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In typical artificial neural networks, neurons adjust according to global calculations of a central
processor, but in the brain neurons and synapses self-adjust based on local information. Contrastive
learning algorithms have recently been proposed to train physical systems, such as fluidic, mechani-
cal, or electrical networks, to perform machine learning tasks from local evolution rules. However, to
date such systems have only been implemented in silico due to the engineering challenge of creating
elements that autonomously evolve based on their own response to two sets of global boundary
conditions. Here we introduce and implement a physics-driven contrastive learning scheme for a
network of variable resistors, using circuitry to locally compare the response of two identical net-
works subjected to the two different sets of boundary conditions. Using this innovation, our system
effectively trains itself, optimizing its resistance values without use of a central processor or external
information storage. Once the system is trained for a specified allostery, regression, or classification
task, the task is subsequently performed rapidly and automatically by the physical imperative to
minimize power dissipation in response to the given voltage inputs. We demonstrate that, unlike
typical computers, such learning systems are robust to extreme damage (and thus manufacturing
defects) due to their decentralized learning. Our twin-network approach is therefore readily scalable
to extremely large or nonlinear networks where its distributed nature will be an enormous advantage;

a laboratory network of only 500 edges will already outpace its in silico counterpart.

The confluence of ideas from neuroscience and ma-
chine learning has contributed immensely to our funda-
mental understanding of the nature of learning [1, 2].
However, biological neural networks differ fundamentally
from standard machine learning algorithms in an impor-
tant way [3, 4]. A typical artificial neural network (ANN)
requires a processing unit (e.g. CPU) that trains the
network by minimizing a global cost function [5], while
repeatedly storing and retrieving information from a sep-
arate electronic memory. This von Neumann architec-
ture is very successful but creates a severe computational
bottleneck. In contrast, the brain and other biological
networks [6, 7] are more akin to extremely sophisticated
and adaptive metamaterials: they are physical systems
made of repeated, locally responsive elements (e.g. neu-
rons and synapses) that generate learning as a highly
complex emergent property. This distribution and paral-
lelization of computation and memory storage allows the
human brain (~ 10! neurons and ~ 10'* synapses) to
function at reasonable speeds despite signal propagation
timescales millions of times slower than modern compu-
tational clock cycles. Furthermore, it allows the brain to
recover from massive damage [8] while consuming only
modest power [9] compared to typical computers.

These advantages of the brain have spurred efforts to
imitate its features [10-13]. Several of these have only
been realized in silico [14-16] or in hybrid in situ-in silico
form [17-19]. Actual laboratory realizations of ‘neuro-
morphic’ hardware that bypass processors tend to mimic
either standard machine learning algorithms (e.g. back-
propagation) [20-22] or phenomenological synaptic rules
found in the brain (e.g. spike-timing-dependent plastic-
ity) [23-27].

An alternate approach to learning without a proces-
sor is to exploit physical processes in tandem with simple

and local rules. Laboratory mechanical networks have
been trained without any sort of processor to develop
negative Poisson’s ratios using the process of ‘directed ag-
ing’ [28, 29], which exploits the natural physical tendency
of a mechanical network to minimize elastic energy when
a stress is applied. ‘Contrastive learning’ [30] compares
the response of the system to two different boundary con-
ditions to adjust the degrees of freedom; this works more
robustly than directed aging in laboratory mechanical
networks [31], but has thus far required an external en-
tity to enact these local rules. The ‘equilibrium propaga-
tion’ framework [15, 32, 33] can be viewed as combining
the concept of directed aging with contrastive learning
and specifies simple local learning rules that in principle
can be implemented in flow networks [15]. Equilibrium
propagation nudges the network towards the desired tar-
get solution instead of imposing it directly; in the limit of
infinitesimal nudges, the learning rule performs gradient
descent on a loss function. A framework known as ‘cou-
pled learning’ [34] builds on equilibrium propagation,
providing the foundation for our work. In both frame-
works, although the learning rules are spatially local,
they require simultaneous access to two distinct states
of the same system. As a result, they are not temporally
local, and require the use of memory when implemented
in silico. This issue has thus far prevented them from
being realized in the laboratory.

In this study we report the laboratory realization of a
physical learning machine composed of a pair of vari-
able resistor networks. We resolve the highly restric-
tive and challenging requirement of contrastive learn-
ing in physical systems by using two identical twin net-
works to simultaneously measure responses of the ‘same’
physical system to two different sets of boundary con-
ditions. When we expose the system to training data,



the physical imperative to minimize energy dissipation
carries out the forward calculation to ‘compute’ the out-
puts within nanoseconds, while local rules that adjust
the resistances of the edges take the place of backprop-
agation, obviating the need for a processor or memory
storage. We demonstrate that such a network can learn
to perform and switch among a variety of tasks, includ-
ing allostery, regression, and classification. Finally, we
show that because the learning is fully distributed and
each edge learns individually, the network functionality
is highly robust to network changes and damage, making
it readily scalable.
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FIG. 1. A Physics-Driven Learning Machine (A) Image
of the 16-edge circuitry, with the network structure overlaid
in blue. Each breadboard, like the one highlighted in white,
houses commensurate edges in the free and the clamped net-
work. For circuitry details see Appendix C. (B) Procedure
for training the learning machine. A supervisor (i) imposes
voltages to the inputs (red) in the free network and (ii) to the
inputs and outputs (purple) in the clamped network. The net-
work (iii) updates its own resistances, and V< is ‘calculated’
by physical laws.

APPROACH

In previous work, simulated and laboratory mechan-
ical networks, and simulated flow networks, have been
trained to perform desired tasks by adjusting their inter-
nal degrees of freedom [15, 28, 29, 31, 32, 34-42]. This
has been accomplished either by minimizing a global cost
function [35-39] or using local rules aided by an external
processor [15, 28, 29, 31, 32, 34, 40-42]. Here we consider
a self-adjusting electronic network comprised of nodes
connected by variable resistors, whose values we will call
the “learning degrees of freedom.” When voltages V1 are
applied at input nodes, the voltages at designated output
nodes VO are physically determined as functlons of the
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to equilibrium propagation, this algorithm approximates
global gradient descent in the limit n < 1 [34], allowing
a system to train itself by repeating this update process.
However, this algorithm is not temporally local, in that
it requires simultaneous access to the response for twc
distinct sets of boundary conditions which, by definition.
cannot be imposed simultaneously. It is this requirement
that makes contrastive learning in physical systems sc
challenging to realize.

Here we resolve this conundrum by building two identi-
cal electrical networks to run the free and clamped states.
We use digital variable resistors (see Methods) on each
edge, which have 128 possible discrete resistance values.
The original (continuous) coupled learning update rule,

AR, = 25 (IAVEP - [AV/P) (2

where 7 is a learning rate and AV,C, AV,F" are the voltage
drops in edge i of the clamped and free states respectively.
In our discrete resistor networks, the two networks adjust
their (identical) resistances according to an approxima-
tion of the original rule,

+oR if |AVZC| > |AVE,
—O0R otherwise.

ARC = ARF = { 3)

equivalent to taking the sign of Eq. (2) multiplied by
v = 6R. This now Boolean operation is carried out by
integrated circuits housed on each edge of the network:
the entire system is pictured in Fig. 1A. For details re-
garding the implementation of this rule, see Appendix C.
Because the learning process is decentralized, our sys-
tem functions without a central processor, and training
the network to perform a task is straightforward. The
procedure is detailed in Fig. 1B: apply the desired in-
put voltages to the free and clamped networks, as well
as clamped output voltages VCQ to the clamped network.
Edge updates are triggered by a global clock, and no fur-
ther instruction to the edges are required, as each edge
is responsible for its own evolution.

To demonstrate operation of our learning elements, we
train a two-edge network (Fig. 2A) as a voltage divider:
We ask the network to produce a single desired voltage
VP at its output (middle) node, while the input nodes
(top and bottom) are held at 5 V and 0 V respectively.
To train, the following algorithm is repeated every clock
cycle:

1. Update the clamped state output node voltage, per
Eq. (1).

2. Every edge updates its own resistance, per Eq. (3).

In machine learning language, the ‘supervisor’ tells the
network the right answer through the clamped bound-
ary condition. The network itself decides how to achieve
this answer, as it receives no external instructions about
which edges to push up or down in resistance. That is,
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FIG. 2. A self-training voltage divider. (A) Diagram
of network structure, as depicted in later figures (left) and
expanded (right) to show both free and clamped networks.
Voltage is imposed on input nodes (red) in both networks,
and on output nodes (purple) only in the clamped network.
The resistance of each edge is identical in both networks. (B)
Output node voltage V' vs training steps for both free (blue)
and clamped (black) networks. The desired voltage V' is
shown as a gray dashed line. Note that the clamped state
effectively guides the free state towards the desired voltage
which is changed every 100 steps, from 3.75 V, to 2.25 V,
to 1 V, and finally to 2.25 V. (C) Resistance values of the
two edges in the network (grays) and their ratio (blue) as a
function of training step. The light blue dashed line represents
the ratio that will produce the desired network output.

shown the right answer, the network trains itself to pro-
duce it. In this simple example, this distinction may
seem trivial, but as we increase the size of the network,
the job of the supervisor does not grow in complexity; it
is always given by Eq. (1). This is in stark contrast to
ANNSs, where the number of gradient calculations grows
rapidly with network size.

As previously described, edges modify their resistance
to bias the electrical state of the system away from the
free state and towards the clamped state. This results in
the free state output voltage(s) ‘following’ the clamped
state voltages, which in turn move progressively towards
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We choose a three-input, three-output allosteric task
as an example (Fig. 3A inset). Using a nudge of n = 0.5,
the network successfully learns to deliver 3 V at all out-
put nodes, in response to three simultaneous input node
voltages of 5, 1, and 0 V. The mean-squared error for
this task drops during the learning process by over four
orders of magnitude (Fig. 3A). We note that in theoret-
ical treatment 1 < 1 is assumed; n ~ 1 will in effect be
taking a finite-difference gradient with a large step size,
and thus substantially degrade accuracy [34]. However,
in a physical system, noise (order 0.01V) will dominate
the learning process if 7 is too small. Thus the success
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FIG. 3. One physical system performs many tasks. (A)
Mean-squared error for each of three outputs and their sum
(black) vs training step for an example allostery task. (B)
Mean-squared error for each of two outputs and their sum
(black) for a two-parameter regression task for each output
node. Large purple circles indicate the training steps shown
in C. (C) Snapshots of the values for both outputs at three
steps during training for the regression task in B. Lines indi-
cate the desired output values. Regression involves two pa-
rameters, and thus both axes are scaled by Vi to project the
results into 2 dimensions. (D) Test set classification error for
the iris benchmark dataset [45] vs training step (faded sym-
bols). Smoothing the data with a window of 30 training steps
(solid line) highlights that the final plateau accuracy is above
95%. Large red circles indicate the training steps shown in E.
The desired voltage for each class is re-measured every epoch,
indicated by the gray stars (see Appendix A for details). (E)
Snapshots of the classification success of the test set projected
into the 2D space of two of the four inputs (sepal length and
petal width, rescaled to 0-5V). Species of iris is denoted by
marker shape. Gray shapes are correctly classified, red are
incorrectly classified.



of the network at finite 7 is a nontrivial demonstration
of its feasibility in real systems.

Regression is a more difficult test because the desired
output voltages are not constants but rather functions
of the input voltages. We ask the network to solve two
equations for two unknowns, choosing the two equations

VP =015V +0.20v) VP =0.25V] +0.10Vy (4)
We generate a data set of 420 randomly chosen input
pair values between 1 and 5 V, and calculate the desired
voltage for each input pair using the above equations.
We set an additional input node at 0 V to remove the
freedom for a global shift in voltage, resulting in three
input and two output nodes (Fig. 3B inset). We divide
the data into a training set (400 elements) and a test set
(20 elements). Every clock cycle, the network is shown
a new example from the training set, and it updates its
resistance values accordingly. Between these examples,
the network is given the entire test set one by one, and
its free state outputs are recorded as an indication of the
network’s performance. Given these conditions and n =
0.2, our learning machine reduces the mean-squared error
for the entire test set by over two orders of magnitude
(Fig. 3B), producing an accurate result despite its small
size (Fig. 3C). Note that during training the network
finds an extremely good fit to the data around step 120,
but cannot maintain it due to some combination of noise,
sampling error from sequential training, and small bias
in the internal logic circuitry of the edges. The observed
rise in test error before the final plateau is a common
feature in machine learning [48].

Data classification is an even more stringent test of the
network. We use a benchmark data set of three species
of iris flowers [45]. The network is tasked with classi-
fying these flowers based on four measurements: petal
and sepal length and width. We withhold 120 of the 150
flowers as a test set, and train on 30 flowers, 10 from
each species. We designate 5 input nodes (one for each
measurement plus one fixed ground) and three output
nodes (Fig. 3D inset). Between training steps, the entire
test set of 120 flowers is run through the network, and
a flower is considered correctly classified if its three out-
puts are closest (Ls norm) to the desired outputs of the
correct species. We implement a custom output scheme
in which the desired outputs for a given species are recal-
culated every epoch by averaging outputs of that species.
This provides protection against training towards infea-
sible outputs, and robustness to initial conditions. See
Appendix A for full task specification and training de-
tails. Using this algorithm with n = 0.1, the network is
able to classify the iris dataset with over 95% accuracy
(Fig. 3D). For comparison, a linear classifier trained using
logistic regression on this data achieves a test accuracy of
98%. The 2D projection of the 4D input data (Fig. 3E)
shows that incorrectly classified flowers lie along overlap-
ping edges of class clusters.

We now highlight some features of the system. The
first is the ability to learn new tasks. Unlike simulated

networks, a physical learning machine must be physically
manufactured. Therefore a given network is far more
useful if it can switch from one task to another on de-
mand. For our system, there is no imposed direction of
information travel as in a feed-forward neural network, so
any node can be used as an input node, output node, or
hidden node. We demonstrate this flexibility by training
our network to perform seven distinct tasks in succession,
using different input-output configurations (Fig. 4A). In
this sequence, our 16-edge network performs one classifi-
cation task (i), 4 allosteric tasks with numbers of output
nodes ranging from 1 to 4 V (ii-v), and two 2-parameter
linear regression tasks (vi-vii). The network successfully
learns each task in turn, as indicated by the reductions
in mean-squared error (Fig. 4B). The edges are not reset
between tasks, but simply find new values as the network
adjusts to its new task and training examples (Fig. 4C).
Because of this ability to retrain using any input-output
combination, a network does not need to be designed
specifically to perform certain tasks — it can be trained
on any task that can be framed in terms of input and
output voltages. This flexibility stems, in part, from the
ability of the system to ‘solve’ a problem in multiple ways.
In this sequence of tasks, our 16-edge network performs
task ii, an allosteric task with one output, three different
times. Each time the solution involves different values of
edge resistances R, and furthermore explores this space
of approximately equally-valid solutions that lie within
the noise floor (Fig. 4C). We purposefully bias this drift
of resistor values to increase on average (see Appendix
C), which pushes the network to avoid high-power so-
lutions that may strain or damage hardware or waste
energy. The network quickly erases memory of previous
tasks, as is typical in linear networks [41, 49], as seen by
the similar initial error in performing task ii each time
(Fig. 4B). The ‘capacity’ of these networks (e.g. the max-
imum number of trainable output nodes as a function of
the number of nodes and edges in the system) and their
ability to retain memory of previous tasks, are subjects
for future work.

A second useful feature of our network as a learning
system is its robustness to damage. Physical systems
used to implement simulated neural networks, such as
CPUs, are usually quite fragile. Breaking or removing
part of a computer usually disables it completely. In
contrast, biological systems can often function despite
massive damage; given the right conditions, a plucked
flower not only survives, it can generate an entirely new
plant. While our system cannot grow new edges, it can
easily recover its desired function after substantial dam-
age. To demonstrate this feature, we train our network
to perform a 2-output allosteric task (Fig. 5A inset). We
track resistance values of five edges (Fig. 5A), removing
one every 100 training steps. During training, our 16-
edge network reduces the mean-squared error of the out-
puts by several orders of magnitude from its initial value
(Fig. 5B). Removing an edge can produce an immediate
spike in error as the currents adjust to the new network
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DISCUSSION

We have built a flexible, robust, physics-driven learn-
ing circuit that learns complex tasks by adjusting its in-
ternal elements without top-down instruction from a hu-
man or computer. Even with only 16 edges, it is capable
of a variety of tasks unspecified in its design, namely
classification, regression, and allosteric functionality.

Four key concepts underlie the system. First, the

Imization of the cost

()}

edge

guees

re than

perform the eca

enough lébfni of feedom even all sys-

1 nstrair i ask ex-

“atdplds. PHis is why the syste o satisfy all the
T why it _is robus tantial damage.

Third
the le

r@algh+specifies a local r justing
g1e6d-0f| freedom that ap es min-
unction [15, 34]. The cost func-
tions themselves are different for different learning tasks,
but the form of the learning rule, i.e. the adjustment
procedure of each edge, remains the same for any task.
This is why the system can learn new tasks. Fourth,
the implementation of two identical networks resolves
a nontrivial constraint for contrastive learning, wherein
two states of a single system, corresponding to differ-
ent boundary conditions, must be compared. Our im-
plementation does not require any additional on-board
memory storage, help from a CPU, or use of temporal
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FIG. 5. The learning machine is robust to damage. (A)
Resistance vs training steps for an allosteric task, as edges are
cut. Inset: network structure with edges numbered by order
of removal. Voltage values indicate the task being performed.
Input nodes are solid red, output nodes are outlined purple.
(B) Mean-squared error for this two-output allostery task vs
training step. Note the spikes every 100 training steps, when
an edge is removed, followed by recovery.

signals to enact. As such it is massively scalable and
robust to operate. It is also robust to manufacturing
errors. There is still much to be understood about even
our modest 16-edge system, but the simplicity of its local
rules and basis in well-understood physical laws suggest
the possibility of understanding exactly what and how
it learns [46, 47, 50]. Certainly, theoretical understand-
ing seems less difficult to attain for the physical learning
machine than for many other neuromorphic realizations,
not to mention the brain itself.

Although the abilities of our current prototype are
modest compared to artificial neural networks, the suc-
cessful realization of a physical learning machine opens
numerous paths for future work. Potentiometers with
more (or continuous) states, as well as logarithmic or
pseudo-logarithmic spacing of the resistance values, will
greatly improve the network flexibility and reduce the er-
ror floor [34]. Diodes or other non-linear circuit elements
will allow the system to perform currently-prohibited op-
erations such as mimicking an XOR gate [15, 51]. Impor-
tantly, we can improve both the network size and speed
while diminishing the size of the components. Our largest
network has only 16 edges, each on its own breadboard,
and takes up several square feet. Our voltage application
and measurement hardware limits the network to steps
at 3-5 Hz, but the network itself is capable of operat-
ing multiple orders of magnitude faster. Furthermore,
due to its Boolean logic and simultaneous comparison

of two networks, as opposed to the use of memory or
temporal signals, and its robustness to damage and thus
manufacturing defects, the system is massively scalable.
We estimate that the system can easily be scaled up in
the number of edges and in the frequency of training
steps by at least six orders of magnitude using readily
available circuit fabrication methods [52]. Such a circuit
would have a footprint five orders of magnitude smaller
than our prototype (see Appendix B for back-of-envelope
calculations of these numbers).

In computational neural networks, the computation
time increases rapidly with the number of edges. An
exciting feature of our system is that adding edges to the
network does not increase computation time per training
step, since all edges perform their own adjustments com-
pletely in parallel. This feature arises because outputs
are not computed but are physical responses to stimuli,
and because the job of imposing the clamping voltages
does not increase in complexity as the network grows.
The speed of learning depends on the physical size of
the system and its inherent (tiny) capacitance, which
together determine the timescale at which the voltages
reach equilibrium (of order nanoseconds in our system).
In the current prototype, this is far faster than our clock
cycle time and thus does not affect training times. Fur-
thermore, due to its non-specific structure, flexibility, and
ability to withstand to damage, the scaling of our sys-
tem is robust to imperfections and defects that invari-
ably seep in when the number of components increase.
It is possible that this ready scalability of physical learn-
ing machines may one day allow them to compete with
computational neural networks. Already, with a modest
increase of x100 in network size with no speed change,
our prototype would outperform a simulation implemen-
tation as in [34] due to the simulation’s inherent bottle-
neck of relying on a processor and memory.

We can anticipate many potential uses for our system
even in a realization closer to its current modest form.
Because it draws little power and does not require sep-
arate memory storage, our system may be preferable to
a CPU- or GPU-simulated neural network when energy
or space are at a premium. Furthermore, power con-
sumption is not concentrated (as in a CPU/GPU) but
distributed evenly across the learning machine, allowing
future versions to massively increase speeds without over-
heating. Because its function is not encoded in its design,
our system may be appropriate for tasks that require on-
demand flexibility, for example as a sensor that detects
deviations from an as-yet unspecified background signal.
Because it is robust to damage, it may be useful for sce-
narios where the system is exposed to danger.

Our system is robust to damage because it is com-
posed of many repeated identical elements that update
themselves in response to stimuli. It is therefore a kind
of “learning material” or metamaterial in the sense that
it is a many-element system with learning as an emer-
gent collective property that is not inherent in the ar-
rangement of its elements nor in the selection of input or
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Appendix A: Task Details

Tasks listed in Fig. 4 in the main text are detailed
in Fig. 6. For allosteric tasks, input or desired output
voltages are listed as single values. For regression tasks,
training and test set inputs are selected using a uniform
random distribution between 1 and 5 V, and output de-
sired voltages are functions of these inputs, as listed. For
the classification task, each input (e.g. all petal widths)
are re-scaled to span 0 to 5 V. A typical classification out-
put scheme in an artificial neural network (ANN) would
designate one output node for each class and train to-
wards producing a high value (e.g. 5 V) at the node of
the correct class, and 0 s at all other output nodes. How-
ever, this output basis is not feasible because our network
is linear. We instead choose an output basis as follows:
At the start of every epoch (every 30 training steps), we
measure the network’s output response to the average in-
put values from each species of flower in the training set.
In a linear network, this is identical to calculating the av-
erage output values from all elements in the training set,
as done in previous work [42]. During the ensuing epoch,
the desired output voltage for each flower is this average
response for the appropriate species. These desired volt-
ages evolve as the network trains, but eventually settles
at consistent values. Because these output averages de-
pend solely on training data, they may be useful in the
future for determining when to stop training a learning
network. Furthermore, this averaging method improves
the initial accuracy beyond the expected 33%, since it
picks target values with a minimal distance to the net-
work response for a given species.

FIG. 6. Task Details. Voltage specification by node number
for each task detailed in Fig. 4. Red cells are input nodes,
purple-outlined cells are output nodes. Node numbers corre-
spond to the network structure as shown in the inset.

Appendix B: Scaling the Electronics

Our prototype was not built with speed or scale as
a priority, and as a result leaves much room for im-
provement in these regards. Our system takes up several
square feet, and operates at about 3-5 Hz, limited by
the data acquisition and voltage setting hardware. Ana-
log networks utilizing variable weights and comparators
(without utilizing physics-as-computation) have been ac-
complished with under 100 transistors per edge equiva-
lent of our prototype (often referred to as synapses) [24].
State of the art CMOS fabrication can yield roughly 300
million transistors per mm?, operating on nanosecond
timescales or faster [52]. Using these estimates, a 10
million-edge physical learning network could be imple-
mented with a footprint less than 10mm?. Such a system
would represent a 10 increase in edge count, a 10° de-
crease in footprint, and a 10® increase in speed from our
prototype.

Appendix C: Circuitry

Our electrical network uses variable resistors as edges
(AD5220 digital potentiometers wired as rheostats).
These ‘digipots’ are not continuously adjustable as as-
sumed by the original coupled learning rule [34], but in-
stead have 128 resistance values evenly spaced by R =
100K€2/128 ~ 781). We therefore restrict the evolution
of each edge to discrete steps R in either direction.
The coupled learning rule then simplifies to

+0R if |AVL] > |AVE],
AR = {5R otherwise. (C1)

Other learning rules that only depend on the signs of the
gradient of cost functions have been shown to be success-
ful [53]. This new rule is also easier to implement digi-
tally as it only requires a Boolean comparison of voltage
drops instead of a difference in energy dissipation. How-
ever, Eq. (C1) still requires access to both the free and
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FIG. 7. A single edge of the network. (A) Image of an edge, as constructed on a breadboard. (B) Circuit diagram for
a single edge, which houses circuitry for both both the free and clamped networks. Comparators and an XOR gate compute
the direction of resistance change based on the relative voltage drops across the free and clamped variable resistors (digipots),
and the XOR output is stored in a D-Flop before being fed back into the up/down input of the potentiometers. (C) Global
clock circuitry. The control circuit receives an ascending or descending edge from the data acquisition card (computer) into the
"Trigger’ port. This produces a cascading effect through the debouncer, changing output 1, then 2, then 3, which are fed into
XOR gates. (D) This cascade results in a descending edge in the digipot chip select/D flop clock signal, then a descending
edge in the digipot clock signal, and finally a return to high for both signals. As a result, the XOR output of the edge circuit
shown in B is sampled and stored by the D flop ahead of the digipot clock triggering a change in resistance. This avoids feeding
the potentially fluctuating XOR signal directly into the digipot. (E) Average resistance change as a function of comparator
voltages Vo and (Vo — V). Ideally we would have step functions jumping at (Vo — Vp) = 0 V. Noise spreads out the transition,
and in this edge, comparator bias shifts the curves to the right.

clamped electrical states. To this end, we construct two
identical networks for comparison, one running the free
state and one running the clamped state. Corresponding
edges of the free and clamped networks always have the

same resistance, and are housed on the same breadboard
(Fig. 7TA).

The absolute value comparison in Eq. (C1) is still non-

tive voltage). Our learning rule can now be written using
only functions of common logical circuit components:

AR, - JHOR 1 XOR [AVE > AVF,0 < AVE]
! —0R otherwise

(C2)

We implement Eq. (C2) with two comparators

trivial to evaluate electronically. A comparator produces
a signed comparison AV, > AV/F but this will yield
the opposite of our desired value if both drops are nega-
tive, which we cannot rule out a priori. We can, however,
assume that the two voltage drops have the same sign.
Empirically, we find this is nearly always the case, espe-
cially for n << 1. We can then use a second comparison,
AVE <0, to determine if AV,® > AV;F is equivalent to
|AVC] > |AVE| (positive voltage) or its inverse (nega-

(LM339AN), one XOR gate (SN74ALS86N), and one D-
Flop (TT CD74HC73E JK flop plus SN74ALS86N XOR
gate) on every edge (Fig. 7B). On each edge, the out-
put of XOR gate is stored in the D-Flop and fed back
into the up/down input of the digital potentiometers in
both free and clamped networks. During training, the
resistance updates of every variable resistor are triggered
by the descending edge of a global clock signal fed into
the digital potentiometers. A switch debouncer/delay



(MC14490PG) circuit and three XOR gates are wired
to generate two sequential descending edge signals (red
and green in Fig. 7 B, C, and D). The first descending
edge is used to trigger a D flop (TI CD74HC73E JK
flop plus SN74ALS86N XOR gate) to store the output of
the XOR gate (Eq. C2). Because the learning machine
naturally moves the voltage of the free and clamped net-
works towards each other, this XOR output (U/D signal)
will typically become dominated by noise by the end of
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training, and will oscillate rapidly. Storing the value in
the D-flop ensures a clean signal in the U/D port of the
digital potentiometers, as shown in Fig. 7B. Finally, the
variable resistors (digipots) used in our system (AD5220
100k) have a slight bias in their logical evaluation. As a
result, the update rule (Eq. C2) is imperfectly evaluated
at similar free and clamped voltage drops, as shown in
Fig. 7D. These incorrect evaluations do not prevent our
system from functioning, but do limit the error floor.
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