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a b s t r a c t

The stress–strain response and inhomogeneous deformation of pseudoelastic NiTi tubes loaded un-
der combined axial force and internal pressure are governed not only by the well-known ten-
sion/compression asymmetry but also anisotropy (Bechle and Kyriakides, 2016). This behavior was
simulated successfully in Kazinakis et al. (2022) using a finite element analysis coupled to a re-
cently developed constitutive model that incorporates these key material characteristics. Interestingly,
equibiaxial tension induces monotonic stress–strain hystereses and nearly homogeneous deformations,
but with the hoop transformation strain being approximately double the axial one. This letter uses
analysis to highlight how the tension/compression asymmetry and anisotropy individually influence
the predictions of this experiment. When both asymmetry and anisotropy are included, the analysis
captures the level of transformations stresses and the extent of axial strain, overpredicting the hoop
strain by a small amount. The hardening is somewhat reduced compared to the experiment allowing
weak and diffuse inhomogeneous deformation to develop. In the absence of anisotropy, the hoop and
axial hystereses coincide with much higher stresses, and strains that lie between the experimental
values, while the tube deforms uniformly. If the model is assumed symmetric with the properties of the
hardening uniaxial compression, the behavior is the same as that of the previous case. When the model
is calibrated instead to the partially unstable uniaxial tensile response, the analysis predicts again
coincident stress–average strain hystereses with lower stress plateaus than measured and strongly
inhomogeneous deformation.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

The unique property of nearly equiatomic NiTi to fully re-
over from strains of several percent is associated with solid-
tate transformations between the austenitic (A) and marten-
itic (M) phases. It is well established that the material exhibits
ension/compression asymmetry as illustrated for example in
ig. 1a, which compares the uniaxial tensile and compressive
ominal stress–elongation/shortening responses of NiTi tubes at
oom temperature (from [1]; see also [2–4] among others). Both
esponses are pseudoelastic in that the transformation induced
train is recoverable. Under axial tension, transformation starts
t about 460 MPa and leads to localized deformation in the
orm of helical bands of about 7% strain (Fig. 1b) with the stress
emaining nearly constant. On unloading, the material reverts
ack to austenite at a stress of about 235 MPa and is associ-
ted with multi-pronged bands. By contrast under compression,
ransformation initiates at a stress of about 630 MPa, and the
esponse monotonically increases until it is completed at about
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4.1%. Furthermore, the deformation is essentially homogeneous
(Fig. 1c).

Biaxial loadings of combined axial-torsion (e.g., [6–8]) and
axial-internal pressure loads [5] on tubes revealed more complex
manifestations of the tension/compression asymmetry. For exam-
ple, Fig. 2a shows the stress–average strain responses in the axial
(σx − εx) and hoop (σθ − εθ ) direction recorded under equibiaxial
tension (σx = σθ ). Both are monotonic closed hystereses, but
whereas the hoop response extends to a strain of 2.86% the
axial one ends at 1.56%. This is a form of anisotropy presumably
introduced by the manufacturing process. The corresponding de-
formed images of the test section in Fig. 2b show the axial strain
to evolve homogeneously and the hoop strain to exhibit very
mild inhomogeneity with axially oriented patterns. Experiments
were conducted for biaxiality ratios, σx = ασθ , ranging from
α = −1 to uniaxial tension (α = ∞). The monotonic behavior
and nearly homogeneous deformation were observed only for a
narrow range of biaxiality ratios, α, in the neighborhood of the
equibiaxial tension. For higher and lower stress ratios deforma-
tion localized akin to the behavior of uniaxial tension in Fig. 1b
(see [5]).

The pattern-rich behaviors observed in the internal axial force–
internal pressure biaxial experiments were simulated successfully
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Fig. 1. (a) Tensile and compressive axial stress–elongation/shortening responses exhibiting asymmetry. Select DIC deformation contours corresponding to bullets on
b) the tensile response, and (c) the compressive response [1].
s

n [9] using a finite element model coupled to a phenomeno-
ogical constitutive model. The model incorporates the tension–
ompression asymmetry including the associated softening and
ardening behaviors previously developed by our group [10–13],
nd is extended to include the anisotropy observed under biaxial
tress states. The present letter concentrates on the equibiaxial
oading case, σx = σθ , and uses analysis to highlight the important
ffects of tension/compression asymmetry and anisotropy indi-
idually and jointly on the calculated response and deformation
atterns.

. Analysis

. Finite Element Model
A tube of length L, diameter D, and wall thickness

, {50×6.33×0.273} mm, is meshed using second-order reduced
ntegration solid elements (ABAQUS C3D20R) with one element
hrough the thickness, 120 around the circumference and 314
long the length (Fig. 3). The model is pressurized internally
nder volume control using a cavity formed by incompressible
luid elements F3D4 in the body and F3D3 at the ends caps.
he ends at x = 0 and L are free to expand radially while the
verage in-plane nodal displacements and rotations at the ends
re prescribed to be zero (i.e.,

∑n
i uyi =

∑n
i uzi =

∑n
i uθ i = 0).

he axial displacement of all nodes at x = 0 is made zero while
at x = L it is assigned a stress σx.

The two stresses are related to the axial force, F, and internal
pressure, P, through

σx =
F

+
PR

and σθ =
PR
. (1)
2πRt 2t t T

2

Equibiaxial loading, σx = σθ , is achieved using a control loop
in a UAMP as follows. The change in volume of the fluid inside
the cavity is prescribed incrementally, the resultant pressure is
measured and used to calculate the required axial force increment
to make the hoop and axial stresses equal. A small thickness
depression is placed close to the axially free end to help trig-
ger potential localization of deformation. The depression extends
over an area of about 2t × t/2, is 0.02t deep, and has transition
zones of t/2 all around.

b. Constitutive Model
A more compact version of the constitutive model presented

in [9] is included here in order to familiarize the reader with
the different versions of it used in the analyses that follow. The
strain increment is decomposed into elastic and transformation
components,

ε̇ij = ε̇eij + ε̇tij. (2)

The elastic deformation is isotropic and related to the stress
increment by

σ̇ij = Cijkl(ε̇kl − ε̇tkl), (3)

and is enclosed by a transformation surface that obeys kinematic
hardening defined by

Φ =
3
2
(sij − sBij)(sij − sBij) − σ 2

o = 0; (4)

where sij and sBij are the deviatoric components of stress and back
tress, and σo represents the size of the transformation surface.
he transformation strain follows an associated flow rule and the



K. Kazinakis, S. Kyriakides and C.M. Landis Extreme Mechanics Letters 53 (2022) 101689
Fig. 2. (a) Axial and hoop stress–average strain responses recorded in an equibiaxial experiment on pseudoelastic NiTi, and (b) corresponding sequences of full-field
DIC strain contours [5].
Fig. 3. The geometry and finite element mesh of the model tube used in the
analysis.

back stress is derived from a potential as follows

σ B
ij =

∂ψ t

∂εtij
. (5)

The tension/compression asymmetry is introduced through the
following representation of this potential

ψ t
= ξψ t (εt ) + (1 − ξ )ψ t (εt ), (6)
c e t e

3

where ψ t
c and ψ t

t are calibrated to the measured uniaxial com-
pression and tension stress–transformation strain responses; εte
is an ‘‘equivalent’’ transformation strain and ξ ∈ [0, 1] a weight
function. Jiang et al. [10] adopted the following definition of the
equivalent strain

εte = J ′2f (J
′

r ), J ′r = J ′3/J
′

2, (7)

where f (J ′r ) is a scale function and J ′i are the invariants of the
deviatoric transformation strain, et .

Kazinakis et al. [9] introduced anisotropy to the model by two
affine mappings of the transformation strains

ẽt = D1et , ⌢et
= D2et . (8)

The modified invariants and equivalent strain then become:

J̃ ′2 = (2ẽtijẽ
t
ij/3)

1/2,
⌢
J ′

3 = (4⌢e tij
⌢e tjk

⌢e tki/3)
1/3, and

ε̃te = J̃ ′2f (J̃
′

r ), J̃ ′r =
⌢
J ′

3/J
′

2. (9)

The scale function f is chosen as follows:

f
(
J̃ ′r

)
= cos{cos−1

[1 − a(J̃ ′r
3
+ 1)]/c}, (10)

with parameters a = 0.736 and c = 2.026. Here J̃ ′r = 1 represents
˜′
uniaxial extension (f = 1) and Jr = −1 uniaxial contraction (f =
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.525). The weight function ξ is also selected to be a function of
′̃
r as follows:

=
f (J̃ ′r ) − f (1)
f (−1) − f (1)

, (11)

which facilitates the generalization of (6) to multiaxial states.
The form of the mappings Di expressed in Voigt notation is as

follows:

Di =

[
Ai 0

0 I

]
, where Ai =

⎡⎢⎣1 0 0

0 Ai 1 − Ai

0 1 − Ai Ai

⎤⎥⎦ , i = 1, 2.

(12)

This single parameter mapping ensures that et11 remains un-
changed, imposes transverse anisotropy and incompressibility to
the transformation strains, while the shear strains remain un-
changed. For added flexibility, the two invariants are mapped
with different parameters: A1 for J̃ ′2 and A2 for

⌢
J ′

3 (see Appendix
B of Kazinakis et al. [9]). The back stress (5) is then written as:

σ B
ij = ξ

dψ t
c

dε̃te

∂ε̃te

∂εtij
+ (1 − ξ )

dψ t
t

dε̃te

∂ε̃te

∂εtij
+ ξ ′(ψ t

c − ψ t
t )
∂ J̃ ′r
∂εtij

,where

ξ ′
≡
∂ξ

∂ J̃ ′r
. (13)

Reduction to uniaxial stresses in the axial direction results in:

σ11t − f (1)
dψ t

t

dε̃te
= σo and |σ11c | − f (−1)

dψ t
c

dε̃te
= σo. (14)

The uniaxial back stresses in the other two directions are influ-
enced by scaling and anisotropy and they become

σ B
22t = σ B

33t =

[
ξ (β)

dψ t
c

dε̃te
+ (1 − ξ (β))

dψ t
t

dε̃te

]
γ f (β), (15a)

σ B
22c

⏐⏐ =
⏐⏐σ B

33c

⏐⏐ =

[
ξ (−β)

dψ t
c

dε̃te
+ (1 − ξ (−β))

dψ t
t

dε̃te

]
γ f (−β),

(15b)

here β = [(9A2
2 − 9A2 + 2)/2]1/3 and γ = (3A2

1 − 3A1 + 1)1/2.
The back stress potentials ψ t

c and ψ t
t are each calibrated to

he compressive and tensile stress–average strain responses of
he material as outlined in Appendix A. Fig. 4a compares the mea-
ured and fitted responses in the axial direction. The compressive
it replicates the monotonic character of the response measured
n the experiment. The tensile fit exhibits softening branches that
pan the upper and lower stress plateau of the measured response
f localization (see [14]).
The values of the anisotropy parameters {β, γ } = {0.8909,

.8266} were found to produce a reasonable compromise be-
ween the measured levels of the transformation stresses and
he extents of the transformation strains for a range of biaxiality
tress states (see Appendix B of Kazinakis et al. [9]). The effect
f the introduced anisotropy is prominently displayed in the
niaxial response in the hoop direction (Fig. 4b). The measured
ensile response exhibited localized deformation patterns sim-
lar to those in the axial direction but with the extent of the
ransformation strain reduced. Accordingly, the up-down-up fit
xtends to a smaller strain than in the axial case, but still overesti-
ates the experimental value to some degree. The corresponding
ompressive response is monotonic but with reduced hardening
lopes, occurs at lower stress levels, and extends to larger strain
han the corresponding axial response.
4

Fig. 4. (a) The axial direction tensile and compressive responses used in the
analysis (solid lines) and the corresponding measured ones (dashed lines). The
compressive is monotonic while the tensile one exhibits softening branches
that span the experimental stress plateaus. (b) The hoop direction tensile and
compressive responses adopted.

3. Analysis of the equibiaxial stress case

Kazinakis et al. [9] used the analysis outlined above to sim-
ulate the whole set of biaxial experiments reported in [5]. The
calculated responses and deformation patterns were compared
to the experimental results and the overall performance of the
analysis was found to be reasonably good. The anisotropy adopted
enabled good reproduction of the stress levels of the hysteretic
responses. For axially dominant stress paths (α > 1.2), the strain
extents of the predicted responses were close to the measured
values and the induced helical localization patterns compared
well to those of the experiments. For hoop stress dominant paths
(α < 0.85), the deformation patterns were also captured well
but the strain extents of the stress plateaus were over-predicted
by different degrees. This deviation is associated with the over-
prediction of the transformation strain observed in the pure hoop
stress case in Fig. 4b, which was used in the calibration process.

Case I: Tension/Compression Asymmetry and Anisotropy
The results of the simulation for the equibiaxial case using

all features of the constitutive model, summarized in the first
rows of Tables 1a and 1b, are shown in Fig. 5. Fig. 5a plots
the axial and hoop stress–average strain responses together with
the corresponding experimental ones, and Fig. 5b presents ten
deformed configurations of the model tube with the axial and
hoop strains superimposed separately. The two responses are
monotonic with smooth transitions at the nucleation of transfor-
mation. The transformation stress of about 625 MPa is close to
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Table 1a
Model parameters for different transformation features.
Model Anisotropy Di Scale Funct. f Weight Funct. ξ Back stress σ B

ij Equiv. Strain εte

Asym. + Aniso. Di =

[
Ai 0

0 I

]
f ∈ [f (1), f (−1)] ξ (J̃

′

r ) =
f (J̃

′

r ) − f (1)
f (−1) − f (1)

σ B
ij = ξ

dψ t
c

dε̃te

∂ε̃te

∂εtij
+ (1 − ξ )

dψ t
t

dε̃te

∂ε̃te

∂εtij
+ (ψ t

c − ψ t
t )
∂ξ

∂ J̃ ′r

∂ J̃
′

r

∂εtij
ε̃te = J̃ ′2f (J̃ ′r )

Asym. Di =

[
I 0

0 I

]
f ∈ [f (1), f (−1)] ξ (J ′r ) =

f (J ′r ) − f (1)
f (−1) − f (1)

σ B
ij = ξ

dψ t
c

dεte

∂εte

∂εtij
+ (1 − ξ )

dψ t
t

dεte

∂εte

∂εtij
+ (ψ t

c − ψ t
t )
∂ξ

∂ J ′r

∂ J ′r
∂εtij

εte = J ′2f (J
′
r )

Sym. C Di =

[
I 0

0 I

]
f = f (−1) ≡ 1 ξ = 1 σ B

ij =
dψ t

c

dεte

∂εte

∂εtij
εte = J ′2f (−1)

Sym. T Di =

[
I 0

0 I

]
f = f (1) = 0.525 ξ = 0 σ B

ij =
dψ t

t

dεte

∂εte

∂εtij
εte = J ′2f (1)
Table 1b
Model parameters for different transformation features for equibiaxial stress.
Model Anisotropy {β ,γ } Scale Funct. f Weight Funct. ξ Back stress σ B

ij Equiv. Strain εte

Asym. + Aniso. {0.891,0.827} f = f (−β) < f (−1) ξ = ξ (−β) < 1 σ B
x = σ B

θ =

(
ξ (−β)

dψ t
c

dε̃te
+ (1 − ξ (−β))

dψ t
t

dε̃te

)
γ f (−β) ε̃te = 2γ εtof (−β)

Asym. {1,1} f = f (−1) ≡ 1 ξ = 1 σ B
x = σ B

θ = f (−1)
dψ t

c

dε̃te
εte = 2εtof (−1)

Sym. C {1,1} f = f (−1) ≡ 1 ξ = 1 σ B
x = σ B

0 = f (−1)
dψ t

c

dεte
εte = 2εtof (−1)

Sym. T {1,1} f = f (1) = 0.525 ξ = 0 σ B
x = σ B

θ = f (1)
dψ t

t

dεte
εte = 2εtof (1)
2

s
b
e

o
t
m
t
i
r
t
H
b
s
t
t

C
R

c
s
w
e
t
f
a
r

the experimental value. By the completion of transformation, the
stresses increase to about 660 MPa, a smaller increase than in the
experiment, which exhibited higher hardening. As a consequence
of the anisotropy adopted, the equibiaxial stresses are mainly
influenced by the compressive potential (see first row of Table 1b;
ξ = 0.885). Although the influence of the tensile potential is
smaller, it has the effect of lowering the stress level and reducing
the hardening slope. The anisotropy also makes the strain extents
in the two directions different as was the case in the experiment.
The extent of the axial hysteresis is reproduced well while that of
the hoop response is longer but still overestimated. Transforma-
tion nucleates at the thickness depression on the right between
stations 1⃝ and 2⃝ and features weak localized patterns that are
ormal to the axis of the tube. Unlike the sharp discontinuities
n deformation exhibited by biaxiality ratios other than 1.0, here
he front is diffuse extending over a length of about 1.5 tube
iameters (Fig. 20 of Kazinakis et al. [9]). On unloading, the
ube deforms uniformly up to station 7⃝. Subsequently, mild and
diffuse localized deformation nucleates on the left without regis-
tering on the responses. The front is again orthogonal to the axis
of the tube. It is interesting to observe that the deformation pro-
files in Fig. 2 show also mild inhomogeneity during loading and
unloading but with diffuse features oriented along the axis of the
tube. A more detailed presentation of the evolution of localization
is provided by the video: Video_EquiBiax_Asym+Aniso.mov.

Case II: Isotropic Tension/Compression Asymmetry
We now consider the performance of the analysis in the ab-

sence of anisotropy. In this case, the formulation reverts back
to that of Jiang et al. [10] with the equivalent strain and strain
invariants of Eq. (7) and the other variables listed in the second
row of Table 1a. The formulation implies that for the biaxiality
ratios other than α = 1, the calculated results would be influ-
enced by both the partially softening tensile response and the
5

hardening one in compression in Fig. 4a. Consequently, the pre-
dictions exhibit localization that varies with α and stress–strain
responses that differ from those measured. The equibiaxial stress
state, however, is an exception. Because of isotropy, the diagonal
strain tensor is εt

= εto(1, 1,−2)T . The invariants become: J ′2 =

εto, J
′

3 = −2εto and J ′r = −1, and therefore f = f (−1) ≡ 1,
ξ = 1 and ψ t

= ψ t
c , and the back stresses take the values in the

econd row of Table 1b. Or in words, for this stress state the two
ack stresses and transformation strains coincide and are based
xclusively on the uniaxial compressive response.
Adopting this constitutive model in the finite element analysis

f the equibiaxial case produces the results in Fig. 6. Fig. 6a plots
he responses calculated for the two directions together with the
easured ones, and Fig. 6b presents ten deformed configura-

ions with the axial strain superimposed. The two responses are
dentical exhibiting the monotonic character of the compressive
esponse. The transformation stress is significantly higher, with
he stress knee matching the level of the uniaxial compression.
owever, the predicted hystereses extend to a strain that lies
etween those measured in the axial and hoop responses. More
trikingly, as illustrated by the sequence of deformed configura-
ions, the model tube transforms entirely uniformly throughout
he load/unload history.

ase III: Symmetric Model Based on the Compressive Axial
esponse
The constitutive model is now further specialized to isotropi-

ally transforming materials with the same tensile and compres-
ive uniaxial behavior. We first consider a symmetric material
ith the compressive hardening response in Fig. 4a. In the mod-
ling framework presented, this can be achieved by assigning
he weight function ξ in Eq. (6) the value of 1, and setting

= f (−1) = 1. This makes the σ B
ij strictly dependent on ψ t

c
s depicted in the third row of Table 1a, and εte = J ′2. As a
esult, the model tubes would deform uniformly for all biaxial
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Fig. 5. (a) Stress–average strain responses for equibiaxial loading calculated using the tension/compression asymmetry and anisotropy in the constitutive model,
ogether with the experimental ones. (b) Sequences of calculated axial and hoop strain contours corresponding to the numbered bullets marked on the responses.
oadings, and trace hardening hystereses. For the special case of
x = σθ , the main variables take the form listed in the third row
f Table 1b, which, not surprisingly, are the same as those of the
symmetric constitutive model specialized to this loading (second
ow of Table 1b). Hence, for equibiaxial loading the responses and
eformation profiles in Fig. 6 hold also for this constitutive model.

ase IV: Symmetric Model Based on the Tensile Axial Response
Conversely, the symmetric constitutive model can be cali-

rated to the partially softening tensile response in Fig. 4a. This
s accomplished by assigning the weight function ξ the value
0, which makes σ B

ij strictly a function of ψ t
t as shown in the

fourth row of Table 1a (note that the equivalent strain becomes
εte = J ′2f (1)). For this model, the dual up-down-up material
behavior governs the tube responses for all biaxial loadings con-
sidered leading to closed hystereses with stress plateaus and
inhomogeneous deformations.

Specializing the constitutive model to the equibiaxial stress
state, reduces the main parameters to those in the fourth row
of Table 1b. The results of the finite element analysis of a tube
loaded under equibiaxial stress are presented in Fig. 7. The cal-
culated stress–average strain responses appear in Fig. 7a and a
6

set of 16 deformed configurations of the tube with the axial
strain superimposed in Fig. 7b. The stresses trace identical closed
hystereses with strains extending to nearly 3.5%, which is about
one half of the uniaxial transformation strain – a result of the
biaxiality. The responses are characterized by stress plateaus
during both the forward and reverse transformation. The levels
of the two plateaus are significantly lower than those of the
measured responses, which in addition exhibited hardening. The
most remarkable difference, however, is that for this material
model the deformation is strongly inhomogeneous.

Initially, the stresses trace a stiff and stable branch to a local
load maximum (station 1⃝). Transformation nucleates as a nar-
row, nearly circular band of strain of about 3.5% at the site of the
small thickness depression on the right. Nucleation leads to sharp
drops in the stresses to a plateau of about 465 MPa. As additional
volume of fluid is incrementally added to the cavity, the band
of higher strain propagates to the right with a nearly circular
front orthogonal to the axis of the tube gradually consuming the
relatively undeformed section (images 2⃝ to just before 8⃝). The
small stress oscillations on the plateau are due to the alignment
of the planar band with the mesh. The transformation of the
last sliver of untransformed material on the left end leads to a
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Fig. 6. (a) Stress–average strain responses for equibiaxial loading calculated
using the tension/compression asymmetry and isotropy in the constitutive
model, and the experimental responses. (b) Sequence of calculated axial strain
contours corresponding to the numbered bullets marked on the responses.

small stress valley and subsequently the whole tube is uniformly
deformed as it enters the hardening branch of the underlying
response in Fig. 4a.

The transformed material unloads homogeneously along a stiff
ranch down to a stress of 172 MPa when the lower strain phase
ucleates at the right boundary of the tube. It quickly morphs
nto a planar band of about 0.25% strain that is again orthogonal
o the axis of the tube. As the volume of fluid inside the cavity
s reduced, the relatively sharp front propagates to the right with
he stress tracing a plateau of about 235 MPa with similar small
scillations. The last sliver of higher strain material on the left end
ransforms with a small increase in stress at station 16⃝. A more
etailed presentation of the evolution of localization is provided
y the video: Video_EquiBiax_SymTens.mov.

. Concluding remarks

The well-known tension/compression asymmetry exhibited by
early equiatomic NiTi has been previously modeled using a sin-
le surface to describe both the forward and reverse transforma-
ion, and by representing uniaxial compression with a hardening
7

Fig. 7. (a) Stress–average strain responses for equibiaxial loading calculated
using the symmetric and isotropic constitutive model calibrated to the axial
tensile stress–strain behavior, and the experimental responses. (b) Sequence of
calculated axial strain contours corresponding to the numbered bullets marked
on the responses.

potential and uniaxial tension with a partially softening one. The
two potentials are weighted by a function of the transformation
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train. To simulate biaxial stress states, Kazinakis et al. [9] ex-
ended the constitutive model to include anisotropy, which was
hown necessary for successful simulation of combined internal
ressure–axial force experimental results over a range of biaxial-
ty ratios. This letter uses the case of a NiTi tube under equal axial
nd hoop stress to demonstrate how the tension/compression
symmetry and anisotropy individually and jointly affect its re-
ponse and the associated localized deformation patterns.
The measured equibiaxial stress–average strain responses ex-

ibit nearly monotonic hystereses and extremely mild homo-
eneous deformations, but with the hoop transformation strain
early double that in the axial direction. For this stress state,
hen the asymmetric constitutive model is isotropic, the influ-
nce of the uniaxial tensile behavior is removed, and the calcu-
ated responses are strictly governed by the compressive one. The
oop and axial hystereses coincide, exhibit much higher trans-
ormation stresses, more pronounced hardening, and transforma-
ion strains that lie between those measured. When anisotropy
s added to the model, the analysis produces monotonic hys-
ereses with transformation stresses down to the level of the
easured ones, matches the strain extent of the axial response,
nd overpredicts the hoop strain to some extent. The hardening
s somewhat lower than that of the experiment, which allows a
eak, diffuse front of localized deformation to develop.
In the absence of the tension/compression asymmetry and

nisotropy in the constitutive model, the calculated responses
epend on the uniaxial material response to which the model
alibrated. When calibrated to the stable compressive stress–
train response, the analysis produces hardening responses and
omogeneous deformation for all biaxial stress states. For the
quibiaxial stress, the results are identical to those of the isotropic
symmetric model. By contrast, when calibrated to the partially
nstable tensile stress–strain response, the analysis generates
tress plateaus with inhomogeneous deformation of helical bands
or all biaxial stress states. For the equibiaxial stress state, the ax-
al and hoop stress–average strain responses are again the same,
nd transformation leads to the coexistence of two deformation
egimes separated by a front that is orthogonal to the axis of the
ube.

The study demonstrates that the behavior of NiTi under biaxial
tress states requires proper modeling of the tension/compression
symmetry as well as any inherent anisotropy.
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ppendix A. Constitutive model calibration

The back stress potentials ψ t
c and ψ t

t are respectively cal-

brated for best fitting of the compressive and tensile stress–

8

average strain responses using the following expression:
dψ t

ct

dε̃te
= h0ε̃

t
e + (h1 − h0)

[
ε̃te −

1
b
(1 − e−bε̃te )

]
+(h2 − h1)(ε2 − ε1)

×

⎧⎪⎨⎪⎩
0 ε̃te ≤ ε1

(2.5ζ 4 − 3ζ 5 + ζ 6) ε1 ≤ ε̃te ≤ ε2

0.5 + ζ ε2 ≤ ε̃te

, (A.1)

here ζ = (ε̃te − ε2)/(ε2 − ε1) and {b, h0, h1, h2, ε1, ε2} are fitting
arameters listed in Table A.1.

Table A.1
Model parameters for axial tensile and compressive responses.
Model E

GPa
ν σo

MPa
b h0

GPa
h1
GPa

h2
GPa

ε1
%

ε2
%

Tens. 66.3 0.425 110.3 2500 2137 −11.4 1534 3.0 3.4
Comp. 66.3 0.425 110.3 2500 1534 2.78 1534 3.0 3.4

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.eml.2022.101689.
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