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ABSTRACT 
Community resilience in the face of natural hazards involves both a community’s sensitivity to disaster and its 
potential to bounce back. A failure to integrate equity into resilience considerations results in unequal recovery 
and disproportionate impacts on vulnerable populations, which has long been a concern in the United States. 
This research investigated aspects of equity related to community resilience in the aftermath of Winter Storm 
Uri in Texas which led to extended power outages for more than 4 million households. County-level 
outage/recovery data was analyzed to explore potential significant links between various county attributes and 
their share of the outages during the recovery/restoration phase. Next, satellite imagery was used to examine 
data at a much higher geographical resolution focusing on census tracts in the city of Houston. The goal was 
to use computer vision to extract the extent of outages within census tracts and investigate their linkages to 
census tracts attributes. Results from various statistical procedures revealed statistically significant negative 
associations between counties’ percentage of non-Hispanic whites and median household income with the ratio 
of outages. Additionally, at census tract level, variables including percentages of linguistically isolated 
population and public transport users exhibited positive associations with the group of census tracts that were 
affected by the outage as detected by computer vision analysis. Informed by these results, engineering solutions 
such as the applicability of grid modernization technologies, together with distributed and renewable energy 
resources, when controlled for the region's topographical characteristics, are proposed to enhance equitable 
power grid resiliency in the face of natural hazards. 
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INTRODUCTION 

Between February 13-17, 2021, Winter Storm Uri impacted 25 states and more than 150 million Americans 
leading to extended power and water outages nationwide, with Texas being the hardest hit [1]. The impact of 
Uri on the state of Texas was far beyond expectation due to the lack of precautionary measures to withstand 
prolonged freezing temperatures [2]. While the electric grid in Texas is capable of withstanding extreme 
humidity and warm weather conditions, it was not designed to endure extended freezing temperatures, leaving 
administrators with no other options than to implement rolling blackouts. These blackouts were supposed to 
last less than an hour [3] but ranged anywhere from a couple of hours to a couple of days across the state [4, 
5]. The storm led to several deaths due to carbon monoxide poisoning, a significant halt in the administration 
of COVID-19 vaccines, and an economic loss that is estimated to be around $90 billion [6]. Meanwhile, various 
outlets brought to light the issue of environmental justice, and the human-centric and equity aspects of the 
impact [7]. While four million people lost electricity and water in Texas [7, 8], the impact was disproportionate 
in low-income communities of color [9-11]. Low-income non-white families were reported to bear the brunt 
of compounding crises in the aftermath of Uri [10].  

Disparate impact was also investigated by Carvallo et al. (2021) who used satellite data on nighttime 
lights (NL) to determine blackouts at the level of Census Block Groups (CBGs) and correlated it to 
demographic data from the EPA's EJScreen tool which identified the share of population in each CBG that is 
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minority and low-income; they found that CBGs with a high share of non-white minorities were more than 
four times as likely to experience a blackout than predominantly white CBGs, regardless of income. Lee et al 
(2021) analyzed community-scale big data, including digital trace and crowdsourced data, in Harris County 
and found significant disparity in the extent and duration of power outages as well as the extent of burst pipes 
and disrupted food access for low-income and minority residents at the census tract level.  

Racial and income disparities in Texas are associated with a history of redlining and gentrification [7, 
8] resulting in the concentration of people of color in specific areas. At the same time, low-income areas tend 
to lack amenities such as hospitals, which during the blackout were prioritized for power restoration together 
with their neighboring areas [7]. Additionally, tendency to live in neighborhoods with older homes equipped 
with utility systems more prone to failure was cited along with other contributing factors to this 
disproportionate impact for Texans of color [12].   

A disparity in environmental justice was also witnessed in the aftermath of other recent storms 
including Sandy [13-15], Katrina [16-18], Harvey [19-21] and many others. In the aftermath of Hurricane 
Sandy in New Jersey, Burger et al (2019) found ethnic differences in length of evacuation, length of power 
outages, self-reported personal/family/healthcare impact, and federally qualified health centers (FQHC) use, 
need, and access. Research on the impacts of Hurricane Harvey in Houston found that communities of color 
suffered more extensive flooding than predominantly white neighborhoods, lower income households flooded 
more extensively than higher income households, and low-income communities of color were 
disproportionately exposed to flood-mobilized toxic pollutants and environmental hazards [19, 21]. Given the 
fact that the disproportionate impact of disasters on vulnerable populations including low-income non-white 
families is not unique to Uri nor to the state of Texas, there is a dire need to demystify its contributing factors 
using appropriate data.  

Previous studies highlighted weak planning, exploitative industries, despoiled environment, and 
spatial seclusions as the root causes for the existence of disparities in environmental justice among 
communities [22] in the wake of various natural hazards such as Hurricane Harvey. Additionally, disruption 
of transportation routes to evacuate and access emergency assistance was reported to be more pronounced in 
racial/ethnic minority communities compared to predominately white areas [22]. Finally, the presence of a 
digital divide was shown to serve as a burden to access information for socioeconomically marginalized 
residents in the aftermath of Harvey. These studies suggested that interventions in early stages of the disaster 
management cycle including mitigation and preparedness could help with ameliorating the adverse impacts of 
disasters and assist with environmental justice within communities. Also, these interventions are recommended 
to be driven by the understanding that current disasters in Gulf Coast areas would have natural and technical 
dimensions due to the lack of proper land use planning and the entrenched toxic infrastructure of petrochemical 
industries surrounding socially marginalized communities. This would imply a more extensive integration of 
climate change studies to enable proper handling of these complex interlinkages [22]. 

 Community-specific vulnerability and resilience and their dependence on communities’ pre-existing 
conditions, inequities, the severity and compounding of hazards, the influence of time, and the diversity of 
external factors and their impacts were underlined in Cutter et al.’s [23] disaster resilience of place (DROP) 
model. Inspired by this model and guided by the existing literature, our study examines the vulnerability and 
resilience of communities in Harris County in the wake of Winter Storm Uri to provide an intrinsic, yet 
theoretically useful case study. The study intends to collectively explore the importance of household-specific 
attributes together with the significance of built-environment in contextualizing community resilience. The 
case is unique in that east Texas rarely sees prolonged freezing temperatures and the impact on the electrical 
grid – conspicuously detached from the Eastern and Western Interconnections – was unexpected by utilities, 
regulators, state leaders, and residents alike. The case is broadly useful, though, as many counties across the 
U.S. are experiencing more extreme and unusual climactic events and, like Harris County, are suffering from 
compounding disasters that strain resources for recovery. Such a study can provide opportunities to learn from 
what went wrong at various levels, including technical upkeep of infrastructure, precautionary measures, 
planning, and execution with the hope that it can be used to foster environmental justice for future community 
resilience planning [24, 25]. This research expands disaster and vulnerability assessments to the relatively 
under-explored case of climate-related blackouts through collecting and extracting data at various county and 
census tract levels during and after Winter Storm Uri. More specifically, unlike previous studies, our study not 
only revealed the importance of household-specific attributes such as education and language but also 
highlighted the significance of the built environment through parameters such as the percentage of one-unit 



   
 

   
 

structures and public-transport users within census tracts.  We also explore a relatively nascent methodology 
for assessing the impact of disaster and vulnerability through computer vision analysis of satellite imagery. 
This section is succeeded by Research Methodology, and Results sections. Conclusions will wrap up the paper. 

METHODOLOGY 

To address the objectives of this research, various data analysis methods were performed at both county and 
census tract levels. The logic behind performing various statistical methods was twofold: 1) the exploratory 
nature of this research study which necessitated testing our hypothesis of having disproportionate impacts in 
non-white communities at various levels including a coarser data granularity level before delving into finer 
levels, and 2) data availability which steered the selection of these levels of data granularity. These resulted in 
choosing county-level outage data to check the validity for our initial speculation and was succeeded by census 
tract-level analysis to check the consistency of the results at both levels. Additionally, the statistical methods 
used followed the exploratory nature of the research. More specifically, at county-level, we were interested in 
exploring the significance of the incorporated parameters in predicting the ratio of remaining outages. This 
was continued by a multipronged approach for our finer resolution data in which we were initially interested 
in parameters’ effect size which is a quantitative measure of the relationship between them and census-tract 
percentage of outage and their significance. This was then followed by testing the significance of each 
parameter in predicting whether a census tract would fall in the category of tract experiencing outage using 
logistic regression. Finally, by utilizing principal component analysis we aimed to explore correlations 
between ratio of outages and the incorporated parameters. 

County level analysis was made available through the data that was acquired from a third-party 
company2 that is specialized in collecting live power outage data from utilities nationwide. The first round of 
data analysis was performed at county-level to explore changes in power outages and potentially link them to 
county-specific characteristics. To do so, a macro analysis of longitudinal county-level outages during the 
month of February was studied. The study was mainly focused on the recovery stage of the blackout, which, 
as shown in Figure 1b, happened between Feb. 18 – Feb. 21. The rationale behind using the recovery phase 
was the implication of human interventions through the decisions of grid operation professionals and 
restoration plans/policies [26-28], which in general contrasts with the build-up and blackout stages in which 
decisions could be made on an ad-hoc basis. Additionally, Figure 1a shows total electric load in the ERCOT 
network (in GW) over a period of three weeks from February 5 until February 26. Abnormal trends in increased 
loading starts around February 9 due to record low temperature and peaks around February 15 (ERCOT, 
2021a); Figure 1b represents the subsequent severe blackout that affects between 2.5 million to 4.5 million 
customers over a period of three days together with build-up and recovery which starts around February 18. 
Finally, Figure 1c shows a snapshot map of the power outages on February 20 at noon and the extent of impact 
(PowerOutage.US, 2021). Full recovery took more days to be achieved at certain locations across the state. 
More specifically, full-recovery durations tended to vary from one county to the other as an example, while 
over 99.6% of the households who had lost power in Collins County had their power restored by February 20 
at noon; less than 47.8% percent of the households who had lost power in Nacogdoches County had their 
power restored by the same time. Collins County has the highest median household income in Texas. 
Nacogdoches county has one of the lowest median household incomes in Texas.  
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Figure 2. Social Vulnerability Factors – Inspired by Flanagan et al. [29] 

Once data at census tract level was obtained, the next step was to identify a measure that could be used as a 
proxy for extent of outages within the census tracts. In the absence of public access to high resolution outage 
data, nightlight satellite imagery3 was used for this purpose. The idea was to compare the total number of black 
and white pixels within each census tract before and after the winter storm and evaluate the changes. 

Table 1. Census Tract Variables Extracted from 2019 ACS 

Social Characteristics Housing Characteristics  Economic Characteristics 

Age Residential type  Median Household Income 
Race Vacant housing Unemployment 
Ethnicity Owner Occupancy Poverty 
Education Mobility Employment Industry 
Linguistically Isolated  Access to Health Insurance 
Others  Transportation modes to commute to work 

RESULTS 

Data Analysis at County Level 

At county level, our study was focused on the time span during which about 10% of the total outages (~400K 
units) had not yet been recovered. The primary objective was to explore potential significant links between 
different counties’ attributes and their share of the remaining outages during this final recovery/restoration 
phase. Results are shown in Figure 3 in which linear regression models were developed to investigate the 
significance of various county-level attributes, including counties’ percentage of non-Hispanic whites and 
median household income in driving counties’ share of the remaining outages. These two variables were 
selected as examples of parameters that were deemed influential and repeatedly shown to affect the impact 
imposed by disasters  including Sandy [13-15], Katrina [16-18, 32, 33], Harvey [19-21] within the literature. 
A more comprehensive model was developed (see Figure 3c) which turned out to corroborate the importance 
of race and socioeconomic status as well. More specifically, as shown in Figure 3a, median household income 
was incorporated into our first model. Results indicated its significance at 0.01 level. In Model 2 (Figure 3b), 
the only predictor was the percentage of white populations within counties that turn out to be borderline 
significant between 0.05 and 0.1 levels. In Figure 3d, negative associations between the remaining ratio of 
outages and the increase in household median income and percentage of white population at county-level were 
visualized in a three-dimensional graph. These preliminary results revealed statistically significant negative 
associations between these predictors and the dependent variable, which was set to be the ratio of remaining 
                                                      
3 https://www.newsweek.com/satellite-photos-show-extent-texas-power-outages-space-1569942  
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outages to the maximum recorded outage in the county. This would imply that counties with higher percentage 
of non-Hispanic whites recovered faster (lower rate of remaining outages) compared to those without. The 
same result can be concluded from counties with higher median household income. Finally, model 3 (Figure 
3c) represents a more comprehensive model incorporating all social vulnerability parameters as indicated in 
Table 1 which was reduced to a model with five significant predictors through a stepwise backward elimination 
process. A process which is based on the probability of the likelihood-ratio statistic and conditional parameter 
estimates. Among the significant variables, percentages of employed civilians and 1-unit structures turn out to 
have negative impact on the remaining outages at county level. The remaining parameters, including 
percentages of 85-year-old and above population, Hispanic population, and high school graduates turn out to 
have positive impact on the ratio of remaining outages. These results are fairly consistent with our first wo 
models in which race (Hispanic) and income (through proxies: employment, one-unit structures) were shown 
to be significant in predicting county-level remaining outages. These results are aligned with the existing 
literature on the higher vulnerability of non-white and lower income groups within the context of disasters [30, 
34, 35].  Even though results from this preliminary study were thought provoking, they were not conclusive 
and, as such, called for more in-depth bottom-up analyses to be performed. We subsequently performed a 
micro-level analysis of power outages at census tract level within Harris County due to its high level of impact 
among cities within the state of Texas [36]. 

  
Model 1 

param B S.E. t-value Sig. 

intercept 0.11357 0.221799 0.512 0.60908 

employed -0.00507 0.001749 -2.897 0.004106 

 
Model 2 

param B S.E. t-value Sig. 

intercept 0.11357 0.221799 0.512 0.60908 

employed -0.00507 0.001749 -2.897 0.004106 

 
Model 3 

param B S.E. t-value Sig. 

intercept 0.11357 0.221799 0.512 0.60908 

employed -0.00507 0.001749 -2.897 0.004106 

unit1  -0.00475 0.001482 -3.203 0.001538 

age85 0.044195 0.015295 2.889 0.004201 

hispanic 0.002726 0.000805 3.387 0.000823 

HSgrad -.294 .365 .650 1 

3c. models 3, and 4 

 
3d. visualized associations 

Figure 3. Regression Models at County-Level 

Data analysis at Census Tract Level 

At census tract level, tracts’ attributes as shown in Table 1 were extracted from ACS 2019 and were associated 
with results from computer vision analysis of their extent of outage. More specifically, in the absence of high-
resolution longitudinal power outage data within greater Harris County, the following tasks as demonstrated 
in Figure 4 were performed by using satellite imagery to detect the intensity of outages. First, NASA satellite 
images [37] of nighttime lights in Texas on Feb. 7 and Feb. 16 2021 were downloaded from their website (Fig. 
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4a). The image taken on Feb. 7 was set as the benchmark displaying normal nighttime lights while the second 
image taken on Feb. 16 was used to evaluate changes during the outage. Second, to perform spatial analysis, 
downloaded images were georeferenced in ArcGIS using ArcMap georeferencing tool (Fig. 4b). Third, census 
tracts shapefile was downloaded from US Census TIGER/Line4 and clipped by Harris County boundaries in 
ArcMap (Fig. 4c). Fourth, ArcMap model builder was used to extract multiple shapefiles for each census tract 
and create raster files from the extracted shapefiles (Fig. 4d). 

  
(a) (b) 

  
(c) (d) 

Figure 4. Census Tract Computer Vision Process 
Once raster datasets were created for both before the outage and after the outage, OpenCV computer vision 
package5 was used to convert the datasets from Red-Green-Blue (RGB) to grayscale and then to black and 
white (see Figure 5) and to count the number of pixels within each census tract. These numbers were the basis 
for calculating black pixel ratio which was used to determine the severity of outage within neighborhoods for 
the rest of the research study. 

 

                                                      
4 https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2019&layergroup=Census+Tracts  
5 https://opencv.org/releases/  

https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2019&layergroup=Census+Tracts
https://opencv.org/releases/


   
 

   
 

 
Figure 5. Preliminary Study Results Based on County-level Outage Data 

Significant Variables and their Effect Size 

Once outage intensity at census tract level was determined using satellite photos and computer vision 
algorithms, independent sample t-tests were performed to understand the differences between the two sample 
groups: neighborhoods (census tracts) that experienced a power outage compared to neighborhoods (census 
tracts) that did not have a power outage during Winter Storm Uri. As shown in Table 2, these tests were run 
using various measures to define which neighborhoods had a power outage. A key challenge in this analysis 
is to lower the sensitivity to normal fluctuation in customer loads, a phenomenon that is well documented in 
the power engineering literature due to the impact of various factors on load profiles [38]. Importantly, even 
if there was no blackout at the times when either of the two satellite images were taken, one could still have 
seen a considerable level of difference between the light pattern and intensity across the two satellite images 
unrelated to any outage. Of course, such normal fluctuations also exist when a comparison is made between 
satellite images before and during outages due to Winter Storm Uri; yet again, unrelated to the outages. 
Therefore, a reduction in the sensitivity of the analysis to such normal fluctuations in loading was needed.  

To resolve this issue, a reliability threshold in the form of a cut-off point to be applied to the black pixel ratio 
was considered. First, suppose there is no normal fluctuation (e.g., those than can happen under daily use and 
not necessarily extreme conditions such as a power blackout), between the time of taking the first satellite 
image (before the outage) versus the time of taking the second satellite image (during the outage). In that case, 
an area of interest is deemed to have experienced outage if black pixel ratio is greater than 1.0. However, due 
to the presence of normal fluctuations in loads, there can be areas with a black pixel ratio greater than 1.0 that 
have not experienced outage; they have rather only experienced less loading, unrelated to the outage. 
Accordingly, sensitivity to such unrelated factors was reduced by examining four different cut-off points: 1.0, 
1.1, 1.2, and 1.5. For the purpose of this study, the 1.2 cutoff point was chosen for two reasons: first it displayed 
the highest number of significant variables based on t-test results compared to the rest which can be a good 
indication of its higher accuracy in depicting actual outages; and second, random manual visual inspection of 
various raster files exhibited more accurate depiction of the actual outage under this setting.   

Then, the effect size of the difference for the variables that had statistically significant different means between 
neighborhoods with power outages compared to those with power during Winter Storm Uri were determined 
(See Table 2).  

Table 2: T-test results for various Cut-Points 
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1. Age: 65 and over,% *** *** -.42 *** * 
2. Race: Black or African American, % NS NS  NS NS 



   
 

   
 

3. Race: Asian, % NS * -.18 * NS 
4. Hispanic % NS * .17 NS NS 
5. Vacant Housing, % *** *** .37 *** NS 
6. 1 unit, Housing Structures, % *** *** -1.0 *** * 
7. 20 or more units, Housing Structures, % *** *** +1.0 *** * 
8. Housing Built before 1979, % NS NS  NS NS 
9. Owner Occupied Housing, % *** *** -.89 *** NS 
10. No Vehicle Access (owner-occupied housing), % *** *** .56 *** NS 
11. Over Crowded Housing, % *** ** .32 ** NS 
12. In Labor Force, % *** *** .47 *** NS 
13. Unemployment Rate NS ** -.27 * NS 
14. Public Transit for Work Commute, %  *** *** .53 *** NS 
15. Retail Employment, % * * -.20 NS NS 
16. FIRE Employment, % NS * .20 NS NS 
17. Median Household Income, $ *** * -.22 * * 
18. No Health Insurance, % *** ** .34 * NS 
19. Poverty Level, all *** *** .40 *** NS 
20. Poverty, age 65 and over, % * ** .37 *** NS 
21. Household Size *** *** -.61 *** ** 
22. Family Size *** *** -.42 *** * 
23. Education: High School Grad or equivalent, % * ** -.24 ** * 
24. Education: Bachelor’s degree, % NS NS .16 NS * 
25. Mobility: Lived in Same House for at least 1year, % *** *** -.57 *** NS 
26. Linguistically Isolated (speak English less than “well”), % *** *** .46 *** NS 

NS non-significant, * significant at 0.05 level, ** significant at 0.01 level, *** significant at 0.001 level 

According to the test results for variables with large effect size (0.5 and above), it can be inferred that 
neighborhoods (census tracts) with a power outage had fewer single-family housing, more multi-family 
housing, fewer owner-occupied housing, household size and more users of public transit for commuting to 
work together with more newcomers than neighborhoods without a power outage. Also, among variables with 
medium effect size (0.3-0.5), results indicated that neighborhoods with a power outage had more linguistically 
isolated people, more people living in poverty, more people with no health insurance, more people in the labor 
force, more vacant housing, more overcrowding, smaller family size, and fewer seniors than neighborhoods 
without a power outage.  

Logistic Regression 

Identification of parameters with large and medium effect size such as housing type, public transit work 
commute, mobility, etc. led to the next part of the study investigation to explore the significance of each of 
these parameters in predicting the category of each census tract with regards to their level of impact/outage. 
More specifically, this was carried out through the application of binary logistic regression in which changes 
in the log odds of belonging to an affected census tract per a unit increase in predictor variables was 
investigated. Odds refer to the probability ratio of being in affected group versus unaffected group. Several 
binary logistic regression models were run using stepwise conditional forward selection testing in SPSS v.27.  

Logistic regression is a form of statistical modeling which relates a set of explanatory variables to a categorical 
response variable. Response variables can either have two or more than two categories and are called 
dichotomous or polytomous, respectively. In the case of our study, the dependent variable was census tract 
outage experience class which had two levels of “affected” and “not affected”.  This classification of census 
tracts was based on their black to white pixel ratios before and after the storm. Our independent variables 
included all social tract-specific social vulnerability parameters (see Figure 1) such as demographic, 
socioeconomic, etc. Since our response variable was nominal and could take two different categories binary 
logit model was pursued to perform logistic regression. Binary logit models are a member of generalized linear 
models or GLMs which were introduced by Nelder and Wedderburn [39]. Generalized linear models are 
characterized by three components which are: 1) a random factor which represents the probability distribution 
of the response variable; 2) a systematic component which denotes a linear function of explanatory variables 
that are used as regressors; and 3) the link which defines the functional relationship between the systematic 
component and the expected value of the random component [40]. Binary response 𝑌 with outcomes 0 and 1 



   
 

   
 

is a Bernoulli random variable with mean 𝐸(𝑌) = 1 × 𝑃(𝑌 = 1) + 0 × 𝑃(𝑌 = 0). By denoting this 
probability as 𝜋(x),  the variance of would be: 

𝑉𝐴𝑅(𝑌) = 𝐸(𝑌2) − [𝐸(𝑌)]2 = 𝜋(x)[1 − 𝜋(x)] (Eq-1) 
Now for the binary response variable, a linear probability model can be defined as: 

𝐸(𝑌) = 𝜋(x) = α + βx (Eq-2) 
The regression model shown in Eq-2 displays a major conceptual shortcoming associated with linear 
probability model, which is the occurrence of probabilities beyond the feasible range of 0 to 1. To address this 
defect, it would be more beneficial if a logistic regression function is used, which is s-shaped and has a 
monotonic relationship with its regressor [40]. This is shown in the following equation: 

𝜋(x) =
exp⁡(α+βx)

1+exp⁡(α+βx)
 (Eq-3) 

As a result, the link function that should be used to make the logistic regression a GLM is a log odds 
transformation or the logit which is shown below [40]: 

log (
𝜋(x)

1−𝜋(x)
) = α + βx (Eq-4) 

Through this method, parameter entry is tested based on the significance of score statistic while removal testing 
is based on the probability of a likelihood-ratio statistic founded on conditional parameter estimates [41]. 
Among the developed models, a model with four variables as shown in Table 3 was selected after accounting 
for simplicity, interpretability, and goodness of fit. Included parameters consisted of percentages of one-unit 
structures, public transportation users, linguistically isolated people, and high school graduates within census 
tracts. The model had a Nagelkerke pseudo–R Square of 0.261 which was marginally lower than the model 
with the inclusion of all the variables (in percentages as shown in Table 1) while sharing the same significant 
variables. Additionally, calculated Chi-square for Hosmer and Lemeshow test turned out to be insignificant 
(Chi-square 7.02, p-value 0.535), indicating the model’s goodness of fit [42]. It is worth noting that having a 
relatively low R square is the norm for logistic regression; however, they are being suggested to be used as a 
statistic to compare and evaluate various competing models [42]. Results from the logistic regression indicated 
the positive impact of linguistically isolated people and public transport commute percentages in increasing 
the log odds of belonging to affected census tracts. As percent of linguistically isolated population per census 
tract turns out to have a highly significant correlation with the percent of Hispanic population within the same 
census tract (Pearson correlation of 0.824 at 0.01 level) this can be an indication of disproportionate impact 
among various ethnicities within the county. The same positive impact can be seen in the percentage of 
population taking public transport to work. On the other hand, higher concentration of one-unit structures and, 
subsequently, less concentration of multifamily housing, appeared to have a negative impact implying that an 
increase in the percentage would increase the log odds of belonging to the unaffected category. The same 
applies to percentage of high school graduates within a census tract, which resulted in a negative impact. These 
impacts are visualized in Figure 6 to show how probability of belonging to an affected census tract would be 
affected by changes in any of these parameters when holding the rest of the parameters unchanged at their 
mean. As shown in Figure 6, an increase in the percentage of public transportation users for work commute 
together with the percentage of linguistically isolated population within a census tract increase its probability 
to be located among the affected census tracts. On the other hand, this probability decreases as the percentage 
of single-family residences and high school graduates increases within a census tract.  

Table 3. Variables in the equation 

 B S.E. Wald Sig. Exp(B) 
OneUnitStructure% -0.027 0.004 47.652 <.001 1.028 
PublicTransport%  0.067 0.032 4.455 .035 .935 
LinguasticallyIsolated% 0.029 0.007 18.745 <.001 .971 
HSgrad% -0.048 0.013 14.196 <.001 1.049 
Constant -0.087 0.322 0.073 <.001 1.091 



   
 

   
 

 
Figure 6. Probability of belonging to affected category – Sensitivity analysis 

Principal Component Analysis 

Finally, principal component analysis (PCA) was performed using SPSS v.27 to reveal how percentage of 
black pixels loads on various components within our data sets. Similar to logistic regression, all the variables 
in percentages were used in this analysis. Number of factors was limited to four (see Figure 7 and Table 3) as 
they cumulatively cover at least 60% of the variance and factors beyond four encompass less than five percent 
of the variance [43-45]. As shown in Table 4, results from PCA revealed noticeable positive loading of black 
pixel ratio on a factor which has been additionally loaded by percentage of African American population, 
public transport commute, poverty, vacant housing, multifamily housing, and no vehicle owner occupied 
units, a result which is impartially aligned with the previous approaches. Even though these results are not 
conclusive, they suggest possible presence of disproportionate impacts on low-income communities of color 
within Harris County. 
 

 

Table 3. Variables in the equation 

Component 
Initial Eigenvalues 

Total % of Variance Cumulative % 
1 8.680 28.933 28.933 
2 4.572 15.240 44.173 
3 2.996 9.986 54.159 
4 2.017 6.725 60.884 
5 1.134 3.780 64.664 
6 1.095 3.650 68.314 

 

Figure 7. Scree plot  

 
Table 4. Variables in the equation 

 
Component 

1 2 3 4 
Age_85andover_PCT -.164 .158 -.258 .665 
Age_65andover_PCT -.328 -.170 -.154 .837 
Race_BlackAfricanAmericanr_PCT -.152 .245 .808 .161 
Race_Asian_PCT -.368 .178 -.291 -.106 
Hispanic_PCT .908 -.142 -.026 -.203 
VacantHousingUnits_PCT .101 .594 .069 .200 
1_UnitStructure_PCT -.122 -.878 .036 .256 
20ormoreunitsStructure_PCT -.095 .821 -.243 -.142 
Builtbefore1979_PCT .598 .052 .045 .447 
OwnerOccupied_PCT -.294 -.853 -.184 .215 
NoVehicles_OwnerOcc_PCT .349 .592 .424 .298 
LackPlumbing_OwnerOcc_PCT .122 .103 .120 .147 
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OverCrowded_1.5_PCT .499 .150 -.100 -.049 
InLaborForce_PCT -.318 .250 -.228 -.707 
Unemployed_PCT .074 .025 .640 .004 
PublicTrans_Commute__PCT .076 .565 .333 .160 
Retail_Employment__PCT .127 -.100 .460 -.202 
FIRE_Employment__PCT -.515 .098 -.404 .096 
NoHealthInsurance__PCT .867 .139 .197 -.182 
Poverty_Family__PCT .729 .373 .405 .061 
Poverty_FemaleHHwithkids__PCT .667 .175 .273 .062 
PovertyLevel_all_PCT .728 .408 .400 .084 
PovertyLeve_65andover_PCT .531 .297 .207 .199 
FemaleHHwithkids_PCT .357 .108 .573 -.091 
Households_65andover_PCT -.127 -.409 .046 .827 
Education_HighSchoolGrad_PCT .564 -.190 .626 -.006 
Education_BachDegree_PCT -.765 .146 -.498 .012 
Mobility_SameHouse1year_PCT .278 -.704 .030 .223 
LinguisticallyIsolated_PCT .879 .067 -.092 -.191 
BPP_ratio .131 .253 -.123 -.092 

Rotation Method: Varimax with Kaiser Normalization, Rotation converged in 8 iterations 

CONCLUSIONS AND FUTURE WORK 

While the results from this study suggest disproportionate impacts among populations with various 
demographic and socioeconomic statuses, the question remains on how the engineering community, utilities, 
and policymakers can address inequities and ultimately enhance resiliency in areas that are proven to be 
affected disproportionately during Winter Storm Uri and other extreme events. In response, two potential 
power engineering interventions are proposed. 

First, as it was observed in this study, when looking at the differences between neighborhoods, it was found 
that the neighborhoods that had power outage were disproportionally vulnerable. They had more multifamily 
housing, overcrowded housing, lower owner occupancy, more persons with limited English speaking, more 
persons without access to a car, more persons who rely on public transit for work commuting, and more persons 
who recently moved into the neighborhood. These results are particularly insightful within the recovery period. 
That is, even though different areas were affected similarly when the disaster occurred, the areas with lower 
household income and higher percentage of ethnic minorities remained without power for a longer period 
while higher-income predominantly non-Hispanic White areas recovered more quickly. This could be due to 
various factors, such as lack of more advanced technologies such as Fault Location, Isolation, and Service 
Restoration (FLISR) [46], which can significantly accelerate service restoration due to an automated ability to 
pinpoint the points of failure in order to assist utility personnel to restore service faster. More investment in 
vulnerable geographic areas might be needed to help mitigate disparities in grid resiliency. 

Second, there are evolving technologies that can help maintain electricity service during extreme events in 
critical community resources such as at hospitals, shelters, schools, churches, etc. In particular, recent 
advancements in the area of microgrid technologies, in combination with the installation of onsite renewable 
generation and energy storage resources, are improving the ability to sustain isolated operation of a critical 
facility for several days, thereby serving the affected community until service is fully restored, e.g., see [47, 
48].  

As part of our future work, the authors plan to investigate how critical community resources were affected 
during Winter Storm Uri and similar extreme events to gain a clearer understanding of disparities in resilience 
related to specific types of critical infrastructure. The results will help further identify the engineering 
challenges and potential solutions required to eliminate existing demographic disparities associated with the 
response to and restoration of disaster-caused electrical outages.  

As extreme weather events like Winter Storm Uri become more frequent, intense, and unpredictable due to 
climate change, it is important to understand how they impact critical infrastructures like the power grid and 
how such impacts are compounded by socioeconomic and racial inequalities. Our analysis of spatiotemporal 
and demographic data found that geographic areas with a higher percentage of single family homes recovered 
from the power outages that occurred during Winter Storm Uri and possessed lower rates of remaining outages 



   
 

   
 

during the latter stages of the recovery/restoration phase than areas with a higher proportion multifamily 
housing communities. Understanding these disparate impacts of Winter Storm Uri is integral to developing 
appropriate response, recovery, and mitigation plans for future events that disrupt the power grid. Our findings 
could assist utilities and government entities to enact more equitable approaches to managed service outages 
and power grid resiliency in the face of natural hazards. It is worth noting that this study is not immune to 
limitations. Though our study focuses on the recovery stage of Winter Storm Uri, we are cognizant of Bosher 
et al’s (2021) critique of the disaster cycle and the risk of underestimating the role of pre-disaster risk reduction 
and preparedness activities or characterizing disaster as a one-off event or technological challenge rather than 
a multi-faceted, compounded, and evolving phenomenon. As with other disaster research, subjectivity involved 
in variable selection and weighting, unavailability of certain data, and difficulty with aggregation and scaling 
limit the validation and generalizability of results.  More specifically, though our results suggest the importance 
of community characteristics in how they were affected by the outage they are not conclusive due to lack of 
high-resolution longitudinal outage data, limited public data on the grid conditions during the storm, etc.; thus, 
requiring a follow up confirmatory study that can collect data throughout the outage. Nevertheless, our 
quantitative indicators and findings are useful for demystifying the impacts of natural hazards and power 
outages, mapping impacts, measuring post-disaster recovery progress, and determining priorities for 
decisionmakers. 
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