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Abstract—Metadata are key descriptors of research data,
particularly for researchers seeking to apply machine learning
(ML) to the vast collections of digitized specimens. Unfortunately,
the available metadata is often sparse and, at times, erroneous.
Additionally, it is prohibitively expensive to address these lim-
itations through traditional, manual means. This paper reports
on research that applies machine-driven approaches to analyzing
digitized fish images and extracting various important features
from them. The digitized fish specimens are being analyzed as
part of the Biology Guided Neural Networks (BGNN) initiative,
which is developing a novel class of artificial neural networks
using phylogenies and anatomy ontologies. Automatically gener-
ated metadata is crucial for identifying the high-quality images
needed for the neural network’s predictive analytics. Methods
that combine ML and image informatics techniques allow us to
rapidly enrich the existing metadata associated with the 7,244
images from the Illinois Natural History Survey (INHS) used
in our study. Results show we can accurately generate many
key metadata properties relevant to the BGNN project, as well
as general image quality metrics (e.g. brightness and contrast).
Results also show that we can accurately generate bounding boxes
and segmentation masks for fish, which are needed for subsequent
machine learning analyses. The automatic process outperforms
humans in terms of time and accuracy, and provides a novel
solution for leveraging digitized specimens in ML. This research
demonstrates the ability of computational methods to enhance
the digital library services associated with the tens of thousands
of digitized specimens stored in open-access repositories world-
wide.

Index Terms—bioinformatics, metadata, image analysis, ap-
plied machine learning

I. INTRODUCTION

Over the last several decades advances in computing, imag-

ing, and cyberinfrastructure have supported the growth of

digital natural history collections, many of which contain spec-

imen images [1]. Additionally, initiatives, such as the National

Science Foundation’s Advancing Digitization of Biodiversity

Collections (ADBC) program, have supported the digitization

Research supported by NSF OAC #1940233 and #1940322.

and curation of tens of thousands of biological specimens [2].

These digitized specimens are generally accessible through

global, open-access repositories that support digital library

services, such as browsing, search and retrieval, and preserva-

tion. The digitized renderings of these rich collections permit

researchers, educators, students, and the general public to

examine biological specimens on a previously unattainable

scale. Moreover, the digitized instantiations present a pathway

for making new scientific discoveries via the application of

machine learning (ML).

Unfortunately, potential scientific advances are hindered by

image quality problems and the lack of accurate and pertinent

metadata associated with the image collections. Poor quality

images (e.g. low contrast, inadequate lighting, out-of-focus or

cluttered visual arrangements) are inadequate for automated

image analysis by ML algorithms and lead to inferior compu-

tational results. In order to perform quantitative morphometric

analysis of the specimens, the physical scale of the images

(pixelscm ) is needed; thus requiring the ability to identify and take

measurements using rulers in the images. Many specimen col-

lections do include Darwin Core metadata [3], detailing spec-

imen taxon, geographic location, and several other specimen-

related aspects. Additionally, some digitization efforts record

technical metadata, detailing imaging specifications. While

these types of metadata are helpful for a human examining

several images at a time, they are insufficient for researchers

seeking to apply computational methods to examine thousands

of images to determine if, for example, a specific fish grows to

different lengths in different habitats, or to study differences

in the size of a particular anatomical feature, e.g. the size of

a dorsal fin.

Since digital collections may each contain tens of thousands

of images, manually producing image-related metadata for

each digitized specimen is prohibitively expensive. Methods

for automatically computing metadata are therefore needed

to fully exploit biological image repositories for scientific
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Fig. 1. An image from the Illinois Natural History Survey (INHS) collection.

discovery. As a step towards improving metadata in research

specimen image collections, members of Drexel University’s

Metadata Research Center are developing methods to auto-

matically analyze fish images and extract a set of data features

that provide important metadata about the digitized specimens.

The research is being conducted as part of the Biology Guided

Neural Networks (BGNN) project, which is developing a novel

class of artificial neural networks that exploit machine readable

and predictive knowledge associated with specimen images,

phylogenies and anatomy ontologies. Using a combination

of ML and image informatics techniques, we can accurately

determine general image quality and metadata, such as fish

quantity, location and orientation, and image scaling based

on ruler identification and measurement. Image scaling allows

us to compute quantitative features about the fish specimens,

such as their length and area. In order to test and validate

our methods, they have been applied to a set of 7, 244 images

drawn from the Illinois Natural History Survey (INHS) Col-

lection of fish specimens [4]. Figure 1 presents a typical image

used in our study. The following section of the paper provides

contextual background for this work, followed by the research

goals and objectives, and a review of our research methods.

Next, the results, along with discussion, are presented. The

conclusion highlights key findings and identifies next steps.

II. RELATED WORK

A. Metadata for Natural History Image Collection

A number of different metadata standards have been applied

to support the description and access of digital images of

scientific specimens. The Darwin Core (DwC) [3], developed

specifically to describe biological diversity data, is one of the

most popular standards for such efforts. It is an extension of

the Dublin Core’s DCMI Metadata Terms [5]. The Audubon

Core [6], which supports the discoverability, dissemination,

and use of data related to biological organisms (including 3–

D digitized specimens), is a DwC extension that has become

the popular metadata standard for biodiversity multimedia re-

sources and collections. All of these descriptive standards and

extensions include metadata properties for taxon, geographic

location, and other important specimen content, and have been

developed primarily from the perspective of a human curator.

In other words, their application anticipates that a curator or

data entry staff will manually generate metadata, drawn from

acquisition logs or original specimen labels. The generated

metadata associated with each digital rendering is generally

sparse and prone to human error, placing limitations on a

researcher seeking to apply ML to the image and the metadata

for scientific research.

This limitation is magnified when trying to assess the

actual quality of the digitized specimen. Descriptive-oriented

standards support search and retrieval, and the biodiversity

community has advocated for data fitness standards [7]. This

point is also emphasized by Wieczorek et al. [8] in their report

on the variety of DwC metadata extensions needed to meet

growing community concerns and requirements, including

data quality and fitness. Even so, metadata describing image

quality is severely limited and generally missing. This point

is addressed in detail by Leipzig et al. [9] and serves as the

rationale for Tulane University’s effort to manually capture

content for 22 metadata properties that characterize digitized

specimen image quality. Their work is being conducted in

connection with the larger BGNN initiative, and the difficulties

encountered during the process underscore the need to explore

automatic metadata generation methods.

B. Automatic Metadata Generation

Advances in automatic metadata generation of both de-

scriptive and technical metadata are relevant to the research

presented in this paper. Automatic metadata generation of

descriptive bibliographic data has been a research focus for

close to 20 years [10]–[13]. Researchers have applied support

vector machine (SVM) approaches [14], and associated net-

works to address sparse and incomplete metadata [15], and

various successes are integrated into day-to-day workflows.

Heidorn, et al. [16] demonstrated the use of optical character

recognition (OCR) to extract specimen information from the

original typed and often hand-annotated labels that are digi-

tized along with herbarium collection holdings. The extracted

information was encoded in the DwC metadata associated with

the specimen’s digitized rendering. There has also been some

success with extracting descriptive cartographic information

from maps [17]. While descriptive metadata covers taxon,

geographic location, and other important aspects, and may

even record the image format; uses of automatic processes

are still limited. More significantly, descriptive metadata does

not sufficiently addressed data quality.

Technical metadata, such as camera settings and temporal

information (date and time) are automatically generated during

a digitization sequence, following standards such as Exchange-

able image file format (Exif) [18]. The camera’s technical

metadata is automatically captured and inserted into digital

image files at the time of acquisition. Some of this metadata

may be useful when selecting a ML sample. A researcher may

desire images with specific properties, such as being captured

chiefly with a certain aperture setting. Even so, the major-
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ity of automatically registered technical metadata associated

with digitized specimens is also insufficient for computational

research, leaving researchers to rely on manually generated

descriptive metadata, which itself is sparse and prone to human

error. Fish image analysis research, as reviewed below, demon-

strates the potential of automated computational methods to

address current metadata shortcomings and needs specific to

the selection of high-quality digitized specimen images for the

application of ML.

C. Fish Image Analysis

Image analysis has been utilized to examine and process

images of fish for well over two decades [19], [20]. It is

an important application of technology for marine science, in

the study of aquatic species, habitats and ecosystems, and for

the seafood industry, in the development of automated fish

sorting and grading systems, as well as fisheries management.

Many of these computational analyses focus on the recog-

nition and classification of the fish present in an image. The

computational methods employed for fish image analysis have

followed the general trends in the AI field. Hu et al. [21]

presented a method of classifying species of fish based on

color and texture features and a multi-class support vector

machine (MSVM) [22]. Li and Hong [23] computed eleven

shape and color features from fish images and derived a linear

model that could discriminate between four different fishes.

Rodrigues et al. [24] explored several combinations of fea-

ture extractions, input classifiers and clustering algorithms to

produce a method that could distinguish between 10 different

types of fish with 92% accuracy. Salman et al. [25] employed

a deep Convolution Neural Networks (CNN) [26] together

with classification based on K-Nearest Neighbor and Support

Vector Machines trained on the features extracted by the CNN.

They achieved 90% accuracy when identifying 15 different

fish species in challenging underwater digital images. Utilizing

texture, anchor points, and statistical measurements, Alsmadi

et al. [27] implemented fish classification through a meta-

heuristic algorithm known as the Memetic Algorithm. They

were able to classify 24 fish families with 90% accuracy. Iqbal

et al. [28] used a modified AlexNet [29] model to classify six

different fish species with 90% accuracy.

Especially in industrial settings, it is necessary to auto-

matically detect the orientation, length and weight of fish

during handling and processing. In some instances fish in

the images need to be computationally straightened before

further processing can be attempted [30]. Balaban et al. [31]

demonstrated that image analysis and data fitting may be used

to predict the weight of salmons with high accuracy. Hao et

al. [32] provide an excellent review of fish measurement efforts

that utilize machine vision. Azarmdel et al. [33] developed a

system capable of determining the orientation of a trout and

segmenting its fins, which are used as cutting points, with an

accuracy over 99%.

The research reviewed above demonstrates the application

of image feature extraction and machine learning algorithms

to fish images; although researchers have not applied these

approaches to the numerous collections of digitized specimens

accessible in open repositories. Our research addresses this

need by applying ML and informatics techniques to extract

key metadata properties from the images. The availability of

general and powerful off-the-shelf ML tools make the usage

of previous special-purpose techniques unnecessary.

III. GOALS AND OBJECTIVES

Digitized specimens accessible in open-access repositories

provide a rich, extensive data source for ML and scientific

discovery. These resources, however, remain largely untapped

due to image quality issues and metadata limitations. The

overall goal of our work addresses this need by developing

a computational alternative to the current manual metadata

generation process, which is prohibitively costly both in terms

of labor and time. Additionally, our methods collectively

provide a novel and general approach to computing higher-

level metadata that will support scientific inquiry based on the

analysis of specimen image collections.

Our four key objectives are to:

1) Explore use of Facebook AI Research’s detectron
tool. Specific aims are to use detectron to identify

study-specific objects.

2) Investigate image processing at the pixel level. Pilot

testing found that detectron undersegmented the

detected objects with tightly enclosing bounding boxes.

We will determine if pixel analysis methods commonly

found in image informatics may produce more accurate

bounding boxes and object masks. The specific aims of

this objective are to:

a) Identify the appropriate threshold value for a more

accurate mask.

b) Remove noise to produce a single, solid mask.

c) Compute a more accurate bounding box from the

updated mask.

d) Automatically determine when modified methods

fail and detectron values should be used as is.

3) Compute a number of high-level metadata properties

from the detected objects and image quality metrics.

4) Compare computed metadata properties with manually

generated properties when possible to assess the accu-

racy and effectiveness of automated methods.

The automated metadata generation methods for our project

were developed to work on a specific set of images from the

INHS Fish Collection [4]. Most of these images have been

configured, produced and acquired with a standard procedure.

The images used for our study contain one fish placed on

a bright, white background and contain an information tag

and the same ruler. See Figure 1 for an example image from

the collection. While training and focusing our system on

images with very similar compositions and visual properties

may limit its immediate applicability, our efforts demonstrate

the potential that ML and image informatics techniques have

for automatically generating metadata for biological specimen

image collections in general.
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Fig. 2. Initial object detection on a specimen image using Detectron2 [34].

IV. METHODS

Our process for metadata generation can be divided into

three steps: 1) object detection with Facebook’s Detectron2

ML library (referred to as detectron), 2) image processing

at the pixel level, and 3) calculations on the results of the

previous steps to determine higher level metadata properties.

A. Detectron
A prerequisite task to performing any advanced metadata

property generation is finding the specimens (and other rel-

evant objects) within the collection images. Object detection

has been a broadly active field of study in recent years [35],

and has resulted in a number of well-tested, purpose-built ar-

chitectures. We elected to use Facebook AI Research’s (FAIR)

detectron tool [34], and specifically its implementation of

the Mask R-CNN architecture [36], for object detection in our

project, given its many flexible and robust capabilities. Most

importantly, following a review of the literature and available

tools, we determined that there were no other machine learning

packages that returned pixel by pixel masks over detected

objects in a comparable fashion.
detectron is built on pytorch [37] and provides a

relatively straightforward method for training on COCO [38]

format datasets. It is able to handle any number of object

classes, and can classify an arbitrary number of objects within

a given image. We chose detectron for its relative ease of

use compared to lower level libraries, and its implementation

of powerful architectures developed by FAIR. For our project,

we use it to identify five object classes: fish, fish eyes, rulers,

and the numbers 2 and 3 on rulers, as shown in Figure 2.

Objects with a 30% confidence score or higher are maintained

for analysis.

TABLE I
TRAINING DATASET

Class Number of Instances

Fish 297
Ruler 1496
Eye 456
Two 100

Three 100

Table I lists the number of instances for each class used in

our training dataset. All of the training data was labeled by

hand using makesense.ai [39] on images from the INHS

Fish Collection [4]. Using detectron’s default training

scheme, the model was trained for 100, 000 epochs. All

instance types were included in a single object detection

model.

B. Pixel Analysis

The masks and bounding boxes produced by detectron
are generally quite good, although they almost never com-

pletely or tightly enclose the detected objects. This is prob-

lematic for the detected fish objects in our analyzed images,

where the most accurate segmentation is desired. The mask

may include additional background as part of the fish, or the

bounding box may clip away part(s) of the fish. To solve these

shortcomings, we utilize pixel analysis methods commonly

found in image informatics to produce more accurate object

masks and bounding boxes.

1) Threshold Adjustment: The first calculation in the pixel

analysis process determines the cutoff intensity between what

constitutes the foreground (i.e. the fish) and background of

the image. Initially, the calculation is based on the bounding

box and mask generated by detectron. Specimen images

are read in as gray scale, and pixels in the image are treated

as unsigned integers between 0 and 255. Otsu thresholding

[40], a technique that maximizes the variance between the

foreground and background intensities, is used to compute an

initial cutoff value between foreground and background. While

the Otsu value occasionally generates an accurate mask as is,

usually the contrast between foreground and background is

low and much of the lighter parts of the fish (such as its tail

fin) are marked as background.

To overcome this improper segmentation, the threshold

value should be either adjusted up or down, depending on

whether the background is lighter or darker than the fish. For

our current dataset, the background is always lighter (i.e. closer

to 255), so the threshold value needs to be scaled up to

include more of the foreground image. For optimal results

the scaling should be dependent on the contrast between the

background and foreground, which can be affected by the

level of pigmentation of the fish. We found that an improved

threshold value can be computed as the halfway point between

the Otsu threshold value and the mean of the background

intensities. This adjusted threshold value usually produced an

acceptable balance between capturing most of the fish’s fins,

without also masking parts of the background.

2) Consolidating the Foreground: While thresholding has

the potential to generate better masks than a neural network

(when provided an initial approximate bounding box), it

also introduces considerable noise. Single or small groups of

errant pixels can be marked as foreground depending on the

consistency of the background, and interior pixels of the fish

(especially around the fins) can be marked as background. To

be useful for generating an accurate bounding box and for

subsequent computational analysis, the mask must consist of
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TABLE II
METADATA PROPERTIES (* INDICATES HIGHER ORDER DERIVED PROPERTIES)

Property Association Type Explanation

has_fish Overall Image Boolean Whether a fish was found in the image.
fish_count Overall Image Integer The quantity of fish present.
has_ruler Overall Image Boolean Whether a ruler was found in the image.
ruler_bbox Overall Image 4 Tuple The bounding box of the ruler (if found).

scale* Overall Image Float The scale of the image in pixels
cm

.

bbox Per Fish 4 Tuple The top left and bottom right coordinates of the bounding box for a fish.
background.mean Per Fish Float The mean intensity of the background within a given fish’s bounding box.
background.std Per Fish Float The standard deviation of the background within a given fish’s bounding box.
foreground.mean Per Fish Float The mean intensity of the foreground within a given fish’s bounding box.
foreground.std Per Fish Float The standard deviation of the foreground within a given fish’s bounding box.

contrast* Per Fish Float The contrast between foreground and background intensities within a given
fish’s bounding box.

centroid Per Fish 4 Tuple The centroid of a given fish’s bitmask.
primary_axis* Per Fish 2D Vector The unit length primary axis (eigenvector) for the bitmask of a given fish.
clock_value* Per Fish Integer Fish’s primary axis converted into an integer “clock value” between 1 and 12.

length* Per Fish Float The length of a fish in centimeters.
mask Per Fish 2D Matrix The bitmask of a fish in 0’s and 1’s.

pixel_analysis_failed Per Fish Boolean Whether the pixel analysis process failed for a given fish. If true,
detectron’s mask and bounding box were used for metadata generation.

score Per Fish Float The percent confidence score output by detectron for a given fish.
has_eye Per Fish Boolean Whether an eye was found for a given fish.

eye_center Per Fish 2 Tuple The centroid of a fish’s eye.
side* Per Fish String The side (i.e. ’left’ or ’right’) of the fish that is facing the camera

(dependent on finding its eye).

one single “blob” over the fish, i.e. containing no holes, and

no other pixels disconnected from this blob can be marked as

foreground.
To accomplish this, we apply an iterative process of flood

filling from all the foreground pixels in the image until a blob

is generated that is large enough to constitute the fish. This

leads to another metaparameter, but using greater than 10%

of the current bounding box has masked the specimen in all

observed cases. Once the fish’s blob is found, noise then needs

to be removed. This is done by flood filling from each of the

corners of the bounding box, where the specimen is not present

(all four corners in the overwhelming majority of cases), then

taking the inverse of the result. The fish mask is excluded from

these corner flood fills, so this process removes all noise from

both the background and foreground of the image, leaving only

a single mask over the fish itself.
3) Adjusting the Bounding Box: With an accurate mask

generated, it is then necessary to check whether the bounding

box needs to be expanded or shrunk along any of its edges.

Expansion is done first, by checking whether any edge inter-

sects with any of the foreground mask pixels. If one does,

it is expanded out by 1 pixel. If any edges are expanded, the

whole process of masking and expansion is repeated to account

for any changes in average intensities. Once no edges contain

foreground pixels, the bounding box is then shrunk. Each

edge is contacted by one pixel until it contains one or more

foreground pixels. Once the shrinkage step is accomplished,

the final mask and bounding box have been generated.
4) Fallback: The pixel analysis process occasionally fails,

e.g. when flood-filling does not produce a large enough blob

or the bounding box adjustment does not terminate. This can

occur if certain flood fill operations behave unexpectedly, or

if the image is too washed out or otherwise atypical for

the thresholding process to work correctly. In the event this

happens, the original mask and bounding box generated by

detectron is used for metadata generation.

C. Metadata Generation

The following metadata properties are gen-

erated from the methods described above:

has_fish, fish_count, has_ruler,

ruler_bbox, background.{mean,std},

foreground.{mean,std}, bbox, mask, score,

and has_eye. The remaining properties are computed as

described below, with all the metadata properties listed in

Table II.

1) contrast: The contrast between the intensities of

the foreground and background pixels is computed as

background.mean - foreground.mean.

2) centroid and eye center: Centroids are provided for the

masks and bounding boxes generated by detectron, and

since we do not recalculate the mask of fish eyes we can use

that value directly for eye_center.

Since we recalculate the mask of the fish, its centroid must

be recalculated as well. This can be done via

(x̄, ȳ) = (round(
M10

M00
), round(

M01

M00
)), (1)

where M00 is the pixel area of the fish’s blob, M10 is the sum

of all the x values of blob pixels, and M01 is the sum of all

the y values of blob pixels.

3) side: Determining which side of the fish is visible is

predicated on finding its eye. If an eye is found, the sign of the

x component of the vector from the centroid of the fish to the
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centroid of the eye specifies which side is up: negative for left

and positive for right. This assumes the fish was photographed

vertically (i.e. dorsal fin on top), which is essentially always

the case for all image collections our group has worked on.

4) primary axis and clock value: The primary_axis of

a fish can be calculated by taking the covariance of its blob in

x and y, which yields its principle eigenvector. The eigenvector

can be directly assigned to the property. If an eye is present,

we ensure that primary_axis points in the direction of the

eye relative to the fish’s centroid.

Our team encoded this information as a “clock value”

between 1 and 12 when manually recording it. To convert

principal_axis to clock_value, the sign of x and y
on the principal axis are used to determine which Cartesian

quadrant the fish angles into relative to its centroid. Depending

on the quadrant, we dot product the principal axis with either

[−1, 0], [0,−1], [1, 0] or [0, 1], which correspond to 9, 6, 3

and “0” o’clock respectively. The resulting radian value is

then converted to a polar displacement in clock value space,

and added to the comparative clock value used in the dot

product. This gives the fish’s clock value from 0 to 11.9.

Before recording clock_value in the output, the value is

rounded to the nearest integer, with a 0 final result replaced

with 12.

5) scale and length: pixels
inch can be calculated by measuring

the distance in pixels between the digits 2 and 3 (a 1 inch

separation) found on the ruler by detectron. Converting

this to pixels
cm gives the scale metadata property as reported

in the output.

For the fish length property, it is necessary to determine

the furthest points from the centroid of the fish in each direc-

tion along its major axis. Since fish are normally measured

in a straight line from their snout down the middle of their

trunk, every pixel of the fish blob is projected onto the fish’s

major axis (as a line through its centroid). The projection is

done by finding the closest point on the centroid–principal

axis line from the pixel’s location. After processing every

pixel in the fish blob, computing the distance between the two

furthest projected points gives the length of the fish in pixels.

Multiplying this distance by scale gives the fish length
in centimeters.

V. RESULTS

Technicians employed by Tulane University have manually

generated the 22 metadata properties deemed crucial to the

overall BGNN project [9] for a large number of INHS images.

20, 699 total entries were created by 13 technicians that

spanned 8, 398 unique images, of which 7, 244 were both

not part of the detectron training set and met our current

admissibility criteria for detectron and pixel processing.

We ran the metadata extraction program on these 7, 244
images. For the properties of image scale, fish length, and

fish bounding boxes (properties not manually generated), a

random sample of 100 specimens from the set of 7, 244 were

analyzed by hand for comparison.

Fig. 3. A fish that was not detected (top) and a fish that was detected twice
(bottom).

Our automated process currently generates 6

of the 22 core metadata properties: if_fish
(has_fish), fish_number (fish_count), if_ruler
(has_ruler), specimen_angled (clock_value),

specimen_view (side), and brightness
(foreground.mean). In addition, our approach also

calculates contrast, bounding boxes and fish lengths in

centimeters.

A. Fish Detection

All images in the INHS dataset contain exactly one fish.

For 7, 209 of the specimen images, one fish was detected, a

99.5% correct rate. For 25 of the images, 2 fish were detected,

3 fish were detected for 3 images, and for 7 images no fish

were found. The 7 fish that were not detected were quite small.

This type of specimen is currently lacking from the training

set. See the top image in Figure 3 for an example. In the

case of greater than 1 fish, 9 of the 28 contained tags that

overlapped the fish and were themselves labeled as a second

fish. Of the remaining 17, detectron erroneously labeled

the fish as two separate fish objects, or labeled a subsection

of the fish a second time. Fish that were double labeled were

generally quite large and/or dissimilar from the fish found in

the training set, such as the bottom image in Figure 3.

Fig. 4. The two images where the ruler was not found. The left image exhibits
a yellow hue, and the right is quite washed out with poor contrast.

36

Authorized licensed use limited to: Drexel University. Downloaded on December 02,2022 at 00:18:38 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5. A fish for which a splotch on its tail fin was labeled the most likely
eye.

B. Ruler Detection

For all but 2 of the 7, 244 images detectron was able to

find the ruler, a nearly perfect correct rate. In 56 of the images,

the ruler itself was found, but the numbers “2” and/or “3” on

the ruler were not. Therefore, a scale calculation could not

be performed, producing a 99.2% success rate for the scale
computation.

Images where one of these objects were not detected gen-

erally had some form of coloration issue. They were either

washed out, very dark or yellow in hue. See Figure 4 for two

such examples. Some of the rulers for which “2” and/or “3”

were not detected were particularly scratched and damaged.

Only “3” was missed in 45 of the 56 cases, only “2” was

missed in 2 cases, and both were missed in 9 cases. This

may indicate that more training samples for “3” are required.

Many of the rulers where both numerals were missed were

particularly small within the image, which again may be

solvable through expanding the training dataset.

C. Side Detection

detectron was unable to find a fish eye in 246 of the

images. These eyes were generally extremely dark, small, or

looked nothing like those found in the training set. Of the

remaining 6, 998 images, the correct side (left or right)

was detected in all but 6 cases, producing a 96.5% correct

rate.

For these 6 incorrect cases, a spot on the wrong side

of the fish was labeled as the most likely eye within the

bounding box of the fish. Figure 5 presents one such example.

There were an additional 17 images for which the automated

process generated a result that did not match the manually

created data. For these remaining cases the manual data was

incorrect, giving the automated system an error rate 2.8 times

lower than the human error rate. This result highlights the

additional utility of automated methods to double-check and

verify manually generated metadata.

D. Clock Value

Clock position values were successfully generated for 6, 991
of the images. Of those, all but 8 were within ±1 of the correct

result, our definition of a correct/acceptable result, making the

correct rate for this computation 96.4%.

Of the specimens for which clock values were generated, 33

did not match the manually created data (within a tolerance

of ±1). For 25 of those, the manually generated data was

incorrect, giving the automated process a 3.1 times lower error

rate. Of the 8 that were computationally classified incorrectly,

Fig. 6. An example of a heavily curved specimen.

two specimens were quite curved making it difficult to assign

a clear angle value, as seen in Figure 6. The other 6 were

values of “3” instead of “9” or vice versa, which resulted

from a mislabeled eye as discussed in the previous section.

E. Image Contrast

The contrast of an image is an important image property

needed for the analyses of the BGNN study. Ideally, for INHS

images the fish should be well lit and clearly displayed, and the

background should also be as light and white as possible. The

difference between the mean intensity of the foreground (i.e.

the pixels of the fish) and the mean intensity of the background

within the fish’s bounding box was computed for all 7, 244
images. The overall mean of the differences is 144.3, with

a standard deviation of 15.8. Images on the low end of the

distribution exhibit poor foreground–background contrast, and

images on the high end likely contain poorly lit specimens.

Images are considered to have “low” and “high” contrast if

their background-foreground difference is greater than one

standard deviation away from the mean; otherwise they are

classified as “medium”. Examples of each type of image (low,

medium, and high contrast) can be seen in Figure 7. The left

image has a contrast of 103 (low), the middle image 144

(medium), and the right 186 (high).

TABLE III
FOREGROUND.MEAN STATISTICS FOR THE THREE BRIGHTNESS CLASSES

Class Mean Intensity Standard Deviation Instances

Dark 75.2 13.5 1800
Normal 93.6 14.8 5186
Bright 108.4 15.2 242

F. Brightness

Specimen brightness is one of the 22 hand-recorded meta-

data properties. It is encoded as dark, normal or bright.

These values correspond to the mean foreground intensity

computed by the automated system. The mean and standard

deviation of the foreground intensities were computed for the

images in the three manually specified classes. Table III con-

tains the resulting values and shows that automated intensities

values provide objective measures that may be used to break

images into groups that correlate with manually generated

brightness classifications. The mean of foreground.mean
over all 7,244 images is 89.5, with a standard deviation of 16.6.

Given that human perception of brightness is quite subjective
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Fig. 7. Examples of low, medium and high contrast fish images.

Fig. 8. Examples of masks and bounding boxes from detectron (left) and
pixel analysis (right).

and highly variable, we found it problematic to use specific

threshold values to define dark, normal or bright spec-

imens in concordance with the manually generated metadata.

The technicians showed little consistency when classifying

normal versus bright specimens. We did find that an

81.2% accuracy rate could be achieved by classifying dark
images as those with a foreground.mean of 75 or less;

thus demonstrating that this computed metadata property does

offer some value when assessing image quality.

G. Mask and Bounding Box

Fish bounding boxes were calculated for all 7, 237 images

in which a fish was found. All but 263 of these were gen-

erated via pixel analysis, with the 263 falling back to the

original detectron bounding box. 100 randomly-chosen

images were reviewed manually to evaluate the calculation,

a representative sample are presented in Figure 8. All 100

masks and bounding boxes were correctly placed on/around

the location of the fish. However, a number of them lacked

portions of lightly colored tails and/or fins. Specifically, 41

masks and bounding boxes covered the entire fish, 36 missed

some of the tail, and 23 missed most or all of the tail, as seen

in Figure 9. Masks and bounding boxes contain the head and

trunk of the fish in nearly all cases, but further refinement of

Fig. 9. An example of a light colored tail being missed during the pixel
analysis process.

Fig. 10. A fish for which the masking and measurement process was highly
accurate.

our algorithms will be needed to ensure that light fins and tails

are masked consistently and accurately.

H. Scale and Length

Image scale and fish lengths were calculated for 7, 179 of

the images. For the remaining 65 images, either the fish, the

“2” and/or the “3” on the ruler were not detected. Image scale

(pixelscm ) and fish length were measured, using ImageJ [41], in

the same 100 test images. In this subset of images the average

error for the scale calculation was 0.89%, and the average error

for the fish length calculation was 5.55%. Scale calculations

using the “2” and “3” method are nearly identical to those

calculated by hand between the tick marks on the ruler. When

the tail of the fish is accurately masked and the specimen

is fairly straight, the length calculation is highly accurate as

well. An example of such a result can be seen in Figure 10, for

which the difference between the hand measured length and

the automatically calculated length was only 0.6% (8.88 cm

vs 8.82 cm). Thus, the primary means of lowering the error

of the length calculation is to improve tail masking accuracy.

VI. DISCUSSION

Overall our results show a proof of concept and offer a path

forward for using object detection technology, enhanced by

image informatics techniques, to improve and enrich metadata

that enables advanced specimen image analysis and investi-

gations of scientific research questions on an unprecedented
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scale. Our investigation has thus far focused on fish as

the specimen of study. Fish are vertebrate animals (phylum

Chordata), with over 34, 000 known unique species [42], with

many more likely undiscovered. Species names are merely

labels, and the discovery of species variation depends on

both genotype and phenotype information. The ability to

computationally analyze thousands of images of a single fish

species, from different habitats and time periods, can lead to

new discoveries that are impossible to pursue with manual

methods. Digital library researchers have been concerned

with computationally extracting image features, using content-

based image retrieval methods. The work by Toress [43], while

over 15 years old, demonstrates the challenges and oppor-

tunities to automatically generating useful metadata. Efforts

to integrate such automatic metadata generation methods into

digital library workflows and architectures still seem limited.

This is likely due to the diversity of image shapes, sizes and

the inconsistent configurations of specimens, labels, rulers, etc.

within them. Object detection as explored in our research,

working with an established architecture, is applicable to the

larger world of biodiversity, well beyond fish, to include

other fauna and flora, art and artefacts, and other digitized

objects made accessible for scientific and scholarly research.

Following object detection, one can apply pixel analysis and

informatics methods to compute many more higher order

properties from the initial segmentations.

Digital libraries serve to collect, provide access to, and

archive rich collections of a wide array of materials. Many

digital libraries interconnect with open repositories, support-

ing FAIR (Findable, Accessible, Interoperable, and Reuse-

able) [44]. In discussing the future of digital library services,

Fox [45] underscores the need to prepare for and test ML

applications. The work presented here, within the context of

the BGNN project, demonstrates a clear need for improved

metadata associated with specimen image collections. Much

effort, time and money have been put into photographing

and digitizing physical specimens, but without detailed and

complete metadata properties the utility of these repositories

for advanced computational analysis and ML is limited. Since

it is very time intensive to generate all the pertinent properties

by hand, automated techniques are essential to generating the

missing metadata at scale.

VII. CONCLUSION

In this paper we presented an automatic metadata generation

approach. Using ML and image informatics algorithms, it is

able to locate, mask and analyze specimens (currently limited

to fish) in collection images with a high degree of accuracy.

It produces 6 of the 22 core BGNN metadata properties [9],

as well as image contrast, bounding boxes, scale and length

information. Testing this approach on 7, 244 images from

the INHS dataset [4], we see that the vast majority of the

resulting metadata is correct within a tolerance of a few

percentage points, and in some cases contains fewer mistakes

than the manually generated validation data. Through further

refinement and generalization beyond only INHS images, we

aim to create a tool that can be distributed to specimen

image collection curators to correct the metadata sparsity that

precipitated this work.

A. Future Work

The most pressing next step is to refine the pixel analysis

thresholding process so that the entirety of even light colored

fish are marked as foreground in the mask. A deficiency of

the current process is that it only operates on single channel

intensity. Some of the lightest tails appear yellow in hue to the

human eye and easily distinguishable, but when compressed

to a single intensity value they are almost identical in value to

the white background. Considering when the RGB channels

of a pixel are not equal in value may improve masking of such

features. Another possible approach to solving this problem is

to threshold and mask on subsets of the bounding box, as to

ensure that very dark trunk pixels do not affect the thresholding

of lighter regions.

Our longer-term goal is to create a generalized process that

works on classes of specimen images. For the BGNN project

we are beginning with fish images, but we are designing the

metadata generation system so that it can eventually operate

on other species if appropriately trained. To accomplish this, a

much larger training dataset consisting of more diverse images

will be required. The first step towards greater generality

will be to operate on other fish collections besides INHS,

which is something our program has already shown itself

capable of doing during initial testing. Another requirement

will be to generalize the ruler reading process beyond the

INHS-specific reading of digits on the ruler, which will likely

involve an automated method of reading ruler ticks instead of

digits. Overall, the research reported in this paper will improve

our BGNN workflow, and at the same time demonstrates an

innovative approach that may greatly enhance digital library

services for the tens of thousands of digitized specimens and

images for other types of objects.
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