
The Heterogeneity in the Landscape of Gene Dominance 
in Maize is Accompanied by Unique Chromatin Environments
Liangwei Yin,1 Gen Xu,2,3 Jinliang Yang,2,3 and Meixia Zhao *,4

1Department of Biology, Miami University, Oxford, OH 45056
2Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588
3Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68583
4Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 
32611

*Corresponding author: E-mail: meixiazhao@ufl.edu.
Associate editor: Michael Purugganan

Abstract
Subgenome dominance after whole-genome duplication (WGD) has been observed in many plant species. However, 
the degree to which the chromatin environment affects this bias has not been explored. Here, we compared the dom
inant subgenome (maize1) and the recessive subgenome (maize2) with respect to patterns of sequence substitutions, 
genes expression, transposable element accumulation, small interfering RNAs, DNA methylation, histone modifica
tions, and accessible chromatin regions (ACRs). Our data show that the degree of bias between subgenomes for all 
the measured variables does not vary significantly when both of the WGD genes are located in pericentromeric re
gions. Our data further indicate that the location of maize1 genes in chromosomal arms is pivotal for maize1 to main
tain its dominance, but location has a less effect on maize2 homoeologs. In addition to homoeologous genes, we 
compared ACRs, which often harbor cis-regulatory elements, between the two subgenomes and demonstrate that 
maize1 ACRs have a higher level of chromatin accessibility, a lower level of sequence substitution, and are enriched 
in chromosomal arms. Furthermore, we find that a loss of maize1 ACRs near their nearby genes is associated with a 
reduction in purifying selection and expression of maize1 genes relative to their maize2 homoeologs. Taken together, 
our data suggest that chromatin environment and cis-regulatory elements are important determinants shaping the 
divergence and evolution of duplicated genes.

Key words: genome dominance, chromatin environments, gene divergence, epigenomic features, accessible chroma
tin regions.
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Introduction
Whole-genome duplication (WGD), or polyploidy, has 
been an important contributor of genetic novelty 
throughout the evolutionary history of eukaryotes (Otto 
and Whitton 2000; Adams and Wendel 2005; Soltis et al. 
2015). Polyploidy is particularly widespread among flower
ing plants, many of which have undergone several rounds 
of WGDs (Blanc and Wolfe 2004; Jiao et al. 2011; Soltis and 
Soltis 2016). Following WGD, duplicated genomes experi
ence nonequivalent genomic changes, including chromo
somal rearrangements, elimination of duplicated regions, 
accumulation of mutations, gene conversions and translo
cations, and transposon insertions (Ilic et al. 2003; Gu et al. 
2005; Semon and Wolfe 2007). Because of the effect that 
these differences in the trajectory of the evolution of du
plicated genes, much effort has been spent on the dissec
tion of the fate of these genes after WGD. In several plant 
species, such as Arabidopsis thaliana (Thomas et al. 2006), 
Brassica rapa (Wang et al. 2011), cotton (Renny-Byfield 
et al. 2015), wheat (Pont et al. 2013), monkey flower 
(Edger et al. 2017), and maize (Schnable et al. 2011), one 

copy of the duplicated genes (here referred to as homoeo
logs) is preferentially lost from one of the subgenomes, an 
evolutionary process referred to as “biased fractionation” 
(Lockton and Gaut 2005; Freeling and Thomas 2006). In 
maize, only 39.4% of the original duplicated gene pairs gen
erated from the most recent WGD are still pairs today, 
meaning that nearly two-thirds of the original duplicated 
gene pairs have lost one copy and are now present as sin
gletons (Hufford et al. 2021). Comparisons between maize 
and its closely related species sorghum (Sorghum bicolor) 
suggest that single gene loss via short deletions through in
trachromosomal recombination is likely the primary 
mechanism of fractionation (Woodhouse et al. 2010; 
Tang et al. 2012).

In addition to fractionation, genes in the less fractio
nated (dominant) subgenome are under stronger purify
ing selection than their homoeologs in the more 
fractionated (recessive) subgenome (Pophaly and Tellier 
2015; Zhao et al. 2017). Genes from the dominant subge
nome also tend to show higher levels of expression than 
their duplicated copies in the recessive subgenome, known 
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as “gene dominance” (Flagel and Wendel 2010; Schnable 
et al. 2011; Cheng et al. 2012; Woodhouse et al. 2014). 
The model proposed to explain this pattern is that the 
under-expressed gene of a homoeologous pair is more like
ly to be deleted because it produces less protein product, 
contributes less to function, and therefore matters less to 
overall fitness (Freeling et al. 2012). Interestingly, such 
biased fractionation is not true for all WGD events. In 
the recent WGD events of poplar, banana, and soybean, 
homoeologous genes were equally deleted and show no 
bias in expression when the two subgenomes are com
pared (Garsmeur et al. 2014; Zhao et al. 2017). 
Particularly in the soybean genome, which experienced a 
WGD roughly at the similar time as the recent tetraploid 
event in maize, the two subgenomes are far less distinct 
than those in maize. Although no subgenome dominance 
was observed in soybean, individual gene pairs do differen
tiate in a manner similar to that observed in maize (Zhao 
et al. 2017). This suggests that both biased and unbiased 
plant species may share the same mechanism with respect 
to gene deletion, evolution, and expression, but this pro
cess in unbiased genomes involves differences between in
dividual genes, rather than large blocks of genes derived 
from single chromosomes.

The mechanism that causes differential expression of 
homoeologous genes remains unclear. Both genetic and 
epigenetic pathways may be involved in this process. 
Previous research has shown that small interfering RNAs 
(siRNAs) as well as DNA methylation triggered by those 
siRNAs are associated with the reduced expression of near
by genes (Hollister et al. 2011). These siRNAs and DNA 
methylation often target the sequences of transposable ele
ments (TEs). This led researchers to compare the abun
dance of 24 nucleotide siRNAs, the level of DNA 
methylation, and TE accumulation near the homoeologous 
genes between subgenomes. In both B. rapa and maize, 
transposon-derived 24 siRNAs were more enriched in the 
flanking regions of the homoeologs in the recessive subge
nome, which have overall lower expression values than 
their counterparts in the dominant subgenome 
(Woodhouse et al. 2014; Cheng et al. 2016; Zhao et al. 
2017). In maize, the recessive genome also has higher levels 
of DNA methylation in all of the three sequence contexts 
CG, CHG (H = A, T, or C), and especially CHH, suggesting 
that siRNA-trigged methylation may cause downregulation 
of nearby genes, which may result in the biased gene loss 
(Renny-Byfield et al. 2017; Zhao et al. 2017). However, these 
subgenome differences in siRNAs are absent in the modern 
cotton genome, suggesting that they are not currently the 
primary driver of biased gene loss and expression in this 
species (Renny-Byfield et al. 2015). In contrast, species of 
monkeyflower show clear evidence of association between 
expression levels and siRNAs both in recent and reconsti
tuted polyploids (Edger et al. 2017).

In both mammals and plants, transcription factors often 
interact with cis-regulatory elements, which can serve as 
short- or long-range enhancers/silencers to distantly inter
act with their target genes (Weber et al. 2016; Schmitz et al. 

2022). Examples in plants include the well-known domes
tication gene teosinte branched1 and the paramutable 
booster1 gene in maize, FLOWERING LOCUS T in 
Arabidopsis, and the pea plastocyanin gene in pea (Chua 
et al. 2003; Louwers et al. 2009; Adrian et al. 2010; Studer 
et al. 2011). These cis-regulatory elements reside within ac
cessible chromatin regions (ACRs) that are associated with 
active chromatin modifications on flanking nucleosomes 
including histone H3 lysine 4 trimethylation (H3K4me3) 
and H3 acetylation (H3K9/27/56ac), low nucleosome 
density, and low DNA methylation (Zhang et al. 2007, 
2012; Roudier et al. 2011; Lu et al. 2019; Ricci et al. 2019). 
In maize, a large number of ACRs and chromatin loops 
have been identified that link long-range interaction be
tween putative cis-regulatory elements and their target 
genes (Li et al. 2019; Lu et al. 2019; Peng et al. 2019; Ricci 
et al. 2019; Sun et al. 2020). The maize genome has a 
much larger proportion of distal ACRs (dACRs) relative 
to that in smaller genomes such as that of Arabidopsis, 
probably because of TE insertions that separate these pu
tative regulatory regions from genes (Lu et al. 2019). Given 
that these cis-regulatory elements can regulate gene ex
pression, we hypothesized that these regulatory elements 
may also show bias between the two maize subgenomes, 
and if so, we sought to determine whether and how 
such bias impacted the evolution and expression of their 
target genes.

Subgenome dominance has been extensively studied in 
maize and in many other plant species (Thomas et al. 2006; 
Schnable et al. 2011; Wang et al. 2011; Pont et al. 2013; 
Renny-Byfield et al. 2015; Edger et al. 2017). However, few 
of these studies have performed genome-wide compari
sons of genes located in distinct chromatin environments, 
which have been shown to shape the patterns of diver
gence and retention of WGD genes (Du et al. 2012). The 
maize genome is composed of regions in chromosomal 
arms that are relatively rich in genes that are highly recom
binogenic, and pericentromeric regions that have far more 
TEs and far fewer recombination events (Gent et al. 2012; 
Zhao et al. 2021). Both of these regions have large numbers 
of genes, but these genes inhabit quite distinct chromatin 
environments. In this study, we separated the maize gen
ome into pericentromeric regions and chromosomal 
arms, and performed comprehensive genomic and epige
nomic comparisons between maize1 and maize2. Our 
data show that the location of maize1 genes in chromo
somal arms is pivotal for maize1 to maintain its dominance 
regardless of where their maize2 homoeologs are located. 
Remarkably, no significant bias was detected in the major
ity of the measured variables between maize1 and maize2 
homoeologous genes when both of them are located in 
pericentromeric regions, suggesting that the selective 
forces that shape dominance are absent in these regions. 
We also observed that bias in these parameters in ACRs 
is less pronounced in the recombination-suppressed peri
centromeric regions. Our research demonstrates that chro
matin environment is an important factor that may shape 
the bias of subgenomes in maize.
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Results
A Higher Rate of Gene Loss of Both Maize 
Subgenome1 (maize1) and Maize Subgenome2 
(maize2) in Pericentromeric Regions than in 
Chromosomal Arms
Previous studies have demonstrated that the chromatin 
environment is one of the important determinants shaping 
the patterns of divergence and retention of duplicated 
genes in rice and soybean (Tian et al. 2009; Du et al. 
2012). We sought to determine whether chromatin envir
onment also plays a role in subgenome fractionation in 
maize. We examined 24,616 genes in the maize genome 
that have syntelogs (genes with syntenic homologous rela
tionship) in the sorghum genome (supplementary fig. S1, 
Supplementary Material online). Given that genes involved 
in tandem duplication have an ambiguous retention status, 
these genes were removed from future analysis. This left 
4,578 syntenic duplicated gene pairs and 11,554 syntenic 
singletons as the final data set for further analysis (tables 
1 and 2, and supplementary fig. S1, Supplementary 
Material online). Here and throughout, we refer to either 
maize1 or maize2 genes within these 4,578 duplicated 
gene pairs as WGD genes. To determine whether biased 
fractionation of the two maize subgenomes is different be
tween chromosomal arms and pericentromeric regions, we 
separated the ten maize chromosomes into chromosomal 
arms and pericentromeric regions based on the gene and 
TE density as well as recombination rates (cM/Mb) deter
mined by 6,257 genetic markers (fig. 1; Liu et al. 2009; 
Zhao et al. 2021). Next, we compared the distribution of 
the 4,578 duplicated gene pairs and 11,554 singletons in 
these two genomic regions. In maize1, the ratio of single
tons to WGD genes (1.7:1; 5,937 singletons and 3,597 
WGD genes) in chromosomal arms is significantly lower 
than that of singletons to WGD genes (2.2:1; 2,131 single
tons and 981 WGD genes) in pericentromeric regions 
(supplementary table S1, Supplementary Material online, 
P < 0.0001, χ2 test). The same pattern was observed in 
maize2. The ratio of singletons to WGD genes is 0.7:1 in 
chromosomal arms (2,448 singletons and 3,429 WGD 
genes) versus 0.9:1 in pericentromeric regions (1,038 single
tons and 1,149 WGD genes; supplementary table S1, 
Supplementary Material online, P < 0.0001, χ2 test). These 
data suggest that both maize1 and maize2 exhibit a higher 
level of gene loss in pericentromeric regions than in 
chromosomal arms, and this difference is larger in the dom
inant genome maize1 than in the recessive genome maize2 
(tables 1 and 2).

To further examine the effects of chromatin environ
ment on the retention of duplicated genes, maize’s 10 chro
mosomes (v4) were split into 119 duplicated block pairs. Of 
the 119 duplicated block pairs, 46 (38.7%), including 11,852 
genes, are with both blocks in chromosomal arms (M1-arm 
vs. M2-arm), and 24 (20.2%), including 2,030 genes, are with 
both blocks in pericentromeric regions (M1-peri vs. 
M2-peri; fig. 1, table 1, and supplementary fig. S2, 
Supplementary Material online). Thus, in only 59% of 

blocks, both members of each pair are in the same chroma
tin environment, and 41% of the blocks have divergent 
chromatin characteristics. Because maize is an allotetra
ploid, these differences could have been present prior to 
polyploidy around 12 Ma or could have occurred after it. 
In either event, these divergent blocks amount to a natural 
experiment in which duplicated homoeologs are placed 
into distinct chromatin environments. A total of 32 
(26.9%) of these divergent blocks, including 3,625 genes, 
have maize1 in chromosomal arms and maize2 in pericen
tromeric regions (M1-arm vs. M2-peri), and 17 (14.3%) du
plicated blocks, including 3,046 genes, are with maize1 in 
pericentromeric regions and maize2 in chromosomal 
arms (M1-peri vs. M2-arm; fig. 1, table 2, and 
supplementary fig. S2, Supplementary Material online). 
When the blocks of the two subgenomes are in the same 
chromatin environment (M1-arm vs. M2-arm and 
M1-peri vs. M2-peri), maize1 blocks are generally larger, 
have more genes, more TEs, lower gene densities, and lower 
recombination rates (cM/Mb; table 1). Interestingly, we 
find that the difference of the recombination rates between 
the two subgenomes are less pronounced when both 
maize1 and maize2 blocks are in pericentromeric regions 
than when both are in chromosomal arms (table 1). In con
trast, when the blocks of the two subgenomes are in differ
ent chromatin environments (M1-arm vs. M2-peri and 
M1-peri vs. M2-arm), the subgenome blocks that are in 
pericentromeric regions are generally larger, and have 
more TEs, lower gene densities, and lower recombination 
rates regardless of the subgenome (table 2).

Stronger Purifying Selection of Maize1 Over Maize2 is 
Less Pronounced in Pericentromeric Regions
Previous research has demonstrated that maize1 genes are 
under stronger purifying selection than are maize2 genes 
(Pophaly and Tellier 2015; Zhao et al. 2017). We next asked 
whether this difference in purifying selection is associated 
with the differences in chromatin environment. To do this, 
we compared the evolutionary distances of the 4,578 dupli
cated gene pairs in the four categories described above. 
When both homoeologous genes are in chromosomal 
arms (M1-arm vs. M2-arm), Ka (nonsynonymous substitu
tion), Ks (synonymous substitution), and ω (Ka/Ks) of 
maize1 genes are all significantly lower than those of their 
maize2 homoeologs, indicating that maize1 has experienced 
an overall lower mutation rate as well as a higher level of 
purifying selection relative to maize2 (fig. 2a), as has been 
noted previously (Pophaly and Tellier 2015; Zhao et al. 
2017). In the M1-arm versus M2-peri and M1-peri versus 
M2-arm categories, both Ka and ω were significantly lower 
for maize1 than for maize2, also consistent with relaxed se
lection on maize2 genes (fig. 2c and d). In contrast, when 
both homoeologous genes are in pericentromeric regions 
(M1-peri vs. M2-peri), we find no significant differences in 
Ka, Ks, or ω between maize homoeologs (fig. 2b).

Next, we compared the numbers of putatively deleteri
ous alleles (the genetic load) between maize1 and maize2 
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using genomic evolutionary rate profiling (GERP) scores 
(Rodgers-Melnick et al. 2015; Wang et al. 2017; Yang 
et al. 2017). GERP score, a measure of sequence conserva
tion across the phylogeny (Huber et al. 2020), estimates 
purifying selection in terms of rejected substitutions rela
tive to the neutral expectation. Scores >0 may reflect puri
fying selection, and mutations at such sites are more likely 
to be deleterious. In this study, we only retained nonsynon
ymous single-nucleotide polymorphism (SNP) sites with 
GERP scores >0 as putatively deleterious sites. Our data 
show a significant higher number of putatively deleterious 
alleles in maize2 genes than in maize1 genes when they are 
both located in chromosomal arms. In contrast, no signifi
cant difference was observed with respect to the genetic 
load between maize1 and maize2 genes when they are lo
cated in pericentromeric regions (supplementary fig. S3, 
Supplementary Material online). These results echo the 

ω analysis, indicating that the difference in purifying selec
tion between homoeologs is ameliorated when both 
homoeologs are in pericentromeric regions.

We also compared Ka, Ks, and ω of genes in chromo
somal arms with those genes in pericentromeric regions. 
For both maize1 and maize2, the average Ks and recombin
ation rates of WGD genes in pericentromeric regions are 
significantly lower than those in chromosomal arms 
(supplementary fig. S4, Supplementary Material online). 
In contrast, there was no significant difference in Ka, 
gene expression or protein abundance for either maize1 
or maize2 when comparing WGD genes in these two chro
matin environments. Finally, we compared the evolution
ary distances between WGD genes and singletons. Overall, 
for both maize1 and maize2, and for both pericentromeric 
regions and chromosomal arms, the average Ka for WGD 
genes is significantly lower than that for singletons, 

Table 1. Comparisons of the Duplicated Blocks in the Same Chromatin Environment

Features Maize1 in  
Chromosomal  

Arms

Maize2 in  
Chromosomal  

Arms

P-values Maize1 in  
Pericentromeric  

Regions

Maize2 in  
Pericentromeric  

Regions

P-values

No. of blocks 46 pairs 24 pairs
Singletons vs. WGD genesa 4,232 vs. 2,877 1,866 vs. 2,877 <0.0001b 797 vs. 429 375 vs. 429 <0.0001b

No. of genes 167.31 ± 205.22 86.64 ± 111.12 0.0001c 49.54 ± 35.93 32.13 ± 23.49 0.0001c

Average sizes of blocks (Mb) 10.82 ± 13.42 4.92 ± 5.48 0.0009c 11.87 ± 11.20 5.01 ± 4.37 0.0005c

Gene densities (no./Mb) 15.59 ± 5.37 17.54 ± 7.85 0.0884c 4.86 ± 2.37 7.35 ± 2.80 0.0013c

Retention ratesd 0.76 ± 0.08 0.52 ± 0.10 <0.0001c 0.72 ± 0.15 0.53 ± 0.16 <0.0051c

TEs (DNA, Mb) 7.35 ± 9.31 3.30 ± 3.73 0.0016c 8.51 ± 7.96 3.58 ± 3.12 0.0004c

LTR-RTs (DNA, Mb) 6.10 ± 7.95 3.44 ± 3.64 0.0012c 7.93 ± 7.45 3.30 ± 2.89 0.0005c

DNA TEs (DNA, Mb) 0.64 ± 0.75 0.37 ± 0.38 0.0001c 0.56 ± 0.51 0.28 ± 0.24 0.0003c

Recombination rates (cM/Mb)e 2.47 ± 1.60 3.19 ± 2.75 <0.0001c 0.34 ± 0.25 0.37 ± 0.26 0.0724c

LTR-RTs, long terminal repeat retrotransposons; TEs, transposable elements; WGD, whole-genome duplication. 
aGenes in maize that show a syntenic relationship with the genes in sorghum. Genes involved in tandem duplication were not included here. 
bχ2 test. 
cStudent’s paired t-test. 
dRetention rates were calculated based on the retained genes out of the total ancestral genes. For example, for each block, maize1 retention rate = (maize1 singletons + maize1 
WGD genes)/(maize1 singletons + maize2 singletons + maize1 WGD genes). 
eRecombination rates were compared based on the duplicated gene pairs.

Table 2. Comparisons of the Duplicated Blocks in Different Chromatin Environments

Features Maize1 in  
Chromosomal Arms

Maize2 in  
Pericentromeric Regions

P-values Maize1 in  
Pericentromeric Regions

Maize2 in  
Chromosomal Arms

P-values

No. of blocks 32 pairs 17 pairs
Singletons vs. WGD genesa 1,536 vs. 720 649 vs. 720 <0.0001b 1,372 vs. 552 570 vs. 552 <0.0001b

No. of genes 71.88 ± 92.19 43.91 ± 56.01 0.0003c 118.71 ± 116.74 72.24 ± 79.12 <0.0001c

Average sizes of blocks (Mb) 5.23 ± 6.66 6.91 ± 10.23 0.1303c 19.59 ± 16.03 6.26 ± 6.22 0.0002c

Gene densities (no./Mb) 14.15 ± 6.96 8.24 ± 5.81 <0.0007c 6.90 ± 2.56 12.04 ± 5.07 0.0007c

Retention ratesd 0.76 ± 0.15 0.47 ± 0.16 <0.0001c 0.79 ± 0.08 0.43 ± 0.11 <0.0001c

TEs (DNA, Mb) 3.60 ± 4.75 4.96 ± 7.34 0.0943c 13.91 ± 11.28 4.32 ± 4.35 0.0002c

LTR-RTs (DNA, Mb) 3.26 ± 4.36 4.60 ± 6.86 0.0830c 12.85 ± 10.48 3.89 ± 3.92 0.0002c

DNA TEs (DNA, Mb) 0.32 ± 0.38 0.35 ± 0.47 0.5146c 1.03 ± 0.82 0.40 ± 0.41 <0.0001c

Recombination rates (cM/Mb)e 2.81 ± 2.70 0.49 ± 0.45 <0.0001c 0.34 ± 0.23 2.30 ± 2.34 <0.0001c

LTR-RTs, long terminal repeat retrotransposons; TEs, transposable elements; WGD, whole-genome duplication 
aGenes in maize that show a syntenic relationship with the genes in sorghum. Genes involved in tandem duplication were not included here. 
bχ2 test. 
cStudent’s paired t-test. 
dRetention rates were calculated based on the retained genes out of the total ancestral genes. For example, for each block, maize1 retention rate = (maize1 singletons + 
maize1 WGD genes)/(maize1 singletons + maize2 singletons + maize1 WGD genes). 
eRecombination rates were compared based on the duplicated gene pairs.
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whereas no significant difference in Ks was detected be
tween WGD genes and singletons (supplementary figs. 
S5 and S6, Supplementary Material online). This difference 
between WGD genes and singletons is associated with ex
pression differences between these two classes of genes. 
On average, singletons are expressed at a significantly low
er level than WGD genes (supplementary figs. S5 and S6, 
Supplementary Material online), suggesting duplication 
status is an important factor contributing to gene evolu
tion and function.

Biased Expression Between Homoeologs of Maize is 
Weaker in Pericentromeric Regions
To understand the functional divergence of maize homo
eologous genes, we measured gene expression using pub
licly available RNA-seq data from 24 maize tissues 
(Sekhon et al. 2013; Eveland et al. 2014). In each tissue, 
we compared the number of duplicated gene pairs in 
which either maize1 or maize2 dominated expression fol
lowing the method described in previous studies 
(Schnable et al. 2011; Woodhouse et al. 2014; Zhao et al. 
2017). Dominant expression was defined as instances in 
which expression of one homoeolog is two-fold or greater 
than the expression of the other homoeolog in that tissue. 

In all four categories, we observed a bias towards gene pairs 
dominated by expression of the maize1 copy, regardless of 
their chromatin environment (fig. 3). For instance, when 
both maize1 and maze2 are in chromosomal arms, on aver
age 32.5% maize1 WGD genes dominate expression, which 
is 9.6% higher than the average percentage (22.9%) of their 
maize2 homoeologous genes dominating expression in the 
24 tissues (fig. 3a). However, this difference of dominance 
between maize1 and maize2 is smaller when the two 
homoeologs are both in pericentromeric regions (28.7% 
vs. 24%). It is worth noting that in some tissues such as 
base of the ear, no or marginal biased expression between 
homoeologs was observed when both are in pericentro
meric regions (fig. 3b). The expression differences between 
maize1 and maize2 are even larger when maize1 genes are 
in chromosomal arms and their maize2 homoeologs are in 
pericentromeric regions (32.8% vs. 21.1%; fig. 3c). In add
ition, we examined the average expression values (FPKM, 
fragments per kilobase of exon per million mapped frag
ments) of the duplicated gene pairs in the four categories. 
The average expression level of maize1 was observed to be 
significantly higher than that of maize2 only when maize1 
genes are in chromosomal arms regardless of where their 
maize2 homoeologs are located (fig. 3a and c, left panels). 
We find no significant differences in mean expression 

FIG. 1. Identification of pericen
tromeric regions and chromo
somal arms of the ten maize 
chromosomes. (a) Reference 
chromosomes with pericentro
meric regions (near centro
meres) in grey and 
chromosomal arms (two sides 
of each chromosome) in differ
ent colors for each chromo
some. Presumed centromeric 
positions are indicated by red 
vertical bands (Wolfgruber 
et al. 2009). (b) Recombination 
rates (cM/Mb). (c) Gene density 
(number of genes/Mb). (d) 
Repeat length (Mb/Mb). (e) 
Homoeologous genes within 
the maize genome. Orange 
curves indicate both homoeolo
gous genes in chromosome 
arms (M1_arm; M2_arm: 2,877 
gene pairs). Blue curves indicate 
both homoeologous genes in 
pericentromeric regions 
(M1_peri; M2_peri: 429 gene 
pairs). Green curves indicate 
maize1 genes in chromosome 
arms, and maize2 genes in peri
centromeric regions (M1_arm; 
M2_peri: 720 gene pairs). 
Yellow curves indicate maize1 
genes in pericentromeric re
gions, and maize2 genes in 
chromosome arms (M1_peri; 
M2_arm: 552 gene pairs). 
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between homoeologs when maize1 genes are in pericen
tromeric regions (fig. 3b and d, left panels).

Next, we analyzed the protein abundance using publicly 
available data from 148 samples of 23 tissues with the same 
cutoff as that for RNA expression (Walley et al. 2016; Walsh 
et al. 2020). In all the four categories, maize1 dominates 
protein abundance in most of the samples 
(supplementary fig. S7, Supplementary Material online). 
However, the difference of the biased protein abundance 
is smaller than that of the biased RNA expression (fig. 3
and supplementary fig. S7, Supplementary Material on
line). Overall, our data demonstrate that the dominance 
of maize1 is at both transcriptional and translational levels 
and differs in different genomic regions.

TEs and Their Associated Epigenetic Marks have 
Shaped the Two Subgenomes in Different Chromatin 
Environments
Given that silenced TEs have deleterious effects on neigh
boring gene expression (Hollister and Gaut 2009), we won
dered whether TEs were associated with differences in 
expression patterns of WGD genes in different genomic lo
cations. We compared the abundance of flanking TEs and 
their distances to nearby WGD genes located in either 

chromosomal arms or pericentromeric regions. Previously 
maize1 genes were found to be significantly farther from 
TEs than are their maize2 homoeologs (Zhao et al. 2017). 
Interestingly, our data show that this is only the case 
when maize1 genes are in chromosomal arms, regardless 
of the location of their maize2 homoeologs (fig. 4a and c, 
top panels). In contrast, no significant differences with re
spect to the distances to TEs were observed when maize1 
genes are in pericentromeric regions (fig. 4b and d, top pa
nels). We also measured the TE abundance in the 2 kb up
stream and downstream regions of duplicated gene pairs. 
The abundance of TEs around maize1 genes is obviously 
lower than those of TEs around their maize2 homoeologs 
only when maize1 genes are in chromosomal arms (fig. 4a 
and c, bottom panels). Although the location of maize2 
genes is not as important, the differences with respect to 
TE distances to nearest genes and TE abundances between 
maize1 and maize2 are larger when maize2 homoeologs are 
in pericentromeric regions (fig. 4a and c). These data are 
consistent with previous hypotheses that purifying selec
tion more efficiently purges TEs near maize1 genes and sug
gests that this process is more efficient when these genes 
are in chromosomal arms.

Compared with chromosomal arms, recombination- 
suppressed pericentromeric regions are associated with a 
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FIG. 2. Stronger purifying 
selection of maize1 over 
maize2 is less pronounced in 
pericentromeric regions. (a) 
Both homoeologous genes in 
chromosome arms (M1_arm; 
M2_arm: 2,877 gene pairs). 
(b) Both homoeologous genes 
in pericentromeric regions 
(M1_peri; M2_peri: 429 gene 
pairs). (c) Maize1 genes in 
chromosome arms, and maize2 
genes in pericentromeric re
gions (M1_arm; M2_peri: 
720 gene pairs). (d) Maize1 
genes in pericentromeric re
gions, and maize2 genes in 
chromosome arms (M1_peri; 
M2_arm: 552 gene pairs). The 
statistical analysis was con
ducted using Student’s paired 
t-test. *P < 0.05; **P < 0.01.
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lower abundance of 24 nt siRNAs, a higher level of CG and 
CHG DNA methylation, and enriched repressive histone 
modifications (Gent et al. 2012). Given that biased evolu
tion and expression between homoeologous genes were 
observed to be less pronounced in pericentromeric regions 
(figs. 2 and 3), we asked whether these epigenetic marks 
are more generally associated with the reduced evolution 
and expression. Small RNAs from four maize tissues were 
perfectly and uniquely mapped to the reference genome 
B73 (version 4; Bousios et al. 2016; Jiao et al. 2017), and 
were evaluated for abundance and distribution around 
the 2 kb upstream and downstream regions of the dupli
cated gene pairs in the four categories described above. 
Consistent with previous results (Zhao et al. 2017), 24 nt 
siRNAs around the duplicated gene pairs are distributed 
into two peaks, and the peaks around maize1 genes are 
lower than those around maize2 genes (fig. 5, top panels, 
and supplementary fig. S8, Supplementary Material on
line). When different categories are compared, maize1 
genes are targeted less by 24 nt siRNAs than are maize2 
genes in three of the four categories (M1-arm vs. 
M2-arm, M1-arm vs. M2-peri, and M1-peri vs. M2-arm). 

In contrast, no such difference was observed between 
maize1 and maize2 homoeologous genes when both are 
in pericentromeric regions (fig. 5b, top panel).

Given that 24 nt siRNAs can recruit histone modifiers 
and DNA methyltransferases to trigger methylation of 
DNA (Matzke and Mosher 2014; Matzke et al. 2015), we 
next asked whether the levels of DNA methylation 
mediated by siRNAs are different between maize1 and 
maize2 homoeologs in different genomic regions. As sym
metrical methylation CG and CHG can be maintained inde
pendently of siRNAs during DNA replication, but 
asymmetrical CHH methylation requires siRNA trigger, 
we specially focus on cytosine methylation in this sequence 
context. As is the case for 24 nt siRNAs, CHH methylation 
has two peaks, previously designated CHH islands (Gent 
et al. 2013; Li et al. 2015), at the roughly similar positions 
as the small RNA peaks in the upstream and downstream 
regions. CHH islands in regions downstream of genes 
are higher in maize2 than in maize1 in all the four categor
ies. However, CHH islands in the upstream regions are 
higher in maize2 only when both homoeologous genes 
are in chromosomal arms (fig. 5a, bottom panels, and 
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FIG. 3. Biased expression between two homoeologs of maize is weaker in pericentromeric regions. (a) Both homoeologous genes in chromosome 
arms (M1_arm; M2_arm: 2,877 gene pairs). (b) Both homoeologous genes in pericentromeric regions (M1_peri; M2_peri: 429 gene pairs). 
(c) Maize1 genes in chromosome arms, and maize2 genes in pericentromeric regions (M1_arm; M2_peri: 720 gene pairs). (d ) Maize1 genes 
in pericentromeric regions, and maize2 genes in chromosome arms (M1_peri; M2_arm: 552 gene pairs). The left boxplot of each panel represents 
the overall expression values (FPKM, fragments per kilobase of exon per million mapped fragments) of the homoeologous genes from 24 tissues, 
and the right plot indicates expression pattern of the duplicated gene pairs following the horse race method previously described (Schnable et al. 
2011; Woodhouse et al. 2014; Zhao et al. 2017). RNA-seq data of the 24 tissues were from (Sekhon et al. 2013; Eveland et al. 2014). These tissues 
include germinating seeds (24 h after germination), primary root (6 days after sowing), shoot apical meristem (vegetative 3), leaf tip (vegetative 
5), vascular leaf (vegetative 9, immature), vascular leaf (vegetative 9, eighth leaf), vascular leaf (vegetative 9, 11th leaf), vascular leaf (vegetative 9, 
13th leaf), vascular leaf (vegetative tasseling, 13th leaf), vascular leaf (reproductive 2, 13th leaf), 10 DAP (days after pollination) whole seed, 12 
DAP whole seed, 14 DAP whole seed, 16 DAP whole seed, 12 DAP endosperm, 14 DAP endosperm, 16 DAP endosperm, 16 DAP embryo, ear tip, 
ear mid, ear base, tassel stage 1, tassel stage 2, and tassel stage 3. The statistical analysis was conducted using Student’s paired t-test. **P < 0.01.
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supplementary figs. S9 and S10, Supplementary Material
online). Together with small RNA data, our methylation 
data suggest that maize2 genes have a higher level of 
methylation adjacent to genes than do maize1 genes, par
ticularly when two homoeologs are in chromosomal arms.

Next, we examined histone modifications between the 
duplicated gene pairs using previously published epigenet
ic data (Ricci et al. 2019; Long et al. 2021). These histone 
modifications include the histone modifications asso
ciated with active chromatin, H3K4me1, H3K4me3, 
H3K27me3, H3K36me3, H3K9ac, H3K27ac, and H3K56ac, 
H3K9me2 that is associated with inactive chromatin, and 
the histone variant H2A.Z, which can be associated with 
active and inactive chromatin depending on its location 
within the gene body (supplementary figs. S11 and S12, 
Supplementary Material online). We find that when the 
homoeologs are in the same chromatin environment 
(M1-arm vs. M2-arm and M1-peri vs. M2-peri), the levels 
of active histone modifications are all slightly higher in 
the 2 kb upstream and downstream regions and gene bod
ies of maize1 than those of maize2, and the levels of 
H3K9me2 is marginally lower for maize1 (supplementary 
figs. S11a, b, S12a and b, Supplementary Material online). 
Given that chromosomal arms are generally less compact 
than pericentromeric regions, it is not surprising that when 
maize1 genes are in chromosomal arms and their maize2 

homoeologs are in pericentromeric regions (M1-arm vs. 
M2-peri), the levels of active histone modifications are 
much higher in the flanking regions of maize1 than those 
of maize2, and the level of the repressive histone modifica
tion H3K9me2 is dramatically lower for maize1 
(supplementary figs. S11c and S12c, Supplementary 
Material online). When maize1 genes are in pericentro
meric regions and their maize2 homoeologs are in 
chromosomal arms (M1-peri vs. M2-arm), we expected 
to see higher levels of active histone modifications and 
lower levels of repressive histone modifications in maize2 
than those in maize1. However, no obvious differences 
were detected between maize1 and maize2 homoeologs 
with respect to these histone modifications 
(supplementary figs. S11d and S12d, Supplementary 
Material online), suggesting that selection against the ac
cumulation of TEs (fig. 4), which are the major targets of 
repressive histone modifications, near maize2 genes was 
relaxed even though they are in chromosomal arms.

Presence or Absence of ACRs may Have Affected the 
Biased Evolution and Expression of their Flanking 
WGD Genes
In mammalian and plant genomes, cis-regulatory elements 
that reside within accessible chromatin have been found to 
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FIG. 4. No significant differences in transposable elements flanking homoeologous genes when maize1 is in pericentromeric regions. (a) Both 
homoeologous genes in chromosome arms (M1_arm; M2_arm: 2,877 gene pairs). (b) Both homoeologous genes in pericentromeric regions 
(M1_peri; M2_peri: 429 gene pairs). (c) Maize1 genes in chromosome arms, and maize2 genes in pericentromeric regions (M1_arm; 
M2_peri: 720 gene pairs). (d) Maize1 genes in pericentromeric regions, and maize2 genes in chromosome arms (M1_peri; M2_arm: 552 
gene pairs). The top figure of each panel indicates the average distance of WGD genes to their nearest TEs, and the bottom figure represents 
the TE proportions in the 2 kb upstream and downstream regions of WGD genes. These regions were divided into 100 bp sliding windows with 
10 bp increments. TSS, transcription start site; TTS, transcription termination site. The statistical analysis was conducted using Student’s paired 
t-test. *, P < 0.05.
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interact with their target genes to regulate their expression 
(Thurman et al. 2012; Shlyueva et al. 2014; Weber et al. 
2016; Lu et al. 2019; Ricci et al. 2019; Schmitz et al. 2022). 
Particularly, such interaction between transcription fac
tors, regulatory sequences and genes often disrupts nucleo
some formation, which results in ACRs that harbor 
putative cis-regulatory elements (Iwafuchi-Doi et al. 2016; 
Klemm et al. 2019). Given the biased expression of the 
maize homoeologs, we sought to determine whether 
ACRs have been biased fractionated between maize1 and 
maize2 and whether they have shaped the expression pat
terns of the homoeologous genes. In order to do so, we re
analyzed 32,111 publicly available ACRs (Ricci et al. 2019). 
Based on their distances to their nearest annotated genes, 
we find that 11,997 ACRs are near WGD genes and 11,479 
ACRs are near singleton genes (supplementary fig. S13, 
Supplementary Material online). It is worth noting that 
the remaining 8,635 ACRs were removed in this analysis gi
ven that their nearest genes do not have syntenic relation
ship with genes in sorghum. Next, we split these ACRs into 
the two subgenomes. The ratio of ACRs that are near single
tons to ACRs that are near WGD genes in maize1 (1.3:1; 
8,523 to 6,484) is significantly higher than that of ACRs 
near singletons to ACRs near WGD genes in maize2 
(0.5:1; 2,956 to 5,513; P < 0.0001, χ2 test), suggesting ACRs 
are more retained in maize1. This shows that not only are 
maize2 genes more likely to be fractionated, but even 
when they are retained, their ACRs are more likely to be 
fractionated. The distribution of the position of the ACRs 

relative to the genes was similar in the two subgenomes. 
Out of the 6,484 ACRs near WGD genes in maize1, 2,742 
(42.2%) overlap genes (gACRs, genic ACRs), 1,936 (29.8%) 
are within 2 kb of genes (pACRs, proximal ACRs), and 
1,806 (27.8%) are >2 kb from a gene (dACRs, distal ACRs) 
(fig. 6a). Maize2 has similar proportions of gACRs, pACRs, 
and dACRs as does maize1 (fig. 6a). Given that biased frac
tionation is more pronounced in chromosomal arms (figs. 2
and 3), we compared ACRs near WGD genes between 
maize1 and maize2 in different genomic locations. We ob
served a significantly higher enrichment of gACRs, pACRs, 
and dACRs of maize1 only in chromosomal arms. No signifi
cant difference with respect to the enrichment of ACRs be
tween maize1 and maize2 in pericentromeric regions (fig. 
6b and c, and supplementary fig. S14, Supplementary 
Material online). Further comparison of the chromosome 
accessibility of these ACRs between chromosomal arms 
and pericentromeric regions indicate that maize1 ACRs 
are more accessible than maize2 but only in chromosomal 
arms (fig. 6d). Because cis-regulatory elements residing in 
ACRs regulate their target genes through chromatin loops 
(Li et al. 2019; Peng et al. 2019; Sun et al. 2020), we further 
compared the numbers of chromatin loops from the 
Hi-C-seq and HiChip-seq data (Ricci et al. 2019). Our data 
show that chromatin loops are enriched in chromosomal 
arms of maize1 relatively to maize2 arms, but no differences 
in the numbers of loops between maize1 and maize2 were 
detected in pericentromeric regions (supplementary fig. 
S15, Supplementary Material online).
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FIG. 5. Distribution and abundances of 24 nucleotide small RNAs and CHH (H = A, T, or C) methylation around and on homoeologous genes in 
different chromatin environments. (a) Both homoeologous genes in chromosome arms (M1_arm; M2_arm: 2,877 gene pairs). (b) Both homo
eologous genes in pericentromeric regions (M1_peri; M2_peri: 429 gene pairs). (c) Maize1 genes in chromosome arms, and maize2 genes in 
pericentromeric regions (M1_arm; M2_peri: 720 gene pairs). (d ) Maize1 genes in pericentromeric regions, and maize2 genes in chromosome 
arms (M1_peri; M2_arm: 552 gene pairs). Both methylation levels and small RNA abundance were averaged from different maize tissues. 
Only uniquely and perfectly mapped 24 nt small RNAs were averaged in a 100 bp sliding window moving in 10 bp increments of the 2 kb up
stream and downstream regions of the duplicated gene pairs following the methods previously described (Woodhouse et al. 2014; Zhao et al. 
2017). Weighted CHH methylation levels were calculated in a 50 bp window. Gene body methylation was measured on 40 equally sized bins. Bin 
sizes differ from gene to gene because of the different lengths of genes. TP10M, transcripts per 10 million uniquely and perfectly mapped reads; 
TSS, transcription start site; TTS, transcription termination site.
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In an attempt to shed light on the evolutionary forces 
that drive the difference of ACRs and duplicated genes, 
we further analyzed ACRs in maize that have syntenic 
ACRs in sorghum using publicly available data (Lu et al. 
2019). We hypothesize that like maize1 gene coding se
quences, maize1 ACRs have undergone a higher level of se
lective constraint. To test this, we classified 2,205 syntenic 
ACRs near WGD genes into (1) 381 paired ACRs that both 
copies have been retained, (2) 909 ACRs that are retained 
in maize1 and their homoeologous ACRs are lost in 
maize2, and (3) 534 ACRs that are retained in maize2 
and their homoeologous ACRs are lost in maize1. In add
ition, we grouped the 1,350 syntenic ACRs near singleton 
genes into (4) 1,014 ACRs that are retained in maize1 
and their homoeologous ACRs are lost in maize2, and 
(5) 336 ACRs that are retained in maize2 and their homo
eologous ACRs are lost in maize1 (supplementary fig. S13, 
Supplementary Material online). We next calculated the 
frequencies of sequence substitution (K) of the 381 ACR 
pairs relative to their syntenic ACRs in sorghum, which 

served as an outgroup. Consistent with the evolutionary 
pattern of duplicated genes, maize1 ACRs exhibit a signifi
cantly lower value of K than do maize2 ACRs when both 
ACRs are in chromosomal arms. However, when both 
ACRs are in pericentromeric regions, no significant differ
ence in K was observed between maize1 and maize2 
(fig. 6e). These observations indicate that maize1 ACRs 
have been subject to a higher level of selective constraints 
than their maize2 homoeologous ACRs, but only when 
they are in chromosomal arms.

To further understand the interaction between ACRs 
and their target genes, we asked whether presence or ab
sence of ACRs have impacted the evolution and expression 
of their target genes. We compared the values of Ka, Ks, ω, 
and FPKM of the maize1 and mazie2 duplicated gene pairs 
nearest to these syntenic ACRs. When the duplicated pairs 
of both ACRs and genes are retained (Category 1, fig. 7a
and supplementary fig. S13, Supplementary Material on
line), Ka of maize1 genes is significantly lower than that 
of their maize2 homoeologs. In contrast, we find no 
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FIG. 6. Differences in accessible chromatin regions (ACRs) between maize1 and maize2. (a) Numbers of genic, proximal, and distal ACRs (gACRs, 
pACRs, and dACRs) in maize1 and maize2. (b) Numbers of genic ACRs in chromosomal arms (arms) and in pericentromeric regions (peri). The 
statistical analysis was conducted using χ2 test. **P < 0.01. (c) Numbers of proximal and distal ACRs and their distances to nearest WGD genes. 
(d) Comparison of chromatin accessibilities of ACRs between maize1 and maize2 in different chromatin environments following the four same 
categories defined for homoeologous genes. Only 2,102 syntenic ACRs were used here. The statistical analysis was conducted using Student’s 
t-test. **P < 0.01. (e) Comparison of evolutionary distances (K) of ACRs between maize1 and maize2 in different categories. Only 381 syntenic 
ACR pairs (both ACRs are retained in maize1 and maize2, and have syntelogs in sorghum) were used here. The statistical analysis was conducted 
using Student’s paired t-test. **P < 0.01.
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significant difference in Ks, ω, or FPKM between this subset 
of maize homoeologs (fig. 7a), suggesting these pairs of 
genes have experienced similar levels of purifying selection. 
When maize2 ACRs are lost and only maize1 ACRs are re
tained (Category 2, fig. 7b and supplementary fig. S13, 
Supplementary Material online), both Ka and ω of maize1 
genes are significantly lower than those of maize2 genes 
(fig. 7b), indicating that these maize1 genes have experi
enced an overall higher level of purifying selection than 
maize2 genes. Furthermore, these maize1 genes also ex
hibit a significantly higher level of expression than their 
maize2 homoeologs. In contrast, when maize1 ACRs are 
lost and only maize2 ACRs are retained (Category 3, 
fig. 7c and supplementary fig. S13, Supplementary 
Material online), no significant differences in Ka, Ks, ω, or 
FPKM were detected between the homoeologs (fig. 7c), in
dicating no biased evolution in these pairs of genes. This 
also suggests that these ACRs play a role in the dominance 
of these maize1 genes, and loss of these ACRs is associated 
with the relaxed selection of this subset of maize1 genes.

Finally, we compared chromosome accessibility, evolu
tionary distances (K, Ka, Ks, and ω), and expression values 
within maize1 subgenome (Categories 1, 2, and 4), and 
within maize2 subgenome (Categories 1, 3, and 5, 
supplementary fig. S13, Supplementary Material online). 
In both maize1 and maize2, paired syntenic ACRs have 
an average higher level of chromatin accessibility and a sig
nificantly lower level of sequence substitution K than 
singleton syntenic ACRs, which is consistent with the pat
tern observed between WGD genes and singleton genes 
(supplementary figs. S5 and S6, Supplementary Material
online). In both maize1 and maize2, WGD genes have low
er values of Ka and ω, and are expressed at significantly 
higher levels than are singleton genes. In contrast, no sig
nificant differences in Ks were detected between WGD 
genes and singleton genes in maize1, whereas the former 
exhibits a significantly higher value of Ks than the later 
in maize2 (supplementary fig. S16, Supplementary 
Material online). Overall, our data show that when the du
plicated ACR pairs and gene pairs are both retained in the 
syntenic regions, both of members of these pairs of genes 
exhibit the slowest rate of evolutionary change, suggesting 
that they have functional correlation during the evolution
ary history.

Discussion
Our most striking observation is that we find no significant 
bias of most of the measured variables when comparing 
maize1 and maize2 homoeologs and their associated 
ACRs when maize1 genes were in pericentromeric regions 
(figs. 2b, 3b, 4b, 5b, and 6e). Maize1 WGD genes do not ex
hibit any evidence of stronger purifying selection than 
their maize2 homoeologs when both are in pericentro
meric regions (fig. 2b). Pericentromeric regions are gener
ally recombination suppressed, in which natural selection 
against deleterious mutations is poorly efficient (Gaut 
et al. 2007; Charlesworth 2012). Recombination can also 

cause point mutations (Lercher and Hurst 2002; 
Rousselle et al. 2019). Therefore, both Ka and Ks evolve 
more slowly in gene copies in recombination-suppressed 
pericentromeric regions than in homoeologous copies in 
chromosomal arms, as has been noted previously in soy
bean (Du et al. 2012). However, this is not what we ob
served here. When maize1 genes are in chromosomal 
arms and their maize2 homoeologs are in pericentromeric 
regions, we expected to see higher mutation rates for 
maize1. Instead, we detected a lower Ka and no significant 
difference in Ks for maize1 genes (fig. 2c), suggesting that 
the effect of purifying selection on the function of maize1 
genes is stronger than that of recombination on the evolu
tion of the homoeologs in maize. This result is consistent 
with a previously proposed model suggesting that biased 
fractionation is a result of purifying selection acting prefer
entially against deletion alleles of higher expressed dupli
cated copies (Schnable et al. 2011). Interestingly, we find 
that the expression dominance of maize1 over maize2 
was only significant when maize1 genes are located in 
chromosomal arms, regardless of where their maize2 
homoeologs are located (fig. 3a and c, left panels), suggest
ing chromatin environment has a significant effect on gene 
dominance. This may be due to differences in recombin
ation. The major evolutionary advantage of recombination 
is thought to be that it breaks up associations between 
linked loci. Such linkage hinders the action of purifying se
lection and thus increases the fixation rate of deleterious 
mutations, resulting in increased ω (Webster and Hurst 
2012; Bolivar et al. 2016). Because of lower rates of recom
bination in pericentromeric regions, deleterious mutations 
are less efficiently purged. Because of this, selection is ex
pected to be weaker for maize1 genes in pericentromeric 
regions than in chromosomal arms. We hypothesize that 
because maize2 genes have already been subject to relaxed 
selection, accumulation of deleterious mutations in these 
genes may not have significant effects on them no matter 
where they are located. We suggest that maintenance of 
genome dominance requires that selection can effectively 
purge mildly deleterious alleles before they become fixed. 
In chromosome arms, this occurs preferentially in maize1 
genes, resulting in a long-term maintenance of dominance. 
However, because of reduced recombination, dominance 
cannot be maintained in pericentromeric regions. To test 
this, we classified all duplicated genes into higher and low
er recombination groups. Of the 4,578 duplicated pairs, 
2,718 (59.4%) show recombination differences of at least 
two-fold and were dubbed higher and lower recombin
ation genes. We found that on average, higher recombin
ation genes were expressed at higher levels. Furthermore, 
TEs are farther from and less abundant near the higher re
combination genes. However, such differences are not sig
nificant (supplementary fig. S17, Supplementary Material
online) probably because the recombination rate data 
were generated from recently mapping populations (Liu 
et al. 2009), and the differentiations of these duplicated 
genes were the outcome of around 12 My evolution. In 
addition, we detected no significant differences with 
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respect to GC content between maize1 and maize2 genes 
(supplementary fig. S18, Supplementary Material online).

Transposable element insertions are likely to be one of 
the deleterious mutations that contribute to genome 
dominance because silenced TEs often have deleterious ef
fects on expression of their neighboring genes (Hollister 
and Gaut 2009). It has been hypothesized that the two 
subgenomes prior to the allotetraploidization event in 
maize were distinct with respect to TE distribution such 
that one subgenome had lower overall levels of expression 
due to a greater density of silenced TEs near genes 
(Woodhouse et al. 2014; Zhao et al. 2017). In cases in which 
the genes were functionally redundant, it is hypothesized 
that the member of a pair with a lower level of expression 
would be more likely to be lost. Due to dosage constraints, 
some classes of genes retain both copies (Freeling and 
Thomas 2006; Thomas et al. 2006). In these cases, purifying 
selection on the gene with the lower expression level, ei
ther due to TE insertion or any other deleterious muta
tions, was lower, resulting in relaxed selection against 

additional deleterious mutations or subsequent TE inser
tions (Freeling and Thomas 2006; Thomas et al. 2006; 
Wendel et al. 2018). Given that silenced TEs near genes 
have deleterious effects on neighboring gene expression 
(Hollister and Gaut 2009), purifying selection is thought 
to purge TE insertions from gene-rich chromosomal re
gions, which led to the accumulation of TEs in low- 
recombining pericentromeric regions (Wright et al. 
2003). It is also possible that the accumulation of at least 
some of these TEs is caused by biased insertion of these 
TE sequences in these recombination-suppressed regions 
(Wright et al. 2003; Tian et al. 2012). However, what is 
more relevant here is our observation that TEs are closer 
to genes in these regions (fig. 4), and TEs have accumulated 
at similar abundances and at similar distances around 
homoeologous genes in pericentromeric regions in the 
two subgenomes (fig. 4). If we assume that they have simi
lar effects on the expression of the genes, this is consistent 
with the idea that within pericentromeres, both copies of 
duplicated genes in these regions have experienced similar 
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FIG. 7. Presence or absence of 
accessible chromatin regions 
(ACRs) may have affected the 
biased evolution and expres
sion of their flanking dupli
cated genes. (a) Both two 
duplicated ACRs retained in 
maize. (b) Maize1 ACRs re
tained and their maize2 homo
eologous ACRs lost. (c) Maize1 
ACRs lost and their maize2 
homoeologous ACRs retained. 
Only syntenic ACRs between 
maize and sorghum near 
whole-genome duplicated 
genes were used here. 
Rectangles represent ACRs, 
and circles indicate duplicated 
gene pairs. Dotted rectangles 
indicate the ACRs are lost. 
The evolutionary distances 
(Ka, Ks, and ω) and expression 
values (FPKM, fragments per 
kilobase of exon per million 
mapped fragments) were com
pared between maize1 and 
maize2 homoeologous genes. 
The statistical analysis was con
ducted using Student’s paired 
t-test. **P < 0.01.
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levels of selective constraint. This is also reflected in differ
ences in abundance of 24 nt small RNAs and CHH methy
lation in the same regions of the two subgenomes (fig. 5).

It should be emphasized that the current regions classi
fied as pericentromeric regions or chromosomal arms may 
not be the same regions in the two progenitor genomes gi
ven that large numbers of rearrangements have occurred 
in maize after the tetraploid event. These rearrangements 
have led to transitions of many genomic regions from 
chromosomal arms to pericentromeric regions or vice ver
sa (Swigonova et al. 2004; Wei et al. 2007; Wang and 
Bennetzen 2012). It is also possible that the two homoeo
logs both currently located in pericentromeric regions 
were less distinct prior to polyplodization because they 
were both located in heterochromatin when polyploidy 
occurred and were initially expressed at the similar level 
because both members of each gene pair were similarly 
compromised and therefore had an equal chance of being 
lost and an equal chance of experiencing a relative reduc
tion in purifying selection. Finally, it remains a possibility is 
that since selection is weaker in pericentromeric regions, 
bias may also occur in these regions its effects would 
take longer to manifest themselves.

Another interesting observation is the coevolution of 
ACRs and their flanking genes. It is not surprising that these 
ACRs are largely enriched in euchromatic chromosomal 
arms, which contain many active genes. However, even cor
recting for gene density, ACRs are more numerous in eu
chromatin, and, like the genes they are associated with, 
ACRs in maize1 differ with respect to number, level of chro
matin accessibility, and evolutionary distance (K) to those 
in maize2. In contrast, none of these differences between 
subgenomes are observed in pericentromeric regions 
(fig. 7). Our data also indicate that loss of maize2 ACRs 
may not have had a large effect on the evolution and ex
pression of their flanking genes, whereas loss of maize1 
ACRs is associated with a reduction in purifying selection 
and expression of maize1 genes relative to their maize2 
homoeologs (fig. 7b and c), suggesting that these ACRs 
near maize1 genes are important to maintain the gene 
dominance. These data would also be indicative of co
evolution between regulatory elements and their target 
genes that is supportive of the Gene Balance Hypothesis. 
This hypothesis states that imbalance in macromolecular 
complexes and in signaling networks will affect the func
tion of the whole and lead to fitness defects (Veitia et al. 
2008; Birchler and Veitia 2010, 2012). Because ACRs harbor 
cis-regulatory elements that control the expression of 
genes, ACRs and their target genes are in balance with 
each other. Natural selection purges changes in either 
one because changes in either will result in reduced func
tion. Given that maize1 genes contribute more to pheno
typic traits, they have been retained more frequently and 
have undergone a stronger purifying selection (Pophaly 
and Tellier 2015; Zhao et al. 2017), their regulatory ele
ments are also more retained and more conserved (figs. 6
and 7). Although the causes and consequences of subge
nome differentiation in maize remain to be more fully 

elucidated, our study points out that chromatin environ
ment, TEs and their associated marks, and regulatory ele
ments are all important determinants shaping the 
patterns of divergence of homoeologous genes retained 
in the two subgenomes.

Materials and Methods
Separation of Chromosomal Arms and 
Pericentromeric Regions of Maize Chromosomes
The rough positions of chromosomal arms and pericentro
meric regions of the ten maize chromosomes were defined 
based on the gene and TE densities as well as recombin
ation rates following our previous method (fig. 1; Zhao 
et al. 2021). Based on the annotation of genes and TEs, 
gene densities (number of genes/Mb) and repeat length 
(Mb/Mb) were measured in 1 Mb windows with 500 kb 
shifts along each chromosome. Recombination rates 
(cM/Mb) were determined based on 6,257 genetic markers 
in the integrated map previously described (Liu et al. 
2009). Because recombination is generally suppressed, 
gene density is lower, and TE density is higher in pericen
tromeric regions, we manually separated each chromo
some into two arms and one pericentromeric region 
(fig. 1). Presumed centromeric positions were determined 
by the functional centromere positions previously mapped 
(Wolfgruber et al. 2009). The sequences of the functional 
centromeres were extracted from the B73 v1 genome, 
and mapped to the B73 v4 reference genome using 
BLAST (Altschul et al. 1997).

Identification of Homoeologous and Syntenic Genes 
and ACRs
The syntenic gene list of maize (v4) and sorghum were ob
tained from previously published data (Zhang et al. 2017). 
We only kept the maize genes with syntenic relationships 
in sorghum. To make the data more accurate, genes in
volved in tandem duplication were first removed because 
of their ambiguous duplication status. In addition, we fil
tered the genes with the values of Ks <0.05 and the ratio 
(ω) of Ka to Ks >2.0 between maize and sorghum. The final 
data set in this study includes a total of 4,578 duplicated 
gene pairs and 11,554 singleton genes (supplementary 
fig. S1 and table S1, Supplementary Material online). 
These 4,578 duplicated gene pairs were further classified 
into four categories based on their genomic locations in 
chromosomal arms and pericentromeric regions: M1-arm 
versus M2-arm, both of the two homoeologous genes in 
chromosomal arms, M1-peri versus M2-peri, both of the 
two homoeologous genes in pericentromeric regions, 
M1-arm versus M2-peri, maize1 genes in chromosomal 
arms and maize2 genes in pericentromeric regions, and 
M1-peri versus M2-arm, maize1 genes in pericentromeric 
regions and maize2 genes in chromosomal arms. To com
pare the characters between subgenomes, the maize v4 
genomes were split into blocks. Small blocks with fewer 
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than five genes were excluded from further analysis. This 
left a final set of 119 duplicated block pairs.

The maize and sorghum ACRs were downloaded from the 
published studies (Lu et al. 2019; Ricci et al. 2019). To deter
mine duplicated ACRs between subgenomes and syntenic 
ACRs between maize and sorghum, we compared the se
quence similarities of ACRs within maize, and between maize 
and sorghum using BLAST (Altschul et al. 1997). ACRs with 
sequence similarities in the duplicated regions within maize 
or in the syntenic regions between maize and sorghum 
were defined as duplicated ACRs or syntenic ACRs.

Estimation of Evolutionary Distance and GERP Scores
We followed the pipelines previously described to analyze 
sequence divergence of syntenic genes and ACRs between 
maize and sorghum (Zhao et al. 2015, 2017, 2018). 
Homologous nucleotide sequences were aligned using 
MUSCLE or ClustalW by default parameters (Thompson 
et al. 1994; Edgar 2004). The unexpected stop codons gen
erated by the alignment process but not present in the ori
ginal sequence were replaced with “–” as ambiguous 
nucleotides before the estimation of sequence divergence. 
Ka and Ks of homologous genes and nucleotide sequence 
divergence K of ACRs were estimated with the yn00 and 
baseml modules in the PAML program (Yang 2007).

We calculated GERP scores for each site across the B73 
reference genome and determined the deleterious alleles 
as alleles different from the ancestor alleles in the S. bicolor 
genome following previous studies (Rodgers-Melnick et al. 
2015; Wang et al. 2017; Yang et al. 2017). Only nonsynon
ymous SNP sites with GERP scores >0 were retained as pu
tatively deleterious loci. To mitigate reference bias, we 
calculated the average value of the genetic load for these 
putatively deleterious loci in the 4,578 duplicated gene 
pairs (9,156 duplicated genes) across the maize diversity 
panel (Bukowski et al. 2018). The genetic load was mea
sured as the average number of deleterious alleles divided 
by the total length of the gene body.

Analysis of Transcription and Protein Abundance of 
Homoeologous Genes
The raw data from 24 maize tissues were downloaded from 
public data sets (Sekhon et al. 2013; Eveland et al. 2014). 
The reads were aligned to the maize reference genome 
(v4) using HISAT version 2.1.0 (Kim et al. 2019). Only un
ique reads were kept to measure gene expression values, 
which were generated using cufflinks v2.2.1 (Trapnell 
et al. 2012). The horse race method was used to measure 
the expression dominance of the two duplicated genes 
of a pair in different chromatin environments across these 
24 tissues (Schnable et al. 2011; Woodhouse et al. 2014; 
Zhao et al. 2017). In each tissue, we compared the number 
of duplicated gene pairs in which either maize1 or maize2 
dominated expression following the method described in 
previous studies (Schnable et al. 2011; Woodhouse et al. 
2014; Zhao et al. 2017). Dominant expression was defined 
as instances in which expression of one homoeolog is two- 

fold or greater than the expression of the other homoeolog 
in that tissue. For example, in each tissue, for a given dupli
cated pair, if the expression value of the maize1 gene is 
two-fold higher than its counterpart maize2 gene, we con
sidered the maize1 gene won the horse and dominated ex
pression, or vice versa.

The data set of protein abundance from 148 samples of 
23 tissues was obtained from public papers (Walley et al. 
2016; Walsh et al. 2020). Gene IDs were converted from 
version 2 to version 4 of the B73 genome. The horse race 
method with the same two-fold cutoff was used here to 
determine protein dominance in each sample.

Analysis of TEs, 24 nt Small RNAs and DNA 
Methylation
A total of 1,526 consensus and exemplar TEs from the maize 
TE consortium were obtained from previous published 
manuscripts (Baucom et al. 2009; Schnable et al. 2009). 
These TE exemplars were used to search against the maize 
v4 genome using RepeatMasker with a divergence value of 
<20%. The distance of TEs overlapping with genes was con
sidered as 0. The TE proportion was measured in each 
100 bp window with 10 bp increments in the 2 kb up
stream and downstream regions of duplicated genes.

The raw reads of small RNA data from four maize tissues 
(tassel, ear, seedling, and root) obtained from previous re
search were first mapped to the Rfam database (v14.6) to 
remove rRNAs, tRNAs, snRNAs, and snoRNAs (Bousios 
et al. 2016). After filtration, the remaining reads were 
mapped to the maize reference genome (v4) using 
Bowtie only allowing unique and perfect matches 
(Langmead et al. 2009). The values of small RNAs were nor
malized to transcripts per 10 million uniquely and perfect
ly mapped reads (TP10M). Twenty-four nucleotide small 
RNAs were measured in a 100 bp sliding window moving 
in 10 bp increments through the 2 kb upstream and 
downstream regions of the duplicated genes in maize1 
and maize2 following the methods previously described 
(Woodhouse et al. 2014; Zhao et al. 2017).

Clean reads of whole-genome bisulfite sequencing data 
from four maize tissues (ear shoot, shoot apex, anther, and 
third seedling leaf) were aligned against the maize B73 v4 
genome using Bismark under following parameters (-n 2, -I 
50, -N 1; Krueger and Andrews 2011; Eichten et al. 2013; Li 
et al. 2015). Polymerase chain reaction duplicates were re
moved using Picardtools. Additional packages including 
Bismark methylation extractor, bismark2bedGraph, and 
coverage2cytosine under Bismark were used to extract 
the methylated cytosines, and to count methylated and 
unmethylated reads. The proportion of each type of 
methylation (CG, CHG, and CHH) was determined as 
weighted methylation levels in 50 bp windows without 
shifts of the 2 kb upstream and downstream regions of 
the duplicated genes (Krueger and Andrews 2011; Liu 
et al. 2021). Gene body methylation was measured on 40 
equally sized bins, with bin size differing from gene to 
gene because of the different lengths.
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Analysis of Various Histone Modifications and 
Chromatin Loops
The mapping bed files of ChIP-seq data of H3K4me1, 
H3K4me3, H3K27me3, H3K36me3, H3K9ac, H3K27ac, 
H3K56ac, H3K9me2, and the histone variant H2A.Z were 
downloaded from previous research (Ricci et al. 2019; 
Long et al. 2021). The signals (number of reads) of each his
tone were measured in a 100 bp window of the 2 kb up
stream and downstream regions and gene bodies of the 
duplicated genes following the formula log2(treat reads + 
1)/(input reads + 1).

Chromatin loops connecting distal ACRs and their tar
get genes in the leaf tissue were downloaded from a pub
lished paper (Ricci et al. 2019). These loops were obtained 
from three different types of Hi-C data (Hi-C-seq, 
H3K4me3-HiChIP-seq, and H3K27me3-HiChIP-seq). 
These chromatin loops were classified into chromosomal 
arms and pericentromeric regions of maize1 and maize2 
based on their physical locations on each chromosome.

Supplementary Material
Supplementary data are available at Molecular Biology and 
Evolution online.
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