennessee, which suggests that simulated annealing is a reasonable approach for TSM inverse modeling.

TSAI ET AL.

© 2022. American Geophysical Union. 
All Rights Reserved.

Transient Storage Model Parameter Optimization Using the 
Simulated Annealing Method
C. H. Tsai1,2, D. F. Rucker1,3, S. C. Brooks4, T. Ginn5  , and K. C. Carroll1,2 

1Department of Plant & Environmental Science, New Mexico State University, Las Cruces, NM, USA, 2Water Science 
and Management Program, New Mexico State University, Las Cruces, NM, USA, 3hydroGEOPHYSICS, Inc, Tucson, AZ, 
USA, 4Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA, 5Civil and Environmental 
Engineering, Washington State University, Pullman, WN, USA

Key Points:
•	 �Simulated annealing with random 

initial guesses was able to identify 
correct parameter values for synthetic 
case with known parameter vector

•	 �Acceptable parameter estimation 
(without increased iteration 
requirement) for Transient Storage 
Model (TSM) even with 5 and 10% 
noise was added

•	 �Simulated annealing method was 
successfully applied with random 
initial guesses of the parameter vector 
for model calibration of two in-stream 
tracer test data sets

Correspondence to:
K. C. Carroll,
kccarr@nmsu.edu

Citation:
Tsai, C. H., Rucker, D. F., Brooks, S. 
C., Ginn, T., & Carroll, K. C. (2022). 
Transient storage model parameter 
optimization using the simulated 
annealing method. Water Resources 
Research, 58, e2022WR032018. https://
doi.org/10.1029/2022WR032018

Received 18 JAN 2022
Accepted 17 JUN 2022

Author Contributions:
Conceptualization: C. H. Tsai, D. F. 
Rucker, S. C. Brooks, K. C. Carroll
Data curation: C. H. Tsai, D. F. Rucker
Formal analysis: C. H. Tsai, D. F. 
Rucker, S. C. Brooks
Funding acquisition: C. H. Tsai, D. 
F. Rucker, S. C. Brooks, T. Ginn, K. C. 
Carroll
Investigation: C. H. Tsai, D. F. Rucker, 
S. C. Brooks, T. Ginn, K. C. Carroll
Methodology: C. H. Tsai, D. F. Rucker, 
S. C. Brooks, T. Ginn, K. C. Carroll
Project Administration: C. H. Tsai, K. 
C. Carroll
Resources: C. H. Tsai, D. F. Rucker, S. 
C. Brooks, T. Ginn, K. C. Carroll
Software: C. H. Tsai, D. F. Rucker
Supervision: C. H. Tsai, K. C. Carroll
Validation: C. H. Tsai, D. F. Rucker, S. 
C. Brooks, T. Ginn, K. C. Carroll
Writing – original draft: C. H. Tsai, D. 
F. Rucker

10.1029/2022WR032018
RESEARCH ARTICLE

1 of 15

https://orcid.org/0000-0002-5011-1644
https://orcid.org/0000-0003-2097-9589
https://doi.org/10.1029/2022WR032018
https://doi.org/10.1029/2022WR032018
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2022WR032018&domain=pdf&date_stamp=2022-07-19


Water Resources Research

TSAI ET AL.

10.1029/2022WR032018

2 of 15

In-stream tracer injection experiments are by far the most common method for estimating the degree to which 
hyporheic exchange occurs and for characterizing river corridor transport (Gooseff et  al.,  2013; Knapp & 
Kelleher, 2020; Ward et al., 2019). Data from such experiments intrinsically reflect the combined motion and 
mixing during stream transport with hyporheic exchange, which characteristically shifts tracer mass from earlier 
breakthrough into a pronounced tail reflecting enhanced residence times compared to that predicted by advection 
and dispersion alone. The tail of the tracer breakthrough curve (BTC) is generally more indicative of hyporheic 
exchange, which can have a more significant control over solute retention and spreading than dispersion processes 
in the stream even with lateral or back-eddy entrainments (Haggerty et al., 2000).

A Transient Storage Model (TSM) has been used to predict the mass transport in a stream (Bencala & Walters, 1983; 
Kelleher et al., 2013; Runkel, 1998b). The TSM considers three processes in the main channel, including the 
advection, dispersion, and storage exchange that is mainly associated with the hyporheic exchange. The concep-
tual model of TSM can be found in Wagner & Harvey (1997). For the dispersion process, the TSM represents the 
in-stream mass spreading due to diffusion and velocity variations through the longitudinal dispersion coefficient 
(D). The effects of storage within channel pools/eddies and within the hyporheic zone, are lumped into one stor-
age exchange term, which is approximated via a first-order kinetic process with a mass exchange rate coefficient 
(𝐴𝐴 𝜶𝜶 ). In general, the effect of in-stream pools/eddies could possibly change the BTC (Briggs et al., 2010; Harvey 
et al., 2005; Rowiński et al., 2004; Scott et al., 2003). However, there were no pools or eddies observed at the 
field site where the tracer testing, described below, was conducted. The storage mass exchange for this study 
was only associated with the hyporheic exchange. On the other hand, the scaling and heterogeneity issues are 
important and effect the mass transport in natural systems (Yeh et al., 2015). The one-dimensional (1D) stream 
transport models, like TSM, are regarded as a relatively coarse approximation of the true 3D heterogeneous 
transport system. One approach used by prior researchers was to discretize the river into separate reach lengths 
and estimated different parameters for each reach length (McCallum et al., 2020). However, this research focuses 
on parameter optimization method for characterizing the stream mass transport for the TSM. Thus, the parameter 
vector in this research is effective parameter representing the entire transport length of the field site where the 
tracer test was conducted.

Values for D and 𝐴𝐴 𝜶𝜶 are obtained by fitting a model to observed data by adjusting model parameter values, 
which requires solution of an inverse problem to calibrate the values of the parameter vector. This is commonly 
completed via the inverse approach, by iteratively minimizing the difference between the observations and model 
estimated values (an objective function). Theoretically, the calibrated parameters should be uniquely identifia-
ble. However, lack of parameter identifiability is a problem common to parameter estimation for many types of 
environmental models, including the TSM (Beven & Binley, 1992; Kelleher et al., 2013). Research has indicated 
that the TSM non-identifiability is a result of equifinality in which different combinations of parameters can 
reproduce the observed BTCs with the same order of accuracy (Kelleher et al., 2013; Wagener et al., 2002), 
that is, the model includes multiple optimized parameter vector with local minima values of the objective func-
tion (Carrera & Neuman, 1986b). Local minima would be parameter vectors where the objective function value 
becomes lower than that of adjacent vectors, but local minima are generally larger than other values of the objec-
tive function when considering all values of function as a surface or distribution. Conversely, the global minimum 
would be the parameter vector where the objective function is lower than all other parameter vectors (Carrera & 
Neuman, 1986b).

Non-identifiability exists when more than one set of parameter values lead the model to reproduce the observed 
data within an allowable difference (Carrera & Neuman, 1986b; Knapp & Cirpka, 2017; Lemke et al., 2013). For 
example, Kelleher et al. (2013) used OTIS-P (Runkel, 1998b) to estimate the TSM parameters, and concluded the 
mass exchange rate coefficient was non-identifiable across all study reaches, including 10 BTCs for 100 m pulse 
injections along Stringer Creek Montana, USA (Kelleher et al., 2013). This illustrates the need for further study 
of the manner of inversion of the TSM model, which seems to be especially sensitive for hyporheic exchange 
modeling of tracer test data.

Parameter optimization or calibration methods, the numerical methods by which the parameter set is identified 
that produces a simulation that best fits the observed data, can be categorized into gradient and non-gradient 
types in terms of how the search method is conducted. Gradient methods march iteratively in a direction of 
steepest ascent/descent and include the Newton Raphson method, Gauss-Newton method (Gooseff et al., 2013; 
Scott et al., 2003), and Marquardt–Levenberg method (Bard, 1974). These methods tend to easily converge to 
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one of the local minima parameter vectors that is adjacent to the initial guesses of the parameter vector (Šimůnek 
& Hopmans, 2002). When a problem has many local minima, the gradient optimization methods may become 
trapped in a local minimum close to the initial guesses of the parameter vector, which are practically non-unique 
solutions of the inverse problem that depend on the initial guesses of the parameter vector. One way to address the 
local minima issue for the parameter optimization is to run the optimization model with different initial guesses 
of the parameter vector and compare the solution sets (Kelleher et al., 2013; Runkel, 2002; Wagener et al., 2002), 
but uncertainty in the global versus local nature of the final solution remains. The OTIS-P, a modified version of 
One-Dimensional Transport with Inflow and Storage (OTIS) code, couples the solution of the governing equa-
tion of OTIS with a Standard Time Series and Regressions Package (STARPAC) (Donaldson & Tryon, 1987). 
Using the adaptive, nonlinear least squares algorithm (Gauss-Newton method), OTIS-P has been a widely used 
optimization method for calibrating the parameters of the TSM (Runkel, 1998a; Wagner & Gorelick, 1986). The 
UCODE (a computer code for universal inverse modeling) (Poeter & Hill, 1999) uses the Gauss-Newton method, 
and has been used to estimate the parameters in the TSM for the conservative solute transport in a small mountain 
stream over combinations of five consecutive sub-reaches (Gooseff et al., 2013). In general, the gradient method 
has the potential to converge to the local minima.

Non-gradient methods do not search for global minimum parameter vector based on the direction of the gradient of 
objective function, and include the simulated annealing method (Kirkpatrick et al., 1983; Metropolis et al., 1953), 
Nelder and Mead simplex method (Bard, 1974), a sequential uncertainty fitting approach (Mousavi et al., 2012), 
and a host of different variations of genetic algorithms (Vrugt et  al.,  2001). Rowinski et  al.  (2004) used the 
nonlinear simplex method to estimate parameters in the transient storage model to characterize the process of the 
exchange of mass between the main-stream and the in-stream stagnant zones, which causes temporary storage 
of solute. The simulated annealing method (Kirkpatrick et al., 1983) is a stochastic global optimization model 
based on an analogy between optimization and physical annealing. It was first used for fitting the parameters 
for the equation of state for substances consisting of interacting individual molecules (Metropolis et al., 1953). 
The simulated annealing method has been applied to a large variety of optimization problems, including hydrau-
lic parameter estimation (Rucker,  2011), decision making (Erana-Diaz et  al.,  2020; B. Li et  al.,  2019; Wang 
et  al.,  2019), resource allocation (Aerts & Heuvelink,  2002; X. Li & Ma,  2018), hazard assessment (Hackl 
et al., 2018; Hosseini et al., 2020), and GIS spatial optimization (Cruz-Chavez et al., 2020). We hypothesize that 
simulated annealing may be a feasible approach to determine the global minimum parameter vector for hyporheic 
zone modeling using the TSM.

The parameter non-uniqueness (equifinality) refers to occurrence of multiple values within the distribution surface 
of objective function, which are numeric depressions, like a crater depression in a surface, where the value of 
objective function is lower than the other nearby surrounding region in parameter space (Dewaide et al., 2016). 
The local optima problem (non-identifiability) refers to the occurrence of a valley shape of similar values in the 
distribution surface of an objective function, where one can vary the parameters without changing the value of 
objective function as long as one stays in the valley (Raue et al., 2009). Furthermore, there may be a combination 
of craters and valleys, and/or there may be multiple valleys and the valleys are not generally “linear” (straight) 
unless the forward model is linear. Because of fine-scale dependence of gradient methods on the optimization 
control parameters (such as, maximum allowable iterations resulting in a small decrease in the value of objective 
function before stopping), it is often difficult to tell the difference between a valley and a crater. These local 
minima of the objective function, as inverse solutions that are not as minimized as the global minimum, can 
be determined as the solution during gradient method optimization since those methods focus on continuously 
reducing the objective function, and once a gradient method migrates into a crater or a valley, it usually results in 
local and not global minimization or optimization.

The purpose of this research is to use the simulated annealing method to estimate the global minimum parameter 
vector that includes the mass exchange rate, dispersion coefficient, stream cross-sectional area, and hyporheic 
zone cross-sectional area for the TSM, under the assumption that a unique solution to the inverse TSM exists for 
the problem at hand. We first demonstrate the robustness and capability of the simulated annealing method for 
finding the global minimum parameter vector through a synthetic, hypothetical, test case with a known set of 
parameter values and compare the results with OTIS-P. Then, we apply simulated annealing inverse modeling 
method to obtain the parameter vector by comparison to BTC data from two in-stream tracer studies conducted 
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along an approximately 250 m reach of the East Fork Poplar Creek (EFPC), in Tennessee, USA. This work is the 
first study to apply simulated annealing to characterization of parameter vector of the TSM.

2.  Simulation Methods
2.1.  Transient Storage Model

The TSM (Bencala et al., 1990; Bencala & Walters, 1983; Runkel, 2002) simulates solute transport BTCs using 
a first-order kinetic mass transfer term driven by the concentration difference between pore water within stre-
ambed sediments and stream water. The TSM accounts for solute mass exchange between the surface water (i.e., 
mobile phase) and streambed pore water (i.e., assumed relatively immobile phase) through the commonly used 
two-domain, mobile-immobile, rate-limited, and mass-transfer conceptualization. The governing equations of 
the TSM include:

𝜕𝜕𝜕𝜕
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where 𝐴𝐴 𝐴𝐴 [𝐴𝐴 ML
−3 ] is the solute concentration in the stream; 𝐴𝐴 𝐴𝐴 [𝐴𝐴 L3T−1 ] is the stream discharge; 𝐴𝐴 𝐴𝐴 [𝐴𝐴 L

2 ] is the stream 
cross-sectional area; 𝐴𝐴 𝐴𝐴𝑠𝑠 [𝐴𝐴 L2T−1 ] is the longitudinal dispersion coefficient in the stream; 𝐴𝐴 𝐴𝐴𝑠𝑠 [𝐴𝐴 ML

−3 ] is the solute 
concentration in the hyporheic zone; 𝐴𝐴 𝐴𝐴𝑠𝑠 [𝐴𝐴 L

2 ] is the cross-sectional area of the hyporheic zone; 𝐴𝐴 𝐴𝐴 [𝐴𝐴 T−1 ] is the 
first-order, mass exchange rate coefficient across the hyporheic zone.

The simplicity of the TSM makes it an attractive option (Kelleher et  al.,  2013; Knapp & Kelleher,  2020; 
Runkel,  1998b,  2002; Wagner & Harvey,  1997; Wlostowski et  al.,  2017), and this modeling approach is 
commonly used to simulate tracer test BTCs with comparison to observed data often including calibration of 
the exchange rate coefficient and other parameters through parameter estimation (Bencala et al., 1990; Haggerty 
et al., 2000, 2002; Harvey et al., 2013; Kelleher et al., 2013; Runkel, 2002; Wagner & Harvey, 1997; Wlostowski 
et al., 2017). Typically, 𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝑠𝑠, 𝛼𝛼𝛼 and𝐷𝐷𝑠𝑠 in Equations 1 and 2 are calibration parameters, since directly measuring 
these parameters can be challenging (Wagner & Harvey, 1997). While we assume this inverse TSM problem has 
a unique solution, it must be noted that there is evidence that the identifiability of the parameter values drops with 
either very high or very low exchange Damkohler number (DAI), which is a dimensionless combination of the 
rates of exchange between stream and storage zones, the stream-water velocity, and the stream reach length of the 
experiment (Wagner & Harvey, 1997).

The DAI was given by Bahr and Rubin as (Bahr & Rubin, 1987):

𝐷𝐷𝐷𝐷𝐷𝐷 = 𝛼𝛼 ×

(
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𝑣𝑣
� (3)

where 𝐴𝐴 𝐴𝐴𝑟𝑟 [𝐴𝐴 L
2 ] is the length of the reach, and 𝐴𝐴 𝐴𝐴

[

LT
−1
]

 is the average reach water velocity, in which:

𝑣𝑣 =
𝑄𝑄

𝐴𝐴
� (4)

2.2.  Parameter Estimation

The objective of our TSM inverse problem is to find the minimum in the difference between the measured and 
modeled concentration data, typically in a least squares formulation (F) by adjusting the value of one or more 
parameters in the TSM. The optimized parameter vector creates the minimum objective function value (F(x)) 
expressed as:

𝐹𝐹 (𝒙𝒙) =

𝑁𝑁
∑

𝑖𝑖=1

(𝑓𝑓𝑖𝑖(𝒙𝒙) − 𝐶𝐶𝑖𝑖)
2� (5)
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where 𝐴𝐴 𝒙𝒙 is the parameter vector, N is the number of observed data points, 𝐴𝐴 𝐴𝐴𝑖𝑖 is the fitting function, and 𝐴𝐴 𝐴𝐴𝑖𝑖 is 
the observed tracer concentrations from the tracer BTC. The 𝐴𝐴 𝐴𝐴𝑖𝑖 is a numerical solution for Equations 1 and 2 
solved with finite difference method, including Crank-Nicolson for the time discretization, upwind scheme for 
the advection term, and second order central difference discretization for the dispersion term in Equation 1. The 
implementation of numerical solution 𝐴𝐴 𝐴𝐴𝑖𝑖 was verified with the solution of OTIS (Runkel, 1998a) with a root mean 
squared error (RMSE) for model to model comparison:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =

√

∑𝑁𝑁

𝑖𝑖=1
(𝑓𝑓𝑖𝑖(𝒙𝒙) − 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝒙𝒙))

2

𝑁𝑁 − 1
� (6)

where 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝒙𝒙) is the solution of OTIS.

2.3.  The Simulated Annealing Method

The thermo-dynamic process of annealing in metallurgy consists of heating and cooling stages. At the heating 
stage, the mobility of molecules in the material is high, paths traveled are farther and broader, and the material 
can be formed in any shape. At the cooling stage molecular paths are shorter and narrower. When the temperature 
drops below the freezing point, the shape of material stays firm. Since the simulated annealing method utilizes 
this thermo-dynamic process to find the optimized parameter vector, the value of objective function F(x) in Equa-
tion 5 is related to the energy. The higher energy, the higher difference between reproduced BTC and observed 
BTC. The simulated annealing method uses the probability to determine the candidate solution from current 
solution. The 𝐴𝐴 Δ𝐹𝐹  is the change of the energy (the difference) from the candidate solution to the current solution, 
defined as follows:

Δ𝐹𝐹 = 𝐹𝐹 (𝒙𝒙𝒄𝒄𝒄𝒄) − 𝐹𝐹 (𝒙𝒙𝒄𝒄𝒄𝒄)� (7)

where 𝐴𝐴 𝒙𝒙𝒄𝒄𝒄𝒄 is the parameter vector of the current solution and 𝐴𝐴 𝒙𝒙𝒄𝒄𝒄𝒄 is the parameter vector of the candidate solution. 
When the temperature is below the freezing point, this method accepts the candidate solution as the next solu-
tion, and is restricted to the only condition that 𝐴𝐴 Δ𝐹𝐹 ≤ 0 , from high energy to low energy, which is analogous to 
the gradient optimization methods. Thus, the simulated annealing method begins its optimization process with 
high temperature, and accepts the candidate solution as the next solution not only when 𝐴𝐴 Δ𝐹𝐹 ≤ 0 but also when            

𝐴𝐴 Δ𝐹𝐹 𝐹 0 if

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐸𝐸) ∼ exp

(

−
Δ𝐹𝐹

𝑇𝑇

)

> Random (0, 1)� (8)

where the 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐸𝐸) is the Boltzmann probability distribution (Kirkpatrick et  al.,  1983). T is the temperature 
schedule in the optimization process:

𝑇𝑇 = 1000 × 𝑒𝑒
−𝑘𝑘𝑇𝑇 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� (9)

in which 𝐴𝐴 𝐴𝐴𝑇𝑇  is control parameter (𝐴𝐴 0.05 in this research), and 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the total iteration number. Whenever 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐸𝐸) 
is greater than a random number between 0 and 1, the candidate solution is accepted as the next solution, even  if 
the candidate solution has a higher energy than the current solution. At higher temperatures, the 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐸𝐸) is 
around 1, and any candidate solution is accepted as the solution, so that the solution searching is not restricted 
to local minima. The heating process allows the simulated annealing method to avoid being trapped in a local 
minimum, which provides this method with an improved chance to find the global minimum. As the temperature 
decreases, the simulated annealing method restricts the search capability to the vicinity around the current mini-
mum. The stopping criteria of the simulated annealing method is varied and based on the problem of interest, 
but usually matches the expected noise level of the measurements. In general, searching for the parameter vector 
that fits the candidate of global minimum should occur before the freezing point. Thus, from numerical exper-
imentation, we found the system would reach the global minimum parameter vector if T < 20 and the absolute 
difference of objective function between the candidate and current parameter vectors was smaller than 0.0001. 
The difference between the values of objective function from any parameter vector (𝐴𝐴 𝒙𝒙𝐼𝐼 ) to the global minimum 
parameter vector (𝐴𝐴 𝒙𝒙𝑚𝑚𝑚𝑚𝑚𝑚 ) was used to calculate the error, which is defined as follows:

𝑬𝑬 = 𝐹𝐹 (𝒙𝒙𝐼𝐼 ) − 𝐹𝐹 (𝒙𝒙𝑚𝑚𝑚𝑚𝑚𝑚)� (10)
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Larger values of E reflect a greater deviation from the value of objective 
function with global minimum parameter vector. For evaluating the accuracy 
of the model, we again employ the RMSE calculation between the simulation 
and observation:

𝐹𝐹 =

√

∑𝑁𝑁

𝑖𝑖=1
(𝑓𝑓𝑖𝑖(𝒙𝒙) − 𝐶𝐶𝑖𝑖)

2

𝑁𝑁 − 1
� (11)

The standard deviation 𝐴𝐴 𝐴𝐴𝑗𝑗 of parameter vector was calculated as follows 
(Carrera & Neuman, 1986a):

𝑆𝑆𝑗𝑗 =

√

𝐶𝐶𝑗𝑗𝑗𝑗 , 𝑗𝑗 = 1, 4� (12)

where 𝐴𝐴 𝐴𝐴𝑗𝑗𝑗𝑗 is the diagonal element of the parameter covariance matrix 𝐴𝐴 𝑪𝑪 :

𝑪𝑪 ≈
(

𝒆𝒆
𝑻𝑻

𝒆𝒆

)

∕𝑁𝑁 ⋅

(

𝑱𝑱
𝑻𝑻

𝑱𝑱

)−1� (13)

in which the residue 𝐴𝐴 𝒆𝒆 is calculated as follows:

𝑒𝑒𝑖𝑖 = 𝑓𝑓𝑖𝑖 (𝒙𝒙𝑚𝑚𝑚𝑚𝑚𝑚) − 𝐶𝐶𝑖𝑖, 𝑖𝑖 = 1, 𝑁𝑁� (14)

the Jacobian matrix 𝐴𝐴 𝑱𝑱  is calculated as follows:

𝑱𝑱 𝑖𝑖𝑖𝑖 =
𝜕𝜕 [𝑓𝑓𝑖𝑖 (𝒙𝒙𝑚𝑚𝑚𝑚𝑚𝑚) − 𝐶𝐶𝑖𝑖]

𝜕𝜕𝒙𝒙𝑗𝑗

� (15)

The statistical analysis for the parameter vector is based on the standard deviation, S in Equation 12, with the 95% 
confidence interval (CI). The noise was generated by a random number generator given by:

𝑠𝑠 = 𝐶𝐶𝑖𝑖 × (1 + 2 × (𝑍𝑍 − 0.5) × 𝜎𝜎)� (16)

where Z: [0, 1] is given by a random number generator RANDOM_NUMBER() in Fortran 77, 𝐴𝐴 𝐴𝐴 is the level of 
noise, that is, 𝐴𝐴 𝐴𝐴 = 0.05 for 5% noise. The RANDOM_NUMBER() returns a single pseudorandom number from 
the uniform distribution over the range between 0 and 1.

2.4.  Synthetic Test Case (Verification of Numerical Model and Capability of the Simulated Annealing 
Method)

To verify the correctness of the numerical solution to solve the TSM (Equations 1 and 2) for the fitting function, 
𝐴𝐴 𝐴𝐴𝑖𝑖 (Equation 5), a synthetic test case was developed. To be consistent with the field tracer test described below, the 

tracer transport distance was 250 m, the tracer injection time for this synthetic test case was 6 hr, and the nonreac-
tive tracer concentration peak of 30 part per million (ppm) in the stream. The stream discharge (Q) was 1 m 3 s −1 
with stream (A) and hyporheic zone (As) cross-sectional areas equal to 3.8 and 2.0 m 2, respectively. Stream mass 
exchange rate coefficient and dispersion coefficient were set as 𝐴𝐴 𝐴𝐴 = 0.001 s −1 and 𝐴𝐴 𝐴𝐴𝑠𝑠 = 0.5 m 2 s −1. Figure 1 shows 
the BTCs from our implemented TSM (to be used with the simulated annealing method) in comparison with the 
results from OTIS with the same tracer arrival time (0.32 hr) The difference between the two curves was minimal 
except for the early-time, rising-concentration limb (0.1–0.3 hr). The RMSE was equal to 0.077, under the same 
spatial-temporal resolution (time step size = 0.002 hr, and spatial interval = 2 m). The mass recovery for both 
simulations reached 99.64%. This synthetic test case was then used to demonstrate the global search capability of 
the simulated annealing method for parameter estimation.

3.  Field Site and Experiments
3.1.  Study Area

The experimental reach is located approximately 5.4 km upstream of the mouth of EFPC, a third-order stream 
in the southern Appalachians in eastern Tennessee, USA (Figure 2). The site is co-located with an instrumented 
gauging station that provides stage, discharge, and multiparameter water quality data at 15 min intervals (Brooks 

Figure 1.  BTCs from our implemented TSM model to use with the simulated 
annealing method and results from OTIS for the synthetic test case.
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& Lowe, 2018). The EFPC stream channel was surveyed using Leica total station TS02 (±6 mm), then a GPS 
(Topcon HyperLite+; ±3 mm) was used to place the local survey in Universal Transverse Mercator system.

Within the reach that the tracer tests were conducted, the stream banks consisted of natural undisturbed soils 
(Dickson et al., 2015) and bedrock outcrops. The streambed consisted of a relatively thin (<∼1 m) veneer of inter-
mixed cobbles, gravel, sands, silts, and clays as well as some sections of the creek bed that are limestone bedrock 
(Brooks et al., 2017). Dominant vegetation along the stream in the study reach included deciduous trees typical 
of the area (dominantly sycamore, with some maple, and oak) and herbaceous understory. Many of the other 
characteristics and studies of the EFPC stream have been summarized elsewhere (Loar et al., 2011; Mohamed 
et al., 2021; Riscassi et al., 2016; Rucker et al., 2021).

Figure 2.  Study area location map illustrating the study reach location along EFPC near Oak Ridge, TN, and the tracer release and water sampling locations. The blue 
line indicates width of the water-filled channel.
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3.2.  Tracer Experiments

Two sodium bromide (NaBr), in-stream tracer tests were conducted on the dates of 15 January 2018 and 11 July 
2018. The January test was initiated 23 days after the last daily rainfall total of 0.5 inches or greater with a base 
flow rate equal to 1.26 ± 0.137 m 3s −1. The July test was initiated 4 days after the most recent daily rainfall total of 
0.5 inches or greater with a base flow rate equal to 0.97 ± 0.0371 m 3s −1. February through December 2018 were 
wetter than average presenting challenges in finding a window of opportunity to conduct the tracer test. Prior to 
initiating each test, the surface water monitoring station was established 250 m downstream of the tracer injection 
location (Figure 2), where samples were collected at the center of the stream. An additional sampling and moni-
toring station was established upstream of the injection location to quantify any changes in upstream boundary 
conditions during each test. Sampling began prior to the start of each test to quantify baseline values, which were 
subsequently used to judge when tracer arrived and had passed by the monitoring location.

The injection solution was prepared by dissolving NaBr in EFPC water in several 0.114 m 3 (30 gallon) containers. 
Samples of the injection solutions were collected for analysis. The tracer was introduced to the stream using a 
peristaltic pump for 6 hr to ensure plateau concentrations were achieved at the farthest downstream monitoring 
location. Water samples were collected using one of two methods. The first method involved manually sampling 
in the creek by triple rinsing the barrel of a 25 mL polypropylene syringe with creek water then filling the syringe 
with water. The second method involved sampling from the creek bank using a submersible pump whose intake 
was located approximately mid-depth in the water column. All samples were filtered in the field (0.2 μm polyeth-
ersulfone syringe filters), and held in a cooler in the field until return to the laboratory where they were refriger-
ated until bromide analysis by ion chromatography (U.S. EPA, 1997). Quality assurance/quality control included 
collecting duplicate field samples, field and lab blanks, and replicate analyses in the lab. The lower detection limit 
for the bromide analysis was 0.0048 mgL −1 or ppm.

4.  Results and Discussion
4.1.  Synthetic Test Case

We used the synthetic prediction results as the input for the inverse model to test the simulated annealing method 
for parameter estimation. Three initial guesses of the parameter vector, randomly generated, were used to test the 
capability of simulated annealing parameter optimization for finding the parameter vector that returns the global 
minimum value of the objective function starting from a range of differing initial guesses of the parameter vector 
(Table 1). The initial parameter estimates were randomly given by the RAND () function in EXCEL in OFFICE 
365 with 𝐴𝐴 𝐴𝐴 ∶

[

10
−6
, 10

−3
)

, 𝐷𝐷𝑠𝑠 ∶ [0.01, 2), 𝐴𝐴 ∶ [10
−3
, 9.999), 𝐴𝐴𝑠𝑠 ∶ [10

−3
, 9.999) through linear mathematical 

projection. For this first test case, no noise was added to the input data.

The simulated annealing method converged after 67 iterations with a resulting RMSE, 𝐴𝐴 𝑭𝑭  , of 1.29E−14 ppm, 
which would be considered negligible. For each of the three different initial guesses of the parameter vector, the a 
priori-assigned correct parameter vector was determined by the simulated annealing method (Table 1). This result 

  Initial guess Final result

α (s −1)

Ds 
(m 2 
s −1)

A 
(m 2)

As 
(m 2) α (s −1) Ds (m 2 s −1) A (m 2) As (m 2)

𝐴𝐴 𝐹𝐹  (mg 
L −1)

G1 1.16E−04 0.51 0.25 5.23 SA 1.E−03 (±3.1� − 17 ) 0.5 (±4.8� − 14 ) 3.8 (±4.44� − 14 ) 2.0 (±2.85� − 14 )𝐴𝐴 1.29𝐸𝐸 − 14 

G2 2.42E−04 0.14 4.57 8.54 OTIS-P G1 X X X X X

G3 1.23E−05 0.49 5.72 0.19 G2 X X X X X

G3 9.89E−4 (±4.71� − 7 ) 0.78 (56%) (±7.17� − 4 ) 3.77 (±6.67� − 4 ) 1.98 (±4.39� − 4 ) 0.17

Note. Values in parentheses indicate the uncertainty of the parameters based on the 95% CI. The simulated annealing method reached the same parameter values for the 
different initial guesses of the parameter vector. SA indictates the simulated annealing method, and X indicates divergence.

Table 1 
Three Initial Guesses of the Parameter Vector Used to Initiate the Search for the Synthetic Test Case (G1: Initial Guess 1; G2: Initial Guess 2; G3: Initial Guess 3) 
for Simulated Annealing and OTIS-P, and the Final Parameter Vector Returned
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confirms that the simulated annealing method was capable of identifying the global minimum parameter vector 
for noise-free synthetic data under a variety of different and randomly generated initial guesses of the parameter 
vector. The OTIS-P converged on the third initial guesses of the parameter vector, but failed to converge for the 
first two. The relative difference of parameter 𝐴𝐴 𝐴𝐴𝑠𝑠 from the correct to the estimated parameter was up to 56% 

𝐴𝐴

(

(0.78−0.5)

0.5
× 100% = 56%

)

 when OTIS-P was used.

Next, we modified the simulated BTC data to create two noisy data sets using Equation 16 (5–10% noise applied 
to input observation data was considered a reasonable amount of experimental error). For the BTC that included 
5% noise, simulated annealing method recovered the parameter vector that were used to generate the BTC data 
starting with each of the three initial guesses, while the OTIS-P converged only on the third guess (Table 2). As 
the noise level went up to 10%, the simulated annealing method still succeeded in finding the correct parameters 
with only minor error, while OTIS-P failed to converge for three initial guesses of the parameter vector. This 
demonstrates the capability of the simulated annealing method for finding the global minimum parameter vector 
even with uncertainty and variability in the observation data inputs.

In terms of accuracy, the inclusion of the noise increased the level of difference between the simulated and 
observed BTCs. The RMSE increased from 10 −14 with no noise added to 0.142 and 0.224 with 5% and 10% noise 
added, respectively. There was negligible deviation from the correct parameter vector for the 5% noise case, but 

for the 10% noise case the relative difference from the correct parameter 𝐴𝐴 𝐴𝐴𝑠𝑠 was 1.5% 𝐴𝐴

(

(2−1.97)

2
× 100% = 1.5%

)

 . 
Similarly, the relative difference from the correct parameters was 0.6, 1, and 0.26 for 𝐴𝐴 𝐴𝐴 , Ds, and A, respectively. 
These differences from the correct parameter vector increased with increasing noise level, especially for the As 
that varied by 1.5% for the data containing 10% of noise. For OTIS-P, the relative difference from the correct 
parameter Ds had increases up to 58%.

Computational efficiency is an important factor for an optimization method, because the number of iterations, 
and computer simulation time, needed to optimize the parameter estimation can be significant. Table 3 shows a 
comparison of number of iterations required for convergence using simulated annealing with the synthetic BTC 
data containing different levels of noise as input. The simulated annealing method converged within a similar 
number of iterations (i.e., between 61 and 67 iterations) regardless of the noise level. These results support the 
versatility of the simulated annealing method application for TSM parameter estimation. Overall, the results with 

Noise α (s −1) Ds (m 2 s −1) A (m 2) As (m 2)𝐴𝐴 𝐹𝐹  (mg L −1)

5% SA 1.00Ε−03 (±2.4� − 04 ) 0.5 (±0.371 ) 3.80 (±0.34 ) 2.00 (±0.22 ) 0.14

OTIS-P G1 X X X X X

G2 X X X X X

G3 9.88Ε−04 (±2.27� − 3 ) 0.79 (58%) (±3.48 ) 3.77 (±3.23 ) 1.97 (±2.12 ) 0.23

10% SA 9.94E−04 (±4.68� − 04 ) 0.495 (±0.58 ) 3.79 (±0.61 ) 1.97 (±0.41 ) 0.22

OTIS-P X X X X X

Note. Values in parentheses indicate the uncertainty of the parameters based on the 95% CI. The simulated annealing method 
reached the same parameter for the different initial guesses of the parameter vector. SA indictates the simulated annealing 
method, and X indicates divergence.

Table 2 
The Results From the Simulated Annealing Method and OTIS-P for the Data Set With the Level of Noise Equal to 5% and 
10% (G1: Initial Guess 1; G2: Initial Guess 2; G3: Initial Guess 3)

Noise-free 5% noise 10% noise

G1 G2 G3 G1 G2 G3 G1 G2 G3

Simulated annealing method 67 62 65 62 61 61 62 63 63

Note. G1: Initial Guess 1, G2: Initial Guess 2, G3: Initial Guess 3.

Table 3 
The Numbers of Iterations for the Simulated Annealing Method Scenarios With Different Initial Parameter Vectors and 
Amounts of Noise Added to the Data
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the synthetic test case demonstrated the robustness of the simulated annealing method for parameter estimation 
and supported the applicability of this method for hyporheic zone exchange modeling.

The parameter variation paths for iterations starting with the initial guesses of the parameter vector and ending 
with the global minimum parameter vector for the synthetic test case are shown in Figure 3. Multiple param-
eters were changed in each iteration, and parameter values both increased and decreased in value along the 
path. For the four values in the parameter vector, all of the search paths eventually reached the same parameter 
values where the global minimum parameter vector was located. Because the searching direction of the simulated 
annealing is randomly determined, there is no specific route the simulated annealing method uses to find the 𝐴𝐴 𝒙𝒙𝑚𝑚𝑚𝑚𝑚𝑚 .

The difference between the values of objective function (Equation 9) for each parameter vector for each search 
iteration is plotted in Figure 4. With each of the three different initial guesses of the parameter vector, the differ-
ence as described by the measure E (Equation 10) decreased approximately 10 orders of magnitude from 10 1.5 
to 10 −9 during the optimization process. Also, E was initially fluctuating with both increases and decreases in 
values, illustrating the ability of the simulated annealing method to potentially escape local minima in its search 
for the global minimum parameter vector. The results from Figures 3 and 4 demonstrate the capability of the 
simulated annealing method to find the global minimum parameter vector for the TSM without getting trapped in 
local minima as can happen with gradient methods.

4.2.  Modeling Field-Site Tracer Test BTCs From EFPC

The simulated annealing method was used to acquire the optimized parameter vector using input data measured with 
samples collected during the field tracer tests conducted in the EFPC. Three randomly generated initial guesses of 
the parameter vector were used to start the parameter optimization of TSM in comparison to both of the tracer tests 
conducted in the EFPC (Table 4). It is noted that the initial guesses of the parameter vector were randomly given by the 
RAND () in EXCEL in OFFICE 365 with 𝐴𝐴 𝐴𝐴 ∶

[

10
−6
, 10

−3
)

, 𝐷𝐷𝑠𝑠 ∶ [0.01, 2), 𝐴𝐴 ∶ [10
−3
, 9.999), 𝐴𝐴𝑠𝑠 ∶ [10

−3
, 9.999) .

The simulated annealing method converged to the same final parameter vector for each of the three initial guesses of 
the parameter vector (Table 4). Because these two tracer tests were conducted at different times (January and July), 
the converged parameters are different from each other. The mass exchange coefficient and the dispersion coeffi-
cient in Table 4 are similar to the results published in the literature (Wagner & Harvey, 1997). The mass exchange 
coefficient for Test 1 (𝐴𝐴 𝐴𝐴 = (4.8 ± 0.134) × 10

−4
s−1 ) was smaller than that of Test 2 (𝐴𝐴 𝐴𝐴 = (8.5 ± 0.471) × 10

−4
s−1 ). 

This result may be due to the lower discharge rate during Test 2 (0.97 𝐴𝐴 m3s−1 ) compared to that of Test 1 (1.26 
𝐴𝐴 m3s−1 ). Although, hyporheic zone exchange is not solely dependent on stream discharge, and both positive and 

negative correlations between hyporheic exchange and stream flow have been reported in prior studies (Ward 
& Packman, 2019). Similarly, the dispersion coefficient, 𝐴𝐴 𝐴𝐴𝑠𝑠 , for Test 1 was smaller (𝐴𝐴 0.028 ± 0.042m2s−1 ) than 
for Test 2 (𝐴𝐴 0.046 ± 0.15m2s−1 ). We also attribute this variability in dispersion as due to the above noted differ-
ences in discharge rate and stream velocity. In addition, Test 2 had a larger hyporheic zone cross-sectional area 
(As = 1.82 ± 0.03 𝐴𝐴 m

2 ) compared to the Test 1 (As = 1.60 ± 0.015 𝐴𝐴 m
2 ). The RMSE, 𝐴𝐴 𝐹𝐹  , were 0.60 for Test 1 and 

0.89 for Test 2, and the required number of iterations for the simulated annealing method ranged from 61 to 68. 
The value of DAI was calculated as 1.95 and 1.81 based on Equation 3. Since the value of DAI is greater than 1, 
the storage exchange rate is significantly greater than advective velocity, indicating the EFPC can be considered 
as a slowly moving stream with rapid transient storage exchange (Kelleher et al., 2013).

Comparison of the observed and calibrated simulation results of tracer test BTCs are plotted in Figure 5 with 
normalized concentration (sample concentration divided by the plateau in-stream concentration), versus the 
elapsed time after the start of tracer injection. The log (Figure 5a) and linear (Figure 5b) timescales are presented 
for visualization and comparison between the observed data and the results of the calibrated simulation. The two 
bromide tracer test BTCs were comparable, which might be expected given the similarity of the flow rate for 
each test (Figure 5). In each of the two tracer tests, there was a sharp increase in bromide concentration to C/C0 
of 0.5 within an average of ∼0.5 hr at the downstream location (Figure 5a) after the tracer was first added to the 
creek. Steady concentrations then persisted for the duration of the tracer injection. The relatively constant C/C0 
values during the injection suggest that the tracer solution was mixed throughout the full volume of the EFPC 
along the 250 m reach.
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Figure 3.  The paths to finding the global minimum of the objective function using simulated annealing and with different initial guesses of the parameter vectors for 
the noise-free synthetic test cases, (a) 𝐴𝐴 𝜶𝜶 vs. 𝐴𝐴 𝑫𝑫𝒔𝒔 , (b) A versus As. The solid line is the path for the G1, the short dash is for the G2, and the long dash is for the G3.
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Following cessation of tracer injection, concentrations began decreasing 
similar to the increasing concentration during initial tracer arrival portion 
of the BTC. A concentration spreading behavior and slope variation at 
the ascending and descending concentration limbs of the BTCs were also 
observed. Bromide concentrations declined rapidly then exhibited a more 
gradual decrease before they reached background concentrations (Figure 5b). 
Decreasing tracer concentration during elution was slightly delayed relative 
to the arrival of the tracer, and we attribute that to solute retention within 
the streambed sediment pore waters due to hyporheic exchange or stagnant 
near-bank surface water. However, the concentration tailing was relatively 
minor due to the relatively thin zone of unconsolidated sediments and 
clayey bank soils overlying the limestone bedrock at the EFPC study site 
(Mohamed et al., 2021; Rucker et al., 2021). The TSM simulation matched 
the observed data well over the full time range of each test. The simulated 
annealing inverse TSM determined parameter vectors that captured the rapid 
concentration increase, several-hours-long plateau, concentration-decrease, 
and concentration-tailing portions of the observed BTC.

5.  Conclusions
This investigation evaluated the simulated annealing method for determining 
the optimal parameter vector of the TSM for simulating hyporheic exchange. 

The non-uniqueness problem of parameters in the optimization of the TSM has been an issue noted previously 
in the literature. To overcome this, we applied simulated annealing as a global estimation procedure to help 
overcome issues related to local minima. The capability and robustness of the simulated annealing method was 
examined using synthetic test cases with and without the addition of differing amounts of random noise in the 
input data. The results from these synthetic test cases showed the success of simulated annealing for optimizing 
the parameter set and determining the correct parameter vector, and the approach was confirmed to be feasible 
with only minor error and deviation from the correct parameters even for cases with added noise up to 10% with-
out increased number of iterations required for convergence. This provides confidence in applying the simulated 
annealing method to quantify the parameter vector in the TSM for the field observed BTCs since the field data 
set is generally expected to include some experimental error. The simulated annealing method was also success-
fully applied to calibration of the parameter vector (i.e., mass exchange rate coefficient, dispersion coefficient, 
stream cross-sectional area, and hyporheic zone cross-sectional area) for the TSM using the BTC data measured 
during two tracer tests conducted in the EFPC. The calibrated parameter sets were comparable between the two 
tracer test data sets, and the minor differences were attributed to differences in stream flow rate between the two 
tracer tests. The optimization produced low RMSE values, and the simulation BTCs were highly comparable 
with  the observations. Simulated annealing provides a robust alternative for TSM parameter estimation to avoid 
the commonly occurring parameter estimation constraints. As for if simulated annealing method superior to the 
other global optimization methods, this is a potential future research topic of interest.

Figure 4.  The parameter estimation error (difference between the values of 
objective function for parameter vector relative to that of the global minimum 
parameter vector) during simulated annealing search iterations for each of the 
three initial guesses of the parameter vectors.

  Initial guess Final results

α (s −1) Ds (m 2s −1) A (m 2) As (m 2) α (s −1) Ds (m 2s −1) A (m 2) As (m 2)𝐴𝐴 𝐹𝐹  (mg L −1)

G1 2.35E−04 0.01 5.26 9.92 Test 1 4.8E−04 (±1.34� − 5 ) 0.0283 (±0.0424 ) 4.98 (±0.0160 ) 1.60 (±0.0152 ) 0.60

G2 3.37E−04 0.11 6.74 3.3 Test 2 8.50E−04 (±4.71� − 5 ) 0.0464 (±0.146 ) 3.07 (±0.0384 ) 1.82 (±0.0319 ) 0.89

G3 1.13E−05 1.01 8.23 4.05

Note. Values in parentheses indicate the uncertainty of the parameters based on the 95% CI. It is noted that simulated annealing method reached the same parameters 
for the different initial guesses of the parameter vector.

Table 4 
Three Initial Guesses of the Parameter Vector Used to Initiate the Search for Both Tracer Tests Conducted in the EFPC (G1: Initial Guess 1; G2: Initial Guess 2; G3: 
Initial Guess 3) and the Final Parameter Vector Returned
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Figure 5.  Measured (symbols) and simulated (lines) bromide breakthrough curves for the tracer tests conducted in EFPC 
presented as normalized concentration (where C is normalized by C0 = maximum plateau concentration) vs. elapsed time 
since the bromide addition started (a) log-log scale, (b) semi-log scale.
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Data Availability Statement
The data set (Brooks & Lowe, 2018) are freely available at https://www.esd.ornl.gov/programs/rsfa/data.shtml.
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