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ABSTRACT

Community resilience in the face of natural hazards involves both a community’s sensitivity to disaster and its
potential to bounce back. A failure to integrate equity into resilience considerations results in unequal recovery
and disproportionate impacts on vulnerable populations, which has long been a concern in the United States.
This research investigated aspects of equity related to community resilience in the aftermath of Winter Storm
Uri in Texas which led to extended power outages for more than 4 million households. County-level
outage/recovery data was analyzed to explore potential significant links between various county attributes and
their share of the outages during the recovery/restoration phase. Next, satellite imagery was used to examine
data at a much higher geographical resolution focusing on census tracts in the city of Houston. The goal was
to use computer vision to extract the extent of outages within census tracts and investigate their linkages to
census tracts attributes. Results from various statistical procedures revealed statistically significant negative
associations between counties’ percentage of non-Hispanic whites and median household income with the ratio
of outages. Additionally, at census tract level, variables including percentages of linguistically isolated
population and public transport users exhibited positive associations with the group of census tracts that were
affected by the outage as detected by computer vision analysis. Informed by these results, engineering solutions
such as the applicability of grid modernization technologies, together with distributed and renewable energy
resources, when controlled for the region's topographical characteristics, are proposed to enhance equitable
power grid resiliency in the face of natural hazards.
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INTRODUCTION

Between February 13-17, 2021, Winter Storm Uri impacted 25 states and more than 150 million Americans
leading to extended power and water outages nationwide, with Texas being the hardest hit [1]. The impact of
Uri on the state of Texas was far beyond expectation due to the lack of precautionary measures to withstand
prolonged freezing temperatures [2]. While the electric grid in Texas is capable of withstanding extreme
humidity and warm weather conditions, it was not designed to endure extended freezing temperatures, leaving
administrators with no other options than to implement rolling blackouts. These blackouts were supposed to
last less than an hour [3] but ranged anywhere from a couple of hours to a couple of days across the state [4,
5]. The storm led to several deaths due to carbon monoxide poisoning, a significant halt in the administration
of COVID-19 vaccines, and an economic loss that is estimated to be around $90 billion [6]. Meanwhile, various
outlets brought to light the issue of environmental justice, and the human-centric and equity aspects of the
impact [7]. While four million people lost electricity and water in Texas [7, 8], the impact was disproportionate
in low-income communities of color [9-11]. Low-income non-white families were reported to bear the brunt
of compounding crises in the aftermath of Uri [10].

Disparate impact was also investigated by Carvallo et al. (2021) who used satellite data on nighttime
lights (NL) to determine blackouts at the level of Census Block Groups (CBGs) and correlated it to
demographic data from the EPA's EJScreen tool which identified the share of population in each CBG that is
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minority and low-income; they found that CBGs with a high share of non-white minorities were more than
four times as likely to experience a blackout than predominantly white CBGs, regardless of income. Lee et al
(2021) analyzed community-scale big data, including digital trace and crowdsourced data, in Harris County
and found significant disparity in the extent and duration of power outages as well as the extent of burst pipes
and disrupted food access for low-income and minority residents at the census tract level.

Racial and income disparities in Texas are associated with a history of redlining and gentrification [7,
8] resulting in the concentration of people of color in specific areas. At the same time, low-income areas tend
to lack amenities such as hospitals, which during the blackout were prioritized for power restoration together
with their neighboring areas [7]. Additionally, tendency to live in neighborhoods with older homes equipped
with utility systems more prone to failure was cited along with other contributing factors to this
disproportionate impact for Texans of color [12].

A disparity in environmental justice was also witnessed in the aftermath of other recent storms
including Sandy [13-15], Katrina [16-18], Harvey [19-21] and many others. In the aftermath of Hurricane
Sandy in New Jersey, Burger et al (2019) found ethnic differences in length of evacuation, length of power
outages, self-reported personal/family/healthcare impact, and federally qualified health centers (FQHC) use,
need, and access. Research on the impacts of Hurricane Harvey in Houston found that communities of color
suffered more extensive flooding than predominantly white neighborhoods, lower income households flooded
more extensively than higher income households, and low-income communities of color were
disproportionately exposed to flood-mobilized toxic pollutants and environmental hazards [19, 21]. Given the
fact that the disproportionate impact of disasters on vulnerable populations including low-income non-white
families is not unique to Uri nor to the state of Texas, there is a dire need to demystify its contributing factors
using appropriate data.

Previous studies highlighted weak planning, exploitative industries, despoiled environment, and
spatial seclusions as the root causes for the existence of disparities in environmental justice among
communities [22] in the wake of various natural hazards such as Hurricane Harvey. Additionally, disruption
of transportation routes to evacuate and access emergency assistance was reported to be more pronounced in
racial/ethnic minority communities compared to predominately white areas [22]. Finally, the presence of a
digital divide was shown to serve as a burden to access information for socioeconomically marginalized
residents in the aftermath of Harvey. These studies suggested that interventions in early stages of the disaster
management cycle including mitigation and preparedness could help with ameliorating the adverse impacts of
disasters and assist with environmental justice within communities. Also, these interventions are recommended
to be driven by the understanding that current disasters in Gulf Coast areas would have natural and technical
dimensions due to the lack of proper land use planning and the entrenched toxic infrastructure of petrochemical
industries surrounding socially marginalized communities. This would imply a more extensive integration of
climate change studies to enable proper handling of these complex interlinkages [22].

Community-specific vulnerability and resilience and their dependence on communities’ pre-existing
conditions, inequities, the severity and compounding of hazards, the influence of time, and the diversity of
external factors and their impacts were underlined in Cutter et al.’s [23] disaster resilience of place (DROP)
model. Inspired by this model and guided by the existing literature, our study examines the vulnerability and
resilience of communities in Harris County in the wake of Winter Storm Uri to provide an intrinsic, yet
theoretically useful case study. The study intends to collectively explore the importance of household-specific
attributes together with the significance of built-environment in contextualizing community resilience. The
case is unique in that east Texas rarely sees prolonged freezing temperatures and the impact on the electrical
grid — conspicuously detached from the Eastern and Western Interconnections — was unexpected by utilities,
regulators, state leaders, and residents alike. The case is broadly useful, though, as many counties across the
U.S. are experiencing more extreme and unusual climactic events and, like Harris County, are suffering from
compounding disasters that strain resources for recovery. Such a study can provide opportunities to learn from
what went wrong at various levels, including technical upkeep of infrastructure, precautionary measures,
planning, and execution with the hope that it can be used to foster environmental justice for future community
resilience planning [24, 25]. This research expands disaster and vulnerability assessments to the relatively
under-explored case of climate-related blackouts through collecting and extracting data at various county and
census tract levels during and after Winter Storm Uri. More specifically, unlike previous studies, our study not
only revealed the importance of household-specific attributes such as education and language but also
highlighted the significance of the built environment through parameters such as the percentage of one-unit



structures and public-transport users within census tracts. We also explore a relatively nascent methodology
for assessing the impact of disaster and vulnerability through computer vision analysis of satellite imagery.
This section is succeeded by Research Methodology, and Results sections. Conclusions will wrap up the paper.

METHODOLOGY

To address the objectives of this research, various data analysis methods were performed at both county and
census tract levels. The logic behind performing various statistical methods was twofold: 1) the exploratory
nature of this research study which necessitated testing our hypothesis of having disproportionate impacts in
non-white communities at various levels including a coarser data granularity level before delving into finer
levels, and 2) data availability which steered the selection of these levels of data granularity. These resulted in
choosing county-level outage data to check the validity for our initial speculation and was succeeded by census
tract-level analysis to check the consistency of the results at both levels. Additionally, the statistical methods
used followed the exploratory nature of the research. More specifically, at county-level, we were interested in
exploring the significance of the incorporated parameters in predicting the ratio of remaining outages. This
was continued by a multipronged approach for our finer resolution data in which we were initially interested
in parameters’ effect size which is a quantitative measure of the relationship between them and census-tract
percentage of outage and their significance. This was then followed by testing the significance of each
parameter in predicting whether a census tract would fall in the category of tract experiencing outage using
logistic regression. Finally, by utilizing principal component analysis we aimed to explore correlations
between ratio of outages and the incorporated parameters.

County level analysis was made available through the data that was acquired from a third-party
company? that is specialized in collecting live power outage data from utilities nationwide. The first round of
data analysis was performed at county-level to explore changes in power outages and potentially link them to
county-specific characteristics. To do so, a macro analysis of longitudinal county-level outages during the
month of February was studied. The study was mainly focused on the recovery stage of the blackout, which,
as shown in Figure 1b, happened between Feb. 18 — Feb. 21. The rationale behind using the recovery phase
was the implication of human interventions through the decisions of grid operation professionals and
restoration plans/policies [26-28], which in general contrasts with the build-up and blackout stages in which
decisions could be made on an ad-hoc basis. Additionally, Figure 1a shows total electric load in the ERCOT
network (in GW) over a period of three weeks from February 5 until February 26. Abnormal trends in increased
loading starts around February 9 due to record low temperature and peaks around February 15 (ERCOT,
2021a); Figure 1b represents the subsequent severe blackout that affects between 2.5 million to 4.5 million
customers over a period of three days together with build-up and recovery which starts around February 18.
Finally, Figure 1¢ shows a snapshot map of the power outages on February 20 at noon and the extent of impact
(PowerOutage.US, 2021). Full recovery took more days to be achieved at certain locations across the state.
More specifically, full-recovery durations tended to vary from one county to the other as an example, while
over 99.6% of the households who had lost power in Collins County had their power restored by February 20
at noon; less than 47.8% percent of the households who had lost power in Nacogdoches County had their
power restored by the same time. Collins County has the highest median household income in Texas.
Nacogdoches county has one of the lowest median household incomes in Texas.
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Figure 1. Overview of the power grid conditions during Winter Storm Uri in Texas

Next, to explore the impacts at a neighborhood scale, census tract data for Harris County was used in the
second round of data analysis, including the variables shown in Table 1. Our statistical tests used census
variables from the 2019 American Communities Survey (ACS 2019) 5-year estimates for Harris County
Census Tracts. We selected variables that are proxies for environmental and social disparities at the
neighborhood level (we use the term neighborhood interchangeably with census tract).

The selection of variables was mainly based on the review of literature. Even though within the context of
disasters, there are numerous research studies on contributing parameters to social vulnerability, we based our
analysis on the highly-cited research study performed by Flanagan et al. [29] in which as shown below 4 main
categories were used to establish the index. The reason behind using this study as the basis for our analysis is
multifold which are described as follows: 1) the focus of the aforementioned study is mainly on developing a
social vulnerability index for disaster management which is well-aligned with the topic of our study, 2) the
study is well rooted in disaster literature covering its various social aspects, 3) data used for the purpose of
index development in the study is census-tract level aggregated data which was deemed to be an appropriate
level of granularity to answer our research question to analyze data extracted from American Community
Survey 2019 5-year estimate for Harris County census tracts, and 4) the work was built on previous related
research studies that studied vulnerability as a resilience measure for population group post disasters [30]
which again was aligned with the scope of our study. More specifically, according to Flanagan et al. [29] these
parameters can be divided into 4 main categories and 15 census-tract variables that are demonstrated in Figure
2 below. In our study, even though the incorporated parameters are essentially the same as the ones included
in the work by Flanagan et al. [29], there were a few tweaks in the way they were grouped for easier
interpretation purposes. More specifically, in our categorization, socioeconomic status and
transportation/accessibility were grouped together to form Economic Characteristics, household structure and
mobility were classified as Housing Characteristics, and finally, age, race, ethnicity, and education formed
our Social Characteristics group. It is worth noting that commonalities between the previous research and
another well-cited study performed by Tate [31] corroborates the importance of these parameters in forming
the base to study social vulnerabilities in the aftermath of disasters.
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Once data at census tract level was obtained, the next step was to identify a measure that could be used as a
proxy for extent of outages within the census tracts. In the absence of public access to high resolution outage
data, nightlight satellite imagery® was used for this purpose. The idea was to compare the total number of black
and white pixels within each census tract before and after the winter storm and evaluate the changes.

Table 1. Census Tract Variables Extracted from 2019 ACS

Social Characteristics Housing Characteristics = Economic Characteristics

Age Residential type Median Household Income

Race Vacant housing Unemployment

Ethnicity Owner Occupancy Poverty

Education Mobility Employment Industry

Linguistically Isolated Access to Health Insurance

Others Transportation modes to commute to work
RESULTS

Data Analysis at County Level

At county level, our study was focused on the time span during which about 10% of the total outages (~400K
units) had not yet been recovered. The primary objective was to explore potential significant links between
different counties’ attributes and their share of the remaining outages during this final recovery/restoration
phase. Results are shown in Figure 3 in which linear regression models were developed to investigate the
significance of various county-level attributes, including counties’ percentage of non-Hispanic whites and
median household income in driving counties’ share of the remaining outages. These two variables were
selected as examples of parameters that were deemed influential and repeatedly shown to affect the impact
imposed by disasters including Sandy [13-15], Katrina [16-18, 32, 33], Harvey [19-21] within the literature.
A more comprehensive model was developed (see Figure 3c) which turned out to corroborate the importance
of race and socioeconomic status as well. More specifically, as shown in Figure 3a, median household income
was incorporated into our first model. Results indicated its significance at 0.01 level. In Model 2 (Figure 3b),
the only predictor was the percentage of white populations within counties that turn out to be borderline
significant between 0.05 and 0.1 levels. In Figure 3d, negative associations between the remaining ratio of
outages and the increase in household median income and percentage of white population at county-level were
visualized in a three-dimensional graph. These preliminary results revealed statistically significant negative
associations between these predictors and the dependent variable, which was set to be the ratio of remaining
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outages to the maximum recorded outage in the county. This would imply that counties with higher percentage
of non-Hispanic whites recovered faster (lower rate of remaining outages) compared to those without. The
same result can be concluded from counties with higher median household income. Finally, model 3 (Figure
3c) represents a more comprehensive model incorporating all social vulnerability parameters as indicated in
Table 1 which was reduced to a model with five significant predictors through a stepwise backward elimination
process. A process which is based on the probability of the likelihood-ratio statistic and conditional parameter
estimates. Among the significant variables, percentages of employed civilians and [-unit structures turn out to
have negative impact on the remaining outages at county level. The remaining parameters, including
percentages of 85-year-old and above population, Hispanic population, and high school graduates turn out to
have positive impact on the ratio of remaining outages. These results are fairly consistent with our first wo
models in which race (Hispanic) and income (through proxies: employment, one-unit structures) were shown
to be significant in predicting county-level remaining outages. These results are aligned with the existing
literature on the higher vulnerability of non-white and lower income groups within the context of disasters [30,
34, 35]. Even though results from this preliminary study were thought provoking, they were not conclusive
and, as such, called for more in-depth bottom-up analyses to be performed. We subsequently performed a
micro-level analysis of power outages at census tract level within Harris County due to its high level of impact
among cities within the state of Texas [36].
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Figure 3. Regression Models at County-Level

Data analysis at Census Tract Level

At census tract level, tracts’ attributes as shown in Table 1 were extracted from ACS 2019 and were associated
with results from computer vision analysis of their extent of outage. More specifically, in the absence of high-
resolution longitudinal power outage data within greater Harris County, the following tasks as demonstrated
in Figure 4 were performed by using satellite imagery to detect the intensity of outages. First, NASA satellite
images [37] of nighttime lights in Texas on Feb. 7 and Feb. 16 2021 were downloaded from their website (Fig.



4a). The image taken on Feb. 7 was set as the benchmark displaying normal nighttime lights while the second
image taken on Feb. 16 was used to evaluate changes during the outage. Second, to perform spatial analysis,
downloaded images were georeferenced in ArcGIS using ArcMap georeferencing tool (Fig. 4b). Third, census
tracts shapefile was downloaded from US Census TIGER/Line* and clipped by Harris County boundaries in
ArcMap (Fig. 4c). Fourth, ArcMap model builder was used to extract multiple shapefiles for each census tract
and create raster files from the extracted shapefiles (Fig. 4d).
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Figure 4. Census Tract Computer Vision Process
Once raster datasets were created for both before the outage and after the outage, OpenCV computer vision
package® was used to convert the datasets from Red-Green-Blue (RGB) to grayscale and then to black and
white (see Figure 5) and to count the number of pixels within each census tract. These numbers were the basis
for calculating black pixel ratio which was used to determine the severity of outage within neighborhoods for
the rest of the research study.

4 https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2019&layergroup=Census+Tracts
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Figure 5. Pféliminary Study Results Based on Counly—level Outage Data

Significant Variables and their Effect Size

Once outage intensity at census tract level was determined using satellite photos and computer vision
algorithms, independent sample t-tests were performed to understand the differences between the two sample
groups: neighborhoods (census tracts) that experienced a power outage compared to neighborhoods (census
tracts) that did not have a power outage during Winter Storm Uri. As shown in Table 2, these tests were run
using various measures to define which neighborhoods had a power outage. A key challenge in this analysis
is to lower the sensitivity to normal fluctuation in customer loads, a phenomenon that is well documented in
the power engineering literature due to the impact of various factors on load profiles [38]. Importantly, even
if there was no blackout at the times when either of the two satellite images were taken, one could still have
seen a considerable level of difference between the light pattern and intensity across the two satellite images
unrelated to any outage. Of course, such normal fluctuations also exist when a comparison is made between
satellite images before and during outages due to Winter Storm Uri; yet again, unrelated to the outages.
Therefore, a reduction in the sensitivity of the analysis to such normal fluctuations in loading was needed.

To resolve this issue, a reliability threshold in the form of a cut-off point to be applied to the black pixel ratio
was considered. First, suppose there is no normal fluctuation (e.g., those than can happen under daily use and
not necessarily extreme conditions such as a power blackout), between the time of taking the first satellite
image (before the outage) versus the time of taking the second satellite image (during the outage). In that case,
an area of interest is deemed to have experienced outage if black pixel ratio is greater than 1.0. However, due
to the presence of normal fluctuations in loads, there can be areas with a black pixel ratio greater than 1.0 that
have not experienced outage; they have rather only experienced less loading, unrelated to the outage.
Accordingly, sensitivity to such unrelated factors was reduced by examining four different cut-off points: 1.0,
1.1, 1.2, and 1.5. For the purpose of this study, the 1.2 cutoff point was chosen for two reasons: first it displayed
the highest number of significant variables based on t-test results compared to the rest which can be a good
indication of its higher accuracy in depicting actual outages; and second, random manual visual inspection of
various raster files exhibited more accurate depiction of the actual outage under this setting.

Then, the effect size of the difference for the variables that had statistically significant different means between
neighborhoods with power outages compared to those with power during Winter Storm Uri were determined
(See Table 2).

Table 2: T-test results for various Cut-Points

1.0 Cut Point — T-test results —
statistical significance
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#(1.5 Cut Point — T-test results —
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*
*statistical significance
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N t-tests
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1. Age: 65 and over,%
2. Race: Black or African American, %
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3. Race: Asian, % NS o -.18 * NS
4. Hispanic % NS i A7 NS NS
5. Vacant Housing, % Rk kEkk 37 kk% NS
6. 1 unit, Housing Structures, % O W ke *

7. 20 or more units, Housing Structures, % wok dokk 4] () kR *

8. Housing Built before 1979, % NS NS NS NS
9.  Owner Occupied Housing, % e | I\ N
10. No Vehicle Access (owner-occupied housing), % | T\ N
11. Over Crowded Housing, % == .32 ok NS
12. In Labor Force, % Rk kEkk 47 k*% NS
13. Unemployment Rate NS  ** .27 * NS
14. Public Transit for Work Commute, % Rk ARk 53 F* NS
15. Retail Employment, % * o -20 NS NS
16. FIRE Employment, % NS . 20 NS NS
17. Median Household Income, $ ok . -22 * *

18. No Health Insurance, % i <= .34 * NS
19. Poverty Level, all Rk kEkk 40 *** NS
20. Poverty, age 65 and over, % * ok 37  *** NS
21. Household Size e B
22. Family Size RE O RERk 4D Rk *

23. Education: High School Grad or equivalent, % * ¥R D4 k¥ *

24. Education: Bachelor’s degree, % NS NS .16 NS *

25. Mobility: Lived in Same House for at least lyear, % - 7 A \ N

26. Linguistically Isolated (speak English less than “well”), % *** **¥* 46  *¥* N§
NS non-significant, * significant at 0.05 level, ** significant at 0.01 level, *** significant at 0.001 level

According to the test results for variables with large effect size (0.5 and above), it can be inferred that
neighborhoods (census tracts) with a power outage had fewer single-family housing, more multi-family
housing, fewer owner-occupied housing, household size and more users of public transit for commuting to
work together with more newcomers than neighborhoods without a power outage. Also, among variables with
medium effect size (0.3-0.5), results indicated that neighborhoods with a power outage had more linguistically
isolated people, more people living in poverty, more people with no health insurance, more people in the labor
force, more vacant housing, more overcrowding, smaller family size, and fewer seniors than neighborhoods
without a power outage.

Logistic Regression

Identification of parameters with large and medium effect size such as housing type, public transit work
commute, mobility, etc. led to the next part of the study investigation to explore the significance of each of
these parameters in predicting the category of each census tract with regards to their level of impact/outage.
More specifically, this was carried out through the application of binary logistic regression in which changes
in the log odds of belonging to an affected census tract per a unit increase in predictor variables was
investigated. Odds refer to the probability ratio of being in affected group versus unaffected group. Several
binary logistic regression models were run using stepwise conditional forward selection testing in SPSS v.27.

Logistic regression is a form of statistical modeling which relates a set of explanatory variables to a categorical
response variable. Response variables can either have two or more than two categories and are called
dichotomous or polytomous, respectively. In the case of our study, the dependent variable was census tract
outage experience class which had two levels of “affected” and “not affected”. This classification of census
tracts was based on their black to white pixel ratios before and after the storm. Our independent variables
included all social tract-specific social vulnerability parameters (see Figure 1) such as demographic,
socioeconomic, etc. Since our response variable was nominal and could take two different categories binary
logit model was pursued to perform logistic regression. Binary logit models are a member of generalized linear
models or GLMs which were introduced by Nelder and Wedderburn [39]. Generalized linear models are
characterized by three components which are: 1) a random factor which represents the probability distribution
of the response variable; 2) a systematic component which denotes a linear function of explanatory variables
that are used as regressors; and 3) the link which defines the functional relationship between the systematic
component and the expected value of the random component [40]. Binary response Y with outcomes 0 and 1



is a Bernoulli random variable with mean E(Y) =1XxP(Y =1)+ 0x P(Y =0). By denoting this
probability as (%), the variance of would be:

VAR(Y) = E(Y?) — [E(Y)]* = n(x)[1 — m(x)] (Eq-1)
Now for the binary response variable, a linear probability model can be defined as:

E(Y) =n(x) = a + Bx (Eq-2)

The regression model shown in Eq-2 displays a major conceptual shortcoming associated with linear
probability model, which is the occurrence of probabilities beyond the feasible range of 0 to 1. To address this
defect, it would be more beneficial if a logistic regression function is used, which is s-shaped and has a
monotonic relationship with its regressor [40]. This is shown in the following equation:

TL'(X) = M (Eq_3)

1+exp(o+Bx)
As a result, the link function that should be used to make the logistic regression a GLM is a log odds
transformation or the logit which is shown below [40]:
log (—11(:)(())()) = o + Bx (Eq-4)

Through this method, parameter entry is tested based on the significance of score statistic while removal testing
is based on the probability of a likelihood-ratio statistic founded on conditional parameter estimates [41].
Among the developed models, a model with four variables as shown in Table 3 was selected after accounting
for simplicity, interpretability, and goodness of fit. Included parameters consisted of percentages of one-unit
structures, public transportation users, linguistically isolated people, and high school graduates within census
tracts. The model had a Nagelkerke pseudo—R Square of 0.261 which was marginally lower than the model
with the inclusion of all the variables (in percentages as shown in Table 1) while sharing the same significant
variables. Additionally, calculated Chi-square for Hosmer and Lemeshow test turned out to be insignificant
(Chi-square 7.02, p-value 0.535), indicating the model’s goodness of fit [42]. It is worth noting that having a
relatively low R square is the norm for logistic regression; however, they are being suggested to be used as a
statistic to compare and evaluate various competing models [42]. Results from the logistic regression indicated
the positive impact of linguistically isolated people and public transport commute percentages in increasing
the log odds of belonging to affected census tracts. As percent of linguistically isolated population per census
tract turns out to have a highly significant correlation with the percent of Hispanic population within the same
census tract (Pearson correlation of 0.824 at 0.01 level) this can be an indication of disproportionate impact
among various ethnicities within the county. The same positive impact can be seen in the percentage of
population taking public transport to work. On the other hand, higher concentration of one-unit structures and,
subsequently, less concentration of multifamily housing, appeared to have a negative impact implying that an
increase in the percentage would increase the log odds of belonging to the unaffected category. The same
applies to percentage of high school graduates within a census tract, which resulted in a negative impact. These
impacts are visualized in Figure 6 to show how probability of belonging to an affected census tract would be
affected by changes in any of these parameters when holding the rest of the parameters unchanged at their
mean. As shown in Figure 6, an increase in the percentage of public transportation users for work commute
together with the percentage of linguistically isolated population within a census tract increase its probability
to be located among the affected census tracts. On the other hand, this probability decreases as the percentage
of single-family residences and high school graduates increases within a census tract.

Table 3. Variables in the equation

B S.E. Wald _ Sig. Exp(B)
OneUnitStructure% -0.027 0.004 47.652 <.001 1.028
PublicTransport% 0.067 0.032 4.455 .035 935
Linguasticallylsolated% 0.029 0.007 18.745 <.001 971
HSgrad% -0.048 0.013 14.196 <.001 1.049

Constant -0.087 0322 0.073  <.001 1.091
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Figure 6. Probability of belonging to affected category — Sensitivity analysis

Principal Component Analysis

Finally, principal component analysis (PCA) was performed using SPSS v.27 to reveal how percentage of
black pixels loads on various components within our data sets. Similar to logistic regression, all the variables
in percentages were used in this analysis. Number of factors was limited to four (see Figure 7 and Table 3) as
they cumulatively cover at least 60% of the variance and factors beyond four encompass less than five percent
of the variance [43-45]. As shown in Table 4, results from PCA revealed noticeable positive loading of black
pixel ratio on a factor which has been additionally loaded by percentage of African American population,
public transport commute, poverty, vacant housing, multifamily housing, and no vehicle owner occupied
units, a result which is impartially aligned with the previous approaches. Even though these results are not
conclusive, they suggest possible presence of disproportionate impacts on low-income communities of color
within Harris County.
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Table 3. Variables in the equation

Initial Eigenvalues
Component  Total % of Variance Cumulative %

ﬂ 1 8.680 28.933 28.933
g . 2 4.572 15.240 44.173
3 2.996 9.986 54.159
' 4 2.017 6.725 60.884
a 5 1.134 3.780 64.664
e T c"‘pmmb pEEemEmmaE® 6 1.095 3.650 68.314
Figure 7. Scree plot
Table 4. Variables in the equation
Component
1 2 3 4
Age _85andover PCT -.164 .158 -.258 .665
Age _65andover PCT -.328 -.170 -.154 .837
Race_BlackAfricanAmericanr PCT -.152 245 .808 161
Race _Asian PCT -.368 178 -.291 -.106
Hispanic PCT .908 -.142 -.026 -.203
VacantHousingUnits PCT 101 .594 .069 .200
1 _UnitStructure PCT -.122 -.878 .036 256
20ormoreunitsStructure PCT -.095 821 -.243 -.142
Builtbefore1979 PCT .598 .052 .045 447
OwnerOccupied PCT -.294 -.853 -.184 215
NoVehicles OwnerOcc_PCT .349 .592 424 298

LackPlumbing OwnerOcc_PCT 122 .103 120 147




OverCrowded 1.5 PCT 499 .150 -.100 -.049

InLaborForce PCT -318 250 -.228 -.707
Unemployed PCT .074 .025 .640 .004
PublicTrans Commute _PCT .076 .565 333 .160
Retail Employment _PCT 127 -.100 460 -.202
FIRE Employment PCT -515 .098 -.404 .096
NoHealthInsurance _PCT .867 139 197 -.182
Poverty Family PCT 729 373 405 .061
Poverty FemaleHHwithkids _PCT .667 175 273 .062
PovertyLevel all PCT 728 408 400 .084
PovertyLeve _65andover PCT 531 297 207 .199
FemaleHHwithkids PCT 357 .108 573 -.091
Households _65andover PCT -.127 -.409 .046 .827
Education_HighSchoolGrad PCT .564 -.190 .626 -.006
Education_BachDegree PCT -.765 .146 -.498 .012
Mobility SameHouselyear PCT 278 -.704 .030 223
LinguisticallyIsolated PCT .879 .067 -.092 -.191
BPP _ratio 131 253 -.123 -.092

Rotation Method: Varimax with Kaiser Normalization, Rotation converged in 8 iterations

CONCLUSIONS AND FUTURE WORK

While the results from this study suggest disproportionate impacts among populations with various
demographic and socioeconomic statuses, the question remains on how the engineering community, utilities,
and policymakers can address inequities and ultimately enhance resiliency in areas that are proven to be
affected disproportionately during Winter Storm Uri and other extreme events. In response, two potential
power engineering interventions are proposed.

First, as it was observed in this study, when looking at the differences between neighborhoods, it was found
that the neighborhoods that had power outage were disproportionally vulnerable. They had more multifamily
housing, overcrowded housing, lower owner occupancy, more persons with limited English speaking, more
persons without access to a car, more persons who rely on public transit for work commuting, and more persons
who recently moved into the neighborhood. These results are particularly insightful within the recovery period.
That is, even though different areas were affected similarly when the disaster occurred, the areas with lower
household income and higher percentage of ethnic minorities remained without power for a longer period
while higher-income predominantly non-Hispanic White areas recovered more quickly. This could be due to
various factors, such as lack of more advanced technologies such as Fault Location, Isolation, and Service
Restoration (FLISR) [46], which can significantly accelerate service restoration due to an automated ability to
pinpoint the points of failure in order to assist utility personnel to restore service faster. More investment in
vulnerable geographic areas might be needed to help mitigate disparities in grid resiliency.

Second, there are evolving technologies that can help maintain electricity service during extreme events in
critical community resources such as at hospitals, shelters, schools, churches, etc. In particular, recent
advancements in the area of microgrid technologies, in combination with the installation of onsite renewable
generation and energy storage resources, are improving the ability to sustain isolated operation of a critical
facility for several days, thereby serving the affected community until service is fully restored, e.g., see [47,
48].

As part of our future work, the authors plan to investigate how critical community resources were affected
during Winter Storm Uri and similar extreme events to gain a clearer understanding of disparities in resilience
related to specific types of critical infrastructure. The results will help further identify the engineering
challenges and potential solutions required to eliminate existing demographic disparities associated with the
response to and restoration of disaster-caused electrical outages.

As extreme weather events like Winter Storm Uri become more frequent, intense, and unpredictable due to
climate change, it is important to understand how they impact critical infrastructures like the power grid and
how such impacts are compounded by socioeconomic and racial inequalities. Our analysis of spatiotemporal
and demographic data found that geographic areas with a higher percentage of single family homes recovered
from the power outages that occurred during Winter Storm Uri and possessed lower rates of remaining outages



during the latter stages of the recovery/restoration phase than areas with a higher proportion multifamily
housing communities. Understanding these disparate impacts of Winter Storm Uri is integral to developing
appropriate response, recovery, and mitigation plans for future events that disrupt the power grid. Our findings
could assist utilities and government entities to enact more equitable approaches to managed service outages
and power grid resiliency in the face of natural hazards. It is worth noting that this study is not immune to
limitations. Though our study focuses on the recovery stage of Winter Storm Uri, we are cognizant of Bosher
et al’s (2021) critique of the disaster cycle and the risk of underestimating the role of pre-disaster risk reduction
and preparedness activities or characterizing disaster as a one-off event or technological challenge rather than
amulti-faceted, compounded, and evolving phenomenon. As with other disaster research, subjectivity involved
in variable selection and weighting, unavailability of certain data, and difficulty with aggregation and scaling
limit the validation and generalizability of results. More specifically, though our results suggest the importance
of community characteristics in how they were affected by the outage they are not conclusive due to lack of
high-resolution longitudinal outage data, limited public data on the grid conditions during the storm, etc.; thus,
requiring a follow up confirmatory study that can collect data throughout the outage. Nevertheless, our
quantitative indicators and findings are useful for demystifying the impacts of natural hazards and power
outages, mapping impacts, measuring post-disaster recovery progress, and determining priorities for
decisionmakers.
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