Innovations in Systems and Software Engineering (2022) 18:427-442
https://doi.org/10.1007/s11334-022-00444-8

S.I.: ATVA 2021 ®

Check for
updates

MaxSAT-based temporal logic inference from noisy data

1

Jean-Raphaél Gaglione'® - Daniel Neider?® - Rajarshi Roy?(® - Ufuk Topcu' - Zhe Xu3

Received: 24 October 2021 / Accepted: 19 February 2022 / Published online: 6 April 2022
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract

We address the problem of inferring descriptions of system behavior using temporal logic from a finite set of positive and
negative examples. In this paper, we consider two formalisms of temporal logic that describe linear time properties: Linear
Temporal Logic over finite horizon (LTLy) and Signal Temporal Logic (STL). For inferring formulas in either of the formalism,
most of the existing approaches rely on predefined templates that guide the structure of the inferred formula. On the other hand,
the approaches that can infer arbitrary formulas are not robust to noise in the data. To alleviate such limitations, we devise two
algorithms for inferring concise formulas even in the presence of noise. Our first approach to infer minimal formulas involves
reducing the inference problem to a problem in maximum satisfiability and then using off-the-shelf solvers to find a solution.
To the best of our knowledge, we are the first to incorporate the usage of MaxSAT/MaxSMT solvers for inferring formulas in
LTL¢ and STL. Our second approach relies on the first approach to derive a decision tree over temporal formulas exploiting
standard decision tree learning algorithm. We have implemented our approaches and verified their efficacy in learning concise

descriptions in the presence of noise.

Keywords Linear Temporal Logic - Signal Temporal Logic - Decision tree - Specification mining - Explainable Al

1 Introduction

Explaining the behavior of complex systems in a form that is
interpretable to humans has become a central problem in Arti-
ficial Intelligence. Applications where having concise system
descriptions are essential include debugging [13,29,30,38],
reverse engineering [37], motion planning [12,44], specifi-
cation mining for formal verification [21,35], to name just a
few examples.

B Jean-Raphaél Gaglione
jr.gaglione @utexas.edu

Daniel Neider
neider @ mpi-sws.org

Rajarshi Roy
rajarshi @ mpi-sws.org

Ufuk Topcu
utopcu @utexas.edu

Zhe Xu
xzhel @asu.edu
1 University of Texas at Austin, Austin, TX, USA

Max Planck Institute for Software Systems, Kaiserslautern,
Germany

3 Arizona State University, Tempe, AZ, USA

For inferring descriptions of a system, we rely on a set of
positive examples and a set of negative examples generated
from the underlying system. Given such data, the objective
is to infer a concise model in a suitable formalism that is
consistent with the data; that is, the model must satisfy the
positive examples and not satisfy the negative ones.

Most of the data representing Al systems consist of
sequences since, more often than not, the properties of these
systems evolve over time. For representing data consisting
of sequences, temporal logic has emerged as a successful
and popular formalism. Such logic, in addition to having
resemblance to natural language, eliminates the ambiguities
existing in natural language through mathematical rigor.

Linear Temporal Logic (LTL), developed by Pnueli [28],
is one such temporal logic that describes properties of sys-
tems over discrete time intervals. To this end, LTL relies on
temporal operators such as F (“finally”), G (“globally”), U
(“until”), and several others to capture temporal properties
of systems. In recent years, especially in Al-related applica-
tions (e.g., robot motion planning [8], inverse reinforcement
learning [9]), Linear Temporal Logic over finite horizon [14]
(LTLf in short) has gained popularity. In this logic, one can
describe the properties such as “the robot should reach the
goal and not touch a wall or step into the water in the process”
using the LTL¢ formula (—water A —wall) Ugoal.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11334-022-00444-8&domain=pdf
http://orcid.org/0000-0002-3237-3974
http://orcid.org/0000-0001-9276-6342
http://orcid.org/0000-0002-0202-1169
http://orcid.org/0000-0002-0440-0912

428

J.-R. Gaglione et al.

For describing continuous-time properties especially for
cyber-physical systems [1,32], Signal Temporal Logic [22]
is often used. STL, which is essentially an extension of LTL,
reasons about signals which are real-valued finite or infinite
time series. STL, thus, relies on temporal operators involving
intervals of time to describe continuous-time properties. For
instance, the property “for the first 60 seconds, the speed of
the vehicle should be less than 30 km/h, and the steering
angle should be less than 60°” for an autonomous vehicle,
can be described using the STL formula G[o 60j(speed <
30 A angle < 60).

The task of inferring temporal logic formulas consistent
with a given data has been studied extensively for both
LTL and STL [5,20,39,40]. Most of the existing inference
approaches, however, typically impose syntactic restrictions
on the inferred formula using handcrafted templates. Such
methods have several drawbacks. First, handcrafting tem-
plates may not be a straightforward task since it requires
adequate knowledge about the underlying system. Second,
by restricting the structure of inferred formulas, we poten-
tially increase the size of the inferred formula. This makes
the formulas difficult to comprehend by humans and also
amplifies the computation efforts required to find a formula.

Nevertheless, there are approaches [10,27] that avoid the
use of templates. These approaches reduce the learning prob-
lem to satisfiability problems in propositional logic and use
highly optimized constraint solvers to systematically search
for solutions. This results in effective algorithms that infer
formulas that perfectly classify the input data. However, such
exact algorithms suffer from the limitation that they are sus-
ceptible to failure in the presence of noise which is ubiquitous
in real-world data. Furthermore, trying to infer formulas that
perfectly classify a noisy sample often results in complex
formulas, hampering interpretability.

To alleviate the limitation of the earlier approaches, in
this paper we present two novel algorithmic frameworks!
for inferring temporal logic formulas from a sample having
system traces labeled as positive and negative. We exploit
these frameworks to devise algorithms for inferring formu-
las in both LTL; and STL. While our presented algorithms
infer temporal logic formulas over finite horizon, they can
be seamlessly extended to also infer formulas over infinite
horizon with minor modifications.

The general goal of algorithms is to infer concise (and thus,
interpretable) formulas that achieve a low loss on the sample,
where loss I(S, ¢) refers to the fraction of examples in the
sample S that the inferred formula ¢ misclassified. Precisely,
the problem solved by the algorithms is the following: given
a sample S and a threshold «, find a minimal formula ¢ that
has I(S, ¢) < k.

1 Based on the conference version of this paper [18].

@ Springer

Our algorithmic frameworks derive ideas from the SAT-
based learning algorithms introduced by Neider and Gavran
[27]. Our first framework reduces the problem of formula
inference to problems in maximum satisfiability. Roughly
speaking, in this framework, we first encode the inference
problem using formulas having appropriate weights assigned
to various clauses. Then, we search for such assignments
to the formulas that maximize the total weight of the satis-
fied clauses. Finally, using an assignment that maximizes the
weights of the satisfied clauses, we construct an appropriate
formula minimizing loss in a straightforward manner.

The first framework constructs a series of monolithic for-
mulas to encode the inference problem and is, thus, often
inefficient for inferring larger formulas. Our second frame-
work solves the inference problem by dividing the problem
into smaller subproblems based on a decision tree learning
algorithm. Instead of finding formulas that achieve a loss of
less than k in one step, we exploit algorithms from the first
framework to infer small formulas in LTL¢ or STL for each
decision node in the tree.

We have implemented a prototype of our algorithms in

a publicly available tool. We have also verified the efficacy
of our tool on synthetic as well as real-world data. From our
observations, we conclude that our algorithms are effective in
inferring concise LTL¢ and STL formulas, particularly from
the samples that contain noise.
Outline In Sect. 2, we introduce the necessary background.
In Sect. 3, we formally introduce the LTL¢ inference prob-
lem and, then, discuss a MaxSAT algorithm based on the
first algorithmic framework to solve it. In Sect. 4, we for-
mally introduce the STL inference problem and discuss a
MaxSMT algorithm, also based on the first framework. In
Sect. 5, we discuss our second algorithmic framework which
is based on decision tree learning. In Sect. 6, we discuss the
implementation of our algorithms and their performance on
synthetic and real-world examples. In Sect. 7, we discuss the
related works. Finally, in Sect. 8, we conclude and provide
the possible future works.

2 Preliminaries

Propositional logic Let Var be a set of propositional vari-
ables, which take Boolean values {0, 1} (0 represents false,
1 represents frue). Formulas in propositional logic—denoted
by capital Greek letters—are defined inductively as follows:

Q=xeVar|~D | PV P
As syntax sugar, we allow the formulas true, false, @ AN ¥,

® — ¥ and @ < ¥ which are defined in the standard
manner.

MaxSAT-based temporal logic inference from noisy data

429

An assignment is a mapping v: Var +— {0, 1}, which
maps propositional variables to Boolean values. Now, we
define the semantics of propositional logic using a valu-
ation function V (@, v) that is inductively defined as fol-
lows: V(x,v) = v(x), V(=¥,v) = 1 — V(¥,v), and
VW v &,v) = max{V(¥,v), V(P,v)}. We say that v
satisfies @ if V(@,v) = 1. A propositional formula @ is
satisfiable if there exists an assignment v that satisfies @.
First-order logic In this paper, we only consider a specific
fragment of first-order logic—quantifier-free Linear Real
Arithmetic (LRA)—and thus, we only define this fragment
here.

First, let X = {xg, x1, ...} be a set of variables, which
range over values in R. Then, we define terms as follows:
a term is either a constant ¢ € R, a variable x € X, or a
function application #; o f, where o € {+, -} and 11, 1, are
two terms. For instance, 5, x, and 3 - x 4+ 2 - y are terms. To
reflect the usual notation, we often drop the multiplication
sign.

An atomic formula is a predicate symbol applied to terms.
InLRA, we allow the usual binary predicates <, <, =, >, and
>. Forexample, 3x+42y > 5isanatomic formula. Moreover,
aformulais inductively defined as follows: a formula is either
an atomic formula, the negation —¢ of a formula ¢, or the
disjunction @1 V ¢ of two formulas @1, ¢». We also add
syntactic sugar and allow the formulas @1 A @2, @1 — @2,
and @1 <> @2, which are defined as usual.

To assign meaning to formulas, similar to propositional
logic, we have assignments. An assignment, in this case, is
a mapping v: X — R, which assigns to each variable a
real value. Assignments can easily be lifted to terms in the
usual way, and we write v(¢) for the value of the term 7 under
v. Finally, we can define when an assignment v satisfies a
formula ¢, which we denote by v = ¢: we have v =1 o 1)
for o € {<, <,=, >, >} if and only if v(¢1) ¢ v(f) is true,
vE—@gifv =g, andv = ¢ Vg ifand only if v =
@1 or v = @o. We say that a formula ¢ is satisfiable if an
assignment v with v = ¢ exists.

3 Learning minimal LTL¢ formulas

In this section, we first formally introduce the various ingredi-
ents of the LTLy learning problem. Then we state the problem
and finally describe our solution using the first algorithmic
framework.

Finite traces Formally, a trace over a set P of propositional
variables (which represent interesting system properties) is a
finite sequence of symbols u = apaj .. .a,, where a; € 2P
fori € {0, ..., n}. For instance, {p, g}{p}{g} is a trace over
the propositional variables P = {p, g}. The empty trace,
denoted by €, is an empty sequence. The length of a trace is
given by |u| (note |¢| = 0). Moreover, given a trace u and

i < |u|l € N, we use u[i] to denote the symbol at position
i (counting starts from 0). Finally, we denote the set of all
traces by Py,

Linear Temporal Logic Linear Temporal Logic (LTL) is a
logic that enables reasoning about sequences of events by
extending propositional Boolean logic with temporal modal-
ities. Given a finite set P of propositional variables, formulas
in LTL—denoted by small greek letters—are defined induc-
tively by:

p:i=peP|l-ploVve|Xep|pUgp

As syntactic sugar, we allow the use of additional con-
stants and operators used in propositional logic. Additionally,
we include temporal operators F (“finally”) and G (“glob-
ally”) by F p:=true U ¢ and G ¢:=—F —¢p. The set of all
operators is definedas A = {—, v, A, —, X, U, F,G} U P
(propositional variables are considered to be nullary opera-
tors). We define the size |¢| of an LTL formula ¢ to be the
number of its unique subformulas. For instance, the size of
formula ¢ = (pUXgq) Vv Xgq is 5, since the distinct subfor-
mulas of ¢ are p,q, X¢g, pUXqg and (p UXgq) Vv Xgq.

We interpret LTL over finite traces” as is done in several
applications related to Al [4]. We define the semantics of
LTL¢ based on the definition by Giacomo and Vardi [14].
For the semantics, we use a valuation function V, that maps
aformula, a finite trace and a position in the trace to a Boolean
value. Formally we define V as follows:

V(p,u,i) = lifand only if p € u[i]
V(i—p,u,i)=1—-V(p,u,i)
VeV ¥, u,i) =max{V(p,u,i), V({,u,i)}
VXp,u,i) =min{i < |u| —1,V(p,u,i+1)}
VipUy,u,i) = isr?gful{min{V(I/f, U, J)s

‘min {V (g, u, k)}}}
i<k<j

We say that a trace u € (2P)* satisfies a formula o if
V(u, ¢,0) = 1. For the sake of brevity, we use V(u, ¢) to
denote V (u, ¢, 0).

3.1 The learning problem

Problem input The input for this problem is provided as a
sample S C 2Py* x {0, 1} consisting of labeled traces. Pre-
cisely, sample S is a set of pairs (u, b), where u € 2Py is
atrace and b € {0, 1} is its classification label. The traces
labeled 1 are called positive traces, while the ones labeled
0 are called negative traces. We assume that in a sample

2 LTL, when interpreted over finite traces, is sometimes referred to as
LTLs.

@ Springer

430

J.-R. Gaglione et al.

(u, b1) = (u, by) implies by = by, indicating that no trace
can be both positive and negative. Further, we denote the size
of S, that is, the number of traces in a sample, by |S].

We define a loss function which assigns a real value to
a given sample S and an LTL; formula ¢. Intuitively, the
function evaluates how “well” the LTL¢ formula ¢ classifies
a sample. While there are numerous ways of defining it (e.g.,
quadratic loss function, regret, etc.), we use the definition:

V(p,u) —b
18.9)= Y % (1)

(u,b)eS

which calculates the fraction of traces in S which the LTL¢
formula ¢ misclassified.

Having defined the setting, we now formally describe the
problem we solve:

Problem 1 Givena sample S C (2P)* x {0, 1} and threshold
k € [0, 1], find an LTLs formula ¢ such that I(S, ¢) < k.

Intuitively, the margin on the achieved loss « allows for
a bounded fraction of the traces to be considered as noise.
We refer the readers to Appendix 4 for additional theoretical
observations.

Generally speaking, the above problem is trivial if no con-
straint is imposed on the size of the output formula, since one
can always find alarge LTLy formula with zero loss on a given
sample, as indicated by the following remark.

Remark 1 Given sample S, there exists an LTL formula ¢
such that [(S, ¢) = 0.

One can construct such a formula by enumerating the dif-
ferences in the positive and negative traces using a sequence
of X and appropriate propositions (see Appendix 1 for the
exact formula). Such a formula, however, is large in size (of
the order of |S |2 X maxy, pyes|u]), and it does not help toward
the goal of inferring a concise description of the data.

In the next section, thus, we present an algorithm to infer
minimal LTL; formulas based on maximum satisfiability,
which is our first algorithmic framework.

3.2 The learning algorithm

Our solution to Problem 1 relies on MaxSAT solvers which
we introduce next.

MaxSAT MaxSAT—a variant of the Boolean satisfiability
problem (commonly known as SAT)—is the problem of find-
ing an assignment that maximizes the number of satisfied
clauses in a given propositional formula provided in CNF.
For solving our problem, we use a more general variant of
MaxSAT, known as Partial Weighted MaxSAT. In this vari-
ant, a weight function w: C — R U {oo} assigns a weight to
every clause in the set of clauses C of a propositional formula.

@ Springer

The problem is to then find a valuation v that maximizes
Ycieew(Ci) - V (v, Cy).

While the MaxSAT problem and its variants can be solved
using dedicated solvers, standard SMT solvers like Z3 [25]
are also able to handle such problems. According to terminol-
ogy derived from the theory behind such solvers, clauses C;
for which w(C;) = oo are termed as hard constraints, while
clauses C; for which w(C;) < oo are termed as soft con-
straints. Given a propositional formula with weights assigned
to clauses, MaxSAT solvers try to find a valuation that satis-
fies all the hard constraints and maximizes the total weight
of the soft constraints that can be satisfied.

Given that we are using MaxSAT solvers that possess the
capability of handling Partial Weighted MaxSAT problems,
we can solve a stronger version of Problem 1. In this stronger
version, the loss based on which we search for LTL¢ formulas
takes the following form:

wi(S, ¢, 2)= Y Qw)|V(p,u)—bl,
(u,b)eS

where §2 is a function that assigns a positive real-valued
weighttoeachuin the sampleinsuchaway that})¢ $2 (1)
= 1. Observe that by considering £2 (1) = 1/|s| for all traces
in the sample, we have exactly wi(S, ¢, £2) = I(S, ¢) which
isused in Problem 1. In this section, we will solve the stronger
version, since not only does it enable us to solve Problem 1
but also makes our algorithmic framework versatile enough
to assist the decision trees learning algorithm, described in
Sect. 5.

For solving this problem, we devise an algorithm based
on ideas from the learning algorithm of Neider and Gavran
for inferring LTLy formulas that perfectly classify a sam-
ple. Following their algorithm, we translate the problem of
inferring LTL; formulas into problems in Partial Weighted
MaxSAT and then use an optimized MaxSAT solver to find
a solution. More precisely, we construct a propositional for-
mula @3 and assign weights to its clauses in such a way that
an assignment v of cblf that satisfies all the hard constraints,
satisfies two properties:

1. @3 contains sufficient information to extract an LTL¢
formula ¢, of size n, and

2. the sum of weights of the soft constraints satisfied by it
isequal to 1 — wi(S, ¢y, £2).

To obtain a complete algorithm, we increase the value
of n (starting from 1) until we find an assignment v of @3
that satisfies the hard constraints and ensures that the sum
of weights of the soft constraints is greater than 1 — k. The
termination of this algorithm is guaranteed by the existence of
an LTL¢ formula with zero loss on the sample (see Remark 1).

MaxSAT-based temporal logic inference from noisy data

431

Algorithm 1: Learning algorithm based on maximum
satisfiability
Input: A sample S, §2 function, Threshold «
1n<0
2 repeat
3 n<n+1
4 | Construct formula @5 = &5 A &5
5 | Assign weights to soft constraints in @3
6 w(yﬁl“o) = 2(u) for(u, 1) € S, and w(—-yfl‘ﬁo) = 2 (u) for
(u,0) €S
7 Find assignment v using MaxSAT solver
8 until Sum of weights of soft constraints > 1 — k
9 return ¢,

On a technical level, the formula @3 in Algorithm 1 is
the conjunction @3 = @5 A o3, where @5 encodes the

structure of the prospective LTL; formula (of size n) and (Pf,tf

tracks the satisfaction of the prospective LTL¢ formula with
traces in S. We now explain each of the conjuncts in greater
detail.

Structural constraints For designing the formula @, we
rely on a canonical syntactic representation of LTL¢ formu-
las, which we refer to as syntax DAGs. A syntax DAG is
essentially a syntax tree (i.e., the unique tree that arises from
the inductive definition of an LTL; formula) in which com-
mon subformulas are shared. As a result, the number of the
unique subformulas of an LTL¢ formula coincides with the
number of nodes, which we term as the size of its syntax
DAG.

In a syntax DAG, to uniquely identify the nodes, we assign
identifiers 1, . .., n in such a way that the root node is always
indicated by n and every node has an identifier larger than
that of its children, if it has any. An example of a syntax DAG
is shown in Fig. 1.

To encode the structure of a syntax DAG using propo-
sitional logic, we introduce the following propositional
variables: x; , fori € {l,...,n} and A € A, which encode
that Node i is labeled by operator A (includes proposi-
tional variables); and /; ; and r; 7, fori € {2,...,n} and
Jj.j € {l,...,i — 1}, which encode that the left and right
child of Node i is Node j and Node j’, respectively. For
instance, we must have variables x¢ A, /g 4, and rg 5 to be
true in order to obtain a syntax DAG where Node 6 is labeled

Fig.1 Syntax DAG and identifiers of the formula (p UG ¢q) vVFGg

with A, has the left child to be Node 4, and the right child to
be Node 5 (similar to the syntax DAG in Fig. 1).

We now introduce constraints on the variables to ensure
that they encode a valid syntax DAG. First, we ensure that
each node of the syntax DAG has a unique label using the
following constraint:

[/\ \/ xi,A] A [/\ /\ —XixV —-x,-’;\/] 2)

I<i<nreA I<i<n p#)'eA

Next, we need constraints to ensure that each node of a
syntax DAG has a unique left and right child, which can
be done similar to Formula 2. Moreover, we must ensure
that Node 1 is labeled by a propositional variable; we refer
the readers to Appendix 1 for the remaining structural con-
straints. The overall formula @] is obtained by taking the
conjunction of all the structural constraints discussed above.

Observe that from a valuation v satisfying @3 one can

extract a unique syntax DAG describing an LTL¢ formula ¢,
as follows: label Node p of the syntax DAG with the unique
A for which v(x, 3) = 1; assign Node 7 to be the root node;
and assign edges from a node to its children based on the
values of [, ;, and 7, 4.
Semantic constraints Toward the definition of the formula
@,ff, we define propositional formulas @], for each trace u
that tracks the valuation of the LTL¢ formula encoded by @'
on u. These formulas are built using variables y;" .» Where
iefl,...,n}and v € {1,..., |u] — 1}, that corresponds
to the value of V(¢;, u, t) (¢; is the LTLs formula rooted
at Node i). Now, to make sure that these variables have the
desired meaning, we impose constraints based on the seman-
tics of the LTL; operators. For instance, for the X-operator,
we impose the following constraint:

/\ I:yiu,r <~ y?,r+1:|i| (3)

0<t<u|—-1

/\ [xix Al i1 — [

l<i<n
1<j<i

This constraint states that if Node i is labeled with X and its
left child is Node j, then the satisfaction of the formula rooted
at Node i at time 7 (i.e., y;') equals the satisfaction of the
subformula rooted at Node] attime 7 + 1 (i.e., y;." c41)- The
constraints for the remaining operators can again be found in
Appendix 1. The formula @} is the conjunction of all such
semantic constraints

We now define <15;¥f to be:

o, = YA AN R W AN)

(u,b)eS (u,1)es (u,0)es

Weight assignment For assigning weights to the clauses of
@f, we first convert the formulas @3 and @,S,tf into CNF.
Toward this, we simply exploit the Tseitin transformation

@ Springer

432

J.-R. Gaglione et al.

[36] which converts a formula into an equivalent formula in
CNF whose size is linear in the size of the original formula.

We now assign weights to constraints starting with the
hard constraints as follows: w(®5") = oo, w(P!) =
oo forall (u, b) € S. Here, w(®) = w is a shorthand to
denote w(C;) = w for all clauses C; in @. The constraint
@3 is a hard one since it ensures that we obtain a valid syntax
DAG of an LTL¢ formula. @]} ensures that the prospective
LTL¢ formula is evaluated on the trace u according to the
semantics of LTL¢ and thus, also needs to be a hard con-
straint.

The soft constraints are the ones that enforce correct clas-
sification and we assign them weights as follows: w(y,) =
£2(u) for all (u,1) € S and w(—-y,’fﬁo) = £2(u) for all
(u,0) € S. Recall that §2 refers to the function assigning
weights to the traces.

To prove the correctness of our learning algorithm, we first
ensure that the formula @f along with the weight assigned
to its clauses serves our purpose.

Lemma 1 Let S be a sample, 2 the weight function, n €
N\ {0} and @,f the formula with the associated weights as
defined above. Then,

1. The hard constraints are satisfiable; and

2. If v is an assignment that satisfies the hard constraints
and maximizes the sum of weight of the satisfied soft con-
straints, then @, is an LTLy formula of size n, such that
wil(S, @y, $2) < wi(S, ¢, §2) for all LTL¢ formulas ¢ of
size n.

The termination and the correctness of Algorithm 1, which
is established using the following theorem, is a consequence
of Lemma 1.

Theorem 1 Given a sample S and threshold k € R, Algo-
rithm 1 computes an LTL¢ formula ¢ that has wi(S, ¢, £2) <
k and is the minimal in size among all LTLs formulas that
have wl(S, ¢, £2) < k.

The proof of the results in this section can be found in
Appendix 1.

4 Learning minimal STL formulas

In this section, we formally introduce the ingredients for the
STL learning problem, followed by the problem. We then
present the STL learning algorithm based on the first frame-
work. In particular, we pinpoint the differences between this
algorithm and the one in Sect. 3.

Signals A signal is a time series that indicate the evolution of
system features over time. Unlike traces, however, features
assume real values here. Formally, a signal u : T — R is

@ Springer

a function defined over a time domain T. In this paper, we
assume a discrete and finite time domain T = {0, ..., n}.
Moreover, given a signal u and i € T, we use u[i] to denote
the value of u at time i, and u;[i] to denote the value of its
Jj th coordinate. Since we use discrete time, we can define the
length of a signal by |u| = |T|. Finally, we denote the set of
all signals by (R™)*.

Signal Temporal Logic Signal Temporal Logic (STL) is
an extension of LTL; defined over signals [3,23], which
branches out LTL¢ in two directions: it employs temporal
operators defined over time intervals, and it is interpreted
over signals [7]. Formulas in STL—denoted by small greek
letters—are defined inductively by:

p=n |9 |loVe|leUrg

Here, 7 is a predicate of the form f;(®) > 6 with f; :
R™ — R being a function over the signal value, and 6 € R
a threshold. 7 is a time interval of the form I:=[a, b), with
0 < a < b two integers. The extended set of all operators is
definedas A = {—, v, A, =, U;, F;, Gy} U {m, ...}, where
Uy is parameterized with [a, b), and each 7 is parameterized
with 6.

We interpret STL over final signals. We redefine the valu-
ation function V from Sect. 3 to define the semantics of STL
formulas as follows:

V(m,u,i) = 1if and only if £, (u[i]) > 6

V(eUlap) ¥,u,i) = max

i+a<j<min(i+b,|ul)
{(V(p,u, k)}}}

{min{

V(,u, j), min
i+ta<k<j

Here, the value of 6 is an attribute of the evaluated STL

formula and can differ for each subformula.

4.1 The learning problem

Problem input As the input of this problem, in addition to a
sample S C (R™)* x {0, 1} consisting of labeled signals, we
have a finite set of predicates 7. The set of predicates consists
of the atoms for the prospective STL formulas. While for each
predicate in I7, users need to specify the function used, the
threshold 6 need not be specified.

Apart from the additional set of predicates, the problem
setting remains identical to that of Problem 1. In particular,
in a sample (u, b1) = (u, by) implies b1 = by. Also, the loss
function /(S, ¢) has the same definition as in Eq. 1.

We are now ready to define the STL learning problem.

Problem 2 Given S, I1, find a minimal STL formula ¢ using
predicates from I1 such that (S, ¢) < k.

Unlike Problem 1, the existence of a solution to Problem 2
is not always guaranteed. This is because the existence of an

MaxSAT-based temporal logic inference from noisy data

STL formula with zero loss depends on the input predicates.
Thus, in order to guarantee the existence of a solution, we
restrict the set of predicates to have a specific structure. In
particular, we propose the following set of predicates: [T =
{uj > 6|1 < j < m}. Note that such a restriction is required
only for the theoretical guarantees. Our algorithm in fact
works for any arbitrary set of predicates, if there exists an
appropriate STL formula using them.

The restriction discussed above provides us with the fol-
lowing guarantee:

Remark 2 Given sample S and predicates [T = {u; > 6|1 <
Jj < m}, there exist an STL formula ¢ using predicates from
IT such that I(S, ¢) = 0.

The construction of an STL formula with zero loss is similar
to the one for LTL¢ and can be found in Appendix 1.

4.2 The learning algorithm

Our solution to the learning problem relies on MaxSMT
solvers which we introduce next.

MaxSMT Unlike SAT problems, SMT (Satisfiability Modulo
Theories) deals with the satisfiability of first-order formulas
over background theories. Similar to MaxSAT, MaxSMT is
the problem of finding assignments that maximize the num-
ber of satisfiable clauses [34]. The formal problem definition
remains the same as in the case of MaxSAT. For our algo-
rithm, we will exploit the Partial Weighted MaxSMT for
the theory of Linear Real Arithmetic (LRA). Standard SMT
solvers like Z3 [25] can handle such problems.

The algorithm for learning STL formulas follows the same
framework as that for learning LTL¢ formulas.

However, the syntax and semantics of STL being different
from LTL¢, we modify the construction of the propositional
formula (D,f . In particular, the structural constraint cbz”, addi-
tionally, encodes the temporal bounds for U and the value of
the thresholds 6 for the predicates. The semantic constraints
@} change to ensure that proper semantics of STL is used.
Structural constraints To include the features of STL in the
structure of the syntax DAG, we introduce the following addi-
tional variables: a; € Nand b; € Nfori € {1, ..., n}, which
encode that the temporal bounds of Node i are [a;, b;) when
the operator labeling Node i uses temporal bounds (i.e., is
U;),and 6; € Rfori € {1, ..., n}, which encode the value
of the parameterized threshold of Node i when a predicate is
labeling Node i. @' is a conjunction of the constraints spec-
ified in Sect. 3, with the additional constraint 0 < a; < b;
fori e {l,...,n}.

The formula @5 constrains the variables x; j,/;, jaTi s i
b; and 6; to encode a valid syntax DAG, such that a valuation
v of these variables satisfying @3 describes an STL formula
¢y. A unique ¢, can be extracted from v as for STL, where
we also assign interval [ap, b,) and parameter 6, to Node

433
;lgTLZ A decision tree over 01
r formulas / \n
P2 true
/o
true false

p when labeled with some A that expect, respectively, an
interval and a parameter.

Semantic constraints We define @]], which tracks the val-
uation of the STL formula encoded by @, on u, as the
conjunction of Formulas 5-8. (bitf is then defined as in For-

mula 4.

. u -
/\1515” /\”GH Fim = [/\0§r<\u\ Yir < Jr (ulz]) = ‘9;]

©)
u u
PNVI N T
1<j<i ST<ju
l<i<n Xiyv AlijjArij
1<j,j'<i
u u u
= [Agecun e o9t vt g
u
1<i<n Xi,Uy ANlijj Arijr— [/\ [yi,, <
17, <i O<<lu

u u
Lo A\ L)@
\/r+ai§r’<min(r+bi,|u|) I:y/,’f/ T4a;<t<t’ Vit ®)

The correctness of the algorithm adapted to learn STL
formulas follows from the correctness of the formula @3.

Theorem 2 Given a sample S, predicates I1 as indicated in
Remark 2 and threshold k € R, the MaxSMT-based STL
learning algorithm terminates and outputs an STL formula ¢
that has wi(S, ¢, §2) < k and is the minimal in size among all
STL formulas that have predicatesin IT andwl(S, ¢, £2) < k.

5 Learning decision trees over temporal
logic formulas

In this section, we present our second algorithmic frame-
work for learning temporal logic formulas. While learning
using such a framework does not guarantee minimal formu-
las, on the bright side, we obtain decision trees over temporal
logic formulas that are considered to be human-interpretable
structures. The framework can be adapted to devise learning
algorithms for LTL; and STL formulas in an identical man-
ner. Thus, in this section, we only describe the algorithm for
learning LTL; formulas.

Decision trees over LT Ly formulas A decision tree over
LTL¢ formulas is a tree-like structure where all nodes of the
tree are labeled by LTL¢ formulas. While the leaf nodes of
a decision tree are labeled by either true or false, the inner
nodes are labeled by (non-trivial) LTL¢ formulas which rep-
resent decisions to predict the class of a trace. Each inner

@ Springer

434

J.-R. Gaglione et al.

node leads to two subtrees connected by edges, where the
left edge is represented with a solid edge and the right edge
with a dashed one. Figure 2 depicts a decision tree over LTLy
formulas.

A decision tree ¢t over LTLy formula corresponds to an
LTL¢ formula ¢:=\/,cq /\,c, ¢'» Where IT is the set of
paths that originate in the root node and end in a leaf node
labeled by true and ¢' = ¢ if it appears before a solid edge
in p € IT, otherwise ¢’ = —¢. For the decision tree in Fig. 2,
the equivalent LTL¢ formula is (¢1 A ¢2) V —¢1.

For evaluating a decision tree ¢ on a trace u, we use the
valuation V (¢, u) of the equivalent LTL¢ formula ¢ on u. We
can, in fact, extend the valuation function and loss function
for LTL¢ formulas to decision trees as V (¢, u) = V (¢, u)
and [(t, @) = I(S,).

5.1 The learning algorithm

Our decision tree learning algorithm shares similarity with
the class of decision tree learning algorithms known as
Top-Down Induction of Decision Trees (TDIDT) [31]. Pop-
ular decision tree learning algorithms such as ID3, C4.5,
CART are all part of the TDIDT algorithm family. In such
algorithms, decision trees are constructed in a top-down fash-
ion by finding suitable features (i.e., predicates over the
attributes) of the data to partition it and then applying the
same method inductively to the individual partitions.

Algorithm 2 outlines our approach to infer a decision tree
over LTL formulas. In our algorithm, we first check stopping
criterion (Line 1) that is responsible for the termination of
the algorithm. If the stopping criterion is met, we return a
leaf node. We discuss the exact stopping criterion used in
our algorithm in Sect. 5.3.

If the stopping criterion fails, we search for an appropriate
LTL¢ formula ¢ using Algorithm 1 for the current node of the
decision tree. Our search for ¢ is based on a score function,
and we infer the minimal one that achieves a score greater
than a user-defined minimum score p on the sample. The
choice of the score function and parameter p is a crucial
aspect of the algorithm, and we discuss more about this in
Sect. 5.2.

Having inferred formula ¢, next we split the sample into
two sub-samples S and S, with respect to ¢ as follows: §1 =
{(u,b) | V(p,u) =1},and S2 = {(u, b) | V (¢, u) = 0}. The
final step is to recursively apply the decision tree learning on
each of the resulting sub-samples (Line 6) to obtain trees #;
and #,. The decision tree returned is a tree with root node ¢
and subtrees #1 and 7;.

5.2 LTL¢ Formulas for decision nodes

Ideally, we aim to infer LTL; formulas at each decision node
that, in addition to being small, also ensure that the resulting

@ Springer

Algorithm 2: Decision tree learning algorithm

Input: Sample S, Minimum score value p, Threshold «
Parameter: Stopping criterion stop, Score function s

1 if stop(S, «) then

2 | return leaf(S)

3 else

4 Infer minimal formula ¢ with s(S, ¢) > p using Algorithm 1
5 Split S into Sy, S7 using ¢

6 Infer trees 11, 1, by recursively applying algorithm to S; and
AY)

return decision tree with root node ¢ and subtrees t1, tp

N

sub-samples after a split are as “homogenous” as possible.
In simpler words, we want the sub-samples obtained after
a split to predominantly consist of traces of one particular
class. More homogenous splits result in early termination of
the algorithm resulting in small decision trees. To achieve
this, one can simply infer a minimal LTL¢ formula that per-
fectly classifies the sample. While in principle, this solves our
problem, in practice inferring an LTL¢ formula that perfectly
classifies a sample is a computationally expensive process
[27]. Moreover, it results in a trivial decision tree consisting
of a single decision node. Thus, to avoid that, we wish to infer
concise LTL¢ formulas that classify most traces correctly on
the given sample.

To mechanize the search for concise LTL¢ formulas for
the splits, we measure the quality of an LTL¢ formula using
a score function. In our algorithm, we use this function to
infer a minimal LTL¢ formula having a score greater than
a user-defined threshold w. The parameter u regulates the
trade-off between the height of the tree and the size of the
LTL¢ formulas in the decision nodes of a tree. While all
TDIDT algorithms involve certain metrics (e.g., Gini impu-
rity, entropy) to measure the efficacy of a feature to perform
a split, these metrics are based on nonlinear operations on
the fraction of examples of each class in a sample. Searching
LTL¢ formulas, however, based on such metrics cannot be
handled using a MaxSAT framework.

One possible choice of score 5;(S, ¢) = 1 —I(S, ¢), which
relies on the loss function. A formula ¢ with 5;(S, ¢) > u
is a formula with I(S, ¢) < 1 — w. Thus, for inferring LTL¢
formulas with score greater than p, we invoke Algorithm 1
to produce a minimal LTL¢ formula ¢ with I(S, ¢) < 1 — u.
Note that, for this score, one must choose the w1 to be smaller
than 1 — k, else one will end up with a trivial decision tree
with a single decision node.

While s; as the metric seems to be an obvious choice, it
often results in a problem which we refer to as empty splits.
Precisely, the problem of empty splits occurs when one of
the sub-samples, i.e., either S or S, becomes empty. Empty
splits lead to an unbounded recursion branch of the learning
algorithm, since using the best LTL; formula (w.r.t. s;) does

MaxSAT-based temporal logic inference from noisy data

435

not produce any meaningful splits. This problem is more
prominent in examples where the sample is skewed toward
one class of examples. For instance, consider a sample S =
{(u,)} U {(v1,0), (v2,0), ... (vyg, 0)}; for this sample, if
one searches for an LTL¢ formula with u = 0.9, false is
a minimal formula; this formula, however, results in empty
splits, since S| = .

To address this problem, we use a score that relies on wl
with a weight function £2, defined as follows:

0.5/1{(u, b)|b = 1}| for (u, 1) € S,
2, (u) =

0.5/|{(u, b)|b = 0}| for (u,0) € S
Intuitively, the above £2, function normalizes the weight pro-
vided to traces, based on the number of examples in its class.

Our final choice of score, based on the above 2, function,
is 5:(S, ¢) = max{wl(S, ¢, £2,), 1 — wi(S, ¢, £2,)}. Using
such a score, we also avoid having asymmetric splits. We say
a split is asymmetric when the fraction of positive examples
in S| is greater than or equal 0.5. Choosing the score to be
1—wl(S, ¢, §2,) always leads to asymmetric splits, since ¢ in
order to minimize wi(S, ¢, §2,) several positive traces need
to end up in S;. Now, for finding an LTL¢ formula based on
sy, we need to invoke Algorithm 1 twice with k = 1 — u;
once with the original sample and once with the same sample
but with class labels inverted and then, choosing the one that
provides a formula with a better split.

While any score function that avoids the problem of empty
and asymmetric splits is sufficient for our learning algorithm,
we have used s, as a score function in our experiments. We
show that if we infer an LTL¢ formula ¢ such that s,(S, ¢) >
0.5, we never encounter empty splits using the following
lemma.

Lemma 2 Given a sample S and an LTL; formula ¢, if
sr(S, @) > 0.5, there exists traces uy,up in S such that
V(ui,9) = land V(uz, ¢) = 0.

5.3 Stopping criterion

The stopping criterion is essential for the termination of the
algorithm. Toward the definition of the stopping criterion, we
define the following two quantities:

p1(8) = [{(u, b) | b = 1}/]8]
p2(8) = [{(u, b) | b = 0}|/IS]

We now define the stopping criterion as follows: stop(S) =
true if p1(S) < korpr(S) < «k, and false otherwise.
Intuitively, the stopping criterion ensures that the algorithm
terminates when the fraction of positive examples or fraction
of negative examples in a resulting sample is less or equal to
k. When the stopping criterion holds, the algorithm halts and

returns a leaf node labeled by leaf(S) where leaf is defined
as leaf(S) = false if p1(S) < k and true if p2(S) < k.

The following theorem ensures the correctness and termi-
nation of Algorithm 2.

Theorem 3 Given sample S and threshold k € [0, 1], Algo-
rithm 2 terminates and returns a decision tree over LTL¢
formula t such that [(S, t) < k.

6 Experimental evaluation
6.1 LTL; inference

In this section, we evaluate the performance of our
proposed algorithms and compare them to the SAT-based
learning algorithms by Neider and Gavran [27]. Specifically,
we compare the following four algorithms: SAT-flie: the SAT-
based learning algorithms introduced by Neider and Gavran
(Algorithm 1 from [27]), MaxSAT-flie: our MaxSAT-based
algorithm (Algorithm 1), SAT-DT': the decision tree-based
learning algorithm introduced by Neider and Gavran (Algo-
rithm 2 from [27])° and MaxSAT-DT: our decision tree
learning algorithm (Algorithm 2).

We implement all learning algorithms in a Python tool*
using Microsoft Z3 [25]. All experiments were conducted on
a Debian machine with Intel Xeon E7-8857 CPU at 3GHz
using up to 6GB of RAM.

We generate samples based on common LTLy patterns that
can be found in practice [11]. Table 1 lists the set of the LTLy
formulas used for the generation.

In a first sample set (without noise), we generate 148
samples with the generation method proposed by Neider
and Gavran [27]. The size of the generated samples ranges
between 12 and 1000, consisting of traces of length up to 15.
Furthermore, we derive a second sample set from the first
one, by introducing 5% noise: for each sample of the first
set, we invert the labels of up to 5% of the traces, randomly.

We evaluate the performance of all the algorithms on the
two sample sets previously defined. We set a timeout of 900s
on each run. Table 2 presents the parameters of the algo-
rithms, as well as their respective performances.

We first compare MaxSAT-flie (proposed in this paper) and
SAT-flie (proposed in [27]). With « = 0.001, MaxSAT-flie
performs worse than SAT-flie.

This is due to the fact that a MaxSAT problem is compu-
tationally more difficult to solve than a SAT problem [15].
For inferring an LTL¢ formula exactly classifying a sample,
using the SAT problem suffices and thus, SAT-flie performs
better than MaxSAT-flie.

3 We adapted SAT-DT to learn decision trees with a similar stopping

criteria as ours.

4 https://github.com/cryhot/samples2LTL.

@ Springer

https://github.com/cryhot/samples2LTL

436

J.-R. Gaglione et al.

Table 1 LTL; patterns used for generation of samples

Absence Existence

Universality Disjunction of common patterns

G(—po) F(po)

G(=po) vV F(po AF(p1))

G(po A (=p1—>(=p1 U(p2 A
—p1)))

F(p1) > (=poU p1)
G(p1 — G(=po))

G(po) G(=po) vV F(po AF(p1)) v

G(=p3) VF(p2 AF(p3))
F(p2) v F(po) vV F(p1)
G(po A (=p1—>(=p1U(p2 A
—pD))) vV G(p3 A
(=pa—(—=psU(ps A —pa))))

F(p1) —>(po U p1)
G(p1 — G(po))

Table 2 Summary of all the tested algorithms—comparison of numbers of timeouts, running times in seconds, inferred formula sizes

Samples without noise

Samples with 5% noise

Algorithm Timeouts Avg. time Avg. size Timeouts Avg. time Avg. size
SAT-flie 36/148 293.31 3.76 124/148 780.51 5.96
MaxSAT-flie (x = 0.001) 47/148 357.26 3.47 130/148 801.03 4.89
MaxSAT-flie (k = 0.05) 27/148 218.46 2.86 87/148 548.65 2.95
MaxSAT-flie(k = 0.1) 26/148 211.81 2.59 40/148 275.97 2.54
SAT-DT (k = 0.05) 51/148 342.35 5.92 127/148 786.16 9.62
MaxSAT-DT (k = 0.05, © = 0.8) 23/148 174.58 6.77 85/148 543.50 7.05
MaxSAT-DT (k = 0.05, © = 0.6) 7/148 74.97 30.91 38/148 281.60 56.55
Samples without noise Samples with 5% noise
T T T T T T
k= 0.00 |- oc}%mmo«» - k=0.00} c*n»oocozo =
k= 0.05 |- 0 @O wWo® o) lo | k=005 |——o = }— :
k=010 oo ocml——| [—A 1 k=010f b | — |
! ! ! \ ! | | \ !

!
10—2 10—! 100 10t

Running time ratio

103

10—2 10—! 100 10t

Running time ratio

103

Fig.3 Comparison of the ratio of the running time of MaxSAT-flie(x) over the running time of SAT-flie for all samples in each sample set

For greater values of k, MaxSAT-flie performs better than
SAT-flie, especially on the samples with noise. To affirm this
claim, we calculate the ratio of the running times of MaxSAT-
flie and SAT-flie for each sample of each set (Fig. 3). For
example, given a sample S, this ratio would be the running
time of MaxSAT-flie on S divided by the running time of SAT-
flie on S. We refer the readers to Appendix 5 for additional
figures comparing MaxSAT-flie and SAT-flie.

We evaluate the size of the inferred LTL; formula by
MaxSAT-flie and SAT-flie on each sample of each set in Fig. 4.
The size of the formula inferred by MaxSAT-flie will by
design be less than or equal to the size of the formula inferred
by SAT-flie. As the running time of both algorithms grows
exponentially with the number of iterations, it is lower for
MaxSAT-flie when the inferred formula size is strictly smaller
than the size of the formula inferred by SAT-flie. However,
when both inferred formulas have the same size, there is no
running time gain, hence the median running time often being
equal to 1 in Fig. 3.

@ Springer

Inferred LTL¢ formula size Inferred LTL¢ formula size

é\ T 1 T 1 T é\

S 0 ce @ S0
nTr . N7
¢ 6| B ¢ 6
3 5 ° o 35
€ 4 oo 1 24
&3 _@-0- o &3
22*.000' @ | C,H)Q
S I 99 ¢ o] g1
= 12345679 =

SAT-flie

(a) Samples without noise (b) Samples with 5% noise

Fig.4 Inferred LTL; formula size comparison of SAT-flie and MaxSAT-
flie with threshold « = 0.10 on all samples. The surface of a bubble
is proportional to the number of samples it represents. The timed out
instances are represented by ¢J

We now compare the two algorithms proposed in this
paper: did MaxSAT-DT perform any better than MaxSAT-flie?
To be able to compare learned decision trees to learned LTL¢
formulas, we measure the size of a tree ¢ in terms of the size of

MaxSAT-based temporal logic inference from noisy data 437
All samples All samples MazSAT-flie
B T T T T T T T ‘

p=08 - [J—] w=o08[[} g 2103 | —— strategy 0
NZO‘GT}_{_—,_D‘—{] w=20.6 l_—’_D—‘{ Ol '5 I — strategy 1 |
10-410-2 10° 102 100 10 102 £ 1074 strategy 2.3
Running time ratio Inferred LTL; formula size ratio £y 1ot F strategy 3|
Fig.5 On each sample (all sample sets combined), comparison of the = o I]
ratio of the performances of MaxSAT-DT(w) over the performances ~ 100 £ ! ! ! ! E
of MaxSAT-flie, with k = 0.05 for both algorithms, and where both 0 0.2 0.4 0.6 0.8 1

algorithms did not time out

the formula ¢; this tree encodes. Figure 5 presents a compar-
ison of the running time ratio as well as the inferred formula
size ratio of these two algorithms, on each sample of each
set that did not time out with both algorithms. We observe
that the running time is generally lower for MaxSAT-DT than
for MaxSAT-flie. However, MaxSAT-DT tends to infer larger
formulas than formulas inferred by MaxSAT-flie. This trade-
off between running time and inferred formula size is more
pronounced for lower values of .

Regarding SAT-DT (proposed in [27]), we observe a large
number of timeouts, especially when evaluated on the sam-
ples with 5% noise.

6.2 STL inference

In this section, we propose a second case study and eval-
uate the performance of our proposed algorithms when
adapted to STL formula inference: we present the advan-
tages of MaxSAT-DT (decision tree learning algorithm—
algorithm 2) compared to MaxSAT-flie (MaxSAT-based
algorithm—Algorithm 1). We implement both learning algo-
rithms in a C++ tool using Microsoft Z3 [25].

Our samples consist of traces generated by policies
learned from reinforcement learning (RL) using model-based
reinforcement learning (MBRL) algorithm [26]. These traces
describe a Pusher-robot that interacts with a ball and a wall.
The states of the system are composed of seven features in
total, with their corresponding predicates: two Boolean fea-
tures with corresponding predicates in the form u; = 6 for
j € {1, 2} (for example, #; = 1 when the ball is in contact
with the robot) and five continuous features with correspond-
ing predicates in the form u; > 6 for j € {3,...,7} (for
example, u4 represents the total upper arm movement of the
Pusher-robot). We note that this system is hybrid, but we
simply consider Boolean features as continuous features.

We consider a total of four samples, each of them cor-
responding to an identified strategy of the Pusher-robot we
would like to explain with an STL formula. Each sample con-
tains 300 traces: 150 positive traces from the current strategy,
and 150 negative traces from the other three strategies. We
set a timeout of 900s on each run.

Maximum misclassification rate threshold x

Fig. 6 Impact of the threshold « on the running time of MaxSAT-flie,
represented as a step function, for each strategy. Each step corresponds
to a certain number of iterations in Algorithm 1, i.e., to an inferred STL
formula of a certain size, with a misclassification rate lower than or
equal to

MazSAT-DT
T T ‘

2 10° = o strategy 0
B= F [] B
) = ° @ strategy 1 |
E 102 ii ° s ° .: ° @ strategy 2 é
00 % ° ° ° @ strategy 3 |
E 101 :;. ° H ° [] [} [] E
g B]
e 100 ! ! ! ! E

0.5 0.6 0.7 0.8 0.9 1

Minimum score p
MazSAT-DT

8 T T T ‘
'qu 102 g e o strategy 0 |
= B : ' L @ strategy 1
© B PY B
o [° ° Py) @ strategy 2
& 10! E ° ° ° ° @ strategy 3
g 1
Z [1
® 100 E
Aa E \ \ \ \ E

0.5 0.6 0.7 0.8 0.9 1

Minimum score p

Fig.7 Impact of the minimum score hyper-parameter on the running
time and the number of Decision-Tree nodes of MaxSAT-DT (k = 0),
for each strategy. Each strategy timed out for & greater than or equal to
0.9, 0.85, 0.7 and 0.8, respectively

Figure 6 shows the running time of MaxSAT-flie for dif-
ferent numbers of iteration in Algorithm 1, presented by
misclassification rate. For example, on the strategy 3 sam-
ple, we could infer the formula Fy; 3y so = 0 of size 2 with a
misclassification rate of 19.33% (any « € [0.1933,0.3333)
would have the same effect), with a runtime of 37 sec-
onds. On the same sample, we could infer the formula
(s5s > 0.003) Uj1,3y(s0 = 0) of size 3 with a misclassifi-
cation rate of 15.67%, with a runtime of 38 minutes (which
is way over the chosen timeout but is a good example of
non-trivial inferred STL formula).

We run MaxSAT-DT on each of the four samples (Fig. 7).
MaxSAT-DT could produce STL formulas perfectly classify-
ing each sample, i.e., with x = 0, where MaxSAT-flie timed
out for the same «. Increasing the hyper-parameter p pro-

@ Springer

438

J.-R. Gaglione et al.

duces better quality splits of the sample: this way the number
of nodes in the decision tree is reduced, but the running time is
increased in return. We observe that the runtime of MaxSAT-
DT increases in a step function shape when u increases, in
the same manner than the runtime of MaxSAT-flie increases
when « decreases, but with more steps: for example, the
strategy 2 sample times-out abruptly with . > 0.67 because
one of the decision tree nodes requires now an STL formula
of larger size in order to satisfy the criteria.

7 Related work

Inference of LTL formulas The most prominent work in the
area of LTL inference is the works by Neider and Gavran
[27] (which is the basis of this work) and Camacho et al [10].
Both of these works exploit a SAT-based inference method.
While Neider and Gavran use a syntax DAG representation of
LTL for the SAT formulation, Camacho et al. use Alternating
Finite Automaton (AFA). However, both works suffer from
failure when the input sample consists of noise.

The work by Kim et al [19] is prominent work that can
infer LTL formulas from noisy samples. They exploit the
Bayesian inference problem for inferring satisfactory LTL
formulas from noisy data. They, however, rely on templates
for the inferred LTL formulas that is often undesirable.
Inference of STL formulas The work of Bombara et al [5]
is one of the first works in the inference of Signal Temporal
Logic (STL) formulas. Their algorithm also relies on decision
trees for inferring STL classifiers. While their algorithm can,
in fact, infer STL formulas with arbitrary misclassification
error on the data, the STL formulas used for the nodes of the
decision trees come from a predefined set.

Another notable work is by Mohammadinejad et al. [24]
who present an algorithm for searching STL formulas using
enumerative search. They exploit STL grammar to itera-
tively generate all STL formulas of a particular size. Further,
they employ strategies to eliminate equivalent formulas by
checking the semantics of STL on the sample. Our work,
in contrast, relies on constraint solvers to search for formu-
las and, thus, will benefit from any advancement in solver
technologies.

There are several other works in the general area of STL

mining [16,17]. The problem setting of such works is dif-
ferent from ours. In particular, these works aim at extracting
STL patterns from data which necessarily need not separate
two classes of trace.
Inference of other logics In general, the problem of infer-
ring temporal logic has been in the spotlight for a number
of years. Clear evidence of the fact is the variety of tempo-
ral logics for which the inference problem has been looked
at—Past Time Linear Temporal Logic (PLTL) [2], Property
Specification Language (PSL) [33], Interval Temporal Logic
[6], and several others [41-43].

@ Springer

8 Conclusion

We developed two novel algorithms for inferring LTL¢/STL
formulas from a set of labeled traces/signals allowing mis-
classifications. Moreover, we demonstrated that our algo-
rithms are efficient in inferring formulas, especially from
noisy data, and can be used to interpret Al-generated data.
As a part of future work, we like to apply our MaxSAT-based
approach for inferring models in other formalisms (e.g., [33])
and perform an extensive evaluation of the algorithms.

Acknowledgements This work has been supported by the Defense
Advanced Research Projects Agency (DARPA) (Contract number
HRO001120C0032), Army Research Laboratory (ARL) (Contract num-
ber WI11NF2020132 and ACC-APG-RTP W911NF), National Sci-
ence Foundation (NSF) (Contract Number 1646522), and Deutsche
Forschungsgemeinschaft (DFG) (Grant Number 434592664).

Appendix 1 Construction of temporal
formulas described in Remarks 1 and 2

LTL¢ formula from Remark 1 To construct a trivial LTL¢
formula ¢ with I(S, ¢) = 0, one needs to perform the fol-
lowing steps: construct formulas ¢, , for all (u, 1) € S and
(v,0) € S, such that V(¢,,»,u) = 1 and V(¢,,u) = 0,
using a sequence of X-operators and an appropriate propo-
sitional formula to describe the first symbol where u and v
differ; now ¢ = \/(, 1ye5 /\(v.0)es Pu.v s the desired for-
mula.

STL Formula from Remark 2 With the predicates [T =
{uj > 0|1 < j < m}, we construct (pu+’M—Z=F[,‘,,‘+1) uj =
w for all (u™,1) € Sand (u™,0) € S, assuming
uT and u~ differs at time i and coordinate j, ensur-
ing that V™, ¢+ ,-) # Vu,@+,~). Without loss
of generality, we can ensure that V(u™, ¢+ ,-) = 1
by negating the preceding formula when necessary. Now

?:=V o+ 1es N\u-.0)es Put .~ is the desired formula.

Appendix 2 List of all the constraints used

Appendix 2.1 Constraints for learning minimal LTL
formula

Structural constraints

[/\ \/xi,x]/\[/\ /\ ﬂxi‘;»v—-xi))\/] ©)]

1<i<nleA 1<i<n r#)eA

LAV agat A A

2<i<n l<j<i 2<i<nl<j<j'sn

LAV st A A

2<i<nl<j<i 2<iznl<j<j'<n

—'l,',j V—'li,j/] (10)

T \/_'l","j/] (11)

MaxSAT-based temporal logic inference from noisy data

439

/\ [xtAAllerzj’]_)[\/Xj)\//\\/)C/)\/:I

2<i<n,1<j,j'<i NeA NeA
1e(X,U, 5, V)

12)

\/ x1p (13)

peP

Formula 9 ensures that each node of the syntax DAG has a
unique label. Similarly, Formulas 10 and 11 ensure that each
node of a syntax DAG has a unique left and right child, respec-
tively. Finally, Formula 13 ensures that Node 1 is labeled by
a propositional variable.

Constraints for semantics

A Nsv=[A

v _if p € ult]
LT 14
[ﬁy,*’,f if p ¢ ult]] (14

I1<i<n peP 0<t<|u|
N xi-nlij— [A [y;fr - —y;g,}] (15)
1<i<n 0<t<|ul
1<j<i
/\ Xiv Al J AN [/\ I:yl‘u",; g y;‘,r Vy}ﬂy,“ (16)
1<i<n 0<t<|ul|
1<j,j'<i

/\ Xi X /\li,j — |: /\ |:y11'/t,r <~)’?,T.Q_]:H (17)

1<i<n O0<t<|u|-1
1=)<i

/\ x,U/\l,]/\rl]

1<i<n

1<j,j'<i

u u u
A [ree Vo Dlon A]l as)

0<t<|ul <t/ <ul r<t<t’

The constraints are similar to the ones proposed by Neider
and Gavran, except that they have been adapted to com-
ply with the semantics of LTL¢. Formula 14 implements the
semantics of propositions and states that if Node i is labeled
with p € P, then y!_is set to 1 if and only if p € uli].
Formulas 15 and 16 1mp1ement the semantics of negation
and disjunction, respectively: if Node i is labeled with — and
Node j is its left child, then y;’ equals the negation of y' 7 o
on the other hand, if Node i is labeled with Vv, Node j is
its left child, and Node ;' is its right child, then yi’ . equals
the disjunction of y;‘,r and y;?,y .- Formula 17 implements
the semantics of the X-operator and states that if Node i is
labeled with X and its left child is Node j, then y_ equals
y;.”r 41~ Finally, Formula 18 implements the semantics of the
U-operator; it states that if Node i is labeled with U, its left
child is Node j, and its right child is Node j’, then y!_is set
to 1 if and only if there exists a position 7’ for which 3’7/,1/ is
set to 1 and for all positions 7 lying between t and 7/, 'yA’;,t is
setto 1.

Appendix 3 Proofs of the theoretical results
Appendix 3.1 Proofs from section 3

Proof of Lemma 1 The hard constraints of @3 are &5 and
@!'. Now, @ is satisfiable since there always exists a valid
LTL¢ formula of size n. As a result, using the syntax DAG of
a LTLy formula of size n, we can find an assignment to the
variables of @, that makes it satisfiable. The constraint @},
on the other hand, simply tracks the valuation of the prospec-
tive formula on traces u. One can easily find an assignment
of the variables of @]} using the semantics of LTL.

For proving the second part, let us assume that v is an
assignment that satisfies the hard constraints. We now claim
that the sum of the weights of the satisfied soft constraints is
equal to 1 — wl(S, ¢y, §2). If we can prove this, then if v is
an assignment that maximizes the weight of the satisfied soft
constraints directly implies that ¢, minimizes the wl function.
Now toward proving the claim, we have the following:

Z Q)

V(py,u)#b

= Z.Q(u) -

WIS, @v, 2) =

Z Q)

V(@u.)=b
=1- > 2w
V(py,u)=b
=1- Z Q)
vy, 0)=b

All the summations appearing in the above equation are over
(u, b) € S. Moreover, the quantity Zv(yu y=b §2(u), appear-
ing in the final line, refers to sum of the We1ghts of the satisfied
soft constraints, since the constraints in which v(y,’;’o) =b
are the ones that are satisfied. O

Proof of Theorem 1 The termination of Algorithm 1 is guar-
anteed by the fact that there always exists an LTL¢ formula
¢ for which wi(g, S, £2) = 0 as indicated by Remark 1. Sec-
ond, the fact that ¢ has wi(p, S, 2) < « is a consequence
of Lemma 1. Finally, the minimality of the formula is a con-
sequence of the fact that Algorithm 1 searches for an LTL¢
formula in increasing order of size. O

Appendix 3.2 Proofs from Sect. 4

Proof of Lemma 1 in the case of STL The only new constraint
in @™ compared to STL case is 0 < a; < b; fori €
{1,...,n}. The constraint @] still simply tracks the valu-
ation of the prospective formula on traces u. Thus, all these
hard constraints are satisfiables, as explained in Proof 1.

@ Springer

440

J.-R. Gaglione et al.

For proving the second part, the weights of the satisfied
soft constraints are still equal to 1 —wlI(S, ¢, £2). Once again,
the proof is similar to Proof 1. O

Proof of Theorem 2 The termination of the MaxSMT-based
STL learning algorithm under the conditions of Remark 2
is guaranteed by the fact that there always exists an STL
formula ¢ for which wi(p, S, 2) = 0, as discussed in
the beginning of Sect. 4. Second, the fact that ¢ has
wl(p, S, §2) < « is a consequence of Proof 2. Finally, the
minimality of the formula is guaranteed as explained in
proof 1. O

Appendix 3.3 Proofs from Sect. 5

Proof of Lemma 2 Toward contradiction, without loss of gen-
erality, let us assume that for all # in S and formula
¢ with s.(5,¢) > 0.5, we have V(u,9) = 1. In
such a case, |V(u,9) —b| = 0 for (u,1) € § and
|V(u,p) —b| = 1 for (u,0) € S. We can, thus, calculate
that Z(u,l)eS |V(u,) —b| =0, Z(u,O)eS [V(u, p) — bl =
[{(u, 0) € S|b = 0}, and consequently s,.(S, ¢) = 0.5, vio-
lating our assumption. O

Proof of Theorem 3 First, observe that at each decision node,
we can always infer an LTL; formula ¢ for which s,(S, ¢) >
w, for any value of . This is because there always exists
an LTL¢ formula ¢ that produces perfect classification, and
for this, 5,(S, ¢) = 1. Second, observe that whenever a split
is made during the learning algorithm, sub-samples S and
S are both non-empty due to Lemma 2. This implies that
the algorithm terminates since a sample can be only split
finitely many times. Now, for ensuring the decision tree ¢
achieves a [(S, t) < «, we use induction over the structure of
the decision tree. If ¢ is leaf node true or false, then I(S, t) <
k using the stopping criteria. Now, say that ¢ is a decision
tree with root ¢ and subtrees #; and ,, meaning ¢; = (¢ A
¢1) V (—@ A ¢p,). Also, say that the sub-samples produced
by ¢ are S; and S». By induction hypothesis, we can say that
I(S1,11) < k and [(S2, 12) < k. Now, it is easy to observe
that [(S1, (¢ A ¢r)) < k and I(S2, (—¢ A ¢1,)) < Kk, since ¢
satisfies all traces in S and —¢ does not satisfy any trace in
S>. We, thus, have [(S, t) = I(S1WS2, (9 A@,) V(—@ Agyy))
< K. [}

Appendix 4 Additional theoretical
observations

We explain here why Problems 1 and 2 are adapted to Tempo-

ral Logic inference from noisy data. Note that when a sample
S is constructed from a LTL¢ (or equivalently, STL) formula

@ Springer

Running time in s

T T T TTTTT] T T T T TTTT] T T T T TTTT]
1 3jO/{:0.OO N
0 I xx=0.05 g %C@%@? B
I k=010 x é%é*@]
i DAz x o
? le) %
T 10| A
=, = é@]
1 [X X * N
; B ® 5 e %
0 | o x
8 I X |
3 * X
* X
2 1017 *x % * x X B
E S I
r % x
i x ¥ e]
,as . i
100 & Lol Lol Lol
100 10t 102 103
SAT-flie
(a) Samples without noise
Running time in s
T \\\\\H‘ \\\\\H‘ \\\\\H‘
103;OH:O.00 ® ®e@®
F xxk=0.05 §< E
r *x=0.10 X i
L o) % i
—~ [6 é * B
S
T 10?2 ! % e
S : § B
& B ® @ * N
< | ® * * |
*
= 10t | o) * =
g 8 -
I o 5]
o i
*
100 Lsje | Ll (| LK
100 10t 102 103

SAT-flie
(b) Samples with 5% noise

Fig.8 Running time comparison of SAT-flie and MaxSAT-flie

Y of reference (small in size, in principle), i.e., such that
I(S,) = 0, and given a minimal LTL; formula ¢ such that
I(S, ¢) = 0, we always have |¢| < |{|. However, after intro-
ducing noise in the sample such that /(S', ¢) < 0, and given
a minimal formula ¢’ such that I(S', ¢') = 0, we have no
such guarantee on the size of ¢’. Intuitively, the size of ¢’ is
growing the more random the classification labels of S’ are.
However, if we have a bound on the noise, i.e., if we have
I(S',¥) < «k, given a minimal LTL; formula ¢ such that
IS, ¢.) < k, we can now ensure that |¢,| < |¢¥|. Hence,
Problem 1 is adapted in the context of LTL¢ inference from
noisy data.

MaxSAT-based temporal logic inference from noisy data

441

Appendix 5 Experimental results

Figure 8 presents a comparison of the running time of
MaxSAT-flie (proposed in this paper) and SAT-flie (proposed
in [27]), on each sample of the LTL; sample sets.

References

10.

11.

12.

13.

14.

15.

16.

Aréchiga N (2019) Specifying safety of autonomous vehicles in
signal temporal logic. In: IV, pp 58-63. IEEE

Arif MF, Larraz D, Echeverria M, Reynolds A, Chowdhury O,
Tinelli C (2020) SYSLITE: syntax-guided synthesis of PLTL for-
mulas from finite traces. In: FMCAD, IEEE, pp 93-103

Asarin E, Donzé A, Maler O, Nickovic D (2012) Parametric identi-
fication of temporal properties. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 7186 LNCS(September), 147—
160. https://doi.org/10.1007/978-3-642-29860-8_12

Bacchus F, Kabanza F (2000) Using temporal logics to express
search control knowledge for planning. Artif Intell 116(1-2):123—
191

Bombara G, Vasile CI, Penedo F, Yasuoka H, Belta C (2016) A
decision tree approach to data classification using signal tempo-
ral logic. In: Proceedings of the 19th international conference on
hybrid systems: computation and control, ACM, pp 1-10
Brunello A, Sciavicco G, Stan IE (2019) Interval temporal logic
decision tree learning. In: JELIA, Lecture notes in computer sci-
ence, vol. 11468, Springer, pp 778-793

Budde CE, Argenio PRD, Sedwards S (2018) Qualitative and quan-
titative trace analysis with extended signal temporal logic. Int J
Softw Tools Technol Transt 1:340-358. https://doi.org/10.1007/
978-3-319-89963-3

Camacho A, Baier JA, Muise CJ, Mcllraith SA (2018) Finite LTL
synthesis as planning. In: ICAPS, AAAI Press, pp 29-38
Camacho A, Icarte RT, Klassen TQ, Valenzano RA, Mcllraith SA
(2019) LTL and beyond: formal languages for reward function
specification in reinforcement learning. In: IICAI, pp 6065-6073.
ijcai.org

Camacho A, Mcllraith SA (2019) Learning interpretable models
expressed in linear temporal logic. In: ICAPS, AAAI Press, pp
621-630

Dwyer MB, Avrunin GS, Corbett JC (1998) Property specification
patterns for finite-state verification. In: Proceedings of the second
workshop on formal methods in software practice, FMSP, Associ-
ation for Computing Machinery, p 7-15

Fainekos GE, Kress-Gazit H, Pappas GJ (2005) Temporal logic
motion planning for mobile robots. In: ICRA, IEEE, pp 2020-2025
Gabel M, Su Z (2010) Online inference and enforcement of tem-
poral properties. In: ICSE (1), ACM, pp 15-24

Giacomo GD, Vardi MY (2013) Linear temporal logic and linear
dynamic logic on finite traces. In: ICAL IJCAI/AAAL pp 854-860
Halaby ME (2016) On the computational complexity of maxsat.
Electron Colloq Comput Complex 23:34

Hoxha B, Dokhanchi A, Fainekos G (2018) Mining parametric
temporal logic properties in model-based design for cyber-physical
systems. Int J Softw Tools Technol Transf 20(1):79-93

Jin X, Donzé A, Deshmukh JV, Seshia SA (2013) Mining require-
ments from closed-loop control models. In: HSCC, ACM, pp 43-52

. Gaglione JR, Neider D, Roy R, Topcu U, Xu Z (2021) Learn-

ing linear temporal properties from noisy data: a MaxSAT-Based
approach. In: Automated technology for verification and analy-
sis, Springer International Publishing, pp 74-90. https://doi.org/
10.1007/978-3-030-88885-5_6

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Kim J, Muise C, Shah A, Agarwal S, Shah J (2019) Bayesian
inference of linear temporal logic specifications for contrastive
explanations. In: IJCAI pp 5591-5598. ijcai.org

Kong Z, Jones A, Belta C (2017) Temporal logics for learning
and detection of anomalous behavior. IEEE Trans Autom Control
62(3):1210-1222

Lemieux C, Park D, Beschastnikh I (2015) General LTL specifica-
tion mining (T). In: ASE, IEEE Computer Society. pp 81-92
Maler O, Nickovic D (2004) Monitoring temporal properties of
continuous signals. In: Proceedings of FORMATS-FTRTFT. Vol.
3253 of LNCS, Springer, pp 152-166

Maler O, Nickovic D (2004) Monitoring temporal properties of
continuous signals. Lect Notes Comput Sci (Incl Subser Lect Notes
Artif Intell Lect Notes Bioinf) 3253:152—166. https://doi.org/10.
1007/978-3-540-30206-3_12

Mohammadinejad S, Deshmukh JV, Puranic AG, Vazquez-
Chanlatte M, Donzé A (2020) Interpretable classification of
time-series data using efficient enumerative techniques. In: HSCC,
ACM, pp 9:1-9:10

de Moura LM, Bjgrner N (2008) Z3: an efficient SMT solver. In:
TACAS, Lecture notes in computer science, vol. 4963, Springer,
pp 337-340

Nagabandi A, Konoglie K, Levine S, Kumar V (2019) Deep dynam-
ics models for learning dexterous manipulation, pp 1-12

Neider D, Gavran I (2018) Learning linear temporal properties. In:
Bjgrner N, Gurfinkel A (eds) 2018 Formal methods in computer
aided design, FMCAD 2018, IEEE, pp 1-10

Pnueli A (1977) The temporal logic of programs. In: Proceedings
of 18th annual symposium on foundations of computer science, pp
46-57

Pradel M, Gross TR (2012) Leveraging test generation and specifi-
cation mining for automated bug detection without false positives.
In: ICSE, IEEE Computer Society, pp 288-298

Pradel M, Jaspan C, Aldrich J, Gross TR (2012) Statically checking
API protocol conformance with mined multi-object specifications.
In: ICSE, IEEE Computer Society, pp 925-935

Quinlan JR (1986) Induction of decision trees. Mach Learn
1(1):81-106

Raman V, Donzé A, Sadigh D, Murray RM, Seshia SA (2015)
Reactive synthesis from signal temporal logic specifications. In:
HSCC, ACM, pp 239-248

Roy R, Fisman D, Neider D (2020) Learning interpretable models
in the property specification language. In: IJCAI, pp 2213-2219.
ijcai.org

Sebastiani R, Trentin P (2017) On optimization modulo theories,
MaxSMT and sorting networks. CoRR arxiv:1702.02385

Shah A, Kamath P, Shah JA, Li S (2018) Bayesian inference of
temporal task specifications from demonstrations. In: NeurIPS, pp
3808-3817

Tseitin GS (1983) On the Complexity of Derivation in Proposi-
tional Calculus, Springer, Berlin Heidelberg, pp 466483
Walkinshaw N, Derrick J, Guo Q (2009) Iterative refinement of
reverse-engineered models by model-based testing. In: FM, Lec-
ture notes in computer science, vol. 5850, Springer, pp 305-320
Weimer W, Necula GC (2005) Mining temporal specifications for
error detection. In: TACAS, Lecture notes in computer science, vol.
3440, Springer, pp 461-476

XuZ, Belta C, Julius A (2015) Temporal logic inference with prior
information: An application to robot arm movements. In: IFAC
conference on analysis and design of hybrid systems (ADHS), pp
141 - 146

Xu Z, Birtwistle M, Belta C, Julius A (2016) A temporal logic
inference approach for model discrimination. IEEE Life Sci. Lett.
2(3):19-22

@ Springer

https://doi.org/10.1007/978-3-642-29860-8_12
https://doi.org/10.1007/978-3-319-89963-3
https://doi.org/10.1007/978-3-319-89963-3
https://doi.org/10.1007/978-3-030-88885-5_6
https://doi.org/10.1007/978-3-030-88885-5_6
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
http://arxiv.org/abs/1702.02385

442

J.-R. Gaglione et al.

41. XuZ, Julius AA (2019) Robust temporal logic inference for prov-
ably correct fault detection and privacy preservation of switched
systems. IEEE Syst. J. 13(3):3010-3021

42. Xu Z, Nettekoven AJ, Agung Julius A, Topcu U (2019) Graph
temporal logic inference for classification and identification. In:
2019 IEEE 58th conference on decision and control (CDC), pp
4761-4768

43. Xu Z, Ornik M, Julius AA, Topcu U (2019) Information-guided
temporal logic inference with prior knowledge. In: 2019 American
control conference (ACC), pp 1891-1897

@ Springer

44. Yang J, Evans D, Bhardwaj D, Bhat T, Das M (2006) Perracotta:
mining temporal API rules from imperfect traces. In: ICSE, ACM,
pp 282-291

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

	MaxSAT-based temporal logic inference from noisy data
	Abstract
	1 Introduction
	2 Preliminaries
	3 Learning minimal LTLf formulas
	3.1 The learning problem
	3.2 The learning algorithm

	4 Learning minimal STL formulas
	4.1 The learning problem
	4.2 The learning algorithm

	5 Learning decision trees over temporal logic formulas
	5.1 The learning algorithm
	5.2 LTLf Formulas for decision nodes
	5.3 Stopping criterion

	6 Experimental evaluation
	6.1 LTLf inference
	6.2 STL inference

	7 Related work
	8 Conclusion
	Acknowledgements
	Appendix 1 Construction of temporal formulas described in Remarks 1 and 2
	Appendix 2 List of all the constraints used
	Appendix 2.1 Constraints for learning minimal LTL formula

	Appendix 3 Proofs of the theoretical results
	Appendix 3.1 Proofs from section 3
	Appendix 3.2 Proofs from Sect. 4
	Appendix 3.3 Proofs from Sect. 5

	Appendix 4 Additional theoretical observations
	Appendix 5 Experimental results
	References

