Desynchronous Learning in a Physics-Driven Learning Network

J. F. Wycoff, S. Dillavou, M. Stern, A. J. Liu, and D. J. Durian
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA 19104
(*dillavou@upenn.edu)

(Dated: December 1, 2022)

In a neuron network, synapses update individually using local information, allowing for entirely decentralized
learning. In contrast, elements in an artificial neural network (ANN) are typically updated simultaneously using
a central processor. Here we investigate the feasibility and effect of desynchronous learning in a recently intro-
duced decentralized, physics-driven learning network. We show that desynchronizing the learning process does
not degrade performance for a variety of tasks in an idealized simulation. In experiment, desynchronization
actually improves performance by allowing the system to better explore the discretized state space of solu-
tions. We draw an analogy between desynchronization and mini-batching in stochastic gradient descent, and
show that they have similar effects on the learning process. Desynchronizing the learning process establishes
physics-driven learning networks as truly fully distributed learning machines, promoting better performance and

scalability in deployment.

INTRODUCTION

Learning is a special case of memory [1, 2], where the goal
is to encode targeted functional responses in a network [3—
6]. Artificial Neural Networks (ANNs) are complex func-
tions designed to achieve such targeted responses. These net-
works are trained by using gradient descent on a cost func-
tion, which evolves the system’s parameters until a local min-
imum is found [7, 8]. Typically, this algorithm is modified
such that subsections (batches) of data are used at each train-
ing step, effectively adding noise to the gradient calculation,
known as Stochastic Gradient Descent (SGD) [9]. This algo-
rithm produces more generalizable results [10-12], i.e. better
retention of the underlying features of the data set, by allow-
ing the system to escape non-optimal fixed points [13, 14].
This is reminiscent of noise-improving memory retention in
physical systems such as sheared suspensions [15-17], where
noise prevents the system from settling into equilibrium states
where history-dependence is lost.

Recent work [18] has demonstrated the feasibility of en-
tirely distributed, physics-driven learning in self-adjusting re-
sistor networks. This system operates using Coupled Learn-
ing [19], a theoretical framework for training physical systems
using local rules [20-22] and physical processes [23-25] in
lieu of gradient descent and a central processor. Because of its
distributed nature, this system scales in speed and efficiency
far better than ANNs and is robust to damage, and may one
day be a useful platform for machine learning applications, or
robust smart sensors. However, just like computational ma-
chine learning algorithms, this system (as well as other pro-
posed distributed machine learning systems e.g. [26, 27]) re-
lies on a global synchronization of the learning rule, such that
all elements change their resistance simultaneously. In con-
trast, the elements of the brain (neurons and synapses) evolve
independently [28, 29], suggesting that global synchroniza-
tion is not required for effective learning. Desynchronizing
the updates in machine learning is a largely unexplored topic,
as doing so would be computationally inefficient. However in
a distributed system such as the brain or self-adjusting resistor
networks, it is the less restrictive modality [30], removing the
need for a global communication across the network.

Here we demonstrate that desynchronous implementation
of coupled learning is effective in self-adjusting resistor net-
works, in both simulation and experiment. Furthermore, we
show that desynchronous learning can actually improve per-
formance by allowing the system to evolve indefinitely, escap-
ing local minima. We draw a direct analogy between stochas-
tic gradient descent and desynchronous learning, and show
they have similar effects on the learning degrees of freedom
in our system. Thus we are able to remove the final vestige of
non-locality from our physics-driven learning network, mov-
ing it closer to biological implementations of learning. The
ability to learn with entirely independent learning elements is
expected to greatly improve the scalability of such physical
learning systems.

COUPLED LEARNING

Coupled learning [19] is a theoretical framework similar
to Equilibrium Propagation [26, 27] that specifies evolution
equations that enable supervised, contrastive learning in phys-
ical networks. In the case of a resistor network, inputs and
outputs are applied and measured voltages at designated nodes
of the network, and the edges self-modify their resistance ac-
cording to local rules. The learning algorithm is as follows:
Input and output nodes are selected, and a set of inputs from
the training set is applied as voltages on the input nodes, cre-
ating the ‘free’ response of the network. Using the measured
outputs from this state VFO , the output nodes are then clamped
at voltages V¢ given by

Ve =nVP+(1-n)Vf (1)

where VP are the desired output voltages for this training ex-
ample, and 0 < 1 < 1 is an adjustable global parameter (‘“hy-
per parameter") that controls the strength of the nudge towards
the clamped state. Thus, the output nodes are held at values
closer to the desired outputs. When 11 < 1 this algorithm ap-
proaches gradient descent on a cost function [19]. This gen-
erates the ‘clamped’ response of the network. The voltage
drop across each edge in the free AV and clamped AViC states

v X 0]
It ®——) X 10 Desynchronous E

Inputs _ N/, 10714 p=0.1
-2] 9,,0.2
5 10 N\, 0.3
—4] e, . 0.6 Synchronous
. Ground B 10 7\1 1 0.7
u ~0O 8 10754 1N, "' 0.8 l
%) 0.9
/ Outputs VARS 1076 1 N\l 1.0
x N § I I\l !
» A—\ 1077 4 |\.
10-8 Simulation I
143 Edge Network 0 4000 8000 12000 16000 20000

(Training Steps) * p

FIG. 1. Coupled Learning is Successful Without Synchronous
Updates (A) Simulated 143 edge coupled learning network. (B) Test
set scaled error (error/error(t = 0)) curves averaged over 50 distinct
2-input 2-output regression tasks as a function of training steps times
update probability p. This x-axis scaling collapses the curves as each
training step causes 143p edge updates, on average, proportionally
changing the learning rate. Colors denote differing values of p rang-
ing from 0.1 to 1. Error bars at the terminus of each curve denote
range of final error values for a given p when run for 20000 steps.

then determine the coupled learning rule for changing the re-
sistance of that edge:

Ok = o (AVET — V) @
where R; is the resistance of that edge and 7y is a hyper pa-
rameter that determines the learning rate of the system. In
effect, this local learning rule lowers the power dissipation of
the clamped state relative to the free state, nudging the en-
tire system towards the (by definition) better clamped outputs.
The system is then shown a new training example, and the
process is repeated, iteratively improving the performance of
the free state outputs. When a test set is given to the network
to check its performance (by applying the input voltages ap-
propriately) errors are calculated via the difference between
the free state outputs and the desired outputs. A more detailed
description of coupled learning is given in previous work [19].

In the above algorithm, it is implicitly assumed that all
edges update at the same time. Here we relax this assump-
tion, modifying the learning rule Eq. (2) with a probabilistic
element:

OR; with probability p
0 otherwise

ARi(p) = { 3)

where 0 < p < 1 is the update probability and p = 1 recovers
synchronized coupled learning. This modification, especially
for low p, fundamentally changes how the system updates.
Individual edges may spend long periods entirely static, while
the system evolves around them, completely ignoring large
changes along the ways; that is, learning is desynchronized.
Using simulations of coupled learning, per Ref. [19] but
now with desynchronized updates, we find that the learning
process is not hampered. In fact, the error as a function
of training steps times p consistently collapses for all val-
ues of p for a variety of tasks and networks, as shown for
a typical example in Fig. 1. This collapse occurs regardless

of choice of hyper parameters 1 (nudge amplitude) and y
(learning rate). Notably, when updates become more desyn-
chronous (decreasing p) solutions increasingly drift in resis-
tance space from those found for synchronous learning (to be
shown below in Fig. 2A). These behaviors suggest that desyn-
chronization may aid in exploring an under-constrained resis-
tance space, much like stochastic gradient descent (SGD) in
machine learning, a connection we now formalize mathemat-
ically.

COMPARISON TO STOCHASTIC GRADIENT DESCENT

In computational machine learning, artificial neural net-
works can be trained using batch gradient descent. In this
algorithm, the entire set of training data is run through the
network, and a global gradient is taken with respect to each
weight in the network, averaged over the training set. The
weights are then modified based on this gradient until a lo-
cal minimum is found. In practice, this method is inefficient
at best and intractable at worst [31]. A typical modifica-
tion to this algorithm is known as stochastic gradient descent
(SGD), where instead of the entire training set, a randomly se-
lected subset of training examples (mini-batch) is used to cal-
culate the gradient at each training step [9]. This effectively
adds noise to the gradient calculation, speeds processing, and
boosts overall performance by allowing the system to contin-
ually evolve, escaping from local minima in the global cost
function. Stochastic gradient descent has been shown to im-
prove learning performance in different settings, specifically
in obtaining lower generalization (test) errors compared to full
batch gradient descent. It is therefore argued that SGD per-
forms implicit regularization during training, finding minima
in the cost landscape that are more likely to generalize to un-
seen input examples [11].

This can be more clearly understood by describing training
of a neural network as gradient descent dynamics of the learn-
ing degrees of freedom w (edge weights in a neural network)
with an additional diffusion term, following Chaudhari et al.
[11]. We define b as the fraction of training data points used
in a mini-batch. Full-batch (b = 1) training simply minimizes
the cost function C(w), and thus the dynamics may be written
as

yldin(t) = —V,,C(w)dt)

which yields solutions wj_, that are minima of the cost func-
tion. When mini-batching, an additional diffusion term is
added to the dynamics,

—V,,C(W)dt + 1/ 2y(bB)~'D(%)dW (¢)

D(W) = [B™' L VuGi @V, C] = VuC®V,.C

Y aw(r)
)

where the diffusion matrix D(w) is defined by outer prod-
ucts of the individual training example gradients, B is the to-
tal number of training examples, and dW is a Wiener process
(random walk). These dynamics converge to critical points w;,

| #Bothil—p=1-b E | #Both:1-p=1-b
10719 Desync: 1-p 107" @®Desync: 1 -p
ASGD:1-b ASGD:1-5, o ¢
ot
\7.13
10724 10724 R-0~P -
< < O
g pR //t < 3 “‘
Y. S R R A
1031 e ‘A“““ 10734 A aat
7 A A
10-2 10 10° 10 10°

1-(Update Probability) 1-(Update Fraction)

FIG. 2. Desynchronous Learning Behaves Like Stochastic Gra-
dient Descent (A) Distance in continuous resistor space from syn-
chronized, full-batched solution as a function of 1 — p for a 16-edge
simulated, continuous network. Each data point represents an av-
erage over 50 regression tasks, each with 2 inputs and 2 outputs.
Note mini-batching (stochastic gradient descent) and desynchroniza-
tion generate the same power law, as does their combined effect. The
vertical shift results from an effective learning rate difference. (B)
Same as (A) but with constant number of edges updating or batch
size (or both) at each training step.

that are different from the minima of the cost function, wj_,
by a factor that scales with the fraction of data points not in-
cluded in each batch (1 — b). This difference is the hallmark
of regularization, in this case performed implicitly by SGD.

In coupled learning, the desynchronization of edge updates
is expected to yield a similar effect. Instead of having different
training examples, learning stochastically uses the gradient at
independent edges. Therefore we can define an effective dif-
fusion matrix for desynchronous coupled learning by

fDeff(R):[N71;Mi®Mi]—Aﬁ®Aﬁ 6)

where N is the total number of edges. Note the similar form
to the second line of Eq. (5). With this definition, the analogy
of desynchronous coupled learning and SGD is clear, with the
edge update probability p playing the role of the batch fraction
b, and thus we expect similar results for the two methods. We
verify the analogy between desynchronous coupled learning
and SGD in simulation.

For simulations with continuously variable resistors, we ob-
serve no change in final error when learning is desynchro-
nized. This is consistent with expectations from SGD when
tasks have large, multi-dimensional zero-error basins that are
always found by the system. However, the analogy between
SGD and desynchronization can still be explored by observ-
ing the solutions in resistor space. As a base case, we simulate
a N = 16 edge network (the same structure we will use in our
experimental setup) using the original coupled learning rule
(Eq. 2) with a full batch to solve a regression task with B =16
training examples. That is for a given edge i,

B B
Y
AR; = j:ZlARij - ,:Zl R? (Vi —[avil)

where j is the index of the training example, summed over all
B = 16 elements of the training set. This is an entirely deter-
ministic algorithm, given initial conditions of R;, and thus a

good basis for comparison. Then we compare two forms of
stochasticity, randomly choosing edges (desynchronization)
and randomly choosing training examples (SGD). With prob-
ability p we update edges (i), and with probability b we in-
clude each training example in the sum (j). For b =1 we
use a full batch, and for p = 1 we update every edge syn-
chronously. Coupled learning as described in previous work
[18, 19] used p =1 and b < 1 (a single training data point
at a time). Decreasing p (desynchronizing) and decreasing
b (stochastic mini-batching) do not meaningfully change the
final error of the network’s solutions in continuous coupled
learning, but do find different solutions than the full-batch
synchronous case. In fact, we find they have the same rela-
tionships to the fully deterministic solutions,

b=1: L(Rp=1.Rp)~1-p** ®

p=1: L(Rb=1.80)) ~(1-b> ©

Enforcing p = b also gives the same power law, all seen in
Fig. 2(A). We may also enforce a randomly selected but con-
sistent fraction of edges (p) or of the training set (D) to be
updated/included for each training step. This is the standard
means of mini-batching in SGD, as mentioned previously.
We find similar parallels between desynchronous and mini-
batched learning in this condition, as seen in Fig. 2(B). The
overall multiplicative factor separating the data can be ex-
plained by SGD and the desynchronous learning rule having a
different effective learning rate. Matching these effective rates
collapses all data in Fig. 2(A) and (B).

This robust analogy between desynchronization and SGD
suggests that in a system with a more disconnected cost land-
scape, we should expect error improvements when desynchro-
nizing coupled learning. We now turn to such a system, our
experimental realization of a 16-edge network, where the re-
sistor values are discretized, which decreases the number of
degrees of freedom and prevents the system from settling into
a minimum of exactly zero. As we will show, the experimen-
tal system successfully learns in the desynchronized regime,
in some cases improving upon the synchronized solutions.
Desynchronization thus allows a substantial simplification for
implementation, especially in large networks, by removing the
requirement for simultaneous updates across the entire sys-
tem.

EXPERIMENTAL (DISCRETE) COUPLED LEARNING

We test desynchronous updates in an experimental realiza-
tion of coupled learning. In recent work [18], coupled learn-
ing was first implemented in a physical system. In this sys-
tem, contrastive learning was performed in real time by using
two identical twin networks to access the free and clamped
states of the network simultaneously. The system was robust
to real-world noise, and successfully trained itself to perform
a variety of tasks using a simplified version of the update rule

FIG. 3. Circuitry for Realization of Desynchronous Coupled
Learning. (A) Image of the entire 16-edge network. Edges with
LEDs on are active (updating) on this training step. (B) Diagram of
the oscillator circuit in each edge in (A). A global bias voltage (red)
determines p. Each edge compares the bias against against a local
oscillator signal (green) to determine if its resistance is updated.

that allowed only discrete values of R, specifically

if |AVE AVF

5R,-={+r° iFIAVE| o> AV (10)
—rg otherwise.

Note that we have explicitly added the measured bias of the
comparators ¢, which we find manifests as a random, uni-
formly distributed variable from O to 0.05 V. Previously, each
edge in the network performed this update individually, but
did so all at once, synchronized by a global clock. Here, we
implement this learning rule [32] but incorporate a probabilis-
tic element, such that with probability p each edge updates
according to Eq. (10) on a given training step. Thus, we are
able to tune the system from entirely synchronous (p = 1) to
entirely desynchronous (p < 1).

We implement this probabilistic functionality via separate
circuits housed locally with each twin edge of the network,
shown in Fig. 3(A). This circuit, when triggered by a global
signal, compares its local oscillating voltage signal to a global
‘bias’ voltage, as shown in Fig. 3(B). The components (com-
parators, capacitors, and resistors) used in each implementa-
tion of the oscillator vary slightly, changing the period and
phase of oscillation; thus the signals on each edge rapidly
desynchronize. In experiment, we find a Pearson correlation
between pairs of edges to be consistently of order 0.01 for an
update probability of 50%, indicating that edges are updating
independently. By changing the bias value, we can select a
wide range of values of p for our experimental system.

As with the continuous version of coupled learning, desyn-
chronization does not prohibit the discrete, experimental sys-
tem from learning. In fact, desynchronized learning performs
better on average than synchronous learning for “allosteric”
(fixed input and output) tasks, as apparent in typical error
curves as shown in Fig. 4(A). Why does this stochasticity im-
prove final errors? In short, it is because randomness allows
the network to explore resistance space. Edges continually
evolve when p < 1 (desynchronous), whereas for p = 1 (syn-
chronous), the system may find a local minimum and remain
there indefinitely, as shown by the flat black resistor traces
in Fig. 4(B). The ability to escape minima improves as the
network becomes more desynchronized, leading to improved
final error as p decreases for allosteric tasks in experiment, as

100 1 o - 107t
iscrete Experiment E Discrete Simulation
S 107t Allostery Allostery
w02 1072
© 1073 {p=1.0 2
_4 |p=0.13 w.n-3
n 10 p=0.05 2 10
1075+ - - - - -]
100 1E 0 10-4
_ 80 £
e} B w =1
X 60 1075 g =0.9
& 404 p=02
204 10-6 p = 0.05
0 10° 101

0 25 50 75 100 125 150

of Outputs O
(Training Steps) * p oF Qutputs

-3

10 Discrete Experiment c Discrete Simulation
5 . Allostery . 10724 Regression
g 6x10° +] " e +
w w
B 4x107% ‘ * E 10734 + +
© 3x107 c + +
]) + ++
- -4 © -4 |
g b 2w t
w w

10-4 Synchronous Desynchronous 10-5 Synchronous Desynchronous

00 02 04 06 08 10 00 02 04 06 08 1.0
1-p 1-p

FIG. 4. Desynchronization Improves Discrete Network Solutions
in Experiment and Simulation. (A) Scaled error (error/error(z =
0)) vs training steps scaled by update probability p in experiment
for an allosteric task with 2 inputs and 2 outputs. One typical raw
(faded) and smoothed (color) curve is shown for each of the three
values of p. (B) Three resistor values vs training steps scaled by
update probability from the experiments shown in (A). (C) Scaled
error at the end of training averaged over 25 allosteric tasks each
with 2 inputs and 2 outputs as a function of p. (D) Scaled error at
the end of training for allosteric tasks as a function of number of
outputs O. Each data point is an average over 20 tasks, each with O
outputs, O inputs, and O/2 ground nodes, increasingly constraining
the network as O grows. Note the collapse of curves of varying p
as the task complexity grows. (E) Scaled test set error at the end of
training in simulation averaged over 10 regression tasks with 2 inputs
and 2 outputs. In (D) and (E) the same 143 edge simulated network
from Fig. 1(A) is used with the discrete update rule (Eq. 11).

shown in Fig. 4(C). As tasks become too difficult, the bene-
ficial effects of desynchronization are diminished. For a two-
output, two-input regression task, our 16-edge experimental
network shows no benefit from desynchronization. However,
as we now show in simulation, increasing the size of the net-
work brings learning back into a regime where desynchroniza-
tion confers an advantage.

To test the advantages of desynchronous learning for future
larger realizations, we perform a simulation tailored to match
our experimental system but with more edges. We use the dis-
crete update rule, Eq. (10), limit our resistance values to 128
linearly spaced values and use 6 = U[0,0.05] V (uniformly
sampled between 0 and 0.05 V). As before, to desynchronize
learning we have edges follow the update rule only with prob-
ability p on each training step,

OR; with probability p
0 otherwise

ARi(p) :{ (1)

That is, Eq. (10) performed on each edge with probability p.
The addition of ¢ leads to a tendency for the resistor values to
drift upwards, just like in the experiment, finding lower power

solutions, and putting the resistors in a regime where they can
take smaller steps relative to their magnitude. From simula-
tions of a 143-edge discrete network, we find that as allostery
task complexity (number of both inputs and outputs, O,) in-
creases, the beneficial effects of desynchronous learning di-
minish, as shown in Fig. 4(D). More complex tasks require
more desynchronous (lower p) learning to confer an advan-
tage over synchronous learning. For tasks with enough out-
puts, moderately desynchronous learning yields indistinguish-
able error from synchronous learning, as shown by the overlap
of the blue and black curves on the right of Fig. 4(D).

Unlike the experimental 16-edge network, desynchroniza-
tion does improve the error for our simulated 143-edge learn-
ing a two-input two-output regression task, as shown in
Fig. 4(E). We believe that for such a task, our 16-edge ex-
perimental network is in the ‘too-complex’ regime, whereas
our simulated 143-edge network is not, and therefore shows a
monotonic trend in final error with p.

Linear tasks like allostery and linear regression do not have
local minima when the parameters in the linear kernel are free
to change continuously [33]. In our networks the case is dif-
ferent, as the input-output relationship is always a linear func-
tion, but the linear kernel depends non-linearly on each resis-
tance value, which are themselves the degrees of freedom. As
a result, the cost landscape can have local minima. Even so,
we see no evidence for local (non-zero) minima in our contin-
uous simulations, likely because we have a very large number
of degrees of freedom relative to the number of constraints.
In the discrete case, however, resistor space has fewer degrees
of freedom, leading to more local minima that can trap the
synchronous solution and preventing it from finding a global
optimum. Thus, desynchronizing the edges ultimately helps
find deeper minima in the discrete system (Fig. 4), but not in
the continuous system (Fig. 1) where we find no evidence of
non-zero minima.

DISCUSSION

In this work we have demonstrated the feasibility of learn-
ing without globally synchronized updates in a physics-based
learning network, both with a continuous state space of solu-
tions and a discrete one, in simulation and experiment. In all
cases desynchronizing the learning process does not hamper
the ability of the system to learn, and in the discrete resis-
tor space with many local minima, actually improves learn-
ing outcomes. We have shown that this improvement likely
comes from a behavior analogous to stochastic gradient de-

scent, namely that injecting noise into the learning process al-
lows the system to escape local minima and find better overall
solutions. We have mathematically formalized this analogy
and showed that mini-batching and desynchronization pro-
duce the same scaling of distance in solution space compared
to a fully deterministic (full batch, synchronous) algorithm.

The freedom to avoid global synchronization is an impor-
tant step towards total decentralization of the learning process
in a physical system; it is necessary to make a learning mate-
rial. In this and previous [18] work, the experimental system
is still run via a global clock, and thus requires a one bit com-
munication with every edge to trigger resistor updates. How-
ever, the success at all values of p demonstrates that edges
with entirely self-triggered updates should also function well.
For a larger, less precise, tighter packed, or three-dimensional
learning systems, removing this connection to each edge may
greatly simplify construction. Furthermore, allowing desyn-
chronization opens the door for learning with new types of
systems that cannot be synchronized, such as elements updat-
ing out of equilibrium [34], or that include thermal noise [29]
or other stochastic processes.

In discrete-valued coupled learning, mini-batching alone
(the standard in Coupled Learning) gives inferior results to
mini-batching plus desynchronous updates. This suggests
that in other learning problems with many local minima, in-
cluding in artificial neural networks, desynchronous updates
could benefit the learning process. While we are not aware of
this desynchronization algorithm used in such a way, similar
methods such as dropout [35] have been shown to be benefi-
cial in improving generalizability of solutions [36], similar to
stochastic gradient descent. True desynchronization would be
extremely inefficient in such a system, as then the entire gradi-
ent calculation is necessary for a single edge update. However,
we have shown that benefits can be accrued by only moderate
desynchronization, e.g. 80% update probability, which slows
the learning process proportionately. The true test of the use-
fulness of this algorithm will be in larger, nonlinear networks
solving problems on complex cost landscapes. This is a sub-
ject for future work.

ACKNOWLEDGMENTS

Thanks to Marc Z. Miskin for insightful discussions, in-
cluding on circuit design. This work was supported by the
National Science Foundation via the UPenn MRSEC/DMR-
1720530 (S.D. and D.J.D.) and DMR-2005749 (M.S.) and the
Simons Foundation via Investigator Award 327939 (A.J.L.).

[1] R. G. Crowder, Principles of Learning and Memory: Classic
Edition (Psychology Press, 2014).

[2] J. R. Anderson, Learning and Memory: An Integrated Ap-
proach, 2nd Ed (John Wiley & Sons Inc, Hoboken, NJ, US,
2000) pp. xviii, 487.

[3] J. J. Hopfield, Proceedings of the National Academy of Sci-
ences of the United States of America 79, 2554 (1982).

[4] R. McEliece, E. Posner, E. Rodemich, and S. Venkatesh, IEEE
Transactions on Information Theory 33, 461 (1987).

[5] J. W. Rocks, N. Pashine, 1. Bischofberger, C. P. Goodrich, A. J.
Liu, and S. R. Nagel, Proceedings of the National Academy of
Sciences 114, 2520 (2017).

[6] M. Stern, M. B. Pinson, and A. Murugan, Physical Review X
10, 031044 (2020).

[7] Y. LeCun, Y. Bengio, and G. Hinton, Nature 521, 436 (2015).
[8] P. Mehta, M. Bukov, C.-H. Wang, A. G. Day, C. Richardson,

C. K. Fisher, and D. J. Schwab, Physics Reports 810, 1 (2019).
[9] S. Ruder, arXiv:1609.04747 (2017).

[10] N. S. Keskar and R. Socher, arXiv:1712.07628 (2017).

[11] P. Chaudhari and S. Soatto, in 2018 Information Theory and
Applications Workshop (ITA) (IEEE, San Diego, CA, 2018) pp.
1-10.

[12] S. L. Smith, B. Dherin, D. G. T. Barrett,
arXiv:2101.12176 (2021).

[13] Y. Feng and Y. Tu, Proceedings of the National Academy of
Sciences 118 (2021).

[14] M. Ruiz-Garcia, G. Zhang, S. S. Schoenholz, and A. J. Liu,
arXiv:2102.03793 (2021).

[15] N. C. Keim and S. R. Nagel, Physical Review Letters 107,
010603 (2011).

[16] J. D. Paulsen, N. C. Keim, and S. R. Nagel, Physical Review
Letters 113, 068301 (2014).

[17] N. C. Keim, J. D. Paulsen, Z. Zeravcic, S. Sastry, and S. R.
Nagel, Reviews of Modern Physics 91, 035002 (2019).

[18] S. Dillavou, M. Stern, A. J. Liu, and D. J. Durian,
arXiv:2108.00275 (2021).

[19] M. Stern, D. Hexner, J. W. Rocks, and A. J. Liu, Physical Re-
view X 11, 021045 (2021).

[20] M. Stern, V. Jayaram, and A. Murugan, Nature Communica-
tions 9, 4303 (2018).

[21] M. Stern, C. Arinze, L. Perez, S. E. Palmer, and A. Murugan,
Proceedings of the National Academy of Sciences 117, 14843
(2020).

[22] N. Pashine, Physical Review Materials 5, 065607 (2021).

[23] N. Pashine, D. Hexner, A. J. Liu, and S. R. Nagel, Science
Advances 5, 4215 (2019).

and S. De,

[24] D. Hexner, N. Pashine, A. J. Liu, and S. R. Nagel, Physical
Review Research 2, 043231 (2020).

[25] D. Hexner, A. J. Liu, and S. R. Nagel, Proceedings of the Na-
tional Academy of Sciences 117, 31690 (2020).

[26] B. Scellier and Y. Bengio, Frontiers in Computational Neuro-
science 11 (2017), 10.3389/fncom.2017.00024.

[27] J. Kendall, R. Pantone, K. Manickavasagam, Y. Bengio, and
B. Scellier, arXiv:2006.01981 (2020).

[28] L. E. Abbott and S. B. Nelson, Nature Neuroscience 3, 1178
(2000).

[29] D. Kappel, S. Habenschuss, R. Legenstein, and W. Maass,
PLOS Computational Biology 11, 1004485 (2015).

[30] D. Dolev, J. Y. Halpern, and H. R. Strong, Journal of Computer
and System Sciences 32, 230 (1986).

[31] N. Golmant, N. Vemuri, Z. Yao, V. Feinberg, A. Gho-
lami, K. Rothauge, M. W. Mahoney, and J. Gonzalez,
arXiv:1811.12941 (2018).

[32] Specifically in this work we use comparators and an XOR gate
to evaluate XOR[(AVE > AVF) | (AVE +AVE > 0)].

[33] A. C. Rencher and G. B. Schaalje, Linear Models in Statistics,
2nd ed. (Wiley-Interscience, Hoboken, N.J, 2008).

[34] M. Stern, S. Dillavou, M. Z. Miskin, D. J. Durian, and A. J.
Liu, arXiv:2112.11399 (2021).

[35] In dropout, some fraction of edges in a layer of a neural network
are removed for that training step. This is distinct from desyn-
chronous learning, where all edges are present for calculating
the outputs, but some simply do not update.

[36] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, Journal of Machine Learning Research 15,
1929 (2014).

