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Abstract
Metadata is a key data source for researchers seeking to apply machine learning (ML) to the vast collections of digitized
biological specimens that can be found online. Unfortunately, the associated metadata is often sparse and, at times, erroneous.
This paper extends previous research conducted with the Illinois Natural History Survey (INHS) collection (7244 specimen
images) that uses computational approaches to analyze image quality, and then automatically generates 22metadata properties
representing the image quality and morphological features of the specimens. In the research reported here, we demonstrate
the extension of our initial work to University of the Wisconsin Zoological Museum (UWZM) collection (4155 specimen
images). Further, we enhance our computational methods in four ways: (1) augmenting the training set, (2) applying contrast
enhancement, (3) upscaling small objects, and (4) refining our processing logic. Together these new methods improved our
overall error rates from 4.6 to 1.1%. These enhancements also allowed us to compute an additional set of 17 image-based
metadata properties. The new metadata properties provide supplemental features and information that may also be used to
analyze and classify the fish specimens. Examples of these new features include convex area, eccentricity, perimeter, skew,
etc. The newly refined process further outperforms humans in terms of time and labor cost, as well as accuracy, providing a
novel solution for leveraging digitized specimens with ML. This research demonstrates the ability of computational methods
to enhance the digital library services associated with the tens of thousands of digitized specimens stored in open-access
repositories world-wide by generating accurate and valuable metadata for those repositories.
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1 Introduction

Advances in computing, imaging, and cyberinfrastructure,
along with the growth of digital libraries and repositories,
have allowed many natural history institutions to digitize
their image specimen collections [1]. The National Sci-
ence Foundation’s Advancing Digitization of Biodiversity
Collections (ADBC) program is one exemplary program
supporting the digitization and curation of hundreds of thou-
sands of biological specimens [2]. Digital collections provide
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researchers, educators, students, and the general public with
the capacity to study biological specimens on a scale that was
previously unattainable. In addition, the availability of digi-
tized specimen images allows for the application of machine
learning (ML), which should lead to new scientific discover-
ies.

Although there is increased interest in applying ML to
digitized specimen images, researchers have found that the
potential scientific advances are, unfortunately, hindered by
poor image quality [3]. Poor quality images (e.g. with low
contrast, inadequate lighting, out-of-focus or cluttered visual
arrangements) are unsuitable for automated image analysis
by ML algorithms and lead to inferior computational results.
Image quality problems associated with digitized specimens
are further compounded by poor quality metadata or even
the lack of pertinent metadata. Many natural history collec-
tions use the Darwin Core (DwC) metadata standard, which
includes a core set of 19 descriptive properties [4]. Metadata
for digital images is frequently createdmanually by technical
staff or students and is subject to human error. Addition-
ally, although richer metadata extensions exist and curators
may provide more extensive morphological metadata, it is
too costly to acquire manually.

Despite existing image quality and metadata limitations,
the extensive availability of digitized specimen collections
still offers new opportunities for scientific study. These
challenges have motivated members of Drexel University’s
Metadata Research Center together with Tulane University’s
Biodiversity Research Institute to explore computational
approaches for analyzing fish image quality and extracting
specimen metadata. A key impetus has been engagement of
both teams in the NSF Biology Guided Neural Networks
(BGNN) project, which is developing a novel class of artifi-
cial neural networks that aims to exploit machine readable,
predictive knowledge associatedwith specimen images, phy-
logenies, and anatomical ontologies. Initial research success-
fully demonstrated computational approaches for creating
image quality metadata [5]; and, further, that by combin-
ing ML and image informatics, researchers automatically
determine image quality and metadata, such as fish quantity,
location and orientation, and image scaling based on ruler
identification and measurement [6].

The research reported in this paper extends the methods
reported in Pepper et al. [6], with the aim to increase the accu-
racy and scope of the generatedmetadata. Another key goal is
to demonstrate that our approach is extensible to other spec-
imen image collections, beyond the Illinois Natural History
Survey (INHS) collection analyzed in our first study. Pre-
viously, object detection was performed with five detection
classes (fish, fish eyes, rulers, and the twos and threes found
on rulers) from 7244 INHS images. We have augmented
this dataset to include 4155 images from the University
of Wisconsin Zoological Museum Collection (UWZM) [7].

Additionally,wehave trimmed the INHSdataset to 7013 after
adding some images to the training set, as well as excluding
certain images, resulting in a test set of 11,168 images. Fig-
ure 1 presents typical images used in our study from each
collection.

The enhancement of our computational methods has
produced improved automatic metadata generation results.
These enhancements include augmentation of the training
set, applying contrast enhancement, upscaling small objects
and refinement of our processing logic. Together these new
methods improved our overall error rates from 4.6 to 1.1%.
Procedures for computing additional image-based metadata
properties have also been implemented. These new prop-
erties provide supplemental features and information that
may also be used to analyze and classify the fish specimens.
Examples of these new features include convex_area,
eccentricity, perimeter, skew, etc.

The rest of the paper is organized as the following. Sec-
tion 2 describes relevant previouswork inmetadata for image
specimen collections, metadata generation and fish image
analysis. Section 3 outlines the goals and objectives of our
research. Section 4 describes in detail our computational
methods. Section 5 includes the results of our computational
experiments on two fish image collections, with Sect. 6 pro-
viding a discussion of our results. Section 7 concludes with
comments on possible future extensions for the current work.

2 Related work

2.1 Metadata standards and approaches for natural
history digital image specimen collections

Metadata used in digital image specimen collections sup-
ports resource description access. The Darwin Core (DwC)
[8] and the Audubon Core [9] are two of the most popular
metadata standards applied to digital specimen images. Cura-
tors often use content value standards, such as taxonomies,
geographic codes, and other ontologies, when working with
a descriptive metadata standard. Although these standards
are digitally accessible, the metadata creation task is still pri-
marily a manual, labor-intensive task and prone to human
error. Moreover, image quality metadata is generally absent.
These limitations have become increasingly prevalent as
researchers seek to automatically leverage metadata and dig-
itize specimen images for scientific research, which is an
aim of the BGNN initiative. The biodiversity community has
acknowledged this challenge and advocated for data fitness
standards [10]. This point is also emphasized by Wieczorek
et al. [11] in their report on the variety of DwC metadata
extensions needed tomeet growing community concerns and
requirements, including data quality and fitness. This point is
addressed in detail by Leipzig et al. [5], drawing from Tulane
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Fig. 1 A typical INHS image (left) and a typical UWZM image (right)

University’s manual curation of 22 metadata properties that
characterize digitized specimen image quality, and further
motivates the research reported in this paper.

2.2 Automatic metadata generation

Automatic metadata generation advances covering both
descriptive and technicalmetadata are relevant to the research
presented in this paper. Automatic metadata generation of
descriptive bibliographic data has been a research focus for
close to twenty years [12–15]. Researchers have applied sup-
port vector machine (SVM) approaches [16] and associated
networks to address sparse and incomplete metadata [17],
and various successes are integrated into day-to-day work-
flows. Heidorn, et al. [18] demonstrated the use of optical
character recognition (OCR) to extract specimen informa-
tion from the original typed and often hand-annotated labels
that are digitized along with herbarium collection hold-
ings. The extracted information was encoded in the DwC
metadata associated with the specimen’s digitized rendering.
There has also been some success with extracting descrip-
tive cartographic information from maps [19]. While there’s
been some advances with automatic metadata generation,
the application of these methods for specimen images is still
limited. In an effort to address this limitation, image infor-
matics offers an opportunity to advance metadata generation
approaches by validating existing metadata, and to create
additionalmetadata thatwas previously not recorded by cura-
torial staff.

2.3 Fish image analysis

Image analysis has been utilized to examine and process
images of fish for well over two decades [20,21]. It is an
important application of technology for marine science, for
the seafood industry, in the study of aquatic species, habi-

tats and ecosystems, in the development of automated fish
sorting and grading systems, as well as for fisheries man-
agement. Many of these computational analyses focus on
the recognition and classification of the fish present in an
image. The computational methods employed for fish image
analysis have followed the general trends in the AI field. Hu
et al. [22] presented a method of classifying species of fish
based on color and texture features and a multi-class support
vector machine (MSVM) [23]. Li and Hong [24] computed
eleven shape and color features from fish images and derived
a linear model that could discriminate between four different
fishes. Rodrigues et al. [25] explored several combinations
of feature extractions, input classifiers and clustering algo-
rithms to produce amethod that could distinguish between 10
different types of fish with 92% accuracy. Hernández-Serna
and Jiménez-Segura [26] perform image preprocessing and
extract geometric featureswhich are fed into an artificial neu-
ral network (ANN) to predict the species of fish and other
biological specimens with an accuracy around 90%.

Salman et al. [27] employed a deep Convolution Neural
Networks (CNN) [28] together with classification based on
K-Nearest Neighbor and Support VectorMachines trained on
the features extracted by the CNN. They achieved 90% accu-
racy when identifying 15 different fish species in challenging
underwater digital images. Utilizing texture, anchor points,
and statistical measurements, Alsmadi et al. [29] imple-
mented fish classification through a meta-heuristic algorithm
known as the Memetic Algorithm. They were able to clas-
sify 24 fish families with 90% accuracy. Iqbal et al. [30]
used a modified AlexNet [31] model to classify six different
fish species with 90% accuracy. Yu et al. [32] segment fish
images and measure fish morphological features using Mask
R-CNN. Petrellis [33] employs image processing and deep
learning to calculate a small set of geometric features from
in-the-wild images of fish. Hao et al. [34] provide an excel-
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lent review of fish measurement efforts that utilize machine
vision.

While our efforts are motivated by and build upon previ-
ous work, our work stands apart in that it generates a wider
range of geometric and image features than previous meth-
ods, in order to enrich themetadata for fish image collections.
Most previous work examined and analyzed images of fish
in the wild. Working with the structured images of museum
collections allows us to compute a wider variety of metadata
with higher accuracy.

3 Goals and objectives

Digitized specimens accessible in open-access repositories
provide a rich, extensive data source for ML and scien-
tific discovery. These resources, however, remain largely
untapped due to image quality issues and metadata lim-
itations. Image informatics tools and techniques offer an
opportunity to address this limitation and advance the state
of metadata associated with digital image specimens col-
lections. Moreover, accelerating metadata generation may
facilitate further scientific study in morphology, and related
areas. The overall goal of our work is to develop advance
metadata generation approaches and build on work previ-
ously reported in [6]. The specific aims of the research
presented in this paper are to:

• Demonstrate the generality of our previous work. This is
accomplished through the augmentation of the training
and testing sets from solely INHS images to a combi-
nation of images from the INHS and UWZM specimen
image repositories.

• Optimize the previous property calculations to shorten
computation times.

• Apply various techniques to improve accuracy and
reduce error rates.

• Compute additional geometric properties from the spec-
imens in order expand the features available for down-
stream analysis.

4 Methods

Our initial process for metadata generation can be divided
into three steps: object detection with Facebook’s Detec-
tron2 ML library [35], image processing at the pixel level,
and calculations on the results of the previous steps to deter-
mine higher level metadata properties. We have extended the
computational process with optimizations inmetadata gener-
ation by replacing self-implemented code with more library
calls, as well as further modularization that supports GPU

parallelization. Along with additional geometric computa-
tions and error reduction techniques, our current metadata
generation process has been expanded to:

• Apply contrast enhancement and equalization on the
training and test sets.

• Train a model and perform object detection with Face-
book’sDetectron2ML library (referred to asdetectron).

• Select fish of highest confidence in case of multiple fish
detection.

• Upscale and rerun if fish is detected without an eye.
• Adjust fish mask with pixel-level image processing.
• Compute specific geometric and statistical computations
with skimage and scipy.

• Utilize the results of the previous steps to determine
higher level metadata properties.

4.1 Refined fish collection criteria

Our automated metadata generation methods were devel-
oped for a specific subset of images from both the INHS
and UWZM Fish Collections. Our algorithms are based on
assumptions about the content and structure of the specimen
images. Criteria were specified that define the properties of
acceptable images for analysis. The images used in our study
were evaluated to ensure that they meet these requirements.
The criteria used to select the study images are:

• Must contain a fish (no eels, seashells, butterflies, sea-
horses, snakes, etc).

• Must contain only one of each class (except eyes).
• Specimen body must lie in-plane in a side view.
• Ruler must be consistent and one of two types.
• Fish must not be obscured by another object.
• Whole body of fish must be present (no heads, tails, or
standalone features).

• Fish body must not be folded or have extreme curvature.

Applying these criteria, 216 images from the previous sub-
set of 7244 INHS images were removed from the testing
set. Additionally, 15 images were moved from the test set
and added to the training set, resulting in a testing subset of
7013 images.While the originalUWZMcollection contained
4602 images, after removing 79 images for the training set,
368 images were filtered out based on the criteria, yielding a
testing subset of 4155 images.

4.2 Object detection

A prerequisite task to performing metadata property gener-
ation is finding the specimens (and other relevant objects)
within the collection images. Object detection has been a
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Fig. 2 Initial object detection on a specimen image using Detectron2
[35]

Table 1 Training dataset Class Number of instances

Fish 391

Ruler 1095

Eye 550

Two 194

Three 194

broadly active field of study in recent years, and has resulted
in a number of well-tested, purpose-built architectures. We
elected to use Facebook AI Research’s (FAIR) detectron
tool [35] (specifically its implementation of the Mask R-
CNN architecture) for object detection in our work, given
its many flexible and robust capabilities. Most importantly,
following a review of the literature and available tools, we
determined that there were no other machine learning pack-
ages that returned pixel-by-pixel masks over detected objects
in a comparable fashion.

detectron is built on pytorch [36] and provides a
relatively straightforward method for training on COCO [37]
format datasets. It is able to handle any number of object
classes, and can classify an arbitrary number of objectswithin
a given image. We chose detectron for its relative ease of
use compared to lower level libraries, and its implementation
of powerful architectures developed by FAIR. We use it to
identify five object classes: fish, fish eyes, rulers, and the
numbers two and three on rulers, as shown in Fig. 2. Objects
with a 30% confidence score or higher are maintained for
analysis.

Table 1 lists the number of instances for each class used in
our aggregate training dataset. Tables 2 and 3 show the train-
ing set contributions from the INHS and UWZM datasets
respectively. 500 rulers used in our previous study were
removed from the INHS dataset due to an oversight. These
500 rulers were originally a part of the J.F. Bell Museum of
Natural History (JFBM) dataset [38] , and hence, were not
relevant to our current objective.

Table 2 INHS training dataset Class Number of instances

Fish 312

Ruler 1016

Eye 471

Two 115

Three 115

Table 3 UWZM training
dataset

Class Number of instances

Fish 79

Ruler 79

Eye 79

Two 79

Three 79

All of the training data was labeled by hand using
makesense.ai [39] on images from the INHS [40] and
UWZM [7] Fish Collections. Using detectron’s default
training scheme, the model was trained for 15,000 epochs.
Testing has shown that this default number of epochs pro-
vides optimal object detection results.All instance typeswere
included in a single object detection model, in other words,
the model is akin to a one-vs-all detector, with all five classes
being detected by the same model.

4.3 Error reduction techniques

Four enhancements were implemented and applied to the
combined datasets in order to reduce the error rates that we
experienced in our initial study. These enhancements include
augmenting the training set, applying contrast enhance-
ment, selection of the highest confidence fish, and image
(up)scaling.

4.3.1 Augmented training set

Initially, we had 64 examples of each class from the UWZM
collection in the training set. One issue that we encountered
was the lack of catfish (notorus genus) in the training set,
which led to a high count of undetected eyes in the testing
set. Visually it is difficult even for humans to determine the
location of catfish eyes given that they are either very close
to the color of the skin or do not look like normal fish eyes.
Thus, 15 catfish images from each image dataset were added
to the training set. Figure 3 presents examples of images in
which the catfish eyes are difficult to detect.
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Fig. 3 A catfish where the eye is not easily detected (left) and a catfish with an eye that does not look like a normal eye (right)

4.3.2 Contrast enhancement

It is apparent that there are differences in lighting, saturation,
and contrast within and across specimen image collections.
This causes the detection model to miss the ruler, num-
bers, fish, or eye in images that are either too washed out
or too dark, errors which have been seen in other object
detection applications [41].After investigating various image
processing techniques to equalize the color, we found that
current research in our area utilizes Contrast Limited Adap-
tive Histogram Equalization (CLAHE) [42,43]. We applied
this technique to all our images using the Python image pro-
cessing library OpenCV [44]. CLAHE is frequently used
in applications like underwater photography, traffic control,
astronomy, and medical imaging [45,46] to improve image
quality.

The drawback of standard Histogram Equalization is that
the equalization of the contrast is performed on a global level,
which is not ideal given possible varying contrast ranges in an
image. Adaptive HistogramEqualization addresses this issue
by computing several histograms, each corresponding to a
distinct section of the image, and uses them to redistribute the
lightness values of the image. This also, however, has issues
in that it may oversharpen contrast values that are already
high, aswell as yield noise in relatively homogeneous regions
of an image. CLAHE, though, does not sharpen values higher
than a given contrast threshold, thereby eliminating the issues
of oversharpening and noise [42].

CLAHE should not be applied to RGB (red, blue, green)
images. Applying CLAHE in color spaces like RGB and
CMYK (cyan, magenta, yellow, key) will yield a differ-
ent color distribution for each color channel. Instead of
applying CLAHE separately to the R, G, B channels of a
color image, a better approach applies the algorithm only
to the luminance channel of a color image, which also pre-
vents unwanted hue and saturation change. This, however,

requires the source image to be converted to a different color
space, e.g.HSV(hue, saturation, value) orCIELab (lightness,
red/green, blue/yellow) first. Contrast enhancement in 3-D
color spaces that makes use of luminance does not produce
noisier images, unlike when processing in more common
color spaces, thus ensuring color uniformity [47,48].Wehave
utilized the CIELab space, since visual testing showed that
the fish, rulers, and eyes were further pronounced than when
processed in HSV space. Detectron also yielded slightly
better eye detection rates through contrast enhancement in
CIELab space than in HSV space. Figure 4 shows a pre-
enhanced image and the result after contrast enhancement.

4.3.3 Picking fish of highest confidence

One of the issues with the previous metadata results was the
detection of multiple fish in a single image, which was cat-
egorized as an error in our prior work. This “error” could
occur with overlapping detection boxes over the same fish
or through the erroneous detection of another random object
in the image. We inspected the cases where multiple fish
were detected. In all cases, the fish bounding box with the
highest confidence value was the one that best covered the
fish specimen present in the image. Additionally, there were
never instances in which the fish bounding box of highest
confidence was not actually a fish [6]. Since our study image
collection only contains imageswith a single specimen,when
detectron returns more than one detected fish, we select
the fish of highest confidence value, thus eliminating the pre-
viousmultiple fish error. Figure 5 shows an example inwhich
fishwere detectedmultiple times. The bounding boxwith the
highest confidence score provides the expected result.
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Fig. 4 A fish image before contrast enhancement (left) and after enhancement (right)

Fig. 5 An image in which the same fish was detected in two separate instances. The bounding box of highest confidence (green, 83%) provides
the expected result (color figure online)

4.3.4 Image scaling

The images in which an eye was not detected made up the
majority of the erroneous cases. This led to a decision to
rerun the model on images where a fish was detected, but the
eye was not. It was hypothesized that the eyes were too small
to be detected in these cases. To address these errors, the fish
bounding box was cropped into a separate image, which was
then upscaled by a factor of 4×, and the model was rerun on
the scaled image. This helped to detect more eyes once they
were scaled to a larger size.

If the eye is not detected even in the scaled image, it is
counted as amissed eye. In the event an eye is detected on the
scaled fish, however, the eye coordinate within the unscaled
image needs to be returned. This requires taking the top left

corner of the bounding box and adding the scaled down eye
coordinate, as described in Eq. 1:

⎧
⎨

⎩

xeye_original = xfish_top_left + � xeye_scaled
4

�
yeye_original = yfish_top_left + � yeye_scaled

4
�

(1)

The simplestmethod for pixel interpolation during upscal-
ing is the Nearest Neighbor algorithm, in which the output
pixel value is set to the nearest pixel’s value [49]. Linear
Interpolation estimates the appropriate intensity pixel values
by finding the distance-weighted average of the four near-
est pixels around the output pixel [50]. Bicubic Interpolation
determines the pixel value from the weighted average of the
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16 closest neighboring pixels utilizing a third-degree inter-
polant function [51].

Nearest Neighbor Interpolation was initially attempted
with little effect on finding missing eyes. Linear Inter-
polation yielded significantly better results, while Bicubic
Interpolation yielded the best results. Further research uncov-
ered that there are more complex methods like Lanczos4
Interpolation [52] and Deep Learning models like EDSR
(Enhanced Deep Super-Resolution Networks) [53]. Testing
demonstrated that Bicubic Interpolation yields slightly better
accuracy than Lanczos4 and EDSR, although Lanczos4 and
EDSR provided slightly better masking. Figure 6 presents
the different scaling procedures on an image in which the
fish was detected, but the eye initially was not.

4.4 Pixel analysis

The masks and bounding boxes produced by detectron
are generally quite good, although they almost never com-
pletely or tightly enclose the detected objects. The mask
may include additional background as part of the fish, or
the bounding box may clip away part(s) of the specimen.
To solve these shortcomings, we utilize pixel analysis meth-
ods commonly found in image informatics to produce more
accurate object masks and bounding boxes [6].

4.4.1 Threshold adjustment

The first calculation in the pixel analysis process determines
the cutoff intensity between what constitutes the foreground
(i.e. the fish) and background of the image. Initially, the cal-
culation is based on the bounding box andmask generated by
detectron. Specimen images are read in as gray scale, and
pixels in the image are treated as unsigned integers between
0 and 255. Otsu thresholding [54], a technique that maxi-
mizes the variance between the foreground and background
intensities, is used to compute an initial cutoff value between
foreground and background. While the Otsu value occasion-
ally generates an accurate mask as is, usually the contrast
between foreground and background is low and much of the
lighter parts of the fish (such as its tail fin) are marked as
background.

To overcome this improper segmentation, the threshold
value should be either adjusted up or down, depending on
whether the background is lighter or darker than the fish.
For our current dataset, the background is always lighter (i.e.
closer to 255), so the threshold value needs to be scaled up
to include more of the foreground image. For optimal results
the scaling should be dependent on the contrast between the
background and foreground, which can be affected by the
level of pigmentation of the fish.

We found that an improved threshold value can be com-
puted as the halfway point between the Otsu threshold value

and the mean of the background intensities. This adjusted
threshold value usually produced an acceptable balance
between capturing most of the fish’s fins, without also mask-
ing parts of the background [6].

4.4.2 Consolidating the foreground

While thresholding has the potential to generate better masks
than a neural network (when provided an initial approximate
bounding box), it also introduces considerable noise. Single
or small groups of errant pixels can be marked as foreground
depending on the consistency of the background, and interior
pixels of the fish (especially around the fins) can bemarked as
background. To be useful for generating an accurate bound-
ing box and for subsequent computational analysis, the mask
must consist of one single “blob” over the fish, i.e. containing
no holes, and no other pixels disconnected from this blob can
be marked as foreground.

To accomplish this, we apply an iterative process of flood
filling from all the foreground pixels in the image until a
blob is generated that is large enough to constitute the fish.
This leads to another metaparameter, using greater than 10%
of the current bounding box has masked the specimen in all
observed cases. Once the fish’s blob is found, internal noise
then needs to be removed. This is done by flood filling from
each of the corners of the bounding box, where the specimen
is not present (all four corners in the overwhelming major-
ity of cases), then taking the inverse of the result. The fish
mask is excluded from these corner flood fills, so this process
removes all noise from both the background and foreground
of the image, leaving only a single mask over the fish itself
[6].

4.4.3 Adjusting the bounding box

With a more accurate mask generated, it is then necessary
to check whether the bounding box needs to be expanded or
shrunk along any of its edges. Expansion is done first, by
checking whether any edge intersects with any of the fore-
groundmaskpixels. If one does, the edge is expandedout by 1
pixel. If any edges are expanded, the whole process of mask-
ing and expansion is repeated to account for any changes in
average intensities. Once no edges contain foreground pix-
els, the bounding box is then shrunk. Each edge is contracted
by one pixel until it contains one or more foreground pixels.
Once the shrinkage step is accomplished, the final mask and
bounding box have been generated [6].

4.4.4 Fallback

Thepixel analysis process occasionally fails, e.g.whenflood-
filling does not produce a large enough blob or the bounding
box adjustment does not terminate. This can occur if certain
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Fig. 6 Lanczos4 (left), Bicubic (middle), and Linear (right) pixel interpolations

flood fill operations behave unexpectedly, or if the image is
toowashed out or otherwise atypical for the thresholding pro-
cess to work correctly. In the event this happens, the original
mask and bounding box generated by detectron is used
for metadata generation [6].

4.5 Metadata generation

Table 4 lists the metadata properties that were generated in
our previous work. These include properties that are pro-
duced by detectron and the methods described above:
has_fish, fish_count, has_ruler, ruler_bbox,
background.mean,std, foreground.mean,std,
bbox, score, and has_eye. The methods to compute
derived metadata properties are described below. The new
properties that we are now able to generate are listed in Table
5.

4.5.1 Contrast

The contrast between the intensities of the foreground and
background pixels is computed as background.mean -
foreground.mean [6].

4.5.2 Centroid and eye_center

Centroids are provided for the masks and bounding boxes
that are generated by detectron, and since we do not
recalculate themaskof fish eyeswe canuse that value directly
for eye_center. Since we recalculate the mask of the fish,
its centroid must be recalculated as well. This can be done
through Eq. 2:

(x̄, ȳ) =
(

round

(
M10

M00

)

, round

(
M01

M00

))

, (2)

where M00 is the pixel area of the fish’s blob, M10 is the sum
of all the x values of blob pixels, and M01 is the sum of all
the y values of blob pixels [6].

4.5.3 Side

Determining which side of the fish is visible is predicated
on finding its eye. If an eye is found, the sign of the x compo-
nent of the vector from the centroid of the fish to the centroid

of the eye specifies which side is visible: negative for left and
positive for right. This assumes the fish was photographed
vertically (i.e. dorsal fin on top), which is essentially always
the case for all image collections our group has worked on
[6].

4.5.4 Primary_axis and clock_value

The primary_axis of a fish can be calculated by tak-
ing the covariance of its blob in x and y, which yields
its principle eigenvector. The eigenvector can be directly
assigned to the property. If an eye is present, we ensure that
primary_axis points in the direction of the eye relative
to the fish’s centroid.

Our team encoded this information as a “clock value”
between 1 and 12 when manually recording it. To convert
principal_axis to clock_value, the signs of x and
y on the principal axis are used to determine which Cartesian
quadrant the fish angles into relative to its centroid. Depend-
ing on the quadrant, we dot product the principal axis with
either [−1, 0], [0,−1], [1, 0] or [0, 1], which correspond to
9, 6, 3 and “0” o’clock respectively. The resulting radian
value is then converted to a polar displacement in clock value
space, and added to the comparative clock value used in the
dot product. This gives the fish’s clock value from 0 to 11.9.
Before recording clock_value in the output, the value is
rounded to the nearest integer, with a 0 final result replaced
with 12 [6].

4.5.5 Scale and length

The fish length of INHS images, measured in pixels
inch , can

be calculated by measuring the distance in pixels between
the digits 2 and 3 (a 1 inch separation) found on the ruler
by detectron. Converting this to pixels

cm gives the scale
metadata property as reported in the output. The UWZM
images, in contrast, use a metric ruler in centimeters, and as
such, the distance between the digits “2” and “3” is directly
measured in pixels

cm .
For the fish length property, it is necessary to deter-

mine the furthest points from the centroid of the fish in each
direction along its major axis. Since fish are normally mea-
sured in a straight line from their snout down the middle of
their trunk, every pixel of the fish blob is projected onto the
fish’s major axis (as a line through its centroid). The projec-
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Table 4 Original metadata properties (* indicates derived properties)

Property Association Type Explanation

has_fish Overall Image Boolean Whether a fish was found in the image.

fish_count Overall Image Integer The quantity of fish present.

has_ruler Overall Image Boolean Whether a ruler was found in the image.

ruler_bbox Overall Image 4 Tuple The bounding box of the ruler (if found).

scale* Overall Image Float The scale of the image in pixels
cm .

bbox Per Fish 4 Tuple The top left and bottom right coordinates of the
bounding box for a fish.

background.mean Per Fish Float The mean intensity of the background within a given
fish’s bounding box.

background.std Per Fish Float The standard deviation of the background within a
given fish’s bounding box.

foreground.mean Per Fish Float The mean intensity of the foreground within a given
fish’s bounding box.

foreground.std Per Fish Float The standard deviation of the foreground within a
given fish’s bounding box.

contrast* Per Fish Float The contrast between foreground and background
intensities within a given fish’s bounding box.

centroid Per Fish 4 Tuple The centroid of a given fish’s bitmask.

primary_axis* Per Fish 2D Vector The unit length primary axis (eigenvector) for the
bitmask of a given fish.

clock_value* Per Fish Integer Fish’s primary axis converted into an integer “clock
value” between 1 and 12.

oriented_length* Per Fish Float The length of the fish bounding box in centimeters.

mask Per Fish 2D Matrix The bitmask of a fish in 0’s and 1’s.

pixel_analysis_failed Per Fish Boolean Whether the pixel analysis process failed for a given
fish. If true, detectron’s mask and bounding box
were used for metadata generation.

score Per Fish Float The percent confidence score output by detectron for
a given fish.

has_eye Per Fish Boolean Whether an eye was found for a given fish.

eye_center Per Fish 2 Tuple The centroid of a fish’s eye.

side* Per Fish String The side (i.e. ’left’ or ’right’) of the fish that is facing
the camera (dependent on finding its eye).

tion is done through numpy [55] by performing Principle
Component Analysis (PCA). The first step of this process
includes: finding all mask pixels, computing the covariance
matrix, computing the eigenvalues and eigenvectors of the
matrix, and then computing the angle of rotation from the
X axis. The second part includes applying the negative rota-
tion to the mask pixel coordinates, which aligns the fish’s
major axis with the X axis, and then computing the differ-
ence between the highest and lowest x values. Dividing this
distance by scale gives the fish length in centimeters
[6]. A similar process is done for the fish width as well,
where the difference between highest and lowest y values
are computed from the transformed pixels.

4.5.6 Contiguous distances

Two additional computed properties are cont_length
and cont_width. These are computed by using the trans-
formed mask pixels from above, but with slight modifica-
tions. Through numpy, we examine the counts of the x and
y values of the pixels. The indices of the x and y values with
the highest counts are identified. This process identifies the
x and y values with the longest contiguous strips parallel to
the major and minor axes. The length and width calculations
are computed as the difference between the max and min of
the x and y values respectively within these bins.
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Table 5 Additional metadata properties

Property Association Type Explanation

area Per Fish Float Area of fish in cm2.

cont_length Per Fish Float The longest contiguous length of the fish in centimeters.

cont_width Per Fish Float The longest contiguous width of the fish in centimeters.

convex_area Per Fish Float Area of convex hull image (smallest convex polygon that
encloses the fish) in cm2.

eccentricity Per Fish Float Ratio of the focal distance over the major axis length of the
ellipse that has the same second-moments as the fish.

extent Per Fish Float Ratio of pixels of fish to pixels in the total bounding box.
Computed as area

rows∗cols
feret_diameter_max Per Fish Float The longest distance between points around the fish’s convex

hull contour.

major_axis_length Per Fish Float The length of the major axis of the ellipse that has the same
normalized second central moments as the fish.

mask.encoding Per Fish String The 8-way Freeman Encoding of the outline of the fish.

mask.start_coord Per Fish 2D Vector The starting coordinate of the Freeman encoded mask.

minor_axis_length Per Fish Float The length of the minor axis of the ellipse that has the same
normalized second central moments as the fish.

oriented_width Per Fish Float The width of the fish bounding box in centimeters.

perimeter Per Fish Float The approximation of the contour in centimeters as a line
through the centers of border pixels using 8-connectivity.

solidity Per Fish Float The ratio of pixels in the fish to pixels of the convex hull image.

stddev Per Fish Float The standard deviation of the mask pixel coordinate
distribution.

skew Per Fish 2D Vector The measure of asymmetry of the frequency-distribution curve
of mask pixel coordinates.

kurtosis Per Fish 2D Vector The sharpness of the peaks of the frequency-distribution curve
of mask pixel coordinates.

4.5.7 Region properties

One of the goals of the updated metadata generation process
is to provide additional geometric properties based on the
morphology of the fish. Features like perimeter, area,
and eccentricity were immediately deemed most use-
ful to the BGNN project use case, whereas further research is
needed to determine other meaningful geometric properties.
The Python machine learning library skimage [56] con-
tains the measure package, which computes various geo-
metric properties of the image.Wemade use of one of the pro-
vided functions, regionprops, which provides the afore-
mentioned properties as well as: feret_diameter_max,
major_axis_length, minor_axis_length,
solidity, and convex_area. Other properties, like
euler_number and perimeter_crofton are offered
in this function, but were deemed unnecessary for our work.

4.5.8 Statistical properties of the mask coordinates

The statistical distribution properties of the mask pixel
coordinates can be calculated through Python statistical

computing library scipy [57]. The stddev, skew, and
kurtosis were calculated on the x and y coordinate dis-
tributions and recorded in the metadata. These values can be
used as distinguishing features of a fish’s shape.

4.5.9 Mask encoding

Another feature which may be useful for studying the mor-
phology of fish is the outline of the specimen. A concise and
efficient method for capturing the outlining boundary of an
object is Freeman Chain Encoding [58]. In general, a chain
code is a lossless compression algorithm for monochrome
images that separately encodes the boundary of each con-
nected component—or “blob”—in an image. For each such
region, a point on the boundary is selected and its coordi-
nates are noted. The encoder then moves along the boundary
of the region and, at each step stores a symbol represent-
ing the direction of the movement. This procedure continues
until the encoder returns to the starting position, at which
point the blob has been completely encircled. By storing the
encoding and the start coordinate, it is easy to recreate the
mask by reverse encoding the sequence, then flood filling the
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mask. The encoding of the outline should serve as a signa-
ture that supports morphological comparisons between fish
specimens, as well as providing a compressed representation
of the specimen’s mask.

5 Results

The computational enhancements described in Sect. 4.3
reduced the overall error rate from 4.6 to 1.1%. Here, an
error is defined as the inability to detect a fish, a fish eye,
ruler or the numbers ’2’ and ’3’, which are used to compute
image scale, within a specimen image. Whereas the INHS
metadata generation process took 3.5 hours to run on 7244
images, our GPU optimizations have helped reduce this to 2
hours on 7013 images. The metadata generation process on
theUWZMset of 4013 images took 2.5 hours. The difference
in computation time is reasonable, since the UWZM images
have higher resolution by an order of magnitude compared
to the INHS images.

To demonstrate the effectiveness of our error reduction
techniques, we ran the original INHS-only model on the
refined INHS dataset and compared the results of various
enhancement combinations in Table 7. In this table the bot-
tom row contains the number of errors, and the error rates
(note n = 7013), produced by our analysis before applying
the enhancements. The middle row provides these figures
after applying the fish selection rule and specimen upscal-
ing. The top row results then include contrast enhancement.
The columns in the table show which errors occurred. It can
be seen that error rates improved (lessened) asmore enhance-
ments are applied. Employing all enhancements reduces the
total error rate from 4.6 to 2.5%.

Additionally, we have computed results for the various
enhancement combinations included in the newly trained
INHS + UWZM model, which is applied to the combined
INHS and UWZM testing set, as well as on the individual
INHS and UWZM testing sets. The results from these stud-
ies are presented in Table 8 through Table 10. In these tables,
’A’ denotes that the training set has been augmented with
additional entries. Just this one enhancement gives an over-
all error rate of 3.0% (note n = 11,168). As the enhancements
are introduced the errors rates go down, with the lowest rate,
in the top row, being 1.1%. Tables 9 and 10 break down the
results by INHS and UWZM datasets, with the general trend
ofmore enhancements providing better results being evident.

5.1 Fish detection

As prescribed by our collection criteria, images in the INHS
and UWZM testing datasets contain exactly one fish. In the
case of no enhancements, except training set augmentation,
11,125 out of 11,168 images had exactly one fish detected,

a 99.6% correct rate. In 42 of the images, multiple fish were
found. The one fish that was not detected was an extremely
small fish from the INHS collection. This type of specimen
is currently missing from the training set. In the multiple fish
cases, 1 of the 42 contained tags that overlapped the fish and
were themselves labeled as a second fish. Of the remaining
41, detectron erroneously labeled the fish as two or more
separate fish objects, or labeled a subsection of the fishmulti-
ple times. Fish thatwere “over-detected”were generally quite
large and/or dissimilar from the fish found in the training set.
Applying the rule that selects the fish object of highest confi-
dence produces no images with multiple fish. Examining the
42 multiple-fish cases showed that this approach always pro-
duced the correct result, with 11,167 out of 11,168 images
having exactly one fish detected, a 99.9% correct detection
rate. After applying contrast enhancement, a second small
fish (in the UWZM collection) was not detected, with 11,166
out of 11,168 images having exactly one fish detected, a
99.9% correct rate. Figure 7 shows the two images in which a
fish was not detected. These results are summarized in Table
8, Columns 3 and 5.

5.2 Ruler detection

When no enhancements are employed, detectron is able
to detect rulers in all of the test images. Applying con-
trast enhancement produces one image where the ruler is
not found. Still this produces a 99.9% correct rate. When
contrast enhancement was not employed and the ruler was
found, there were 28 cases where the numbers “2” and/or
“3” on the ruler were not detected. Therefore, a scale cal-
culation could not be performed, producing a 99.7% success
rate for the scale computation. Applying contrast enhance-
ment improves the calculation, with 17 images for which the
numbers were not detected and the scale could not be com-
puted. As seen in Tables 9 and 10, Columns 6 and 7, these
errors all come from the INHS dataset. This is understand-
able, since the images in the UWZM dataset are extremely
consistent, whereas the overall INHS image quality can vary
significantly.

Images where one of these objects were not detected gen-
erally had some form of coloration issue. They were either
washed out, very dark or yellow in hue. Some of the rulers
for which “2” and/or “3” were not detected were partic-
ularly scratched and damaged. Many of the rulers where
both numerals were missed were particularly small within
the image, which again may be solvable through expanding
the training dataset to more collections than just INHS and
UWZM and/or adding more 2’s and 3’s to the training data.
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Fig. 7 The INHS image where the fish is never detected (left) and the UWZM image where the fish is not detected after contrast enhancement
(right)

5.3 Eye detection

In the case of no enhancements (besides training set augmen-
tation), detectron was unable to find a fish eye in 273 of
the images, producing a 2.4% error rate. Applying upscal-
ing to the fish images resulted in a significant improvement
with 206 images having no detected eyes, a 1.8% error rate.
Applying contrast enhancement provided yet another major
improvement with 112 missing eyes, giving an error rate of
1.0%. Contrast enhancement wasmeant to help all categories
of errors, but ended up helping missing eyes the most. Upon
investigation, the undetected eyes were generally extremely
dark, small, or looked nothing like those found in the train-
ing set. These cases usually included catfish and extremely
small fish, along with various fish where the eyes are effec-
tively unrecognizable.

5.4 Mask generation and encoding

Fish bounding boxes were calculated for all images in which
a fishwas found.Manual investigation demonstrated that due
to the thresholding process in grayscale space, inmany cases,
near translucent and light hue fins and tails were excluded.
Masks and bounding boxes contain the head and trunk of the
fish in nearly all cases, but further refinement of our algo-
rithms will be needed to ensure that light fins and tails are
masked consistently and accurately. The masks were then
encoded and stored in the metadata along with the starting
coordinate used in the encoding process. Figure 8 presents
the mask (white pixels), as well as the encoded outline of the
fish (blue pixels) from Fig. 4.

5.5 Scale and length

Image scale and fish lengths were calculated for 11, 148 of
the images. For the remaining 20 images, either the fish, the

Fig. 8 The mask and outline of a fish, which are generated through
pixel analysis and Freeman Encoding respectively

“2” and/or the “3” on the ruler were not detected. Image scale
( pixelscm ) and fish length were measured, using ImageJ [59].
Scale calculations using the “2” and “3” method are nearly
identical to those calculated by hand between the tick marks
on the ruler. When the tail of the fish is accurately masked
and the specimen is fairly straight, the length calculation is
highly accurate as well. Thus, the primarymeans of lowering
the error of the length calculation is to improve tail masking
accuracy.

5.6 Region and statistical properties

Region and statistical properties were computed from the
masks for the three specimen images in Fig. 9. The property
values are listed in Table 6 and demonstrate that they pro-
vide distinguishing features based on the shape of the fish
specimens.

6 Discussion

Where our previous work presented a proof of concept in
advanced image analysis for automatic metadata genera-
tion, our current results demonstrate the extensibility of our
approaches. By extending our work to a different dataset, we
demonstrate that our model can be generalized as long as
various image and specimen quality criteria are adhered to.
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Fig. 9 The masks generated for INHS_FISH_9552 (left), INHS_FISH_80975 (middle), and INHS_FISH_026311 (right)

Table 6 Metadata property
comparisons

Property INHS_FISH_9552 INHS_FISH_80975 INHS_FISH_026311

area 23.5 10.3 4.03

cont_length 9.60 10.7 2.14

cont_width 4.08 1.06 1.88

convex_area 27.5 15.5 5.05

eccentricity 0.90 0.99 0.91

extent 0.55 0.47 0.51

feret_diameter_max 9.65 15.2 4.03

perimeter 58.7 40.1 15.0

solidity 0.85 0.66 0.79

stddev [165.6, 69.6] [247.9, 17.9] [52.9, 29.2]

skew [0.19, -0.15] [0.13, 0.07] [0.22, -0.03]

kurtosis [-0.66, -0.72] [-0.94, -0.82] [-0.68, -1.10]

Table 7 INHS model applied to
the INHS dataset, 100k epochs

Enhancements Total No fish No eye Multiple fish No ruler No scale

C,U,S 175 (2.5%) 14 (0.19%) 153 (2.2%) 0 (0%) 0 (0%) 25 (0.35%)

U,S 266 (3.8%) 7 (0.09%) 212 (3.0%) 0 (0%) 2 (0.02%) 57 (0.81%)

None 320 (4.6%) 7 (0.09%) 240 (3.4%) 26 (0.37%) 2 (0.02%) 57 (0.81%)

n = 7013
C - contrast enhancement
U - upscaling
S - fish selection

Table 8 INHS + UWZM model
applied to the INHS and UWZM
datasets, 15k epochs

Enhancements Total No fish No eye Multiple fish No ruler No scale

A,C,U,S 124 (1.1%) 2 (0.02%) 112 (1.0%) 0 (0%) 1 (0.01%) 17 (0.15%)

A,C,S 198 (1.8%) 2 (0.02%) 182 (1.6%) 0 (0%) 1 (0.01%) 17 (0.15%)

A,U,S 229 (2.1%) 0 (0.01%) 205 (1.8%) 0 (0%) 0 (0%) 28 (0.25%)

A,S 300 (2.7%) 0 (0.01%) 273 (2.4%) 0 (0%) 0 (0%) 28 (0.25%)

A 338 (3.0%) 0 (0.01%) 273 (2.4%) 42 (0.37%) 0 (0%) 28 (0.25%)

n = 11,168
A - augmenting training set

Table 9 INHS + UWZM model
applied to the INHS dataset, 15k
epochs

Enhancements Total No fish No eye Multiple fish No ruler No scale

A,C,U,S 96 (1.4%) 1 (0.01%) 84 (1.2%) 0 (0%) 1 (0.01%) 17 (0.24%)

A,U,S 198 (2.8%) 1 (0.01%) 174 (2.5%) 0 (0%) 0 (0%) 28 (0.39%)

A 240 (3.4%) 1 (0.01%) 205 (2.9%) 11 (0.15%) 0 (0%) 28 (0.39%)

n = 7013
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Table 10 INHS + UWZM
model applied to the UWZM
dataset, 15k epochs

Enhancements Total No fish No eye Multiple fish No ruler No scale

A,C,U,S 28 (0.67%) 1 (0.02%) 28 (0.67%) 0 (0%) 0 (0%) 0 (0%)

A,U,S 31 (0.74%) 0 (0%) 31 (0.74%) 0 (0%) 0 (0%) 0 (0%)

A 98 (2.4%) 0 (0%) 68 (1.6%) 31 (0.74%) 0 (0%) 0 (0%)

n = 4155

By doing so, our methods have performed with high accu-
racy with minimal additions of unseen data to the training
set. There has also been great success with applying vari-
ous error reduction techniques that include image scaling,
an augmented training set, selection of fish with the highest
confidence score, and contrast enhancement. By augmenting
the training set and performing contrast enhancement, the
error rates on each class generally decreased. By performing
image scaling on the cropped fish where an eye was initially
missing, the number of missing eyes dropped significantly.
By performing fish selection, given the nature of the images
where multiple fish were detected, the best fish mask was
always selected, eliminating the multiple fish error.

While we have seen some individual error rates increase
after applying contrast enhancement, the overall effect is
a lower error rate for the aggregate of all errors. Surpris-
ingly, applying image scaling to the rulers had no effect
on improving the number of missing “two”s and “three”s
, indicating a need for more training data. Additional train-
ing epochs will not improve these errors, since we found
that training beyond 15,000 epochs yielded worse results.
This is known as the exploding gradient problem, a com-
mon problem in deep learning that has been evident since
the advent of gradient-based parameter learning [60]. Our
current results are more than acceptable and demonstrate
an augmented proof of concept that offers a path forward
for using object detection technology, enhanced by image
informatics techniques, to improve and enrich the metadata
needed for advanced specimen image analysis. Overall, our
work should advance scientific discovery that is based on
analysis of biological specimen image collections.

Our investigation has thus far focused on fish as the
specimenof study. Fish are vertebrate animals (phylumChor-
data), with over 34, 000 known unique species [61], with
many more likely undiscovered. Species names are merely
labels, and the discovery of species variation depends on both
genotype andphenotype information.The ability to computa-
tionally analyze thousands of images of a single fish species,
from different habitats and time periods, can lead to new dis-
coveries that are impossible to pursue with manual methods.
Digital library researchers have been concerned with com-
putationally extracting image features, using content-based
image retrieval methods. The work by Toress [62], while
over 15 years old, demonstrates the challenges and opportu-
nities to automatically generating useful metadata. Efforts to

integrate such automatic metadata generation methods into
digital library workflows and architectures still seem limited.
This is likely due to the diversity of image shapes, sizes and
the inconsistent configurations of specimens, labels, rulers,
etc.within them.Object detection as explored in our research,
working with an established architecture, is applicable to the
largerworld of biodiversity,well beyondfish, to include other
fauna and flora, art and artefacts, and other digitized objects
made accessible for scientific and scholarly research. Fol-
lowing object detection, one can apply pixel analysis and
informatics methods to compute many more higher order
properties from the initial segmentations.

7 Conclusion

In this paper we extended a previously described automatic
metadata generation approach. Using machine learning and
image informatics algorithms, along with a number of image
processing methods, our approach is able to locate, mask and
analyze specimens (currently limited to fish) in collection
images with a high degree of accuracy. Additional geometric
measurements on the specimens are now computed, while
also improving the overall error rates, as well as the runtime
through GPU parallelization. Testing this approach on 7013
images from the INHS dataset and 4155 images from the
UWZM dataset, we see major success with only 1.1% of the
11,186 images yielding at least one error. Through further
refinement and generalization beyond the INHS and UWZM
images, aswell asmore species than just fish,we aim to create
a tool that can be distributed to specimen image collection
curators to correct the metadata sparsity that motivated this
work.

7.1 Future work

The most pressing next step is to refine the pixel analysis
thresholding process in order to improve the accuracy of the
specimen masks. The current process performs thresholding
on a single color channel (intensity). Some of the lightest
tails appear yellow in hue to the human eye and easily distin-
guishable, but when compressed to a single intensity value
they are almost identical in value to the grayish background.
Givenwhat we have learnedwith contrast equalization, using
CIELab space could be ideal for mask adjustment. Another
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possible approach to solving this problem is to threshold and
mask on subsets of the bounding box, as to ensure that very
dark trunk pixels do not affect the thresholding of lighter
regions.

Our longer term goal is to create a generalized process that
works on classes of specimen images. For the BGNN project
we are beginning with fish images, but we are designing the
metadata generation system so that it can eventually operate
on other species, if appropriately trained. Thefirst step,which
has been accomplished, was to achieve greater generality by
augmenting the training set from INHS to UWZM. Another
requirement will be to generalize the ruler reading process
beyond the reading of digits on the ruler, which will likely
involve an automated method of reading ruler ticks instead
of digits. Lastly, the model training setup should be modi-
fied from using the default parameters to one that is further
optimized. As a result of the aforementioned factors, train-
ing beyond 15,000 epochs has yielded exploding gradients,
thus producing poorer results. A suggested improvement is
to experiment with the learning rate, with more complex
solutions involving the use of a learning rate scheduler or
optimization algorithms like RMSProp and ADAM.

Overall, the research reported in this paper will improve
our BGNN workflow, and at the same time demonstrates
an innovative approach that should greatly enhance digital
library services for the tens of thousands of digitized speci-
mens in a spectrum of image collections.
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