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A B S T R A C T   

The well-known tension/compression asymmetry exhibited by nearly equiatomic NiTi has been 
previously modeled using a hardening potential for compression and a partially softening one for 
tension to represent pseudoelastic phase transformations (Jiang et al., 2016b). The present study 
first extends this constitutive model to include anisotropy revealed in the combined axial 
force-internal pressure experiments on NiTi tubes of Bechle and Kyriakides (2016a). The model is 
then calibrated anew, implemented in a finite element analysis of tubes and used to simulate the 
entire range of biaxial experiments performed. Overall, the simulations reproduce well the 
stress-average strain hystereses and the transformation stress loci, while for hoop dominant stress 
paths the extents of the transformation strains are somewhat over-predicted. The evolution of 
localization in the form of high or low strain helical bands, the variation of helix angles with 
respect to the stress ratio, and the dissipated energy compare favorably. The hardening response 
and essentially homogeneous deformation exhibited in the neighborhood of the equibiaxial stress 
state is reproduced, but with reduced hardening and mild inhomogeneity. Despite some minor 
differences, the results demonstrate the overall success of the analysis in reproducing the 
phenomena-rich behavior exhibited by tubular NiTi structures under biaxial loadings.   

1. Introduction 

Nearly equiatomic NiTi can be strained at room temperature to several percent and fully recover upon unloading, called pseu
doelastic behavior. This property is derived from solid-state transformations between the austenitic (A) and martensitic (M) phases and 
as a result the load-unload response of the material traces a closed stress-strain hysteresis. Under tension, the reversible transformation 
results in inhomogeneous deformation with the hysteresis exhibiting an upper and a lower stress plateau during which the two phases 
co-exist (e.g., Shaw and Kyriakides, 1995,1997; Liu et al., 1999; Iadicola and Shaw, 2002; Mao et al., 2010; Li and Sun, 2002; Daly 
et al., 2007; Bechle and Kyriakides, 2014; Reedlunn et al., 2014). In contrast, under compression the transformation leads to a 
monotonic hysteresis with higher stress, lower strain, and essentially homogeneous deformation (e.g., Jacobus et al., 1996; Orgeas and 
Favier, 1998; Bechle and Kyriakides, 2014; Reedlunn et al., 2014; Elibol et al., 2015). More complex manifestations of the ten
sion/compression asymmetry became apparent in biaxial experiments on pseudoelastic NiTi tubes under combined axial force and 
torsional loadings (e.g., Helm and Haupt, 2001; Sun and Li, 2002; Yu et al., 2015; Reedlunn et al., 2020) and axial force-internal 
pressure (e.g., Bechle and Kyriakides, 2016a, 2016b). 

The axial force-internal pressure biaxial experiments of Bechle and Kyriakides (2016a), which are the focus of the present study 
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involved thin-walled tubes with diameter-to-thickness ratios (D/t) of about 25, tested under radial loading paths with nominal axial to 
hoop stress ratios (σx/σθ ≡ α) ranging from −1.0 to uniaxial tension (∞). But for a narrow region near equibiaxial tension, trans
formation leads to localized helical deformation bands with helix angles and stress plateaus that depend on the stress ratio. In the 
vicinity of equibiaxial tension, the material reverted to hardening and nearly homogeneous deformation. 

Biaxial experiments have also revealed anisotropy, apparently as a result of processing induced texture (e.g., Sun and Li, 2002; 
Bechle and Kyriakides, 2016a; Reedlunn et al., 2020). Thus, the loci of the transformation stresses of the axial force - internal pressure 
results trace an elongated trajectory along the equibiaxial direction with modest anisotropy. Interestingly, the transformation strains 
exhibit a more significant anisotropy between the axial and hoop dominant stress paths. 

The tension/compression asymmetry, including the contrasting softening and hardening behavior alluded to above, plays a vital 
role in SMA structural behavior (e.g., Bechle and Kyriakides, 2014; Reedlunn et al., 2014; Jiang et al., 2016a, 2016b, 2017a, 2017b, 
2017c; Kazinakis et al., 2021; Rezaee-Hajidehi and Stupkiewicz, 2021). Driven by these behaviors, Jiang et al. (2016b) and Jiang and 
Landis (2016) presented a phenomenological constitutive framework that incorporates the reversibility of transformation and the 
tension/compression asymmetry of pseudoelastic SMA behavior under isothermal conditions. The constitutive model was imple
mented in finite element analyses to successfully simulate the response, localization, buckling, and postbuckling behavior of tubular 
structures under tension, compression and bending. 

The main objective of the present study is to examine the performance of the constitutive model under the more general biaxial 
stress states generated by the experiments of Bechle and Kyriakides (2016a, 2016b). In most of the axial force-internal pressure ex
periments reported, the reversible transformations resulted in localization in the form of spiral patterns. Simulation of this pattern-rich 
behavior requires treating the tubular specimens as structures. The model is extended to include anisotropy, calibrated anew, and 
implemented in a finite element analysis of tubes under combined axial force and internal pressure. The model tube is pressurized 
under volume control using incompressible fluid elements. The axial force required to achieve the desired radial stress ratio is then 
prescribed via a feedback loop. The performance of the analysis is evaluated by comparing the calculated responses and deformation 
patterns to the measured results. 

In the way of motivating the study, the paper starts with a brief review of the main features of the experimental results – Section 2. 
The extended constitutive model and its calibration, followed by the finite element analysis are presented in Section 3. Results from a 
series of simulations with biaxiality ratios that span the range of the experiments (−1 ≤ α ≤ ∞) constitute the main thrust of the 
manuscript. The key aspects of the numerical results are discussed followed by the main conclusions from the work. 

2. Review of biaxial experiments 

The experiments of Bechle and Kyriakides (2016a) involved nearly equiatomic NiTi tubular stock (50.9 at% Ni) with outer diameter 
6.35 mm and wall thickness of 0.25 mm (D/t = 25.0). The material transformation temperatures were {As, Af } = { − 10 , 12} ∘C and 
the experiments were performed at 23 ◦C – in the pseudoelastic regime. Specimens 114 mm long were cut from longer tubular stock 
and inserted in aligned axisymmetric grips leaving a 50 mm test section which had been previously speckled for Digital Image Cor
relation (DIC). The specimens were loaded under combined internal pressure (P) and axial force (F) tracing radial paths in the 
axial-hoop stress space such that 

σx = ασθ, α = const. (1a) 

The two stresses are related to the loads by 

Fig. 1. Prescribed axial-hoop stress radial paths from representative experiments on NiTi tubes from Bechle and Kyriakides (2016a).  
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σx =
F

2πRt
+

PR
2t

and σθ =
PR
t

(1b) 

Pressure was applied by prescribing a fluid flux into the closed system using a precision syringe pump (volume control). The testing 
machine was run under load control and the two loads were connected through feedback with the pressure signal as the external 
command. As the pressure gradually increases, the feedback enables the testing machine to apply the force required to keep the two 
stresses at the required ratio. Stereo DIC provided a full-field monitoring of the deformation of the test section. The strain fields {εx, εθ}

were established by post-processing of the images and related to the corresponding stresses. Results from 26 experiments for −1.0 ≤

α ≤ ∞ are reported in Table 1 of Bechle and Kyriakides (2016a). Fig. 1 plots the stress paths traced for a representative set of cases that 
are simulated here. 

We start with Fig. 2a that compares the nominal stress-average strain responses for the two uniaxial loading cases in the axial (α 
= ∞) and hoop (α = 0) directions. Both trace closed stress hystereses with plateaus during which the A→M transformation occurs 
during loading and the M→A on unloading. During the plateaus, the deformation is highly inhomogeneous developing spiral bands of 
transformed M oriented at about 29.1◦ for the hoop and 55.8◦ for the axial test. As the specimen unloads, the transformation prop
agates primarily via multi-pronged bands. The elastic moduli have slightly different values, and the transformation stresses (stress 
plateaus) are somewhat higher for the hoop response than the axial one. Even more pronounced differences are observed in the extents 
of the stress plateaus with the upper plateau being about 25% smaller for the hoop response. Both of these differences are indications 
that, in addition to the tension-compression asymmetry reported in Bechle and Kyriakides (2014), the material exhibits anisotropy. 
(The tension-compression asymmetry for the present material is demonstrated Fig. 2b). 

The main features of the biaxial experimental results will be outlined using results for α = 0.375, 1.0 and 4.0. 

Experiment σx = 0.375σθ 

Fig. 3a shows the nominal stress-average strain responses recorded in the axial and hoop directions. Twenty axial and hoop strain 
contours corresponding to the DIC field of view (FOV) that match the numbered bullets on the responses are shown in Fig. 3b. The two 
responses trace closed hystereses with the σθ − ε θ being significantly larger. The axial strain is negative as it is dominated by the 
Poisson’s effect. Deformation remains uniform until transformation to M commences when the two responses develop gradual stress 
knees followed by stress plateaus. A sharp tipped band of martensite at an angle of 32.7◦ to the axis of the tube has entered the FOV in 

Fig. 2. (a) Comparison between the uniaxial tensile stress-average strain response measured in the axial and hoop directions – an illustration of 
anisotropy. (b) Comparison between the axial stress-average strain response in tension and compression – an illustration of the tension/compression 
asymmetry in NiTi. 
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image ②. By ③ the transformed material with hoop strain of about 5% has evolved into a triangular island while the rest of the domain 
remains at 0.85% – strain at the initial stress knee. Subsequently, this island of M grows and a second helical band of higher strain 
enters the FOV from the top in image ④. The two transformed zones grow and coalesce leaving a diamond shaped island of A near mid- 
height – images ⑤ and ⑥. The upper zone of transformation grows while the lower grows less. In image ⑦ a new narrow band of 
higher strain has appeared at the top. It is noteworthy that bands and zones of transformed material have the same orientation. Beyond 
point ⑨, most of the remaining islands of A have transformed, the stress takes an upswing and deformation in image ⑩ becomes 
uniform. 

The martensitic phase unloads uniformly until station ⑪. A knee forms as M→A transformation initiates with A taking the strain at 
the end of the lower hoop plateau (~0.39%). In image ⑫ the A zones are narrow islands of lower strain at the sites that were the last to 
transform to M. The stress stabilizes to a plateau as additional transformation fronts appear first at the top and then at the bottom of the 
FOV with zones that transformed late to M taking priority. Once more, all transformation zones and fronts have the same orientation. 
In image ⑬ a triangular island of A has formed at the bottom and a nearly V-shaped one at the top. In images ⑮ and ⑯ these two zones 
have propagated towards the center with clear inclined fronts. Simultaneously, the central striped islands of A have started growing so 
that by image ⑰ a single inclined zone of M remains. It continues to narrow until in image ⑲ it has been reduced to a single narrow 
band. Transformation is completed with the hysteresis closing, and further unloading is along the loading trajectory. By and large this 
behavior is representative of that observed for stress ratios −1 ≤ α < 0.85 with, however, different spiral angles. 

Experiment σx = 1.0σθ 

Fig. 4 shows the nominal stress-average strain responses for the equibiaxial case together with a set of corresponding DIC images of 
the deformation in the FOV. The behavior is distinctly different from the two uniaxial results and those of α = 0.375. Here the stresses 

Fig. 3. (a) Measured stress-average strain responses recorded in biaxial test σx = 0.375σθ. (b) Sequences of axial and hoop strain contours from DIC 
corresponding to the numbered bullets marked on the responses in (a) (from Bechle and Kyriakides, 2016a). 
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increase monotonically, the transformation strains are smaller, and the hystereses are closed but enclose much smaller areas. 
Furthermore, despite the equibiaxial state of stress the axial strain is less than half that of the hoop strain. The hoop strain contours 
exhibit very mild, diffuse localization with an axial orientation (see images ② to ④). In image ⑤ and ⑥ the weak axial bands broaden 
and cover the whole FOV. In the axial strain contours inhomogeneity or preferred orientation are not discernable at the scale of this 
strain resolution. Unloading produces the reverse deformation patterns with both strains fully recovered. 

This behavior of monotonically increasing responses with smaller strain extents with limited diffuse localization is characteristic of 
the zone covering 0.85 ≤ α < 1.2. As will be demonstrated in the analysis, this behavior is a consequence of the monotonic nature of 
the uniaxial compressive response. In the case of α = 1.07, the responses were also monotonic, however, the axial response became 
dominant. Consequently, the two hystereses are expected to have the same size for a biaxiality ratio between 1.0 and 1.07, all 
manifestations of the underlying anisotropy. 

Experiment σx = 4.0σθ 

Fig. 5 summarizes results for the axial stress dominant path of α = 4.0 that is representative of the results for paths with 1.5 < α 
< 8.0. The responses (Fig. 5a) trace closed hystereses with rather sharp transition stress knees followed by relatively flat plateaus for 
both loading and unloading; both similar to the uniaxial tension behavior. In image ② (Fig. 5b) just after the onset of transformation, a 
sinistral helical band with axial strain of about 7% starts at the upper end, and wraps around the specimen with its pointed front 
appearing in the FOV. It has an inclination of 60◦ to the axis of the tube. In image ③ the helical band propagates one more time around 
the specimen, while simultaneously broadening behind its tip. In image ④ the band widens further and its front has reached the lower 
edge of the FOV. Subsequently, transformation takes place by widening of the now stationary band as seen in image ⑤, and is 
completed by image ⑦. 

Fig. 4. (a) Measured stress-average strain responses recorded in biaxial test σx = 1.0σθ. (b) Sequences of axial and hoop strain contours from DIC 
corresponding to the numbered bullets marked on the responses in (a) (from Bechle and Kyriakides, 2016a). 
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The specimen, mainly in the martensitic phase, unloads uniformly until station ⑧. A dextral multi-helical front of A enters the FOV 
at the lower end just before image ⑨. It propagates upwards developing into a front with helixes of both chiralities. In image ⑩ a 
second multi-helical front enters the FOV from the top. The two fronts of A propagate towards each other and in image ⑫ they have 
evolved into chevron-like patterns where transformation takes place along both characteristics. In image ⑬, but for a small sliver of M, 
the specimen has transformed back to A. We note that because of limitations of the volume-controlled loading scheme used, some 
heating of the specimen during the forward and cooling during the reverse transformation took place for experiments with α > 1.5 (see 
Bechle and Kyriakides, 2016b). This is responsible for the small positive inclinations of the two stress-plateaus in Fig. 5a. 

In summary, the results of the biaxial experiments revealed additional complexities of NiTi mechanical behavior. In addition to the 
previously reported tension/compression asymmetry, the material as processed exhibits anisotropy that influences both the stress and 
strain transformation surfaces. Fig. 6a plots the axial and hoop stress at the “nucleation” and “completion” of M and A for each of the 26 
biaxial experiments together with fits generated as in Bechle and Kyriakides (2016a). The surfaces differ significantly from a Mises one 
as they are pointed along the equibiaxial tension direction and due to the anisotropy do not possess the reflection symmetry about α 
= 1.0 direction (see comparison in Fig. 23 of the reference above and simultaneously reflect the anisotropy exhibited by the stresses). 
For loading paths with stress ratios −1 ≤ α ≤ 0.5 and 1.8 ≤ α ≤ ∞ the A→M transformations traced relatively flat stress plateaus and 

Fig. 5. (a) Measured stress-average strain responses recorded in biaxial test σx = 4.0σθ. (b) Sequences of axial and hoop strain contours from DIC 
corresponding to the numbered bullets marked on the responses in (a) (from Bechle and Kyriakides, 2016a). 
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consequently the data at the onset and completion of transformation are closely spaced. Paths with 0.6 ≤ α ≤ 1.0 developed pro
gressively increasing hardening while for 1.0 ≤ α < 1.8 the hardening progressively decreased. Hardening increases the distance 
between the two critical stresses as demonstrated in Fig. 6a with the maximum distance being close to the equibiaxial case. 

The effect of the tension/compression asymmetry and anisotropy on the A→M transformation strains is summarized in Fig. 6b, 
which plots the axial against the hoop strain at the “nucleation” and “completion” of M transformation. The difference in the trans
formation strains in uniaxial tension and pure hoop cases is clearly much more pronounced than the corresponding stresses. 
Furthermore, the extent of strain induced by the transformation has large values for the negative and larger positive values of α, and 
decreases as the equibiaxial stress state is approached from either side. 

3. Analysis 

A phenomenological constitutive model framework for NiTi in the pseudoelastic temperature regime has been presented in Jiang 
et al. (2016b) and Jiang and Landis (2016). The model is calibrated on the uniaxial tension and compression material response and its 
key features include the reversible nature of the A⇄M transformations using a single transformation surface along with kinematic 
hardening to capture the tension/compression asymmetry. The inhomogeneous deformation associated with tensile stress states is 
modeled by partially softening branches during loading and unloading (see Ericksen, 1975; Abeyaratne and Knowles, 2006; Shaw and 
Kyriakides, 1998; Kyriakides and Miller, 2000; Hallai and Kyriakides, 2013). The model was used to study the effect of the onset and 
evolution of phase transformations on simple structures that are primarily loaded under uniaxial tension or compression. They include 
tubes under compression (Jiang et al., 2016a; 2016b), under tension (Jiang et al., 2017a), and under bending (Jiang et al., 2017b; 
Kazinakis et al., 2021). The biaxial experiments summarized in Section 2 demonstrate that the behavior of the material under biaxial 
loadings is more complex than previously recognized. The role of the tension/compression asymmetry is more complicated, the 
material exhibits anisotropy in stress and strain, and the two phenomena are coupled. The aim of the analysis is to first extend the 

Fig. 6. (a) Loci of measured stresses at the “nucleation” and “completion” of M and A transformations and fitted surfaces. (b) Measured axial vs. 
hoop strains at the “nucleation” and “completion” of M transformation (from Bechle and Kyriakides, 2016a). 
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constitutive model as dictated by the new data, and modify the associated UMAT. The performance of the constitutive model is then 
evaluated by implementing it into a finite element analysis that is used to simulate the whole range of biaxial experiments. 

3.1. Constitutive model 

The strain increment is decomposed into elastic and transformation components 

ε̇ij = ε̇e
ij + ε̇t

ij. (2)  

The elastic deformation is isotropic with constants {E, ν} and related to the stress increment by 

σ̇ij = Cijkl
(
ε̇kl − ε̇t

kl

)
. (3)  

The elastic deformation is enclosed by a transformation surface that obeys kinematic hardening defined by 

Φ =
3
2

(
sij − sB

ij

)(
sij − sB

ij

)
− σ2

o = 0, (4)  

where sij and sB
ij are the deviatoric components of stress and back stress and σo represents the size of the transformation surface. The 

transformation strain increment follows an associated flow rule thus, 

ε̇t
ij = Λ

(
sij − sB

ij

)
,Λ ≥ 0. (5)  

The back stress is derived from a potential that depends only on the transformation strain 

σB
ij =

∂ψt

∂εt
ij
. (6)  

The tension/compression asymmetry exhibited by this material is introduced by expressing this potential as a combination of a tensile 
and a compressive potential 

ψt = ξψt
c

(
εt

e

)
+ (1− ξ)ψt

t

(
εt

e

)
, (7)  

where ξ ∈ [0,1] is a weight function and εt
e is an “equivalent” transformation strain. The potentials ψ t

c and ψ t
t are calibrated to the 

measured uniaxial compression and tension stress-transformation strain responses. Jiang et al. (2016a) introduced the following 
definition of the equivalent strain 

εt
e = J′

2f
(
J ′

r

)
, J ′

r = J ′

3

/
J ′

2, (8a)  

where f(J′

r) is a scale function and 

J ′

2 =
(

2et
ije

t
ij

/
3
)1/2

, J ′

3 =
(

4et
ije

t
jket

ki

/
3
)1/3

, and et
ij = εt

ij − εt
kkδij

/

3. (8b)  

In the interest of maintaining the simplicity of the modeling framework described thus far introduced by the kinematic hardening 
adopted for the back stress, anisotropy is introduced to the model by an affine mapping of the strains as follows (similar to approach 
adopted in Sedlak et al. (2012) to introduce anisotropy in shear): 

(9)  

The invariants of the transformed strains then become: 

(10a)  

and the equivalent transformation strain 

(10b)  

The scale function f is chosen as follows: 

f (J̃ ′

r) = cos
{

cos−1[1− a
(
J̃
′3
r + 1

)] /
c
}
, (11)  

with parameters a and c and f ′

(0) = f ′′(0) = f iv(0) = f v(0) = 0 to ensure finite moduli as J̃
′

r → 0 (see Landis, 2003). Here J̃
′

r = 1 

represents uniaxial extension and J̃
′

r = −1 uniaxial contraction. 

The weight function ξ is selected to be a function of J̃
′

r as follows: 
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ξ =
f (J̃ ′

r) − f (1)
f ( − 1) − f (1)

, (12)  

thus facilitating the generalization of (7) to multiaxial states. Therefore, for ξ(1) = 0 (7) reduces to uniaxial tension and for ξ(−1) = 1 
to uniaxial compression. 

The form of the mappings Di chosen expressed in Voigt notation is as follows: 

Di =

[
Ai 0
0 I

]

, where Ai =

⎡

⎣
1 0 0
0 Ai 1 − Ai
0 1 − Ai Ai

⎤

⎦, i = 1, 2. (13)  

This single parameter mapping ensures that et
11 remains unchanged, imposes transverse anisotropy and incompressibility, and the 

shear strains remain unchanged. Added flexibility is provided by mapping the two invariants with different parameters: A1 for ̃J
′

2 and 
A2 for . The role of the two parameters and the procedure for selecting them is outlined in Appendix B. 

The back stress is then written as: 

σB
ij = ξ

dψt
c

d ε̃t
e

∂ε̃t
e

∂εt
ij
+ (1− ξ)

dψt
t

d ε̃t
e

∂ε̃t
e

∂εt
ij
+ ξ

′(ψt
c −ψt

t

) ∂J̃
′

r

∂εt
ij
, (14)  

where ξ′

≡ ∂ξ

∂̃J
′

r

. 

Reduction to uniaxial stress state in the axial direction using the derivatives in Appendix A results in: 

Table 1 
Model parameters for axial tensile and compressive responses.  

Model E 
GPa 

ν  σo 

MPa  
b h0 

GPa  
h1 

GPa  
h2 

GPa  
ε1 

(%)  

ε2 

(%)  

Tens. 66.3 0.425 110.3 2500 2137 −11.4 1534 3.0 3.4 
Comp. 66.3 0.425 110.3 2500 1534 2.78 1534 3.0 3.4  

Fig. 7. (a) Adopted potential functions for axial tension and compression. (b) Associated back stress for compression and tension in hoop and 
axial directions. 
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σ11t − f (1)
dψt

t

dε̃t
e
= σo, and |σ11c| − f ( − 1)

dψt
c

d ε̃t
e
= σo. (15) 

The uniaxial back stresses in the other two directions are influenced by scaling and anisotropy and they become 

σB
22t = σB

33t =

[

ξ(β)
dψt

c

d ε̃t
e
+(1− ξ(β))

dψt
t

d ε̃t
e

]

γf (β) , (16a)  

⃒
⃒σB

22c

⃒
⃒ =

⃒
⃒σB

33c

⃒
⃒ =

[

ξ( − β)
dψt

c

d ε̃t
e
+(1− ξ( − β))

dψt
t

d ε̃t
e

]

γf ( − β) , (16b)  

where β = [(9A2
2 − 9A2 + 2)/2]1/3 and γ = [3A2

1 − 3A1 + 1]1/2. 

3.1.1. Calibration 
The back stress potentials ψ t

c and ψ t
t are each calibrated for best fitting of the compressive and tensile stress-average strain responses 

of the material at 23 ◦C in Fig. 2b using the following expression (similar to (B1) in Jiang et al. (2016b): 

dψt
ct

dεt
e
= h0ε̃t

e + (h1 − h0)

[

ε̃t
e −

1
b
(
1 − e−b̃ε

t
e
)
]

+(h2 − h1)(ε2 − ε1)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0
(
2.5ζ4 − 3ζ5 + ζ6)

0.5 + ζ

ε̃t
e ≤ ε1

ε1 ≤ ε̃t
e ≤ ε2

ε2 ≤ ε̃t
e

, (17)  

where ζ = (ε̃t
e − ε2)/(ε2 − ε1). The fitting parameters {b, h0, h1, h2, ε1, ε2} listed in Table 1 give the positive slope to the compressive 

derivative, the softening branch for the tensile derivative, as well as the saturation with which the transformation terminates as shown 
in Fig. 7a. 

The constants a and c in the scale function f(J̃
′

r) in (11) are assigned the values 0.736 and 2.026 respectively, which produces f(0)
= 0.8 and f(1) = 0.525 along with the definedf(− 1) = 1, resulting in the shape shown in Fig. 8– these values determine the scaling of 
the asymmetry. The uniaxial compression and tension back stresses in the axial and hoop directions are plotted in Fig. 7b. The tension- 
compression asymmetry is reflected first in the up-down-up nature of the axial tensile response and the monotonically increasing 
modulus of the compressive one; and second by the transformation strain in the compressive response being about one half the value of 
tensile one while the stress being nearly double. Anisotropy is responsible for the back stress differences between the axial and hoop 
directions. σB

θt retains the partially softening character of σB
xt but with a significantly reduced strain extent and a somewhat higher stress 

level. Furthermore, σB
θc retains the hardening character of σB

xc but with a reduced stress level and slightly larger strain extent. 
The resultant axial and hoop tensile stress-strain responses are compared to the measured ones in Fig. 9a. The calibration responses 

exhibit the up-down-up nature of the corresponding back stresses for both directions. The initial moduli follow the experimental ones 
quite closely. The upper negative slopes are placed at stress levels so that the corresponding Maxwell stresses match the stress plateaus 
traced in the experiments (see Hallai and Kyriakides, 2013). The extent of the transformation strain in the axial direction agrees well 
with the measured response. The anisotropy parameters {A1,A2} are selected for acceptable fit of several of the biaxial responses (see 
Appendix B), and this results in some over-prediction of the strain extent in the hoop direction. Since the elastic modulus of the two 

Fig. 8. Scale function f(J̃
′

r) that interpolate tension/compression asymmetry and weight function ξ(J̃
′

r) that generalizes it to arbitrary strain states.  
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phases is assumed to be the same, the initial unloading modulus is stiffer than those of the two experiments. Furthermore, the nonlinear 
part of unloading is fitted to compression, which is stiffer. The softening slopes are the same for the upper and lower plateaus, and the 
size of the transformation surface is not affected by anisotropy. Consequently, the lower Maxwell stress plateau matches well that of 
the measured σxt and is lower than the one measured for σθt . 

Fig. 10. Geometry and finite element mesh of the model tube and fluid cavity.  

Fig. 9. (a) Comparison of calibrated tensile axial and hoop stress–strain responses – characterized by partial softening – to the measured responses. 
(b) Comparison of calibrated compressive axial and hoop stress-strain responses – characterized by monotonic hardening – to the measured 
axial response. 
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Fig. 11. (a) Calculated and measured stress-average strain responses for the uniaxial tension (α = ∞). (b) Sequence of calculated axial strain 
contours (x − z plane) corresponding to the numbered bullets marked on the responses in (a). 
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The compressive responses predicted by the model for the two directions are plotted in Fig. 9b. Included is the measured axial 
compressive response. The hardening nature and smaller transformation strain of σxc are reproduced well, while the stress level of the 
unloading branch is somewhat higher because the size of the transformation stress σo is assumed to have the same value as the tensile 
response. The anisotropy adopted predicts lower transformation stress and increased transformation strain for the hoop compressive 
response. Further improvement of this prediction requires compressive experimental data in the transverse direction that are chal
lenging to obtain. 

3.2. Finite element model 

The biaxial loading of NiTi tubes is analyzed numerically using a finite element model developed in ABAQUS. A tube of length L, 
diameter D, and wall thickness t, is meshed using second-order reduced integration solid elements, C3D20R. The model tube di
mensions match those of the test section of the experiments in Bechle and Kyriakides (2016a): {50 × 6.33 × 0.273} mm (Fig. 10). The 
results that follow are generated using elements with nearly square inner and outer surfaces, with one element through the thickness, 
120 around the circumference and 314 along the length. This mesh is chosen following convergence studies for good reproduction of 
the finer features of the localization patterns observed in the experiments. The convergence studies also demonstrated that, as in our 
previous works (Jiang et al., 2017b, 2017c; Hallai and Kyriakides, 2011) the mesh density does not influence the overall structural 
response or the patterns significantly, including the number of prongs. Its main effect is limited to controlling the width of the 
transition zone separating transformed and untransformed domains. For alternative schemes of handling unstable material behavior 
using nonlocal/higher order gradient methods, see for example Frost et al. (2021); Rezaee-Hajidehi and Stupkiewicz (2021). However, 
such methods come with increased computational costs. 

The model is pressurized internally using a cavity formed by incompressible fluid elements F3D3 and F3D4. The F3D4 surface 
elements have the same axial and circumferential distribution as the inner surface of the tube and connect to the four corners of each 
solid element. The tube ends are capped by additional F3D3 surface elements as shown in Fig. 10. 

In the experiments thick steel tubular inserts were placed inside each end and the outside was clamped using an axisymmetric 

Fig. 12. Moments My and Mz induced by the inhomogeneous deformation vs. the average axial strain in the uniaxial tension case during: (a) 
loading, and (b) unloading. 
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locking assembly. In the present model, the resultant stress concentration is avoided by allowing the ends at x = 0 and L to freely 
expand radially. Simultaneously, the average in-plane nodal displacements and rotations at the ends are prescribed to be zero (i.e., 
∑n

i uy =
∑n

i uz =
∑n

i uθ = 0). The axial degrees of freedom of all nodes at x = 0 are made zero while at x = L are assigned either a value 
δx or a stress σx. 

The experiments were performed under radial loadings σx = ασθ, with the stresses related to the axial force, F, and internal 
pressure, P, through Eq. (1b). Such stress states are replicated using a control loop in a UAMP. For hoop stress dominant paths, the 
volume of the fluid inside the cavity is incrementally prescribed. The resultant pressure is then used to calculate the required axial force 
increment to achieve the axial-hoop stress proportionality of the experiment. For axial stress dominant stress paths (typically for α 
> 1.2), the axial displacement is prescribed incrementally instead. The induced axial force is recorded and the pressure in the cavity is 
adjusted to produce the required stress proportionality. 

The anticipated localization is induced by a small thickness depression placed at a distance D from one of the ends. The depression 
extends over an area of about 2t× t/2, is 0.02t deep, and has transition zones of t/2 all around. Furthermore, it is oriented at 45◦ to the 
axis of the tube as shown in the zoomed detail in Fig. 10. 

4. Simulation of biaxial experiments 

The numerical analysis outlined is now used to simulate a number of the biaxial experiments of Bechle and Kyriakides (2016a). The 
two uniaxial loading cases that were used in the calibration of the constitutive model will be reviewed first and compared to the 
corresponding experiments. The two simulations will illustrate the main effects of the assumed dual up-down-up material response on 
tubular structures. They will be followed by results from representative simulations that span the stress ratios of the experiments. The 
results will be the basis for evaluating the model performance in reproducing the effect of biaxiality on the recorded responses and the 
deformation patterns. 

Pure Axial Tension: σθ = 0 

The calculated nominal axial stress-average strain response is plotted in Fig. 11a together with the experimental one. Twenty 
deformed configurations of the model tube corresponding to the numbered bullets marked on the response are shown in Fig. 11b. The 
associated axial strain is superimposed as color contours. The experimental response was incorporated in the calibration of the up- 
down-up material response (Figs. 7b and 9a) and, consequently, the calculated one is in very good agreement. The two stress pla
teaus match closely the measured ones, and so does the extent of the upper one. Unloading (⑩ to ⑪) follows a somewhat stiffer 
trajectory, a consequence of fitting the unloading branch in Fig. 9a with a steeper slope. A minor difference is that the calculated 
response exhibits a stress peak and valley at the nucleation of M and A respectively. Such initiation stress maxima/minima are 
characteristic of localization instabilities, which in the experiment were masked by the stress concentrations at the clamped ends. 

The M-phase nucleates from the local imperfection on the right in the form of a narrow sinistral helical band with an inclination of 
56◦ to the axis of the tube – image ②. In the experiment the martensitic band opted for the alternate characteristic with a dextral 
inclination of 55.8◦. In subsequent images, the band propagates toward the ends, on the way broadening, while the stress traces a 
nearly constant trajectory. The strain inside the band is 6.94% and outside it 1.06%, corresponding to the termination and beginning of 

Table 2 
Geometric parameters and main results from biaxial analyses performed on NiTi tubes.  

No. α D 
mm 

t 
mm 

L 
mm 

ϕ∘  σxNM 

MPa  
σθNM 

MPa  
σxNA 

MPa  
σθNA 

MPa  
Δεt

xM 
%  

Δεt
θM 

%  
Wt 

MPa  

1 −1 6.319 0.273 31.25 40 −324 324 −159 159 −2.63 5.34 12.8 
2 −0.75 6.319 0.273 31.25 39 −272 363 −143 191 −2.64 5.33 12.9 
3 −0.5 6.324 0.272 37.5 38 −196 392 −101.5 203 −2.52 5.42 12.8 
4 −0.375 6.324 0.272 37.5 37 −157 418 −82 218 −2.45 5.46 13.0 
5 −0.2 6.323 0.272 37.5 35.4 −87 438.5 −46 230 −2.23 5.53 12.5 
6 0 6.323 0.272 50 34.3 0 478 0 254 −2.08 5.63 13.2 
7 0.2 6.323 0.272 50 32 104 521 56 279 −1.98 5.37 15.0 
8 0.375 6.323 0.271 50 28 214.5 572 114 305 −1.87 5.29 16.9 
9 0.5 6.318 0.272 50 21 296 591.5 162.5 325 −1.37 4.62 14.6 
10 0.6 6.319 0.272 50 0 362 603 201 335 −0.82 4.21 12.9 
11 0.85 6.322 0.281 50 0 540 635 325.5 383 0.02 3.68 10.4 
12 0.9 6.322 0.281 50 0 567 630 342 380 0.30 3.36 9.60 
13 1 6.319 0.277 50 (90) 620 620 413 413 0.98 2.79 9.30 
14 1.2 6.319 0.267 50 (90) 667 556 436 363 1.91 2.09 12.8 
15 1.3 6.319 0.267 50 90 682 524.5 395 304 4.84 −1.29 15.9 
16 1.5 6.319 0.267 50 63 679.5 453 390 260 5.18 −1.45 19.9 
17 1.8 6.319 0.267 50 61 637 354 329 183 5.62 −2.12 22.6 
18 2 6.323 0.271 50 60 626 313 321 160.5 6.22 −2.33 23.9 
19 3 6.323 0.275 50 58 194.5 579 306 102 6.32 −2.60 21.2 
20 4 6.323 0.275 50 57.6 546 136.5 281 70 6.35 −2.73 18.9 
21 8 6.323 0.271 50 57 506 63 261 32 6.45 −2.93 15.9 
22 ∞ 6.318 0.270 50 56.2 460 0 233 0 6.14 −2.79 14.1  
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Fig. 13. (a) Calculated and measured stress-average strain responses for pure hoop stress (α = 0). (b) Sequence of calculated axial strain contours (x 
−z plane) corresponding to the numbered bullets marked on the responses in (a). 
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the upper plateau, respectively. The remaining islands of low strain material at the ends transform last with the right end going first 
followed by the one on the left. When a remaining band encounters one of the relatively unconstrained ends, it transforms in a snap 
fashion registering as a stress valley. As in other SMA structures studied, inhomogeneous deformations induce bending that is resisted 
by the imposed constraints at the ends resulting in the built up of moments. The My and Mz moments recorded at x = 0 (see Fig. 10) 
during loading and unloading are plotted in Fig. 12a and 12b – moment Mx is much smaller and thus not shown. The normalizing 
moment Mo = σNMD2t, where σNM is the A→M plateau stress in the pure axial tension test, and the geometric variables are those of the 
specific tube listed in Table 2. During loading, the evolving band causes some undulations in both moments. The moments reach their 
extreme values between stations ⑧ and ⑩ as the low strain islands at the two ends transform. 

During unloading, the deformation remains uniform until the lower strain phase nucleates at the right end as a dextral band. The 
localized deformation first evolves into an inclined band. The resultant asymmetric distribution of deformation causes the built-up in 
moments My and Mz observed in Fig. 12b. As the band propagates toward the left, the amplitudes of the moments increase, and reach 
maximum values at station ⑫. At this time, the left end of the inclined band morphs into a dextral multi-pronged front. The more 
symmetric nature of such fronts has a straightening effect on the tube that relieves the moments. Subsequently, the front propagates to 
the left gradually returning the tube to the lower strain regime with the two moments fluctuating about lower values. A small island of 
higher strain on the right end transforms in a snap fashion causing the small stress peak recorded between stations ⑫ and ⑬. A second 
stress peak is traced just before station ⑳ when the left end unloads. 

It is noteworthy that in the experiment during loading the M-phase propagated via helical bands, while on unloading the A-phase 
spread via multi-pronged fronts, both in agreement with the calculations. This experiment was previously simulated numerically in 
Jiang et al. (2017a) using an earlier version of the constitutive model. Although the calculated response was also in very good 
agreement with the experimental one, the evolution of deformation differed: the A→M transformation exhibited mostly multi-pronged 
fronts, while the reverse transformation propagated via spiral bands. The difference in the deformation patterns of the two solutions 
can be attributed to the following: 

Fig. 14. Moments My and Mz induced by the inhomogeneous deformation vs. the average hoop strain in the pure hoop stress case during: (a) 
loading, and (b) unloading. 
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Fig. 15. (a) Calculated and measured stress-average strain responses for biaxial case σx = 0.375σθ. (b) Sequences of calculated hoop strain contours 
corresponding to the numbered bullets marked on the responses in (a) – left front and right back views of the x − z plane. 
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a. In the present model transformation is initiated from an angled depression, whereas the previous analysis used a square depression 
close to one of the ends.  

b. Higher slope of the M-phase in the up-down-up material response of the present model.  
c. The present model applied an additional constraint at the ends, 

∑n
i uθ = 0. 

These factors demonstrate that the evolution of localized deformation is sensitive to the way the band is initiated, the softening/ 
hardening features of the assumed stress-strain response, and the imposed boundary conditions (see also Section 5 of Jiang et al., 
2017a). 

Uniaxial Hoop Tension: α = 0 

The calculated nominal hoop stress-average strain response is compared to the experimental one in Fig. 13a. Twenty deformed 
configurations with color contours of hoop strain superimposed appear in Fig. 13b, and the two moments that develop are plotted 
against the average hoop strain in Fig. 14. This case was part of the anisotropy calibration so the calculated response reproduces the 
levels of the stress plateaus quite well. The anisotropy has also reduced the difference in the strain extents. This difference will affect 
the rest of the biaxial responses to various degrees. Localized deformation again initiates from the thickness depression on the right in 
the form of a sinistral helical band. It has a helix angle of 34.3◦ and propagates toward the left end (image ②). The strain inside the 
band is 6.38%, which is smaller than the corresponding value of the axial response in Fig. 11a. In the experiment dextral bands of M- 
phase with a helix angle was 29◦ and strain of 5.5% initiated from both ends and propagated toward the center. The propagation and 
broadening of the band are asymmetric affecting both moments plotted in Fig. 14a. In image ⑤ the band develops a multi-pronged 
front that propagates toward the right end, and in image ⑦ a second one develops on the left end. Small stress valleys are regis
tered in the response as a consequence. The transformation is completed with the multi-pronged fronts transforming the two ends 
causing the fluctuations in moments observed in Fig. 14b. 

Unloading from station ⑩ follows a similar stiff trajectory to that in Fig. 11a. A sinistral band of lower strain representative of the A- 

Fig. 16. Moments My and Mz induced by the inhomogeneous deformation vs. the average hoop strain in the biaxial case σx = 0.375σθ during: (a) 
loading, and (b) unloading. 
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Fig. 17. (a) Calculated and measured stress-average strain responses for biaxial case σx = 0.85σθ. (b) Sequences of calculated hoop strain contours 
corresponding to the numbered bullets marked on the responses in (a) – left front and right back views of the x − z plane. 

K. Kazinakis et al.                                                                                                                                                                                                     



International Journal of Plasticity 151 (2022) 103179

20

phase initiates in the middle of the tube from a site that transformed last during loading. The band propagates toward the ends and 
simultaneously broadens. As the fronts interact with the ends they again evolve into multi-pronged fronts. The broadening of the band 
in the center induces asymmetric distribution of strain responsible for the build-up and decay of the two moments in Fig. 14b. 
Eventually, the central band reverts to the lower strain leaving behind the two islands of higher strain at the ends as seen in images ⑯ 
to ⑱. The island on the right unloads first causing the stress peak just after station ⑱. The left island unloads last and is responsible for 
the stress peak at ⑳. Both of these events occur in a snap fashion. 

σx = 0.375σθ 

This stress state is representative of hoop stress-dominant biaxiality ratios. The calculated nominal stress-average strain responses 
in the hoop and axial directions are plotted in Fig. 15a together with the corresponding experimental ones and two sets of deformed 
images with color contours of hoop strain superimposed are shown in Fig. 15b. For this case front and back views of the hoop strain 
contours are included for better visualization of the evolution of localized deformation (side with the imperfection on the left). The two 
moments recorded at x = 0 are plotted in Fig. 16a and 16b against the average hoop strain. 

Biaxiality shifts the hystereses to higher stress levels with the calculated responses reproducing the experimental ones quite well. 
The main difference is that the A→M transformation plateau extends to 6.1%, whereas in the experiment it terminated at 5.43%. The 
upper stress plateaus are in nearly perfect agreement with the experiment but the unloading ones are somewhat lower. 

Deformation remains uniform up to a hoop stress of 614 MPa – station ①. The stress drops sharply down to 579 MPa – station ② –, 
marking the nucleation of M in the form of a narrow sinistral helical band. The band initiates from the thickness depression and makes 
an angle of 28◦ to the axis of the tube. In the experiment the initial band was dextral with a larger helix angle of 32.7◦. Between stations 
② and ③ the band propagates to the other end of the tube broadening on the way. The band has hoop strain of 6.2%, whereas the rest 
of the domain is at 0.92%. The value of My increases reaching an extreme value at ③ when the band reaches the ends (Fig. 16a). The 
asymmetry in the domain starts to decrease and the magnitude of My is gradually reduced. Secondary branches appear on the right end, 
visible in images ④, causing an increase in Mz. During these events σθ traces a nearly constant stress plateau of 576 MPa. The band 
continues to broaden causing a gradual reduction in Mz and a more modest change in My. Soon after station ⑤, a multi-pronged band 
initiates on the right end that transforms the remaining lower strain zone causing small depressions in the stresses (Fig. 15a). By station 
⑥, a significant part of the domain is in the higher strain regime. A secondary sinistral band has initiated whose broadening covers the 
remaining undeformed zone on the right (image ⑦). In the process My diminishes, while Mz drops to its lowest a negative value. The 
band front develops several sinistral prongs that propagate toward the left end. These have a straightening effect on the tube causing 
both moments to reduce to nearly zero by station ⑧. When the prongs reach the left end at ⑧, new small stress depressions develop. 
Between stations ⑧ and ⑨ the remaining small islands of low strain require a small increase in stress to transform due to in
compatibility. Beyond this point, the whole domain is in the high strain regime, the stress increases sharply, and the moments decay to 
nearly zero. The Poisson effect dominates the axial strain keeping it negative, with the same deformation patterns as those of the hoop 
strain. 

The unloading branches are again somewhat steeper than in the experiment. Deformation remains uniform down to a hoop stress of 
273 MPa, when the A-phase nucleates once more in as a helical band at the site that transformed last to M near the middle of the 
domain. The strain inside the band is about 0.62% and 5.5% outside it. The resultant asymmetry causes jumps in both moments plotted 
in Fig. 16b. Between stations ⑪ and ⑫, the band propagates and broadens reaching both ends, causing Mz to increase and My to 
decrease. From station ⑫ to ⑬, the band widens with Mz reaching a maximum,My hovering close to zero, while the hoop stress traces a 
plateau at just over 300 MPa. As station ⑭ is approached, the band continues to broaden, but its left end starts developing a multi- 
pronged front apparent on the right column. The front has a straightening effect on the tube and is responsible for the gradual 
drop in Mz. By image ⑮, a dextral multi-pronged front has developed also and both are propagating outward. My is now increasing into 
positive territory, while Mz remains low. Moving toward station ⑯, most action takes place near the left end where the remaining 
island of high strain is consumed by the multi-pronged band. This event occurs in a snap fashion and is responsible for the small stress 
peak traced in the response in Fig. 15a. It has also resulted in a significant increase in My because of the asymmetric distribution of the 
two strain regimes in the right half of the tube. Transformation between ⑯ and ⑰ is mainly via a right propagating multi-pronged 
front. As more of the tube returns to the lower strain, My decreases. As the front approaches the right end, it becomes more sym
metric causing the two moments to drop close to zero by stations ⑱ and ⑲. Once more, the last zone of high strain transforms in a snap 
fashion causing small spikes in stresses between stations ⑲ and ⑳. The whole domain is now in the low strain regime and further 
unloading of the A-phase returns the structure to zero stresses and strains. 

A more detailed presentation of the evolution of localization is provided by the video: Video mmc2. 

σx = 0.85σθ 

As the biaxiality ratio α increases, the two hystereses move to higher stress levels and reduce their strain extents. At some point the 
axial strain overtakes the Poisson effect entering positive territory (see Fig. 25 of Bechle and Kyriakides, 2016a). The axial strain 
recorded in the experiment for α = 0.85 was close to zero, and as seen in Fig. 17a this is reproduced by the analysis. The calculated 
hoop stress increases with the A→M transformation stress reaching 636 MPa, which is close to the experimental value. The hoop strain 
extent is reduced to 4.4%, which is somewhat larger than that of the experiment. The initiation peak and valley are now both very 
small. The stress exhibits less hardening than in the experiment, and the lower transformation trajectory is underpredicted. 
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Fig. 18. (a) Calculated and measured stress-average strain responses for biaxial case σx = 0.9σθ. (b) Sequences of calculated hoop strain contours 
corresponding to the numbered bullets marked on the responses in (a) – left front and right back views of the x − z plane. 
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Front and back views of 20 deformed configurations are shown in Fig. 17b. Strain of about 4.4% nucleates from the imperfection in 
a needle-like form aligned with the axis of the tube (image ②). The band elongates and widens maintaining its sharp ends (③ and ④) 
while the rest of the tube remains at 0.72% strain. The moments My and Mz are an order of magnitude smaller than those produced by 
the spiral patterns in the previous cases and are not included (see Chapter 4 in Kazinakis, 2022). By station ④ the width of the axially 
symmetric higher deformation zone covers nearly one-half of the circumference in the central part of the tube. The one-sided 
deformation is no longer sustainable and a second longitudinal pattern initiates diametrically opposite the first (image ⑤), causing 
a small drop in stress at station ⑤. The new island of higher deformation on the back has a straightening effect on the tube. In images ⑥ 

Fig. 19. (a) Calculated and measured stress-average strain responses for biaxial case σx = 1.0σθ. (b) Sequences of calculated strain contours 
corresponding to the numbered bullets marked on the responses in (a) – left hoop and right axial strains viewed in the x − z plane. 
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and ⑦ deformation is concentrated in the longitudinal pattern on the back causing it to broaden. By station ⑦, higher strain has 
covered most of the tube with the two longitudinal patterns coalescing in the central part of the tube, while the ends remain relatively 
undeformed. The ends are engaged by pointed longitudinal prongs that emerge from the edges of the transformed zones in the center. 
They appear first in images ⑧ and multiply in image ⑨ forming pointed crown-like shapes at both ends. The ends transform between 
stations ⑧ and ⑩ causing small stress depressions. 

Unloading traces again a trajectory with a sharper knee than in the experiment. Reverse transformation initiates again as a lon
gitudinal needle-like pattern in the back seen in image ⑪. The pattern widens and lengthens, but simultaneously its right front de
velops a shallow angle helical trend that evolves asymmetrically – ⑫. In the way of straightening the tube, a second pointed finger 
arises on the right end (image ⑬), and a third one seen in image ⑭. Concurrently, the circumferential growth of this pattern continues 
so that soon after image ⑭ the lower strain regime covers the full circumference near the center of the tube. Between stations ⑭ and ⑯ 
most of the unloading takes place on the left end through pointed prongs seen in images ⑮ and ⑯. Just before station ⑰, the left end 
unloads to the lower strain in a snap fashion causing the small stress peak in Fig. 17a. Beyond this point, several new pointed prongs 
develop on the right forming a crown-like front through which the remaining island of higher strain is transformed. The stress peak just 
before station ⑲ is associated with the unloading of this island. The transformation patterns in the experiment were also oriented along 
the tube axis with somewhat more diffuse longitudinal fingers that are similar of those developed during the forward transformation 
(Fig. 16 of Bechle and Kyriakides, 2016a). 

A more detailed presentation of the evolution of localization is provided by the video: Video mmc1. 

σx = 0.9σx 

With a small further increase of the stress ratio to 0.9, the axial strain becomes positive (Fig. 18a) and the deformation pattern 
longitudinal and striped (Fig. 18b). The hoop stress is at a similar level to that of α = 0.85, and the induced transformation strain is 
reduced further to about 4%. The hystereses exhibit small initiation peaks and valleys, and transformation induces a modest increase in 
the slopes of both the loading and unloading branches. The hystereses of experiments at stress ratios of 0.89 and 0.92 (unpublished) 
had similar stress levels and strain extents but were clearly monotonic and without stress peaks and valleys. Front and back views of a 
set of deformed configurations are shown in Fig. 18b. A local axial band of strain aligned with the axis of the tube initiates from the 
imperfection (image ①). At a slightly higher average strain, additional bands nucleate progressively from the front to the back (image 
②). The bands are aligned with the axis of the tube with spear-like fronts. The 11 bands of about 4% strain are separated by narrow 
zones of lower strain. Because the bands in the front of the domain nucleated first, they are wider than the ones of the back. In images 
③ to ⑧ the pointed crown-like front propagates in a steady-state manner to the left maintaining its striped character. The axially 
aligned and nearly axisymmetric transformation pattern does not cause any significant built-up of moments. The left end is trans
formed next and the stripes of lower strain at the end (image ⑨). It is worth pointing out that in biaxial expedients of α = 0.89 and 0.92, 
transformation involved higher strain axial features with pointed ends also, albeit with not so symmetric patterns. 

Upon unloading to station ⑩, the lower strain stripes reappear. Interestingly, here the first local axial bands of strain of about 
0.48% nucleate near the left end on the back, inside steaks of lower strain (image ⑩). At station ⑪, close to the bottom of the stress 
valley, similar bands appear in all lower strain stripes around the circumference. Subsequently, strain of about 0.48% spreads to the 
whole cross section with a crown-like front with its pointed ends inside the weaker strain stripes (image ⑫). In images ⑫ to ⑰ the front 
propagates in a steady-state manner toward the right with the end returning to the lower strain in nearly the reverse of loading – see 
one of the last slivers of higher strain at the imperfection in image ⑱. 

Fig. 20. Strain profiles along the length of the tube from selected configurations for biaxial case σx = 1.0σθ: (a) hoop and (b) axial strains – 
correspond to numbered bullets in Fig. 19. 
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σx = σθ 

Fig. 19a compares the calculated and measured nominal stress-average strain responses and Fig. 19b presents ten deformed 
configurations with the axial and hoop strain superimposed. The hystereses develop positive strains of unequal extents as was the case 
in the experiment. The axial transformation strain matches the measured value, while the hoop strain is overestimated – consequence 
of the anisotropy adopted (Appendix B). The nucleation peaks and valleys present in other biaxiality ratios are replaced by smooth 
stress transitions. The transformation stress of about 625 MPa is close to the experimental value. By the completion of transformation, 
the stresses increase to about 660 MPa, a smaller increase than in the experiment, which exhibited significantly more hardening. 
Transformation nucleates on the right and leads to mild inhomogeneity featuring patterns that are orthogonal to the axis of the tube 
(see images ② to ④ in Fig. 19b). Furthermore, the front separating the two zones is diffuse with the strain varying over a length of 
about 1.5D (see profiles ② to ④ in Fig. 20). The experimental results in Fig. 4 show also very mild inhomogeneity but with longitudinal 
diffuse features. 

Fig. 21. (a) Calculated and measured stress-average strain responses for biaxial case σx = 1.2σθ. (b) Sequences of calculated strain contours 
corresponding to the numbered bullets marked on the responses in (a) – left hoop and right axial strains viewed in the x − z plane. 
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Fig. 22. (a) Calculated and measured stress-average strain responses for biaxial case σx = 1.3σθ. (b) Sequence of calculated axial strain contours (x 
−z plane) corresponding to the numbered bullets marked on the responses in (a). 
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Fig. 23. (a) Calculated and measured stress-average strain responses for biaxial case σx = 4.0σθ. (b) Sequence of calculated axial strain contours (x 
−z plane) corresponding to the numbered bullets marked on the responses in (a). 
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During unloading deformation remains uniform until station ⑦ on the lower stress branch. The nucleation of the lower strain is not 
registered on the response and transformation progresses from the left toward the right, with an even more diffuse front that is at 90◦ to 
the axis of the tube (see profiles ⑧ and ⑨ in Fig. 20). The amplitudes of moments that develop for this case are small because of the 
mild and diffuse nature of the deformation patterns that develop, and are not shown. 

σx = 1.2σθ 

As α increases further, the level of axial stress at transformation increases and so does the extent of the axial strain. Correspond
ingly, both are reduced in the hoop direction. For α = 1.2, σx at transformation is 666 MPa – the maximum value calculated - which is 
very close to the measured value, and the two strain extents are nearly the same (see Fig. 21a). By contrast, the experimental hoop 
strain was close to zero, and the axial hysteresis extended to a larger strain than in the analysis. As for α = 1.0, the responses do not 
exhibit a nucleation peak or valley with the axial stress increasing to 697 MPa by the end of transformation. This relatively mild 
hardening induces diffuse transformation fronts that are again oriented at 90◦ to the axis of the tube (Fig. 21b). Transformation 
initiates on the right end and propagates to the left. Reverse transformation takes place via diffuse fronts also, but here the fronts 
propagate from left to right. In the experiment transformation produced essentially homogeneous deformation with weak localization 
patterns in the axial strain that are oriented at 90◦ to the axis of the tube. The moments are again small and are not reported. 

σx = 1.3σθ 

At the stress ratio of 1.3 the nucleation peak and valley have reappeared and so have the flatter transformation stress plateaus 
(Fig. 22a). Higher strain initiates as an angled band (Fig. 22b) from the imperfection at an axial stress of 739 MPa. It propagates at 
about 700 MPa, which matches the experimental plateau. The transformation strain is about 5.5%, whereas in the experiment it was 

Fig. 24. Calculated and measured stress-average strain responses for biaxial stress states with α ≤ 1.0: (a) σx − ε x and (b) σθ − ε θ.  
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about 4.8%. The hoop stress follows the prescribed ratio, and the Poisson’s effect prevails and the hoop strain becomes negative. The 
initial narrow inclined band develops two angled fronts that propagate in both directions – image ④. The asymmetry of this pattern 
causes built-up in moments (not shown), which are not sustainable and between stations ④ and ⑤ the band reverts to a 90◦ orientation 
relieving the moments for the rest of the simulation. Beyond station ⑤, the 90◦ front propagates to the left causing small fluctuations in 
the stresses. The fluctuations are caused by the alignment of the 90◦ band with the finite element mesh (see Fig. 10). Transformation is 
completed with a stress valley when the front encounters the left end. 

The specimen unloads uniformly down to an axial stress of 313 MPa. Axial strain of about 0.54% initiates at the right end as an 

Fig. 25. Calculated and measured stress-average strain responses for biaxial stress states with α ≥ 1.0: (a) σx − ε x and (b) σθ − ε θ.  

Fig. 26. Loci of calculated stresses at the “nucleation” and “completion” of M and A transformations and fits of the corresponding experimental 
surfaces from Fig. 27Bechle and Kyriakides, 2016a. 
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Fig. 27. Calculated axial vs. hoop strains at the “nucleation” and “completion” of: (a) M and (b) A transformations.  

Fig. 28. Calculated and measured transformation dissipation energy vs. stress ratio angle.  
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angled band that quickly reverts to a 90◦ front (see image ⑪). The front propagates to the left tracing a plateau of about 390 MPa that 
matches the experimental value. The stress again fluctuates for the same reason but more moderately because of the lower stress level. 
The last sliver of high strain on the left end unloads with a spike in the stress. 

σx = 4.0σθ 

Increasing the stress ratio to 4.0 lowers the hystereses and increases their strain extents (Fig. 23a). Thus, the A→M axial stress 
plateau is at 546 MPa and the induced strain is about 7.2% both matching the experimental values. Strain of about 7.2% in the form of 
sinistral helical band inclined at 57.6◦ initiates from the imperfection and is accompanied by a sharp drop in stress (Fig. 23b). In the 
experiment the band was sinistral with an angle of 60.3◦. The band propagates toward the left end broadening in the process. It reaches 
the left end first and reflects in the opposite direction as shown in image ⑦; the same happens at the right end (image ⑧). The lower 
strain island on the right transforms first in a snap fashion leading to small stress valleys and the sudden drop in the moment just before 
station ⑨. By image ⑩ the remaining island of lower strain on the left transforms. 

As in most cases, unloading is stiffer than in the experiment. Lower strain nucleates as a sinistral band near the middle of the domain 
at ⑪ with a sudden increase in axial stress to a plateau level of about 278 MPa, somewhat higher than the measured value. The band 
propagates in both directions and broadens. The transformation evolves in this manner until it starts to interact with the ends via multi- 
pronged bands. The left end transforms first in a snap manner, causing spikes in the stresses between stations ⑰ and ⑱. The right end 
deforms last with the same effects. In contrast to this banded evolution of the reverse transformation of the analysis, the experiment 
unloaded with primarily multi-pronged fronts similar to those observed axial tension. Overall, the results of this case are representative 
of axial stress dominant ratios between 1.5 and uniaxial tension (α = ∞). 

5. Discussion of the results 

The analysis has been used to perform 22 simulations of the biaxial response of tubes under stress ratios in the range of −1 ≤ α ≤ ∞ 
(16 coincide with the experiments in Bechle and Kyriakides, 2016a). The main characteristics of the results are summarized in Table 2. 
Figs. 24 and 25 show a select number of the calculated σx − ε x and σθ − ε θ responses for −0.75 ≤ α ≤ 1.0 and 1.0 ≤ α ≤ ∞ respec
tively, which correspond to the experimental results in Figs. 25 and 26 of Bechle and Kyriakides (2016a). All cases trace closed 
hystereses of varying sizes. For stress ratios between −0.75 and 1.0 the hoop hysteresis dominates and for larger values of α the axial 
hysteresis becomes increasingly more so. In district difference from the experiments, the responses exhibit a stress peak at the 
nucleation of M and a stress valley at the nucleation of A on unloading – cases 1.0 and 1.2 are exceptions. The relatively unconstrained 
boundaries of the model allow such features to develop, whereas in the experiments they were masked by the circumferentially 
clamped ends. Nucleation of the alternate phase leads to localized deformation, mostly in the form of narrow helical bands of high
er/lower strain with distinct orientations. The alternate phase spreads along the length of the tube forming distinct patterns while the 
stresses remain relatively constant – for comparison of calculated and measured deformation patterns see individual cases in Section 4. 
Overall, the calculated responses reproduce the behavior observed in the experiments quite well. 

Figs. 26–29 present a more quantitative overall comparison between the measured and calculated results. Fig. 26 plots the axial 
against the hoop stresses at the “nucleation” and “completion” of M and A transformations from the 22 cases analyzed. For the best 
comparison with the measured values, each transformation stress was evaluated from the dominant hysteresis by extrapolating the 
stress plateau as shown in Fig. C1. The nucleation and completion stresses are designated as {σiNM, σiCM} and {σiNA,σiCA}–Table 2 lists 
the nucleation stresses of each phase. Included in the figure are the fits of the loci of the corresponding experimental stresses – from 
Fig. 27 of Bechle and Kyriakides (2016a). Fig. 27 plot the axial versus the hoop strain at the nucleation and completion of M (Fig. 27a) 

Fig. 29. Calculated and measured inclination of martensitic localization band to axial direction vs. stress ratio angle.  
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and A (Fig. 27b) together with the experimental data. The radial difference of each pair of strains combines the extents of the 
transformation strains, listed under Δεt

xM and Δεt
θM in Table 2. 

In agreement with the experiments, as α increases from −0.75 to 1.0 the transformation stresses increase while the transformation 
strains decrease. Up to stress ratio of 0.5, the responses trace quite flat stress plateaus during both loading and unloading and, as a 
result, each of the two pairs of stresses are close together. The ones corresponding to the upper plateaus follow the experimental fits 
very well, while the lower plateau pairs fall somewhat below them. This trend reflects the generally very good prediction of the upper 
plateaus and the moderate under-prediction of the lower plateaus. For α between 0.6 and 1.0, the responses exhibit modest hardening 
causing the two transformation stresses to be increasingly further apart. However, since the hardening is milder in the analysis the 
separation between the nucleation and completion stresses is underestimated. 

The strain plots in Fig. 27a quantify the reducing trend of the extent of the transformation strain as α increases from −0.75 to 1.0. 
The trend is in agreement with that of the experiments, however the magnitudes of extents are over-predicted primarily because the 
transformation strain of the dominant hoop hysteresis is over-predicted by the analysis. The strain plots of the M→A transformation in 
Fig. 27b exhibit a similar over-prediction of the extents. 

For α > 1, the axial stress hysteresis becomes increasingly more dominant and the transformation stresses follow a decreasing trend 
(Figs. 25 and 26). The hardening exhibited in the neighborhood of α = 1 decreases, and for stress ratios larger than 1.3 stress plateaus 
reappear. Consequently the two pairs of transformation stresses in Fig. 26 come closer together. For loading, their values follow the 
experimental fits while the separation exhibited for unloading is not captured as accurately. In concert with the experiments, the strain 
extents grow with α (Fig. 27). Furthermore, since the dominant axial hystereses are reproduced well by the analysis, the extents are 
much closer to the experimental values. 

Fig. 28 plots the energy dissipated by the transformation, Wt (the area enclosed by the hystereses), against tan−1α together with the 
experimental values. Overall the calculated values follow the trend of the experiments: for the negative values of α, the energy remains 
nearly constant; for stress ratios between 0 and 0.375 it has an increasing trend, and drops to a minimum at α = 1.0; for values larger 
than 1.0 the energy increases, achieves a maximum value at 2.0, and decreases again for larger values. For α ≤ 0.375 the results over- 
predict Wt, primarily because of the larger extent of the hoop hystereses. The over-estimation continues for 0.375 < α ≤ 1.0 but the 
difference is smaller. For the axial stress dominant values of α > 1, the predicted Wt is generally closer to the measured values. The 
asymmetric distribution of the dissipated energy about α = 1.0 is another manifestation of the asymmetry in the mechanical behavior 
of this SMA. 

Nucleation of M during loading and of A during unloading is mostly in the form of helical bands of higher/lower strain. The band 
angle ϕ is determined at the nucleation of M and is defined as the inclination of the initial band to the axis of the tube. The values of ϕ 
are listed in Table 2 and plotted against tan−1α in Fig. 29 together with the experimental results. The angle starts at 40◦ at α = − 1, 
gradually reduces to 34.3◦ at α = 0, and drops steeply to 0◦ for stress ratios of 0.6 to 0.9. On the other side of the transformation 
surface, ϕ starts at 56.2◦ for pure axial tension, increases to 62.5◦ at α = 1.3 and shoots to 90◦ at 1.2 and 1.0. It is important to point out 
that unlike the rest of the simulation results, α = 1.0 and 1.2 developed only very weak and diffuse fronts. Thus, the simulations 
confirm that in the neighborhood of α = 1.0 a “dark” zone exists which does not support sharp discontinuities. Presumably this is 
related to the hardening exhibited by the responses (see predictions of this zone using Hill’s (1952) band angle criterion in Fig. 24 of 
Bechle and Kyriakides, 2016a). The angles at the two uniaxial stress cases, of 34.3◦ for α = 0 and 56.2◦ for axial tension, differ slightly 
for the Hill angles of 35.3◦ and 54.7◦ respectively, calculated for incompressible and isotropic material. The rest of the angles follow 
quite well the trend of the experiments but with small differences from individual measurements. 

6. Summary and conclusions 

Previous work has demonstrated that in the pseudoelastic temperature regime NiTi under uniaxial tension leads to a hysteresis with 
an upper and a lower stress plateau during which two phases co-exist and deformation is inhomogeneous. Under compression, the 
hysteresis is monotonic with higher stress, lower strain, and essentially homogeneous deformation. The phenomenological constitutive 
model developed by our group uses a single surface to describe both forward and reverse transformation, and captures the tension/ 
compression asymmetry by representing uniaxial compression with a hardening potential and uniaxial tension with a partially soft
ening one. The model was implemented in finite element analyses that successfully simulated structural problems primarily under 
axial stresses. The biaxial experiments of Bechle and Kyriakides (2016a) on thin-walled tubes under combined axial force and internal 
pressure revealed that in addition to the tension/compression asymmetry the tubular stock exhibited anisotropy. 

The present study extended the constitutive model to include anisotropy, calibrated it anew, implemented it in a finite element 
model, and used a custom incremental loading scheme to simulate the biaxial experiments over a range of biaxiality stress ratios. By 
and large, the simulations capture the main features of the experimental results. Following are some general trends, observations, and 
areas of potential improvements.  

• The stress-average strain responses are reproduced quite well for nearly the whole range of biaxiality stress ratios considered (−
1 ≤ α ≤ ∞).  

• Excluding a zone around the equibiaxial stress ratio, the biaxial responses trace stress plateaus and inhomogeneous deformation 
during transformation in the form of spiral and multipronged patterns.  

• In the neighborhood of α = 1, the hystereses are nearly monotonic and the deformation is nearly homogeneous. 
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• The mild anisotropy exhibited by the transformation stresses is captured well. The anisotropy in the extents of the stress plateaus is 
over-predicted for hoop dominant stress paths, primarily because the extent of pure hoop stress hysteresis was somewhat over- 
predicted by the form of anisotropy adopted. This is also responsible for the larger transformation energy predicted for α ≤ 1.0. 
The predicted extents of the axial stress dominant paths (α > 1.2) are closer to the measured values and so is the transformation 
energy.  

• The monotonicity of the responses in the neighborhood of α = 1 is strongly governed by the hardening behavior exhibited under 
uniaxial compression. The relatively simple two-parameter anisotropy adopted resulted in a lower hardening than measured. This 
in turn led to lower hardening in the calculated responses for biaxiality ratios close to α = 1, and caused slight deviations in the 
separation of the transformation stresses. We expect that a more extensive representation of anisotropy can alleviate these minor 
deviations of the analysis from the experimental results. 

• The spiral angles at the onset of transformation follow the trend of the measured values including the "dark" zone in the neigh
borhood of α = 1. This demonstrates the importance of both tension/compression asymmetry as well as that of the anisotropy in 
reproducing the experimental results. 

In closing, we reiterate that the present form of the constitutive model is “local” and the usual regularization resulting from the 
introduction of rate is not provided by the constitutive model framework adopted. An alternative approach is to introduce higher order 
gradients in the formulation, which has an associated length scale that must be provided. This results in a significant increase in the 
computational time. Instead, the uniform mesh adopted was chosen for optimal reproduction of the finer localization features reported 
in the experiments. Mesh sensitivity studies demonstrated that, as in our previous works, the mesh does not influence the overall 
structural response or the patterns significantly. Its main effect is limited to controlling the width of the transition separating trans
formed and untransformed zones. 
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Appendix A. Uniaxial Stress States 

The following derivatives are required in (14): 
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Specializing these to the uniaxial stretch, εt = {εt
11, εt

22, εt
33} = εo{1,−1 /2,−1 /2} leads to 
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Similarly for uniaxial stretch in the other two directions: 

εo{ − 1 / 2, 1,−1 / 2} and εo{ − 1 / 2,−1 / 2, 1}

J2
′

= |εo|, J̃2
′

= γ |εo|, J
⌢′

3 = βεo, J̃r
′

= βsgn(εo), ε̃ t
e = γ |εo|f (sgn(εo)) (A8)  

∂J̃ ′

r

∂εt
22

=
∂J̃ ′

r

∂εt
33

= 0,
∂ε̃ t

e

∂εt
22
=

∂ε̃ t
e

∂εt
33
= γsgn(εo)

2
3

f (βsgn(εo)) (A9)  

Appendix B. Calibration of Anisotropy 

One manifestation of the anisotropy is the significant difference between the axial and hoop tensile stress–strain responses reported 
in Fig. 2a. Fig. B1a shows a first attempt at correcting this by introducing a single anisotropy parameter A1 = A2. Plotted is the 
calculated σθ − εθ response for various values of this variable (for simplicity only the loading half of the calculated response is shown). 
The value 1.0 corresponds to the isotropic case. The up-down-up calibration response is based on the measured tensile response in the 
θ-direction (α = 0) and consequently extends to a much higher hoop strain than required. Reducing this variable reduces the strain 
extent but also moves the response to a higher stress level. To address these issues, in Fig. B2a A2 is kept at the seemingly optimal value 
of 0.93 while A1 is varied independently. Reducing A1 moves the stress level back down and extends the response to a smaller strain 
than in the previous attempt. Results in a similar plot Fig. B2b were obtained by fixing A1 = 0.88 and varying A2. Increasing A2 
progressively from 0.88 moves the response to lower stress level and at the same time extends it to some degree. Through this iterative 
process A1 = 0.88 and A2 = 0.93 were found to produce an acceptable compromise in the stress level and strain extents for this 
experiment. 

Fig. B1. (a) Up-down-up representation of the pure hoop stress response for various values of the anisotropy parameter A1 = A2. (b) Model 
representation of the tension/compression asymmetry exhibited in the equibiaxial responses, α = 1.0, without anisotropy (A1 = A2 = 1). 
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Fig. B2. Up-down-up representation of the pure hoop stress response for various values of the anisotropy parameters: (a) A1 with A2 = 0.93 and (b) 
A2 with A1 = 0.88. 
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Fig. B3. Hardening representation of the equibiaxial responses for various values of the anisotropy parameter A1 with A2 = 0.93: (a) hoop and (b) 
axial results. 
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A second consequence of anisotropy is illustrated of in Fig. B1b, which plots the measured axial and hoop direction responses for 
the equibiaxial (σx = σθ) radial path. This stress state can be viewed as equivalent to uniaxial compression in the third principal di
rection. In the absence of any anisotropy, the model predicts equal responses in the two directions, which trace higher stress and strains 
with extents that differ from those measured. Thus, the effect of the two anisotropy parameters on these responses were examined in 
parallel with the effect on the pure hoop stress experiment discussed above. Fig. B3 shows the predictions for the x and θ responses for 
the same range of A1 values with A2 = 0.93 as in Fig. B2a. All variables considered produce monotonically increasing responses with 
various stress levels and strain extents. The optimal value of A1 = 0.88 overpredicts the extent of εθ and underpredicts the extent of εx 
with both stress levels being closer to the measurements. Fig. B4 shows similar predictions for the same range of values of A2 as in 
Fig. B2b and A1 = 0.88. Increasing A2 has limited effect on the hoop response but it reduces the axial strain extent maintaining the 
same stress level. The present way of introducing anisotropy is limited by its coupling to the scaling function through which tension/ 
compression asymmetry is introduced (Eq. (11)). Better representation of the anisotropy may require its decoupling from such a 
scaling function. 

Appendix C. Transformation Stress and Strain 

The calculated stress-average strain responses exhibit stress peaks and valleys at the nucleation and completion of transformation. 
In the experiments these features were masked by the circumferentially clamped boundaries. Accordingly, the stresses at the 
“nucleation” and “completion” of transformation were determined using “tangent” construction lines as shown in Fig. A1 of Bechle and 
Kyriakides (2016a). To accommodate a more direct comparison between the calculated and measured critical stresses, the former were 
determined by the “perceived” beginning and end of the stress plateaus in the absence of the peaks and valley as shown in Fig. C1. 
Furthermore, the extent of each stress plateau was taken as the strain between the two critical stresses. 

Fig. B4. Hardening representation of the equibiaxial responses for various values of the anisotropy parameter A2 with A1 = 0.88: (a) hoop and (b) 
axial results. 
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Supplementary materials 

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.ijplas.2021.103179. 
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