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Abstract

Subgenome dominance after whole-genome duplication (WGD) has been observed in many plant species. However,
the degree to which the chromatin environment affects this bias has not been explored. Here, we compared the dom-
inant subgenome (maize1) and the recessive subgenome (maize2) with respect to patterns of sequence substitutions,
genes expression, transposable element accumulation, small interfering RNAs, DNA methylation, histone modifica-
tions, and accessible chromatin regions (ACRs). Our data show that the degree of bias between subgenomes for all
the measured variables does not vary significantly when both of the WGD genes are located in pericentromeric re-
gions. Our data further indicate that the location of maize1 genes in chromosomal arms is pivotal for maize1 to main-
tain its dominance, but location has a less effect on maize2 homoeologs. In addition to homoeologous genes, we
compared ACRs, which often harbor cis-regulatory elements, between the two subgenomes and demonstrate that
maize1 ACRs have a higher level of chromatin accessibility, a lower level of sequence substitution, and are enriched
in chromosomal arms. Furthermore, we find that a loss of maize1 ACRs near their nearby genes is associated with a
reduction in purifying selection and expression of maize1 genes relative to their maize2 homoeologs. Taken together,
our data suggest that chromatin environment and cis-regulatory elements are important determinants shaping the
divergence and evolution of duplicated genes.

Key words: genome dominance, chromatin environments, gene divergence, epigenomic features, accessible chroma-
tin regions.

copy of the duplicated genes (here referred to as homoeo-
logs) is preferentially lost from one of the subgenomes, an
evolutionary process referred to as “biased fractionation”
(Lockton and Gaut 2005; Freeling and Thomas 2006). In
maize, only 39.4% of the original duplicated gene pairs gen-
erated from the most recent WGD are still pairs today,
meaning that nearly two-thirds of the original duplicated
gene pairs have lost one copy and are now present as sin-
gletons (Hufford et al. 2021). Comparisons between maize

Introduction

Whole-genome duplication (WGD), or polyploidy, has
been an important contributor of genetic novelty
throughout the evolutionary history of eukaryotes (Otto
and Whitton 2000; Adams and Wendel 2005; Soltis et al.
2015). Polyploidy is particularly widespread among flower-
ing plants, many of which have undergone several rounds
of WGDs (Blanc and Wolfe 2004; Jiao et al. 2011; Soltis and
Soltis 2016). Following WGD, duplicated genomes experi-

ence nonequivalent genomic changes, including chromo-
somal rearrangements, elimination of duplicated regions,
accumulation of mutations, gene conversions and translo-
cations, and transposon insertions (llic et al. 2003; Gu et al.
2005; Semon and Wolfe 2007). Because of the effect that
these differences in the trajectory of the evolution of du-
plicated genes, much effort has been spent on the dissec-
tion of the fate of these genes after WGD. In several plant
species, such as Arabidopsis thaliana (Thomas et al. 2006),
Brassica rapa (Wang et al. 2011), cotton (Renny-Byfield
et al. 2015), wheat (Pont et al. 2013), monkey flower
(Edger et al. 2017), and maize (Schnable et al. 2011), one

and its closely related species sorghum (Sorghum bicolor)
suggest that single gene loss via short deletions through in-
trachromosomal recombination is likely the primary
mechanism of fractionation (Woodhouse et al. 2010;
Tang et al. 2012).

In addition to fractionation, genes in the less fractio-
nated (dominant) subgenome are under stronger purify-
ing selection than their homoeologs in the more
fractionated (recessive) subgenome (Pophaly and Tellier
2015; Zhao et al. 2017). Genes from the dominant subge-
nome also tend to show higher levels of expression than
their duplicated copies in the recessive subgenome, known
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as “gene dominance” (Flagel and Wendel 2010; Schnable
et al. 2011; Cheng et al. 2012; Woodhouse et al. 2014).
The model proposed to explain this pattern is that the
under-expressed gene of a homoeologous pair is more like-
ly to be deleted because it produces less protein product,
contributes less to function, and therefore matters less to
overall fitness (Freeling et al. 2012). Interestingly, such
biased fractionation is not true for all WGD events. In
the recent WGD events of poplar, banana, and soybean,
homoeologous genes were equally deleted and show no
bias in expression when the two subgenomes are com-
pared (Garsmeur et al. 2014; Zhao et al. 2017).
Particularly in the soybean genome, which experienced a
WGD roughly at the similar time as the recent tetraploid
event in maize, the two subgenomes are far less distinct
than those in maize. Although no subgenome dominance
was observed in soybean, individual gene pairs do differen-
tiate in a manner similar to that observed in maize (Zhao
et al. 2017). This suggests that both biased and unbiased
plant species may share the same mechanism with respect
to gene deletion, evolution, and expression, but this pro-
cess in unbiased genomes involves differences between in-
dividual genes, rather than large blocks of genes derived
from single chromosomes.

The mechanism that causes differential expression of
homoeologous genes remains unclear. Both genetic and
epigenetic pathways may be involved in this process.
Previous research has shown that small interfering RNAs
(siRNAs) as well as DNA methylation triggered by those
siRNAs are associated with the reduced expression of near-
by genes (Hollister et al. 2011). These siRNAs and DNA
methylation often target the sequences of transposable ele-
ments (TEs). This led researchers to compare the abun-
dance of 24 nucleotide siRNAs, the level of DNA
methylation, and TE accumulation near the homoeologous
genes between subgenomes. In both B. rapa and maize,
transposon-derived 24 siRNAs were more enriched in the
flanking regions of the homoeologs in the recessive subge-
nome, which have overall lower expression values than
their counterparts in the dominant subgenome
(Woodhouse et al. 2014; Cheng et al. 2016; Zhao et al.
2017). In maize, the recessive genome also has higher levels
of DNA methylation in all of the three sequence contexts
CG, CHG (H=A, T, or C), and especially CHH, suggesting
that siRNA-trigged methylation may cause downregulation
of nearby genes, which may result in the biased gene loss
(Renny-Byfield et al. 2017; Zhao et al. 2017). However, these
subgenome differences in siRNAs are absent in the modern
cotton genome, suggesting that they are not currently the
primary driver of biased gene loss and expression in this
species (Renny-Byfield et al. 2015). In contrast, species of
monkeyflower show clear evidence of association between
expression levels and siRNAs both in recent and reconsti-
tuted polyploids (Edger et al. 2017).

In both mammals and plants, transcription factors often
interact with cis-regulatory elements, which can serve as
short- or long-range enhancers/silencers to distantly inter-
act with their target genes (Weber et al. 2016; Schmitz et al.
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2022). Examples in plants include the well-known domes-
tication gene teosinte branched1 and the paramutable
booster1 gene in maize, FLOWERING LOCUS T in
Arabidopsis, and the pea plastocyanin gene in pea (Chua
et al. 2003; Louwers et al. 2009; Adrian et al. 2010; Studer
et al. 2011). These cis-regulatory elements reside within ac-
cessible chromatin regions (ACRs) that are associated with
active chromatin modifications on flanking nucleosomes
including histone H3 lysine 4 trimethylation (H3K4me3)
and H3 acetylation (H3K9/27/56ac), low nucleosome
density, and low DNA methylation (Zhang et al. 2007,
2012; Roudier et al. 2011; Lu et al. 2019; Ricci et al. 2019).
In maize, a large number of ACRs and chromatin loops
have been identified that link long-range interaction be-
tween putative cis-regulatory elements and their target
genes (Li et al. 2019; Lu et al. 2019; Peng et al. 2019; Ricci
et al. 2019; Sun et al. 2020). The maize genome has a
much larger proportion of distal ACRs (dACRs) relative
to that in smaller genomes such as that of Arabidopsis,
probably because of TE insertions that separate these pu-
tative regulatory regions from genes (Lu et al. 2019). Given
that these cis-regulatory elements can regulate gene ex-
pression, we hypothesized that these regulatory elements
may also show bias between the two maize subgenomes,
and if so, we sought to determine whether and how
such bias impacted the evolution and expression of their
target genes.

Subgenome dominance has been extensively studied in
maize and in many other plant species (Thomas et al. 2006;
Schnable et al. 2011; Wang et al. 2011; Pont et al. 2013;
Renny-Byfield et al. 2015; Edger et al. 2017). However, few
of these studies have performed genome-wide compari-
sons of genes located in distinct chromatin environments,
which have been shown to shape the patterns of diver-
gence and retention of WGD genes (Du et al. 2012). The
maize genome is composed of regions in chromosomal
arms that are relatively rich in genes that are highly recom-
binogenic, and pericentromeric regions that have far more
TEs and far fewer recombination events (Gent et al. 2012;
Zhao et al. 2021). Both of these regions have large numbers
of genes, but these genes inhabit quite distinct chromatin
environments. In this study, we separated the maize gen-
ome into pericentromeric regions and chromosomal
arms, and performed comprehensive genomic and epige-
nomic comparisons between maizel and maize2. Our
data show that the location of maize1 genes in chromo-
somal arms is pivotal for maize1 to maintain its dominance
regardless of where their maize2 homoeologs are located.
Remarkably, no significant bias was detected in the major-
ity of the measured variables between maize1 and maize2
homoeologous genes when both of them are located in
pericentromeric regions, suggesting that the selective
forces that shape dominance are absent in these regions.
We also observed that bias in these parameters in ACRs
is less pronounced in the recombination-suppressed peri-
centromeric regions. Our research demonstrates that chro-
matin environment is an important factor that may shape
the bias of subgenomes in maize.
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Results

A Higher Rate of Gene Loss of Both Maize
Subgenome1 (maize1) and Maize Subgenome2
(maize2) in Pericentromeric Regions than in
Chromosomal Arms

Previous studies have demonstrated that the chromatin
environment is one of the important determinants shaping
the patterns of divergence and retention of duplicated
genes in rice and soybean (Tian et al. 2009; Du et al.
2012). We sought to determine whether chromatin envir-
onment also plays a role in subgenome fractionation in
maize. We examined 24,616 genes in the maize genome
that have syntelogs (genes with syntenic homologous rela-
tionship) in the sorghum genome (supplementary fig. S1,
Supplementary Material online). Given that genes involved
in tandem duplication have an ambiguous retention status,
these genes were removed from future analysis. This left
4,578 syntenic duplicated gene pairs and 11,554 syntenic
singletons as the final data set for further analysis (tables
1 and 2, and supplementary fig. S1, Supplementary
Material online). Here and throughout, we refer to either
maize1 or maize2 genes within these 4,578 duplicated
gene pairs as WGD genes. To determine whether biased
fractionation of the two maize subgenomes is different be-
tween chromosomal arms and pericentromeric regions, we
separated the ten maize chromosomes into chromosomal
arms and pericentromeric regions based on the gene and
TE density as well as recombination rates (cM/Mb) deter-
mined by 6,257 genetic markers (fig. 1; Liu et al. 2009;
Zhao et al. 2021). Next, we compared the distribution of
the 4,578 duplicated gene pairs and 11,554 singletons in
these two genomic regions. In maize1, the ratio of single-
tons to WGD genes (1.7:1; 5937 singletons and 3,597
WGD genes) in chromosomal arms is significantly lower
than that of singletons to WGD genes (2.2:1; 2,131 single-
tons and 981 WGD genes) in pericentromeric regions
(supplementary table S1, Supplementary Material online,
P <0.0001, % test). The same pattern was observed in
maize2. The ratio of singletons to WGD genes is 0.7:1 in
chromosomal arms (2,448 singletons and 3,429 WGD
genes) versus 0.9:1 in pericentromeric regions (1,038 single-
tons and 1,149 WGD genes; supplementary table S1,
Supplementary Material online, P < 0.0001, % test). These
data suggest that both maize1 and maize2 exhibit a higher
level of gene loss in pericentromeric regions than in
chromosomal arms, and this difference is larger in the dom-
inant genome maize1 than in the recessive genome maize2
(tables 1 and 2).

To further examine the effects of chromatin environ-
ment on the retention of duplicated genes, maize’s 10 chro-
mosomes (v4) were split into 119 duplicated block pairs. Of
the 119 duplicated block pairs, 46 (38.7%), including 11,852
genes, are with both blocks in chromosomal arms (M1-arm
vs. M2-arm), and 24 (20.2%), including 2,030 genes, are with
both blocks in pericentromeric regions (M1-peri vs.
M2-peri; fig. 1, table 1, and supplementary fig. S2,
Supplementary Material online). Thus, in only 59% of

blocks, both members of each pair are in the same chroma-
tin environment, and 41% of the blocks have divergent
chromatin characteristics. Because maize is an allotetra-
ploid, these differences could have been present prior to
polyploidy around 12 Ma or could have occurred after it.
In either event, these divergent blocks amount to a natural
experiment in which duplicated homoeologs are placed
into distinct chromatin environments. A total of 32
(26.9%) of these divergent blocks, including 3,625 genes,
have maize1 in chromosomal arms and maize2 in pericen-
tromeric regions (M1-arm vs. M2-peri), and 17 (14.3%) du-
plicated blocks, including 3,046 genes, are with maize1 in
pericentromeric regions and maize2 in chromosomal
arms (M1-peri vs. M2-arm; fig. 1, table 2, and
supplementary fig. S2, Supplementary Material online).
When the blocks of the two subgenomes are in the same
chromatin environment (M1-arm vs. M2-arm and
M1-peri vs. M2-peri), maize1 blocks are generally larger,
have more genes, more TEs, lower gene densities, and lower
recombination rates (cM/Mb; table 1). Interestingly, we
find that the difference of the recombination rates between
the two subgenomes are less pronounced when both
maize1 and maize2 blocks are in pericentromeric regions
than when both are in chromosomal arms (table 1). In con-
trast, when the blocks of the two subgenomes are in differ-
ent chromatin environments (M1-arm vs. M2-peri and
M1-peri vs. M2-arm), the subgenome blocks that are in
pericentromeric regions are generally larger, and have
more TEs, lower gene densities, and lower recombination
rates regardless of the subgenome (table 2).

Stronger Purifying Selection of Maize1 Over Maize2 is
Less Pronounced in Pericentromeric Regions
Previous research has demonstrated that maize1 genes are
under stronger purifying selection than are maize2 genes
(Pophaly and Tellier 2015; Zhao et al. 2017). We next asked
whether this difference in purifying selection is associated
with the differences in chromatin environment. To do this,
we compared the evolutionary distances of the 4,578 dupli-
cated gene pairs in the four categories described above.
When both homoeologous genes are in chromosomal
arms (M1-arm vs. M2-arm), Ka (nonsynonymous substitu-
tion), Ks (synonymous substitution), and ® (Ka/Ks) of
maize1 genes are all significantly lower than those of their
maize2 homoeologs, indicating that maize1 has experienced
an overall lower mutation rate as well as a higher level of
purifying selection relative to maize2 (fig. 2a), as has been
noted previously (Pophaly and Tellier 2015; Zhao et al.
2017). In the M1-arm versus M2-peri and M1-peri versus
M2-arm categories, both Ka and ® were significantly lower
for maize1 than for maize2, also consistent with relaxed se-
lection on maize2 genes (fig. 2c and d). In contrast, when
both homoeologous genes are in pericentromeric regions
(M1-peri vs. M2-peri), we find no significant differences in
Ka, Ks, or @ between maize homoeologs (fig. 2b).

Next, we compared the numbers of putatively deleteri-
ous alleles (the genetic load) between maize1 and maize2
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Table 1. Comparisons of the Duplicated Blocks in the Same Chromatin Environment

Features Maize1l in Maize2 in P-values Maize1l in Maize2 in P-values
Chromosomal Chromosomal Pericentromeric Pericentromeric
Arms Arms Regions Regions

No. of blocks 46 pairs 24 pairs

Singletons vs. WGD genes® 4,232 vs. 2,877 1,866 vs. 2,877 <0.0001° 797 vs. 429 375 vs. 429 <0.0001°
No. of genes 167.31 + 205.22 86.64 + 111.12 0.0001° 49.54 + 35.93 32.13 + 23.49 0.0001°¢
Average sizes of blocks (Mb) 10.82 + 13.42 4.92 +5.48 0.0009° 11.87 + 11.20 5.01+ 4.37 0.0005°
Gene densities (no./Mb) 15.59 + 5.37 17.54 + 7.85 0.0884° 4.86 +2.37 7.35+2.80 0.0013¢
Retention rates® 0.76 + 0.08 0.52 +0.10 <0.0001°¢ 0.72 +0.15 0.53 +0.16 <0.0051¢
TEs (DNA, Mb) 7.354+9.31 3.30+3.73 0.0016° 8.51+7.96 3.58 + 3.12 0.0004°
LTR-RTs (DNA, Mb) 6.10 +7.95 3.44 + 3.64 0.0012¢ 7.93 + 7.45 3.30+2.89 0.0005°
DNA TEs (DNA, Mb) 0.64 + 0.75 0.37 +0.38 0.0001°¢ 0.56 + 0.51 0.28 + 0.24 0.0003¢
Recombination rates (cM/Mb)® 2.47 + 1.60 3.19 +2.75 <0.0001¢ 0.34 + 0.25 0.37 +0.26 0.0724°

LTR-RTs, long terminal repeat retrotransposons; TEs, transposable elements; WGD, whole-genome duplication.
?Genes in maize that show a syntenic relationship with the genes in sorghum. Genes involved in tandem duplication were not included here.

by test.
“Student’s paired t-test.

dRetention rates were calculated based on the retained genes out of the total ancestral genes. For example, for each block, maize1 retention rate = (maize1 singletons + maize1

WGD genes)/(maize1 singletons + maize2 singletons + maize1 WGD genes).
“Recombination rates were compared based on the duplicated gene pairs.

using genomic evolutionary rate profiling (GERP) scores
(Rodgers-Melnick et al. 2015; Wang et al. 2017; Yang
et al. 2017). GERP score, a measure of sequence conserva-
tion across the phylogeny (Huber et al. 2020), estimates
purifying selection in terms of rejected substitutions rela-
tive to the neutral expectation. Scores >0 may reflect puri-
fying selection, and mutations at such sites are more likely
to be deleterious. In this study, we only retained nonsynon-
ymous single-nucleotide polymorphism (SNP) sites with
GERP scores >0 as putatively deleterious sites. Our data
show a significant higher number of putatively deleterious
alleles in maize2 genes than in maize1 genes when they are
both located in chromosomal arms. In contrast, no signifi-
cant difference was observed with respect to the genetic
load between maize1 and maize2 genes when they are lo-
cated in pericentromeric regions (supplementary fig. S3,
Supplementary Material online). These results echo the

o analysis, indicating that the difference in purifying selec-
tion between homoeologs is ameliorated when both
homoeologs are in pericentromeric regions.

We also compared Ka, Ks, and ® of genes in chromo-
somal arms with those genes in pericentromeric regions.
For both maize1 and maize2, the average Ks and recombin-
ation rates of WGD genes in pericentromeric regions are
significantly lower than those in chromosomal arms
(supplementary fig. S4, Supplementary Material online).
In contrast, there was no significant difference in Ka,
gene expression or protein abundance for either maize1
or maize2 when comparing WGD genes in these two chro-
matin environments. Finally, we compared the evolution-
ary distances between WGD genes and singletons. Overall,
for both maize1 and maize2, and for both pericentromeric
regions and chromosomal arms, the average Ka for WGD
genes is significantly lower than that for singletons,

Table 2. Comparisons of the Duplicated Blocks in Different Chromatin Environments

Features Maize1 in Maize2 in P-values Maize1 in Maize2 in P-values
Chromosomal Arms  Pericentromeric Regions Pericentromeric Regi Chr: | Arms

No. of blocks 32 pairs 17 pairs

Singletons vs. WGD genes® 1,536 vs. 720 649 vs. 720 <0.0001° 1,372 vs. 552 570 vs. 552 <0.0001°
No. of genes 71.88 +92.19 43.91 + 56.01 0.0003¢ 118.71 + 116.74 7224 +79.12 <0.0001¢
Average sizes of blocks (Mb) 5.23 + 6.66 6.91+10.23 0.1303¢ 19.59 + 16.03 6.26 + 6.22 0.0002°¢
Gene densities (no./Mb) 14.15 £+ 6.96 8.24 4 5.81 <0.0007¢ 6.90 + 2.56 12.04 + 5.07 0.0007¢
Retention rates® 0.76 + 0.15 0.47 +0.16 <0.0001¢ 0.79 + 0.08 0.43 +0.11 <0.0001¢
TEs (DNA, Mb) 3.60 + 4.75 4.96 +7.34 0.0943¢ 13.91+11.28 4.32 + 4.35 0.0002¢
LTR-RTs (DNA, Mb) 3.26 + 4.36 4.60 + 6.86 0.0830° 12.85 + 10.48 3.89 + 3.92 0.0002°¢
DNA TEs (DNA, Mb) 0.32 + 0.38 0.35 4+ 0.47 0.5146° 1.03 +0.82 0.40 + 0.41 <0.0001¢
Recombination rates (cM/Mb)°® 2.81+2.70 0.49 + 0.45 <0.0001¢ 0.34+0.23 230+ 2.34 <0.0001¢

LTR-RTs, long terminal repeat retrotransposons; TEs, transposable elements; WGD, whole-genome duplication
“Genes in maize that show a syntenic relationship with the genes in sorghum. Genes involved in tandem duplication were not included here.

By test.
Student’s paired t-test.

“Retention rates were calculated based on the retained genes out of the total ancestral genes. For example, for each block, maize1 retention rate = (maize1 singletons +

maize1 WGD genes)/(maize1 singletons + maize2 singletons + maize1 WGD genes).
“Recombination rates were compared based on the duplicated gene pairs.
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Fic. 1. Identification of pericen-
tromeric regions and chromo-
somal arms of the ten maize
chromosomes. (a) Reference
chromosomes with pericentro-
meric regions (near centro-
meres) in grey and
chromosomal arms (two sides
of each chromosome) in differ-
ent colors for each chromo-
some. Presumed centromeric
positions are indicated by red
vertical bands (Wolfgruber
et al. 2009). (b) Recombination
rates (cM/Mb). (c) Gene density
(number of genes/Mb). (d)
Repeat length (Mb/Mb). (e)
Homoeologous genes within
the maize genome. Orange
curves indicate both homoeolo-
gous genes in chromosome
arms (M1_arm; M2_arm: 2,877
gene pairs). Blue curves indicate
both homoeologous genes in
pericentromeric regions
(M1_peri; M2_peri: 429 gene
pairs). Green curves indicate
maizel genes in chromosome
arms, and maize2 genes in peri-
centromeric regions (M1_arm;

pairs). N |

M2_peri: 720 gene
Yellow curves indicate maize1l \
genes in pericentromeric re- £

gions, and maize2 genes in
chromosome arms (M1_peri;
M2_arm: 552 gene pairs).

whereas no significant difference in Ks was detected be-
tween WGD genes and singletons (supplementary figs.
S5 and S6, Supplementary Material online). This difference
between WGD genes and singletons is associated with ex-
pression differences between these two classes of genes.
On average, singletons are expressed at a significantly low-
er level than WGD genes (supplementary figs. S5 and S6,
Supplementary Material online), suggesting duplication
status is an important factor contributing to gene evolu-
tion and function.

Biased Expression Between Homoeologs of Maize is
Weaker in Pericentromeric Regions

To understand the functional divergence of maize homo-
eologous genes, we measured gene expression using pub-
licly available RNA-seq data from 24 maize tissues
(Sekhon et al. 2013; Eveland et al. 2014). In each tissue,
we compared the number of duplicated gene pairs in
which either maize1 or maize2 dominated expression fol-
lowing the method described in previous studies
(Schnable et al. 2011; Woodhouse et al. 2014; Zhao et al.
2017). Dominant expression was defined as instances in
which expression of one homoeolog is two-fold or greater
than the expression of the other homoeolog in that tissue.

=
o

Tl
I é_' N’% %
L >

In all four categories, we observed a bias towards gene pairs
dominated by expression of the maize1 copy, regardless of
their chromatin environment (fig. 3). For instance, when
both maize1and maze2 are in chromosomal arms, on aver-
age 32.5% maize1 WGD genes dominate expression, which
is 9.6% higher than the average percentage (22.9%) of their
maize2 homoeologous genes dominating expression in the
24 tissues (fig. 3a). However, this difference of dominance
between maizel and maize2 is smaller when the two
homoeologs are both in pericentromeric regions (28.7%
vs. 24%). It is worth noting that in some tissues such as
base of the ear, no or marginal biased expression between
homoeologs was observed when both are in pericentro-
meric regions (fig. 3b). The expression differences between
maize1 and maize2 are even larger when maize1 genes are
in chromosomal arms and their maize2 homoeologs are in
pericentromeric regions (32.8% vs. 21.1%; fig. 3c). In add-
ition, we examined the average expression values (FPKM,
fragments per kilobase of exon per million mapped frag-
ments) of the duplicated gene pairs in the four categories.
The average expression level of maize1 was observed to be
significantly higher than that of maize2 only when maize1
genes are in chromosomal arms regardless of where their
maize2 homoeologs are located (fig. 3a and ¢, left panels).
We find no significant differences in mean expression
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between homoeologs when maize1 genes are in pericen-
tromeric regions (fig. 3b and d, left panels).

Next, we analyzed the protein abundance using publicly
available data from 148 samples of 23 tissues with the same
cutoff as that for RNA expression (Walley et al. 2016; Walsh
et al. 2020). In all the four categories, maize1 dominates
protein abundance in  most of the samples
(supplementary fig. S7, Supplementary Material online).
However, the difference of the biased protein abundance
is smaller than that of the biased RNA expression (fig. 3
and supplementary fig. S7, Supplementary Material on-
line). Overall, our data demonstrate that the dominance
of maize1 is at both transcriptional and translational levels
and differs in different genomic regions.

TEs and Their Associated Epigenetic Marks have
Shaped the Two Subgenomes in Different Chromatin
Environments

Given that silenced TEs have deleterious effects on neigh-
boring gene expression (Hollister and Gaut 2009), we won-
dered whether TEs were associated with differences in
expression patterns of WGD genes in different genomic lo-
cations. We compared the abundance of flanking TEs and
their distances to nearby WGD genes located in either
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chromosomal arms or pericentromeric regions. Previously
maize1 genes were found to be significantly farther from
TEs than are their maize2 homoeologs (Zhao et al. 2017).
Interestingly, our data show that this is only the case
when maize1 genes are in chromosomal arms, regardless
of the location of their maize2 homoeologs (fig. 4a and c,
top panels). In contrast, no significant differences with re-
spect to the distances to TEs were observed when maize1
genes are in pericentromeric regions (fig. 4b and d, top pa-
nels). We also measured the TE abundance in the 2 kb up-
stream and downstream regions of duplicated gene pairs.
The abundance of TEs around maize1 genes is obviously
lower than those of TEs around their maize2 homoeologs
only when maize1 genes are in chromosomal arms (fig. 4a
and ¢, bottom panels). Although the location of maize2
genes is not as important, the differences with respect to
TE distances to nearest genes and TE abundances between
maize1 and maize2 are larger when maize2 homoeologs are
in pericentromeric regions (fig. 4a and c). These data are
consistent with previous hypotheses that purifying selec-
tion more efficiently purges TEs near maize1 genes and sug-
gests that this process is more efficient when these genes
are in chromosomal arms.

Compared with chromosomal arms, recombination-
suppressed pericentromeric regions are associated with a
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Fic. 3. Biased expression between two homoeologs of maize is weaker in pericentromeric regions. (a) Both homoeologous genes in chromosome
arms (M1_arm; M2_arm: 2,877 gene pairs). (b) Both homoeologous genes in pericentromeric regions (M1_peri; M2_peri: 429 gene pairs).
(c) Maize1 genes in chromosome arms, and maize2 genes in pericentromeric regions (M1_arm; M2_peri: 720 gene pairs). (d) Maize1 genes
in pericentromeric regions, and maize2 genes in chromosome arms (M1_peri; M2_arm: 552 gene pairs). The left boxplot of each panel represents
the overall expression values (FPKM, fragments per kilobase of exon per million mapped fragments) of the homoeologous genes from 24 tissues,
and the right plot indicates expression pattern of the duplicated gene pairs following the horse race method previously described (Schnable et al.
2011; Woodhouse et al. 2014; Zhao et al. 2017). RNA-seq data of the 24 tissues were from (Sekhon et al. 2013; Eveland et al. 2014). These tissues
include germinating seeds (24 h after germination), primary root (6 days after sowing), shoot apical meristem (vegetative 3), leaf tip (vegetative
5), vascular leaf (vegetative 9, immature), vascular leaf (vegetative 9, eighth leaf), vascular leaf (vegetative 9, 11th leaf), vascular leaf (vegetative 9,
13th leaf), vascular leaf (vegetative tasseling, 13th leaf), vascular leaf (reproductive 2, 13th leaf), 10 DAP (days after pollination) whole seed, 12
DAP whole seed, 14 DAP whole seed, 16 DAP whole seed, 12 DAP endosperm, 14 DAP endosperm, 16 DAP endosperm, 16 DAP embryo, ear tip,
ear mid, ear base, tassel stage 1, tassel stage 2, and tassel stage 3. The statistical analysis was conducted using Student’s paired t-test. **P < 0.01.

lower abundance of 24 nt siRNAs, a higher level of CG and In contrast, no such difference was observed between
CHG DNA methylation, and enriched repressive histone maize1 and maize2 homoeologous genes when both are
modifications (Gent et al. 2012). Given that biased evolu- in pericentromeric regions (fig. 5b, top panel).

tion and expression between homoeologous genes were Given that 24 nt siRNAs can recruit histone modifiers
observed to be less pronounced in pericentromeric regions and DNA methyltransferases to trigger methylation of
(figs. 2 and 3), we asked whether these epigenetic marks DNA (Matzke and Mosher 2014; Matzke et al. 2015), we
are more generally associated with the reduced evolution next asked whether the levels of DNA methylation
and expression. Small RNAs from four maize tissues were mediated by siRNAs are different between maizel and
perfectly and uniquely mapped to the reference genome maize2 homoeologs in different genomic regions. As sym-
B73 (version 4; Bousios et al. 2016; Jiao et al. 2017), and metrical methylation CG and CHG can be maintained inde-
were evaluated for abundance and distribution around pendently of siRNAs during DNA replication, but
the 2 kb upstream and downstream regions of the dupli- asymmetrical CHH methylation requires siRNA trigger,
cated gene pairs in the four categories described above. we specially focus on cytosine methylation in this sequence
Consistent with previous results (Zhao et al. 2017), 24 nt context. As is the case for 24 nt siRNAs, CHH methylation
siRNAs around the duplicated gene pairs are distributed has two peaks, previously designated CHH islands (Gent
into two peaks, and the peaks around maize1 genes are et al. 2013; Li et al. 2015), at the roughly similar positions
lower than those around maize2 genes (fig. 5, top panels, as the small RNA peaks in the upstream and downstream
and supplementary fig. S8, Supplementary Material on- regions. CHH islands in regions downstream of genes
line). When different categories are compared, maizel are higher in maize2 than in maize1 in all the four categor-
genes are targeted less by 24 nt siRNAs than are maize2 ies. However, CHH islands in the upstream regions are
genes in three of the four categories (M1-arm vs. higher in maize2 only when both homoeologous genes
M2-arm, M1-arm vs. M2-peri, and M1-peri vs. M2-arm). are in chromosomal arms (fig. 5a, bottom panels, and
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gene pairs). The top figure of each panel indicates the average distance of WGD genes to their nearest TEs, and the bottom figure represents
the TE proportions in the 2 kb upstream and downstream regions of WGD genes. These regions were divided into 100 bp sliding windows with
10 bp increments. TSS, transcription start site; TTS, transcription termination site. The statistical analysis was conducted using Student’s paired

t-test. *, P < 0.05.

supplementary figs. S9 and S10, Supplementary Material
online). Together with small RNA data, our methylation
data suggest that maize2 genes have a higher level of
methylation adjacent to genes than do maize1 genes, par-
ticularly when two homoeologs are in chromosomal arms.

Next, we examined histone modifications between the
duplicated gene pairs using previously published epigenet-
ic data (Ricci et al. 2019; Long et al. 2021). These histone
modifications include the histone modifications asso-
ciated with active chromatin, H3K4mel, H3K4me3,
H3K27me3, H3K36me3, H3K%ac, H3K27ac, and H3K56ac,
H3K9me2 that is associated with inactive chromatin, and
the histone variant H2A.Z, which can be associated with
active and inactive chromatin depending on its location
within the gene body (supplementary figs. S11 and S12,
Supplementary Material online). We find that when the
homoeologs are in the same chromatin environment
(M1-arm vs. M2-arm and M1-peri vs. M2-peri), the levels
of active histone modifications are all slightly higher in
the 2 kb upstream and downstream regions and gene bod-
ies of maize1 than those of maize2, and the levels of
H3K9me2 is marginally lower for maize1 (supplementary
figs. S11a, b, S12a and b, Supplementary Material online).
Given that chromosomal arms are generally less compact
than pericentromeric regions, it is not surprising that when
maize1 genes are in chromosomal arms and their maize2
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homoeologs are in pericentromeric regions (M1-arm vs.
M2-peri), the levels of active histone modifications are
much higher in the flanking regions of maize1 than those
of maize2, and the level of the repressive histone modifica-
tion H3K9me2 is dramatically lower for maizel
(supplementary figs. S11c and S12¢, Supplementary
Material online). When maize1 genes are in pericentro-
meric regions and their maize2 homoeologs are in
chromosomal arms (M1-peri vs. M2-arm), we expected
to see higher levels of active histone modifications and
lower levels of repressive histone modifications in maize2
than those in maizel. However, no obvious differences
were detected between maizel and maize2 homoeologs
with  respect to these histone modifications
(supplementary figs. S11d and S12d, Supplementary
Material online), suggesting that selection against the ac-
cumulation of TEs (fig. 4), which are the major targets of
repressive histone modifications, near maize2 genes was
relaxed even though they are in chromosomal arms.

Presence or Absence of ACRs may Have Affected the
Biased Evolution and Expression of their Flanking
WGD Genes

In mammalian and plant genomes, cis-regulatory elements
that reside within accessible chromatin have been found to
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TSS, transcription start site; TTS, transcription termination site.

interact with their target genes to regulate their expression
(Thurman et al. 2012; Shlyueva et al. 2014; Weber et al.
2016; Lu et al. 2019; Ricci et al. 2019; Schmitz et al. 2022).
Particularly, such interaction between transcription fac-
tors, regulatory sequences and genes often disrupts nucleo-
some formation, which results in ACRs that harbor
putative cis-regulatory elements (Iwafuchi-Doi et al. 2016;
Klemm et al. 2019). Given the biased expression of the
maize homoeologs, we sought to determine whether
ACRs have been biased fractionated between maize1 and
maize2 and whether they have shaped the expression pat-
terns of the homoeologous genes. In order to do so, we re-
analyzed 32,111 publicly available ACRs (Ricci et al. 2019).
Based on their distances to their nearest annotated genes,
we find that 11,997 ACRs are near WGD genes and 11,479
ACRs are near singleton genes (supplementary fig. S13,
Supplementary Material online). It is worth noting that
the remaining 8,635 ACRs were removed in this analysis gi-
ven that their nearest genes do not have syntenic relation-
ship with genes in sorghum. Next, we split these ACRs into
the two subgenomes. The ratio of ACRs that are near single-
tons to ACRs that are near WGD genes in maize1 (1.3:1;
8,523 to 6,484) is significantly higher than that of ACRs
near singletons to ACRs near WGD genes in maize2
(0.5:1; 2,956 to 5,513; P < 0.0001, %* test), suggesting ACRs
are more retained in maize1l. This shows that not only are
maize2 genes more likely to be fractionated, but even
when they are retained, their ACRs are more likely to be
fractionated. The distribution of the position of the ACRs

relative to the genes was similar in the two subgenomes.
Out of the 6,484 ACRs near WGD genes in maizel, 2,742
(42.2%) overlap genes (gACRs, genic ACRs), 1,936 (29.8%)
are within 2 kb of genes (pACRs, proximal ACRs), and
1,806 (27.8%) are >2 kb from a gene (dACRs, distal ACRs)
(fig. 6a). Maize2 has similar proportions of gACRs, pACRs,
and dACRs as does maize1 (fig. 6a). Given that biased frac-
tionation is more pronounced in chromosomal arms (figs. 2
and 3), we compared ACRs near WGD genes between
maize1 and maize2 in different genomic locations. We ob-
served a significantly higher enrichment of gACRs, pACRs,
and dACRs of maize1 only in chromosomal arms. No signifi-
cant difference with respect to the enrichment of ACRs be-
tween maize1 and maize2 in pericentromeric regions (fig.
6b and ¢, and supplementary fig. S14, Supplementary
Material online). Further comparison of the chromosome
accessibility of these ACRs between chromosomal arms
and pericentromeric regions indicate that maizel ACRs
are more accessible than maize2 but only in chromosomal
arms (fig. 6d). Because cis-regulatory elements residing in
ACRs regulate their target genes through chromatin loops
(Li et al. 2019; Peng et al. 2019; Sun et al. 2020), we further
compared the numbers of chromatin loops from the
Hi-C-seq and HiChip-seq data (Ricci et al. 2019). Our data
show that chromatin loops are enriched in chromosomal
arms of maize1 relatively to maize2 arms, but no differences
in the numbers of loops between maize1 and maize2 were
detected in pericentromeric regions (supplementary fig.
S15, Supplementary Material online).
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ACR pairs (both ACRs are retained in maize1 and maize2, and have syntelogs in sorghum) were used here. The statistical analysis was conducted

using Student’s paired t-test. **P < 0.01.

In an attempt to shed light on the evolutionary forces
that drive the difference of ACRs and duplicated genes,
we further analyzed ACRs in maize that have syntenic
ACRs in sorghum using publicly available data (Lu et al.
2019). We hypothesize that like maize1 gene coding se-
quences, maize1 ACRs have undergone a higher level of se-
lective constraint. To test this, we classified 2,205 syntenic
ACRs near WGD genes into (1) 381 paired ACRs that both
copies have been retained, (2) 909 ACRs that are retained
in maize1l and their homoeologous ACRs are lost in
maize2, and (3) 534 ACRs that are retained in maize2
and their homoeologous ACRs are lost in maizel. In add-
ition, we grouped the 1,350 syntenic ACRs near singleton
genes into (4) 1,014 ACRs that are retained in maizel
and their homoeologous ACRs are lost in maize2, and
(5) 336 ACRs that are retained in maize2 and their homo-
eologous ACRs are lost in maize1 (supplementary fig. S13,
Supplementary Material online). We next calculated the
frequencies of sequence substitution (K) of the 381 ACR
pairs relative to their syntenic ACRs in sorghum, which
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served as an outgroup. Consistent with the evolutionary
pattern of duplicated genes, maize1 ACRs exhibit a signifi-
cantly lower value of K than do maize2 ACRs when both
ACRs are in chromosomal arms. However, when both
ACRs are in pericentromeric regions, no significant differ-
ence in K was observed between maizel and maize2
(fig. 6e). These observations indicate that maize1 ACRs
have been subject to a higher level of selective constraints
than their maize2 homoeologous ACRs, but only when
they are in chromosomal arms.

To further understand the interaction between ACRs
and their target genes, we asked whether presence or ab-
sence of ACRs have impacted the evolution and expression
of their target genes. We compared the values of Ka, Ks, ®,
and FPKM of the maize1 and mazie2 duplicated gene pairs
nearest to these syntenic ACRs. When the duplicated pairs
of both ACRs and genes are retained (Category 1, fig. 7a
and supplementary fig. S13, Supplementary Material on-
line), Ka of maizel genes is significantly lower than that
of their maize2 homoeologs. In contrast, we find no
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significant difference in Ks, ®, or FPKM between this subset
of maize homoeologs (fig. 7a), suggesting these pairs of
genes have experienced similar levels of purifying selection.
When maize2 ACRs are lost and only maize1 ACRs are re-
tained (Category 2, fig. 7b and supplementary fig. S13,
Supplementary Material online), both Ka and ® of maize1
genes are significantly lower than those of maize2 genes
(fig. 7b), indicating that these maize1 genes have experi-
enced an overall higher level of purifying selection than
maize2 genes. Furthermore, these maizel genes also ex-
hibit a significantly higher level of expression than their
maize2 homoeologs. In contrast, when maize1 ACRs are
lost and only maize2 ACRs are retained (Category 3,
fig. 7c and supplementary fig. S13, Supplementary
Material online), no significant differences in Ka, Ks, ®, or
FPKM were detected between the homoeologs (fig. 7¢), in-
dicating no biased evolution in these pairs of genes. This
also suggests that these ACRs play a role in the dominance
of these maize1 genes, and loss of these ACRs is associated
with the relaxed selection of this subset of maize1 genes.

Finally, we compared chromosome accessibility, evolu-
tionary distances (K, Ka, Ks, and ®), and expression values
within maize1 subgenome (Categories 1, 2, and 4), and
within maize2 subgenome (Categories 1, 3, and 5,
supplementary fig. S13, Supplementary Material online).
In both maize1 and maize2, paired syntenic ACRs have
an average higher level of chromatin accessibility and a sig-
nificantly lower level of sequence substitution K than
singleton syntenic ACRs, which is consistent with the pat-
tern observed between WGD genes and singleton genes
(supplementary figs. S5 and S6, Supplementary Material
online). In both maize1 and maize2, WGD genes have low-
er values of Ka and o, and are expressed at significantly
higher levels than are singleton genes. In contrast, no sig-
nificant differences in Ks were detected between WGD
genes and singleton genes in maize1, whereas the former
exhibits a significantly higher value of Ks than the later
in maize2 (supplementary fig. S16, Supplementary
Material online). Overall, our data show that when the du-
plicated ACR pairs and gene pairs are both retained in the
syntenic regions, both of members of these pairs of genes
exhibit the slowest rate of evolutionary change, suggesting
that they have functional correlation during the evolution-
ary history.

Discussion

Our most striking observation is that we find no significant
bias of most of the measured variables when comparing
maize1l and maize2 homoeologs and their associated
ACRs when maize1 genes were in pericentromeric regions
(figs. 2b, 3b, 4b, 5b, and 6e). Maize1 WGD genes do not ex-
hibit any evidence of stronger purifying selection than
their maize2 homoeologs when both are in pericentro-
meric regions (fig. 2b). Pericentromeric regions are gener-
ally recombination suppressed, in which natural selection
against deleterious mutations is poorly efficient (Gaut
et al. 2007; Charlesworth 2012). Recombination can also

cause point mutations (Lercher and Hurst 2002;
Rousselle et al. 2019). Therefore, both Ka and Ks evolve
more slowly in gene copies in recombination-suppressed
pericentromeric regions than in homoeologous copies in
chromosomal arms, as has been noted previously in soy-
bean (Du et al. 2012). However, this is not what we ob-
served here. When maizel genes are in chromosomal
arms and their maize2 homoeologs are in pericentromeric
regions, we expected to see higher mutation rates for
maizel. Instead, we detected a lower Ka and no significant
difference in Ks for maize1 genes (fig. 2¢), suggesting that
the effect of purifying selection on the function of maize1
genes is stronger than that of recombination on the evolu-
tion of the homoeologs in maize. This result is consistent
with a previously proposed model suggesting that biased
fractionation is a result of purifying selection acting prefer-
entially against deletion alleles of higher expressed dupli-
cated copies (Schnable et al. 2011). Interestingly, we find
that the expression dominance of maizel over maize2
was only significant when maize1 genes are located in
chromosomal arms, regardless of where their maize2
homoeologs are located (fig. 3a and ¢, left panels), suggest-
ing chromatin environment has a significant effect on gene
dominance. This may be due to differences in recombin-
ation. The major evolutionary advantage of recombination
is thought to be that it breaks up associations between
linked loci. Such linkage hinders the action of purifying se-
lection and thus increases the fixation rate of deleterious
mutations, resulting in increased ® (Webster and Hurst
2012; Bolivar et al. 2016). Because of lower rates of recom-
bination in pericentromeric regions, deleterious mutations
are less efficiently purged. Because of this, selection is ex-
pected to be weaker for maize1 genes in pericentromeric
regions than in chromosomal arms. We hypothesize that
because maize2 genes have already been subject to relaxed
selection, accumulation of deleterious mutations in these
genes may not have significant effects on them no matter
where they are located. We suggest that maintenance of
genome dominance requires that selection can effectively
purge mildly deleterious alleles before they become fixed.
In chromosome armes, this occurs preferentially in maize1l
genes, resulting in a long-term maintenance of dominance.
However, because of reduced recombination, dominance
cannot be maintained in pericentromeric regions. To test
this, we classified all duplicated genes into higher and low-
er recombination groups. Of the 4,578 duplicated pairs,
2,718 (59.4%) show recombination differences of at least
two-fold and were dubbed higher and lower recombin-
ation genes. We found that on average, higher recombin-
ation genes were expressed at higher levels. Furthermore,
TEs are farther from and less abundant near the higher re-
combination genes. However, such differences are not sig-
nificant (supplementary fig. S17, Supplementary Material
online) probably because the recombination rate data
were generated from recently mapping populations (Liu
et al. 2009), and the differentiations of these duplicated
genes were the outcome of around 12 My evolution. In
addition, we detected no significant differences with
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respect to GC content between maize1 and maize2 genes
(supplementary fig. S18, Supplementary Material online).

Transposable element insertions are likely to be one of
the deleterious mutations that contribute to genome
dominance because silenced TEs often have deleterious ef-
fects on expression of their neighboring genes (Hollister
and Gaut 2009). It has been hypothesized that the two
subgenomes prior to the allotetraploidization event in
maize were distinct with respect to TE distribution such
that one subgenome had lower overall levels of expression
due to a greater density of silenced TEs near genes
(Woodhouse et al. 2014; Zhao et al. 2017). In cases in which
the genes were functionally redundant, it is hypothesized
that the member of a pair with a lower level of expression
would be more likely to be lost. Due to dosage constraints,
some classes of genes retain both copies (Freeling and
Thomas 2006; Thomas et al. 2006). In these cases, purifying
selection on the gene with the lower expression level, ei-
ther due to TE insertion or any other deleterious muta-
tions, was lower, resulting in relaxed selection against

12

t-test. **P < 0.01.

additional deleterious mutations or subsequent TE inser-
tions (Freeling and Thomas 2006; Thomas et al. 2006;
Wendel et al. 2018). Given that silenced TEs near genes
have deleterious effects on neighboring gene expression
(Hollister and Gaut 2009), purifying selection is thought
to purge TE insertions from gene-rich chromosomal re-
gions, which led to the accumulation of TEs in low-
recombining pericentromeric regions (Wright et al.
2003). It is also possible that the accumulation of at least
some of these TEs is caused by biased insertion of these
TE sequences in these recombination-suppressed regions
(Wright et al. 2003; Tian et al. 2012). However, what is
more relevant here is our observation that TEs are closer
to genes in these regions (fig. 4), and TEs have accumulated
at similar abundances and at similar distances around
homoeologous genes in pericentromeric regions in the
two subgenomes (fig. 4). If we assume that they have simi-
lar effects on the expression of the genes, this is consistent
with the idea that within pericentromeres, both copies of
duplicated genes in these regions have experienced similar
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levels of selective constraint. This is also reflected in differ-
ences in abundance of 24 nt small RNAs and CHH methy-
lation in the same regions of the two subgenomes (fig. 5).

It should be emphasized that the current regions classi-
fied as pericentromeric regions or chromosomal arms may
not be the same regions in the two progenitor genomes gi-
ven that large numbers of rearrangements have occurred
in maize after the tetraploid event. These rearrangements
have led to transitions of many genomic regions from
chromosomal arms to pericentromeric regions or vice ver-
sa (Swigonova et al. 2004; Wei et al. 2007, Wang and
Bennetzen 2012). It is also possible that the two homoeo-
logs both currently located in pericentromeric regions
were less distinct prior to polyplodization because they
were both located in heterochromatin when polyploidy
occurred and were initially expressed at the similar level
because both members of each gene pair were similarly
compromised and therefore had an equal chance of being
lost and an equal chance of experiencing a relative reduc-
tion in purifying selection. Finally, it remains a possibility is
that since selection is weaker in pericentromeric regions,
bias may also occur in these regions its effects would
take longer to manifest themselves.

Another interesting observation is the coevolution of
ACRs and their flanking genes. It is not surprising that these
ACRs are largely enriched in euchromatic chromosomal
arms, which contain many active genes. However, even cor-
recting for gene density, ACRs are more numerous in eu-
chromatin, and, like the genes they are associated with,
ACRs in maize1 differ with respect to number, level of chro-
matin accessibility, and evolutionary distance (K) to those
in maize2. In contrast, none of these differences between
subgenomes are observed in pericentromeric regions
(fig. 7). Our data also indicate that loss of maize2 ACRs
may not have had a large effect on the evolution and ex-
pression of their flanking genes, whereas loss of maize1
ACRs is associated with a reduction in purifying selection
and expression of maizel genes relative to their maize2
homoeologs (fig. 7b and c), suggesting that these ACRs
near maizel genes are important to maintain the gene
dominance. These data would also be indicative of co-
evolution between regulatory elements and their target
genes that is supportive of the Gene Balance Hypothesis.
This hypothesis states that imbalance in macromolecular
complexes and in signaling networks will affect the func-
tion of the whole and lead to fitness defects (Veitia et al.
2008; Birchler and Veitia 2010, 2012). Because ACRs harbor
cis-regulatory elements that control the expression of
genes, ACRs and their target genes are in balance with
each other. Natural selection purges changes in either
one because changes in either will result in reduced func-
tion. Given that maize1 genes contribute more to pheno-
typic traits, they have been retained more frequently and
have undergone a stronger purifying selection (Pophaly
and Tellier 2015; Zhao et al. 2017), their regulatory ele-
ments are also more retained and more conserved (figs. 6
and 7). Although the causes and consequences of subge-
nome differentiation in maize remain to be more fully

elucidated, our study points out that chromatin environ-
ment, TEs and their associated marks, and regulatory ele-
ments are all important determinants shaping the
patterns of divergence of homoeologous genes retained
in the two subgenomes.

Materials and Methods

Separation of Chromosomal Arms and
Pericentromeric Regions of Maize Chromosomes
The rough positions of chromosomal arms and pericentro-
meric regions of the ten maize chromosomes were defined
based on the gene and TE densities as well as recombin-
ation rates following our previous method (fig. 1; Zhao
et al. 2021). Based on the annotation of genes and TEs,
gene densities (number of genes/Mb) and repeat length
(Mb/Mb) were measured in 1 Mb windows with 500 kb
shifts along each chromosome. Recombination rates
(cM/Mb) were determined based on 6,257 genetic markers
in the integrated map previously described (Liu et al.
2009). Because recombination is generally suppressed,
gene density is lower, and TE density is higher in pericen-
tromeric regions, we manually separated each chromo-
some into two arms and one pericentromeric region
(fig. 1). Presumed centromeric positions were determined
by the functional centromere positions previously mapped
(Wolfgruber et al. 2009). The sequences of the functional
centromeres were extracted from the B73 v1 genome,
and mapped to the B73 v4 reference genome using
BLAST (Altschul et al. 1997).

Identification of Homoeologous and Syntenic Genes
and ACRs

The syntenic gene list of maize (v4) and sorghum were ob-
tained from previously published data (Zhang et al. 2017).
We only kept the maize genes with syntenic relationships
in sorghum. To make the data more accurate, genes in-
volved in tandem duplication were first removed because
of their ambiguous duplication status. In addition, we fil-
tered the genes with the values of Ks <0.05 and the ratio
(o) of Ka to Ks >2.0 between maize and sorghum. The final
data set in this study includes a total of 4,578 duplicated
gene pairs and 11,554 singleton genes (supplementary
fig. S1 and table S1, Supplementary Material online).
These 4,578 duplicated gene pairs were further classified
into four categories based on their genomic locations in
chromosomal arms and pericentromeric regions: M1-arm
versus M2-arm, both of the two homoeologous genes in
chromosomal arms, M1-peri versus M2-peri, both of the
two homoeologous genes in pericentromeric regions,
M1-arm versus M2-peri, maize1 genes in chromosomal
arms and maize2 genes in pericentromeric regions, and
M1-peri versus M2-arm, maizel genes in pericentromeric
regions and maize2 genes in chromosomal arms. To com-
pare the characters between subgenomes, the maize v4
genomes were split into blocks. Small blocks with fewer
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than five genes were excluded from further analysis. This
left a final set of 119 duplicated block pairs.

The maize and sorghum ACRs were downloaded from the
published studies (Lu et al. 2019; Ricci et al. 2019). To deter-
mine duplicated ACRs between subgenomes and syntenic
ACRs between maize and sorghum, we compared the se-
quence similarities of ACRs within maize, and between maize
and sorghum using BLAST (Altschul et al. 1997). ACRs with
sequence similarities in the duplicated regions within maize
or in the syntenic regions between maize and sorghum
were defined as duplicated ACRs or syntenic ACRs.

Estimation of Evolutionary Distance and GERP Scores
We followed the pipelines previously described to analyze
sequence divergence of syntenic genes and ACRs between
maize and sorghum (Zhao et al. 2015, 2017, 2018).
Homologous nucleotide sequences were aligned using
MUSCLE or ClustalW by default parameters (Thompson
et al. 1994; Edgar 2004). The unexpected stop codons gen-
erated by the alignment process but not present in the ori-
ginal sequence were replaced with “~” as ambiguous
nucleotides before the estimation of sequence divergence.
Ka and Ks of homologous genes and nucleotide sequence
divergence K of ACRs were estimated with the yn00 and
baseml modules in the PAML program (Yang 2007).

We calculated GERP scores for each site across the B73
reference genome and determined the deleterious alleles
as alleles different from the ancestor alleles in the S. bicolor
genome following previous studies (Rodgers-Melnick et al.
2015; Wang et al. 2017; Yang et al. 2017). Only nonsynon-
ymous SNP sites with GERP scores >0 were retained as pu-
tatively deleterious loci. To mitigate reference bias, we
calculated the average value of the genetic load for these
putatively deleterious loci in the 4,578 duplicated gene
pairs (9,156 duplicated genes) across the maize diversity
panel (Bukowski et al. 2018). The genetic load was mea-
sured as the average number of deleterious alleles divided
by the total length of the gene body.

Analysis of Transcription and Protein Abundance of
Homoeologous Genes

The raw data from 24 maize tissues were downloaded from
public data sets (Sekhon et al. 2013; Eveland et al. 2014).
The reads were aligned to the maize reference genome
(v4) using HISAT version 2.1.0 (Kim et al. 2019). Only un-
ique reads were kept to measure gene expression values,
which were generated using cufflinks v2.2.1 (Trapnell
et al. 2012). The horse race method was used to measure
the expression dominance of the two duplicated genes
of a pair in different chromatin environments across these
24 tissues (Schnable et al. 2011; Woodhouse et al. 2014;
Zhao et al. 2017). In each tissue, we compared the number
of duplicated gene pairs in which either maize1 or maize2
dominated expression following the method described in
previous studies (Schnable et al. 2011; Woodhouse et al.
2014; Zhao et al. 2017). Dominant expression was defined
as instances in which expression of one homoeolog is two-

14

fold or greater than the expression of the other homoeolog
in that tissue. For example, in each tissue, for a given dupli-
cated pair, if the expression value of the maize1 gene is
two-fold higher than its counterpart maize2 gene, we con-
sidered the maize1 gene won the horse and dominated ex-
pression, or vice versa.

The data set of protein abundance from 148 samples of
23 tissues was obtained from public papers (Walley et al.
2016; Walsh et al. 2020). Gene IDs were converted from
version 2 to version 4 of the B73 genome. The horse race
method with the same two-fold cutoff was used here to
determine protein dominance in each sample.

Analysis of TEs, 24 nt Small RNAs and DNA
Methylation

A total of 1,526 consensus and exemplar TEs from the maize
TE consortium were obtained from previous published
manuscripts (Baucom et al. 2009; Schnable et al. 2009).
These TE exemplars were used to search against the maize
v4 genome using RepeatMasker with a divergence value of
<20%. The distance of TEs overlapping with genes was con-
sidered as 0. The TE proportion was measured in each
100 bp window with 10 bp increments in the 2 kb up-
stream and downstream regions of duplicated genes.

The raw reads of small RNA data from four maize tissues
(tassel, ear, seedling, and root) obtained from previous re-
search were first mapped to the Rfam database (v14.6) to
remove rRNAs, tRNAs, snRNAs, and snoRNAs (Bousios
et al. 2016). After filtration, the remaining reads were
mapped to the maize reference genome (v4) using
Bowtie only allowing unique and perfect matches
(Langmead et al. 2009). The values of small RNAs were nor-
malized to transcripts per 10 million uniquely and perfect-
ly mapped reads (TP10M). Twenty-four nucleotide small
RNAs were measured in a 100 bp sliding window moving
in 10 bp increments through the 2 kb upstream and
downstream regions of the duplicated genes in maizel
and maize2 following the methods previously described
(Woodhouse et al. 2014; Zhao et al. 2017).

Clean reads of whole-genome bisulfite sequencing data
from four maize tissues (ear shoot, shoot apex, anther, and
third seedling leaf) were aligned against the maize B73 v4
genome using Bismark under following parameters (-n 2, -1
50, -N 1; Krueger and Andrews 2011; Eichten et al. 2013; Li
et al. 2015). Polymerase chain reaction duplicates were re-
moved using Picardtools. Additional packages including
Bismark methylation extractor, bismark2bedGraph, and
coverage2cytosine under Bismark were used to extract
the methylated cytosines, and to count methylated and
unmethylated reads. The proportion of each type of
methylation (CG, CHG, and CHH) was determined as
weighted methylation levels in 50 bp windows without
shifts of the 2 kb upstream and downstream regions of
the duplicated genes (Krueger and Andrews 2011; Liu
et al. 2021). Gene body methylation was measured on 40
equally sized bins, with bin size differing from gene to
gene because of the different lengths.
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Analysis of Various Histone Modifications and
Chromatin Loops

The mapping bed files of ChIP-seq data of H3K4me1,
H3K4me3, H3K27me3, H3K36me3, H3K9%ac, H3K27ac,
H3K56ac, H3K9me2, and the histone variant H2A.Z were
downloaded from previous research (Ricci et al. 2019;
Long et al. 2021). The signals (number of reads) of each his-
tone were measured in a 100 bp window of the 2 kb up-
stream and downstream regions and gene bodies of the
duplicated genes following the formula log,(treat reads +
1)/(input reads + 1).

Chromatin loops connecting distal ACRs and their tar-
get genes in the leaf tissue were downloaded from a pub-
lished paper (Ricci et al. 2019). These loops were obtained
from three different types of Hi-C data (Hi-C-seq,
H3K4me3-HiChIP-seq, and  H3K27me3-HiChlIP-seq).
These chromatin loops were classified into chromosomal
arms and pericentromeric regions of maize1 and maize2
based on their physical locations on each chromosome.

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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