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Abstract—Metadata are key descriptors of research data,
particularly for researchers seeking to apply machine learning
(ML) to the vast collections of digitized specimens. Unfortunately,
the available metadata is often sparse and, at times, erroneous.
Additionally, it is prohibitively expensive to address these lim-
itations through traditional, manual means. This paper reports
on research that applies machine-driven approaches to analyzing
digitized fish images and extracting various important features
from them. The digitized fish specimens are being analyzed as
part of the Biology Guided Neural Networks (BGNN) initiative,
which is developing a novel class of artificial neural networks
using phylogenies and anatomy ontologies. Automatically gener-
ated metadata is crucial for identifying the high-quality images
needed for the neural network’s predictive analytics. Methods
that combine ML and image informatics techniques allow us to
rapidly enrich the existing metadata associated with the 7,244
images from the Illinois Natural History Survey (INHS) used
in our study. Results show we can accurately generate many
key metadata properties relevant to the BGNN project, as well
as general image quality metrics (e.g. brightness and contrast).
Results also show that we can accurately generate bounding boxes
and segmentation masks for fish, which are needed for subsequent
machine learning analyses. The automatic process outperforms
humans in terms of time and accuracy, and provides a novel
solution for leveraging digitized specimens in ML. This research
demonstrates the ability of computational methods to enhance
the digital library services associated with the tens of thousands
of digitized specimens stored in open-access repositories world-
wide.

Index Terms—bioinformatics, metadata, image analysis, ap-
plied machine learning

I. INTRODUCTION

Over the last several decades advances in computing, imag-
ing, and cyberinfrastructure have supported the growth of
digital natural history collections, many of which contain spec-
imen images [1]. Additionally, initiatives, such as the National
Science Foundation’s Advancing Digitization of Biodiversity
Collections (ADBC) program, have supported the digitization
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and curation of tens of thousands of biological specimens [2].
These digitized specimens are generally accessible through
global, open-access repositories that support digital library
services, such as browsing, search and retrieval, and preserva-
tion. The digitized renderings of these rich collections permit
researchers, educators, students, and the general public to
examine biological specimens on a previously unattainable
scale. Moreover, the digitized instantiations present a pathway
for making new scientific discoveries via the application of
machine learning (ML).

Unfortunately, potential scientific advances are hindered by
image quality problems and the lack of accurate and pertinent
metadata associated with the image collections. Poor quality
images (e.g. low contrast, inadequate lighting, out-of-focus or
cluttered visual arrangements) are inadequate for automated
image analysis by ML algorithms and lead to inferior compu-
tational results. In order to perform quantitative morphometric
analysis of the specimens, the physical scale of the images
(pic’:flls) is needed; thus requiring the ability to identify and take
measurements using rulers in the images. Many specimen col-
lections do include Darwin Core metadata [3], detailing spec-
imen taxon, geographic location, and several other specimen-
related aspects. Additionally, some digitization efforts record
technical metadata, detailing imaging specifications. While
these types of metadata are helpful for a human examining
several images at a time, they are insufficient for researchers
seeking to apply computational methods to examine thousands
of images to determine if, for example, a specific fish grows to
different lengths in different habitats, or to study differences
in the size of a particular anatomical feature, e.g. the size of
a dorsal fin.

Since digital collections may each contain tens of thousands
of images, manually producing image-related metadata for
each digitized specimen is prohibitively expensive. Methods
for automatically computing metadata are therefore needed
to fully exploit biological image repositories for scientific
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Fig. 1. An image from the Illinois Natural History Survey (INHS) collection.

discovery. As a step towards improving metadata in research
specimen image collections, members of Drexel University’s
Metadata Research Center are developing methods to auto-
matically analyze fish images and extract a set of data features
that provide important metadata about the digitized specimens.
The research is being conducted as part of the Biology Guided
Neural Networks (BGNN) project, which is developing a novel
class of artificial neural networks that exploit machine readable
and predictive knowledge associated with specimen images,
phylogenies and anatomy ontologies. Using a combination
of ML and image informatics techniques, we can accurately
determine general image quality and metadata, such as fish
quantity, location and orientation, and image scaling based
on ruler identification and measurement. Image scaling allows
us to compute quantitative features about the fish specimens,
such as their length and area. In order to test and validate
our methods, they have been applied to a set of 7,244 images
drawn from the Illinois Natural History Survey (INHS) Col-
lection of fish specimens [4]. Figure 1 presents a typical image
used in our study. The following section of the paper provides
contextual background for this work, followed by the research
goals and objectives, and a review of our research methods.
Next, the results, along with discussion, are presented. The
conclusion highlights key findings and identifies next steps.

II. RELATED WORK
A. Metadata for Natural History Image Collection

A number of different metadata standards have been applied
to support the description and access of digital images of
scientific specimens. The Darwin Core (DwC) [3], developed
specifically to describe biological diversity data, is one of the
most popular standards for such efforts. It is an extension of
the Dublin Core’s DCMI Metadata Terms [5]. The Audubon
Core [6], which supports the discoverability, dissemination,
and use of data related to biological organisms (including 3—
D digitized specimens), is a DwC extension that has become
the popular metadata standard for biodiversity multimedia re-
sources and collections. All of these descriptive standards and
extensions include metadata properties for taxon, geographic
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location, and other important specimen content, and have been
developed primarily from the perspective of a human curator.
In other words, their application anticipates that a curator or
data entry staff will manually generate metadata, drawn from
acquisition logs or original specimen labels. The generated
metadata associated with each digital rendering is generally
sparse and prone to human error, placing limitations on a
researcher seeking to apply ML to the image and the metadata
for scientific research.

This limitation is magnified when trying to assess the
actual quality of the digitized specimen. Descriptive-oriented
standards support search and retrieval, and the biodiversity
community has advocated for data fitness standards [7]. This
point is also emphasized by Wieczorek et al. [8] in their report
on the variety of DwC metadata extensions needed to meet
growing community concerns and requirements, including
data quality and fitness. Even so, metadata describing image
quality is severely limited and generally missing. This point
is addressed in detail by Leipzig et al. [9] and serves as the
rationale for Tulane University’s effort to manually capture
content for 22 metadata properties that characterize digitized
specimen image quality. Their work is being conducted in
connection with the larger BGNN initiative, and the difficulties
encountered during the process underscore the need to explore
automatic metadata generation methods.

B. Automatic Metadata Generation

Advances in automatic metadata generation of both de-
scriptive and technical metadata are relevant to the research
presented in this paper. Automatic metadata generation of
descriptive bibliographic data has been a research focus for
close to 20 years [10]-[13]. Researchers have applied support
vector machine (SVM) approaches [14], and associated net-
works to address sparse and incomplete metadata [15], and
various successes are integrated into day-to-day workflows.
Heidorn, et al. [16] demonstrated the use of optical character
recognition (OCR) to extract specimen information from the
original typed and often hand-annotated labels that are digi-
tized along with herbarium collection holdings. The extracted
information was encoded in the DwC metadata associated with
the specimen’s digitized rendering. There has also been some
success with extracting descriptive cartographic information
from maps [17]. While descriptive metadata covers taxon,
geographic location, and other important aspects, and may
even record the image format; uses of automatic processes
are still limited. More significantly, descriptive metadata does
not sufficiently addressed data quality.

Technical metadata, such as camera settings and temporal
information (date and time) are automatically generated during
a digitization sequence, following standards such as Exchange-
able image file format (Exif) [18]. The camera’s technical
metadata is automatically captured and inserted into digital
image files at the time of acquisition. Some of this metadata
may be useful when selecting a ML sample. A researcher may
desire images with specific properties, such as being captured
chiefly with a certain aperture setting. Even so, the major-
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ity of automatically registered technical metadata associated
with digitized specimens is also insufficient for computational
research, leaving researchers to rely on manually generated
descriptive metadata, which itself is sparse and prone to human
error. Fish image analysis research, as reviewed below, demon-
strates the potential of automated computational methods to
address current metadata shortcomings and needs specific to
the selection of high-quality digitized specimen images for the
application of ML.

C. Fish Image Analysis

Image analysis has been utilized to examine and process
images of fish for well over two decades [19], [20]. It is
an important application of technology for marine science, in
the study of aquatic species, habitats and ecosystems, and for
the seafood industry, in the development of automated fish
sorting and grading systems, as well as fisheries management.
Many of these computational analyses focus on the recog-
nition and classification of the fish present in an image. The
computational methods employed for fish image analysis have
followed the general trends in the Al field. Hu et al. [21]
presented a method of classifying species of fish based on
color and texture features and a multi-class support vector
machine (MSVM) [22]. Li and Hong [23] computed eleven
shape and color features from fish images and derived a linear
model that could discriminate between four different fishes.
Rodrigues et al. [24] explored several combinations of fea-
ture extractions, input classifiers and clustering algorithms to
produce a method that could distinguish between 10 different
types of fish with 92% accuracy. Salman et al. [25] employed
a deep Convolution Neural Networks (CNN) [26] together
with classification based on K-Nearest Neighbor and Support
Vector Machines trained on the features extracted by the CNN.
They achieved 90% accuracy when identifying 15 different
fish species in challenging underwater digital images. Utilizing
texture, anchor points, and statistical measurements, Alsmadi
et al. [27] implemented fish classification through a meta-
heuristic algorithm known as the Memetic Algorithm. They
were able to classify 24 fish families with 90% accuracy. Igbal
et al. [28] used a modified AlexNet [29] model to classify six
different fish species with 90% accuracy.

Especially in industrial settings, it is necessary to auto-
matically detect the orientation, length and weight of fish
during handling and processing. In some instances fish in
the images need to be computationally straightened before
further processing can be attempted [30]. Balaban et al. [31]
demonstrated that image analysis and data fitting may be used
to predict the weight of salmons with high accuracy. Hao et
al. [32] provide an excellent review of fish measurement efforts
that utilize machine vision. Azarmdel et al. [33] developed a
system capable of determining the orientation of a trout and
segmenting its fins, which are used as cutting points, with an
accuracy over 99%.

The research reviewed above demonstrates the application
of image feature extraction and machine learning algorithms
to fish images; although researchers have not applied these
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approaches to the numerous collections of digitized specimens
accessible in open repositories. Our research addresses this
need by applying ML and informatics techniques to extract
key metadata properties from the images. The availability of
general and powerful off-the-shelf ML tools make the usage
of previous special-purpose techniques unnecessary.

III. GOALS AND OBJECTIVES

Digitized specimens accessible in open-access repositories
provide a rich, extensive data source for ML and scientific
discovery. These resources, however, remain largely untapped
due to image quality issues and metadata limitations. The
overall goal of our work addresses this need by developing
a computational alternative to the current manual metadata
generation process, which is prohibitively costly both in terms
of labor and time. Additionally, our methods collectively
provide a novel and general approach to computing higher-
level metadata that will support scientific inquiry based on the
analysis of specimen image collections.

Our four key objectives are to:

1) Explore use of Facebook AI Research’s detectron
tool. Specific aims are to use detectron to identify
study-specific objects.

Investigate image processing at the pixel level. Pilot
testing found that detectron undersegmented the
detected objects with tightly enclosing bounding boxes.
We will determine if pixel analysis methods commonly
found in image informatics may produce more accurate
bounding boxes and object masks. The specific aims of
this objective are to:

a)

2)

Identify the appropriate threshold value for a more
accurate mask.

Remove noise to produce a single, solid mask.
Compute a more accurate bounding box from the
updated mask.

Automatically determine when modified methods
fail and detectron values should be used as is.

b)
c)

d)
3) Compute a number of high-level metadata properties
from the detected objects and image quality metrics.
Compare computed metadata properties with manually
generated properties when possible to assess the accu-
racy and effectiveness of automated methods.

4)

The automated metadata generation methods for our project
were developed to work on a specific set of images from the
INHS Fish Collection [4]. Most of these images have been
configured, produced and acquired with a standard procedure.
The images used for our study contain one fish placed on
a bright, white background and contain an information tag
and the same ruler. See Figure 1 for an example image from
the collection. While training and focusing our system on
images with very similar compositions and visual properties
may limit its immediate applicability, our efforts demonstrate
the potential that ML and image informatics techniques have
for automatically generating metadata for biological specimen
image collections in general.
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Fig. 2. Initial object detection on a specimen image using Detectron2 [34].

IV. METHODS

Our process for metadata generation can be divided into
three steps: 1) object detection with Facebook’s Detectron2
ML library (referred to as detectron), 2) image processing
at the pixel level, and 3) calculations on the results of the
previous steps to determine higher level metadata properties.

A. Detectron

A prerequisite task to performing any advanced metadata
property generation is finding the specimens (and other rel-
evant objects) within the collection images. Object detection
has been a broadly active field of study in recent years [35],
and has resulted in a number of well-tested, purpose-built ar-
chitectures. We elected to use Facebook Al Research’s (FAIR)
detectron tool [34], and specifically its implementation of
the Mask R-CNN architecture [36], for object detection in our
project, given its many flexible and robust capabilities. Most
importantly, following a review of the literature and available
tools, we determined that there were no other machine learning
packages that returned pixel by pixel masks over detected
objects in a comparable fashion.

detectron is built on pytorch [37] and provides a
relatively straightforward method for training on COCO [38]
format datasets. It is able to handle any number of object
classes, and can classify an arbitrary number of objects within
a given image. We chose detectron for its relative ease of
use compared to lower level libraries, and its implementation
of powerful architectures developed by FAIR. For our project,
we use it to identify five object classes: fish, fish eyes, rulers,
and the numbers 2 and 3 on rulers, as shown in Figure 2.
Objects with a 30% confidence score or higher are maintained
for analysis.

TABLE I
TRAINING DATASET

Class Number of Instances
Fish 297

Ruler 1496
Eye 456

Two 100

Three 100
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Table I lists the number of instances for each class used in
our training dataset. All of the training data was labeled by
hand using makesense.ai [39] on images from the INHS
Fish Collection [4]. Using detectron’s default training
scheme, the model was trained for 100,000 epochs. All
instance types were included in a single object detection
model.

B. Pixel Analysis

The masks and bounding boxes produced by detectron
are generally quite good, although they almost never com-
pletely or tightly enclose the detected objects. This is prob-
lematic for the detected fish objects in our analyzed images,
where the most accurate segmentation is desired. The mask
may include additional background as part of the fish, or the
bounding box may clip away part(s) of the fish. To solve these
shortcomings, we utilize pixel analysis methods commonly
found in image informatics to produce more accurate object
masks and bounding boxes.

1) Threshold Adjustment: The first calculation in the pixel
analysis process determines the cutoff intensity between what
constitutes the foreground (i.e. the fish) and background of
the image. Initially, the calculation is based on the bounding
box and mask generated by detectron. Specimen images
are read in as gray scale, and pixels in the image are treated
as unsigned integers between 0 and 255. Otsu thresholding
[40], a technique that maximizes the variance between the
foreground and background intensities, is used to compute an
initial cutoff value between foreground and background. While
the Otsu value occasionally generates an accurate mask as is,
usually the contrast between foreground and background is
low and much of the lighter parts of the fish (such as its tail
fin) are marked as background.

To overcome this improper segmentation, the threshold
value should be either adjusted up or down, depending on
whether the background is lighter or darker than the fish. For
our current dataset, the background is always lighter (i.e. closer
to 255), so the threshold value needs to be scaled up to
include more of the foreground image. For optimal results
the scaling should be dependent on the contrast between the
background and foreground, which can be affected by the
level of pigmentation of the fish. We found that an improved
threshold value can be computed as the halfway point between
the Otsu threshold value and the mean of the background
intensities. This adjusted threshold value usually produced an
acceptable balance between capturing most of the fish’s fins,
without also masking parts of the background.

2) Consolidating the Foreground: While thresholding has
the potential to generate better masks than a neural network
(when provided an initial approximate bounding box), it
also introduces considerable noise. Single or small groups of
errant pixels can be marked as foreground depending on the
consistency of the background, and interior pixels of the fish
(especially around the fins) can be marked as background. To
be useful for generating an accurate bounding box and for
subsequent computational analysis, the mask must consist of
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TABLE 1T

METADATA PROPERTIES (* INDICATES HIGHER ORDER DERIVED PROPERTIES)

Property Association Type Explanation
has_fish Overall Image Boolean Whether a fish was found in the image.
fish_count Overall Image Integer The quantity of fish present.
has_ruler Overall Image Boolean Whether a ruler was found in the image.
ruler_bbox Overall Image 4 Tuple The bounding box of the ruler (if found).
scale* Overall Image Float The scale of the image in %ﬂe’l“
bbox Per Fish 4 Tuple The top left and bottom right coordinates of the bounding box for a fish.
background.mean Per Fish Float The mean intensity of the background within a given fish’s bounding box.
background.std Per Fish Float The standard deviation of the background within a given fish’s bounding box.
foreground.mean Per Fish Float The mean intensity of the foreground within a given fish’s bounding box.
foreground.std Per Fish Float The standard deviation of the foreground within a given fish’s bounding box.
contrast*® Per Fish Float The contrast between foreground and background intensities within a given
fish’s bounding box.
centroid Per Fish 4 Tuple The centroid of a given fish’s bitmask.
primary_axis* Per Fish 2D Vector  The unit length primary axis (eigenvector) for the bitmask of a given fish.
clock_value* Per Fish Integer Fish’s primary axis converted into an integer “clock value” between 1 and 12.
length* Per Fish Float The length of a fish in centimeters.
mask Per Fish 2D Matrix ~ The bitmask of a fish in 0’s and 1’s.
pixel_analysis_failed Per Fish Boolean Whether the pixel analysis process failed for a given fish. If true,
detectron’s mask and bounding box were used for metadata generation.
score Per Fish Float The percent confidence score output by detectron for a given fish.
has_eye Per Fish Boolean Whether an eye was found for a given fish.
eye_center Per Fish 2 Tuple The centroid of a fish’s eye.
side* Per Fish String The side (i.e. "1left’ or "right’) of the fish that is facing the camera

(dependent on finding its eye).

one single “blob” over the fish, i.e. containing no holes, and
no other pixels disconnected from this blob can be marked as
foreground.

To accomplish this, we apply an iterative process of flood
filling from all the foreground pixels in the image until a blob
is generated that is large enough to constitute the fish. This
leads to another metaparameter, but using greater than 10%
of the current bounding box has masked the specimen in all
observed cases. Once the fish’s blob is found, noise then needs
to be removed. This is done by flood filling from each of the
corners of the bounding box, where the specimen is not present
(all four corners in the overwhelming majority of cases), then
taking the inverse of the result. The fish mask is excluded from
these corner flood fills, so this process removes all noise from
both the background and foreground of the image, leaving only
a single mask over the fish itself.

3) Adjusting the Bounding Box: With an accurate mask
generated, it is then necessary to check whether the bounding
box needs to be expanded or shrunk along any of its edges.
Expansion is done first, by checking whether any edge inter-
sects with any of the foreground mask pixels. If one does,
it is expanded out by 1 pixel. If any edges are expanded, the
whole process of masking and expansion is repeated to account
for any changes in average intensities. Once no edges contain
foreground pixels, the bounding box is then shrunk. Each
edge is contacted by one pixel until it contains one or more
foreground pixels. Once the shrinkage step is accomplished,
the final mask and bounding box have been generated.

4) Fallback: The pixel analysis process occasionally fails,
e.g. when flood-filling does not produce a large enough blob
or the bounding box adjustment does not terminate. This can
occur if certain flood fill operations behave unexpectedly, or
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if the image is too washed out or otherwise atypical for
the thresholding process to work correctly. In the event this
happens, the original mask and bounding box generated by
detectron is used for metadata generation.

C. Metadata Generation

The  following  metadata  properties are  gen-
erated from the methods described above:
has_fish, fish_count, has_ruler,

ruler_bbox, background. {mean, std},
foreground. {mean, std}, Dbbox, mask, score,
and has_eye. The remaining properties are computed as
described below, with all the metadata properties listed in
Table II.

1) contrast: The contrast between the intensities of
the foreground and background pixels is computed as
background.mean - foreground.mean.

2) centroid and eye_center: Centroids are provided for the
masks and bounding boxes generated by detectron, and
since we do not recalculate the mask of fish eyes we can use
that value directly for eye_center.

Since we recalculate the mask of the fish, its centroid must
be recalculated as well. This can be done via

(z,7) = (round(@),round(—l)),

Moo

where My is the pixel area of the fish’s blob, Mg is the sum

of all the x values of blob pixels, and My is the sum of all
the y values of blob pixels.

3) side: Determining which side of the fish is visible is

predicated on finding its eye. If an eye is found, the sign of the

x component of the vector from the centroid of the fish to the
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centroid of the eye specifies which side is up: negative for left
and positive for right. This assumes the fish was photographed
vertically (i.e. dorsal fin on top), which is essentially always
the case for all image collections our group has worked on.

4) primary_axis and clock_value: The primary_axis of
a fish can be calculated by taking the covariance of its blob in
2 and y, which yields its principle eigenvector. The eigenvector
can be directly assigned to the property. If an eye is present,
we ensure that primary_axis points in the direction of the
eye relative to the fish’s centroid.

Our team encoded this information as a “clock value”
between 1 and 12 when manually recording it. To convert
principal_axis to clock_value, the sign of x and y
on the principal axis are used to determine which Cartesian
quadrant the fish angles into relative to its centroid. Depending
on the quadrant, we dot product the principal axis with either
[-1,0], [0,-1], [1,0] or [0,1], which correspond to 9, 6, 3
and “0” o’clock respectively. The resulting radian value is
then converted to a polar displacement in clock value space,
and added to the comparative clock value used in the dot
product. This gives the fish’s clock value from 0 to 11.9.
Before recording clock_value in the output, the value is
rounded to the nearest integer, with a O final result replaced
with 12.

5) scale and length: pl‘r’fccﬁs can be calculated by measuring
the distance in pixels between the digits 2 and 3 (a 1 inch
separation) found on the ruler by detectron. Converting
this to %nclls gives the scale metadata property as reported
in the output.

For the fish 1ength property, it is necessary to determine
the furthest points from the centroid of the fish in each direc-
tion along its major axis. Since fish are normally measured
in a straight line from their snout down the middle of their
trunk, every pixel of the fish blob is projected onto the fish’s
major axis (as a line through its centroid). The projection is
done by finding the closest point on the centroid—principal
axis line from the pixel’s location. After processing every
pixel in the fish blob, computing the distance between the two
furthest projected points gives the length of the fish in pixels.
Multiplying this distance by scale gives the fish length
in centimeters.

V. RESULTS

Technicians employed by Tulane University have manually
generated the 22 metadata properties deemed crucial to the
overall BGNN project [9] for a large number of INHS images.
20,699 total entries were created by 13 technicians that
spanned 8,398 unique images, of which 7,244 were both
not part of the detectron training set and met our current
admissibility criteria for detectron and pixel processing.
We ran the metadata extraction program on these 7,244
images. For the properties of image scale, fish length, and
fish bounding boxes (properties not manually generated), a
random sample of 100 specimens from the set of 7,244 were
analyzed by hand for comparison.
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Fig. 3. A fish that was not detected (top) and a fish that was detected twice
(bottom).

Our automated process currently  generates 6
of the 22 core metadata properties: if_fish
(has_fish), fish_number (fish_count), if_ruler
(has_ruler), specimen_angled (clock_value),
specimen_view (side), and brightness
(foreground.mean). In addition, our approach also
calculates contrast, bounding boxes and fish lengths in
centimeters.

A. Fish Detection

All images in the INHS dataset contain exactly one fish.
For 7,209 of the specimen images, one fish was detected, a
99.5% correct rate. For 25 of the images, 2 fish were detected,
3 fish were detected for 3 images, and for 7 images no fish
were found. The 7 fish that were not detected were quite small.
This type of specimen is currently lacking from the training
set. See the top image in Figure 3 for an example. In the
case of greater than 1 fish, 9 of the 28 contained tags that
overlapped the fish and were themselves labeled as a second
fish. Of the remaining 17, detectron erroneously labeled
the fish as two separate fish objects, or labeled a subsection
of the fish a second time. Fish that were double labeled were
generally quite large and/or dissimilar from the fish found in
the training set, such as the bottom image in Figure 3.

ILLINOIS NATURAL HISTORY SURVEY
INHS 50943
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Fig. 4. The two images where the ruler was not found. The left image exhibits
a yellow hue, and the right is quite washed out with poor contrast.
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Fig. 5. A fish for which a splotch on its tail fin was labeled the most likely
eye.

B. Ruler Detection

For all but 2 of the 7,244 images detectron was able to
find the ruler, a nearly perfect correct rate. In 56 of the images,
the ruler itself was found, but the numbers “2” and/or “3” on
the ruler were not. Therefore, a scale calculation could not
be performed, producing a 99.2% success rate for the scale
computation.

Images where one of these objects were not detected gen-
erally had some form of coloration issue. They were either
washed out, very dark or yellow in hue. See Figure 4 for two
such examples. Some of the rulers for which “2” and/or “3”
were not detected were particularly scratched and damaged.
Only “3” was missed in 45 of the 56 cases, only “2” was
missed in 2 cases, and both were missed in 9 cases. This
may indicate that more training samples for “3” are required.
Many of the rulers where both numerals were missed were
particularly small within the image, which again may be
solvable through expanding the training dataset.

C. Side Detection

detectron was unable to find a fish eye in 246 of the
images. These eyes were generally extremely dark, small, or
looked nothing like those found in the training set. Of the
remaining 6,998 images, the correct side (left or right)
was detected in all but 6 cases, producing a 96.5% correct
rate.

For these 6 incorrect cases, a spot on the wrong side
of the fish was labeled as the most likely eye within the
bounding box of the fish. Figure 5 presents one such example.
There were an additional 17 images for which the automated
process generated a result that did not match the manually
created data. For these remaining cases the manual data was
incorrect, giving the automated system an error rate 2.8 times
lower than the human error rate. This result highlights the
additional utility of automated methods to double-check and
verify manually generated metadata.

D. Clock Value

Clock position values were successfully generated for 6, 991
of the images. Of those, all but 8 were within &1 of the correct
result, our definition of a correct/acceptable result, making the
correct rate for this computation 96.4%.

Of the specimens for which clock values were generated, 33
did not match the manually created data (within a tolerance
of +1). For 25 of those, the manually generated data was
incorrect, giving the automated process a 3.1 times lower error
rate. Of the 8 that were computationally classified incorrectly,
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Fig. 6. An example of a heavily curved specimen.

two specimens were quite curved making it difficult to assign
a clear angle value, as seen in Figure 6. The other 6 were
values of “3” instead of “9” or vice versa, which resulted
from a mislabeled eye as discussed in the previous section.

E. Image Contrast

The contrast of an image is an important image property
needed for the analyses of the BGNN study. Ideally, for INHS
images the fish should be well lit and clearly displayed, and the
background should also be as light and white as possible. The
difference between the mean intensity of the foreground (i.e.
the pixels of the fish) and the mean intensity of the background
within the fish’s bounding box was computed for all 7,244
images. The overall mean of the differences is 144.3, with
a standard deviation of 15.8. Images on the low end of the
distribution exhibit poor foreground-background contrast, and
images on the high end likely contain poorly lit specimens.
Images are considered to have “low” and “high” contrast if
their background-foreground difference is greater than one
standard deviation away from the mean; otherwise they are
classified as “medium”. Examples of each type of image (low,
medium, and high contrast) can be seen in Figure 7. The left
image has a contrast of 103 (low), the middle image 144
(medium), and the right 186 (high).

TABLE III
FOREGROUND.MEAN STATISTICS FOR THE THREE BRIGHTNESS CLASSES

Class Mean Intensity Standard Deviation Instances

Dark 75.2 13.5 1800
Normal 93.6 14.8 5186
Bright 108.4 15.2 242

E. Brightness

Specimen brightness is one of the 22 hand-recorded meta-
data properties. It is encoded as dark, normal or bright.
These values correspond to the mean foreground intensity
computed by the automated system. The mean and standard
deviation of the foreground intensities were computed for the
images in the three manually specified classes. Table III con-
tains the resulting values and shows that automated intensities
values provide objective measures that may be used to break
images into groups that correlate with manually generated
brightness classifications. The mean of foreground.mean
over all 7,244 images is 89.5, with a standard deviation of 16.6.
Given that human perception of brightness is quite subjective
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Fig. 7. Examples of low, medium and high contrast fish images.

Fig. 8. Examples of masks and bounding boxes from detectron (left) and
pixel analysis (right).
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and highly variable, we found it problematic to use specific
threshold values to define dark, normal or bright spec-
imens in concordance with the manually generated metadata.
The technicians showed little consistency when classifying
normal versus bright specimens. We did find that an
81.2% accuracy rate could be achieved by classifying dark
images as those with a foreground.mean of 75 or less;
thus demonstrating that this computed metadata property does
offer some value when assessing image quality.

G. Mask and Bounding Box

Fish bounding boxes were calculated for all 7,237 images
in which a fish was found. All but 263 of these were gen-
erated via pixel analysis, with the 263 falling back to the
original detectron bounding box. 100 randomly-chosen
images were reviewed manually to evaluate the calculation,
a representative sample are presented in Figure 8. All 100
masks and bounding boxes were correctly placed on/around
the location of the fish. However, a number of them lacked
portions of lightly colored tails and/or fins. Specifically, 41
masks and bounding boxes covered the entire fish, 36 missed
some of the tail, and 23 missed most or all of the tail, as seen
in Figure 9. Masks and bounding boxes contain the head and
trunk of the fish in nearly all cases, but further refinement of

Fig. 9. An example of a light colored tail being missed during the pixel
analysis process.

Fig. 10. A fish for which the masking and measurement process was highly
accurate.

our algorithms will be needed to ensure that light fins and tails
are masked consistently and accurately.

H. Scale and Length

Image scale and fish lengths were calculated for 7,179 of
the images. For the remaining 65 images, either the fish, the
“2” and/or the “3” on the ruler were not detected. Image scale
(picx—rﬁls) and fish length were measured, using ImageJ [41], in
the same 100 test images. In this subset of images the average
error for the scale calculation was 0.89%, and the average error
for the fish length calculation was 5.55%. Scale calculations
using the “2” and “3” method are nearly identical to those
calculated by hand between the tick marks on the ruler. When
the tail of the fish is accurately masked and the specimen
is fairly straight, the length calculation is highly accurate as
well. An example of such a result can be seen in Figure 10, for
which the difference between the hand measured length and
the automatically calculated length was only 0.6% (8.88 cm
vs 8.82 cm). Thus, the primary means of lowering the error
of the length calculation is to improve tail masking accuracy.

VI. DISCUSSION

Overall our results show a proof of concept and offer a path
forward for using object detection technology, enhanced by
image informatics techniques, to improve and enrich metadata
that enables advanced specimen image analysis and investi-
gations of scientific research questions on an unprecedented
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scale. Our investigation has thus far focused on fish as
the specimen of study. Fish are vertebrate animals (phylum
Chordata), with over 34,000 known unique species [42], with
many more likely undiscovered. Species names are merely
labels, and the discovery of species variation depends on
both genotype and phenotype information. The ability to
computationally analyze thousands of images of a single fish
species, from different habitats and time periods, can lead to
new discoveries that are impossible to pursue with manual
methods. Digital library researchers have been concerned
with computationally extracting image features, using content-
based image retrieval methods. The work by Toress [43], while
over 15 years old, demonstrates the challenges and oppor-
tunities to automatically generating useful metadata. Efforts
to integrate such automatic metadata generation methods into
digital library workflows and architectures still seem limited.
This is likely due to the diversity of image shapes, sizes and
the inconsistent configurations of specimens, labels, rulers, etc.
within them. Object detection as explored in our research,
working with an established architecture, is applicable to the
larger world of biodiversity, well beyond fish, to include
other fauna and flora, art and artefacts, and other digitized
objects made accessible for scientific and scholarly research.
Following object detection, one can apply pixel analysis and
informatics methods to compute many more higher order
properties from the initial segmentations.

Digital libraries serve to collect, provide access to, and
archive rich collections of a wide array of materials. Many
digital libraries interconnect with open repositories, support-
ing FAIR (Findable, Accessible, Interoperable, and Reuse-
able) [44]. In discussing the future of digital library services,
Fox [45] underscores the need to prepare for and test ML
applications. The work presented here, within the context of
the BGNN project, demonstrates a clear need for improved
metadata associated with specimen image collections. Much
effort, time and money have been put into photographing
and digitizing physical specimens, but without detailed and
complete metadata properties the utility of these repositories
for advanced computational analysis and ML is limited. Since
it is very time intensive to generate all the pertinent properties
by hand, automated techniques are essential to generating the
missing metadata at scale.

VII. CONCLUSION

In this paper we presented an automatic metadata generation
approach. Using ML and image informatics algorithms, it is
able to locate, mask and analyze specimens (currently limited
to fish) in collection images with a high degree of accuracy.
It produces 6 of the 22 core BGNN metadata properties [9],
as well as image contrast, bounding boxes, scale and length
information. Testing this approach on 7,244 images from
the INHS dataset [4], we see that the vast majority of the
resulting metadata is correct within a tolerance of a few
percentage points, and in some cases contains fewer mistakes
than the manually generated validation data. Through further
refinement and generalization beyond only INHS images, we
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aim to create a tool that can be distributed to specimen
image collection curators to correct the metadata sparsity that
precipitated this work.

A. Future Work

The most pressing next step is to refine the pixel analysis
thresholding process so that the entirety of even light colored
fish are marked as foreground in the mask. A deficiency of
the current process is that it only operates on single channel
intensity. Some of the lightest tails appear yellow in hue to the
human eye and easily distinguishable, but when compressed
to a single intensity value they are almost identical in value to
the white background. Considering when the RGB channels
of a pixel are not equal in value may improve masking of such
features. Another possible approach to solving this problem is
to threshold and mask on subsets of the bounding box, as to
ensure that very dark trunk pixels do not affect the thresholding
of lighter regions.

Our longer-term goal is to create a generalized process that
works on classes of specimen images. For the BGNN project
we are beginning with fish images, but we are designing the
metadata generation system so that it can eventually operate
on other species if appropriately trained. To accomplish this, a
much larger training dataset consisting of more diverse images
will be required. The first step towards greater generality
will be to operate on other fish collections besides INHS,
which is something our program has already shown itself
capable of doing during initial testing. Another requirement
will be to generalize the ruler reading process beyond the
INHS-specific reading of digits on the ruler, which will likely
involve an automated method of reading ruler ticks instead of
digits. Overall, the research reported in this paper will improve
our BGNN workflow, and at the same time demonstrates an
innovative approach that may greatly enhance digital library
services for the tens of thousands of digitized specimens and
images for other types of objects.
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