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Abstract
Instructional designs that include two or more artifacts (digital manipulatives, tables, 
graphs) have shown to support students’ development of reasoning about covarying 
quantities. However, research often neglects how this development occurs from the 
student point of view during the interactions with these artifacts. An analysis from 
this lens could significantly justify claims about what designs really support stu-
dents’ covariational reasoning. Our study makes this contribution by examining the 
“messiness” of students’ transitions as they interact with various artifacts that rep-
resent the same covariational situation. We present data from a design experiment 
with a pair of sixth-grade students who engaged with the set of artifacts we designed 
(simulation, table, and graph) to explore quantities that covary. An instrumental gen-
esis perspective is followed to analyze students’ transitions from one artifact to the 
next. We utilize the distinction between static and emergent shape thinking to make 
inferences about their reorganizations of reasoning as they (re-)form a system of 
instruments that integrates previously developed instruments. Our findings provide 
an insight into the nature of the synergy of artifacts that offers a constructive space 
for students to shape and reorganize their meanings about covarying quantities. Spe-
cifically, we propose different subcategories of complementarities and antagonisms 
between artifacts that have the potential to make this synergy productive.
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Introduction: Artifacts and Transitions in Math Education

Throughout their math development, children interact with various artifacts, 
such as physical manipulatives, tables, and graphs, that contribute to how they 
construct a mental image of their mathematical world. One example of this is 
research about students’ construction and interpretation of graphs, which has 
been shown to support the learning of mathematical and physical concepts such 
as covariational reasoning (e.g., Johnson et al., 2016) and modeling motion (e.g., 
Doorman, 2005), respectively. With the inclusion of technology as a tool for math 
teaching and learning in the early 1980s, the mathematics education community 
has developed innovative digital artifacts for teaching and learning that were not 
accessible before, such as dynamic geometry environments, computer algebra 
systems, and dynamic simulations. By having students engage with these techno-
logical artifacts, researchers explored new ways of students’ reasoning about vari-
ous mathematical concepts. Examples of these studies include the design of digi-
tal artifacts to support students’ reasoning about functions (e.g., Roschelle et al., 
2012), pattern generalization (Noss et al., 2009), area and volume measurement 
(Panorkou, 2020a, b), and probability (Pratt, 2000).

Transitioning between these artifacts has been considered important in math-
ematics education, but also a challenge. Students rarely use concepts they con-
structed by interacting with a digital medium, because they fail to understand the 
connection to the formal mathematics they examine with paper-and-pencil tools 
(e.g., Gurtner, 1992). In response to this, Geraniou and Mavrikis (2015) sug-
gested the design of bridging activities to engineer students’ connection-making 
as they transition from an exploration of algebra using a digital artifact to typical 
paper-and-pencil tasks. Other studies, such as the one by Soury-Lavergne (2021), 
examined students’ transitions between physical and digital forms of the same 
manipulative and found that the most effective approach for constructing knowl-
edge involves combining the two types in learning situations.

In a series of studies (e.g., Basu & Panorkou, 2019; Panorkou & Germia, 
2021; Panorkou & York, 2020), our research group examined students’ reason-
ing as they explored covarying quantities of various scientific phenomena by first 
engaging with a dynamic simulation, and then using the simulation to collect val-
ues of those quantities in a table, and finally using the pairs of values collected 
in the table to construct a graph. We found that these transitions between the 
three artifacts (simulation, table, graph) supported students in developing more 
sophisticated forms of covariational reasoning and also a deeper understanding 
of the scientific phenomenon being modeled. We also noticed that through this 
process, students were able to conceptualize a graph as a dynamic relationship of 
two quantities and not just as a static object as students often do (e.g., Moore & 
Thompson, 2015).

Our prior research is one of the multiple studies that found that students can 
develop their covariational reasoning as they explore phenomena with quantities 
that covary in a combination of artifacts. Indeed, studies exploring what forms of 
covariational reasoning or shape thinking students exhibit as they interact with 



1 3

Digital Experiences in Mathematics Education	

various artifacts, or a combination of artifacts, have been conducted extensively 
(e.g., Ellis et  al., 2015; Johnson et al., 2016). One could also say that there are 
multiple studies exploring why this development of reasoning happens, pointing 
to specific artifacts or a combination of artifacts during the learning process (e.g., 
Ellis et al., 2018). However, these studies rarely examine questions about how this 
process happens. While both the what and why questions give us a reason to won-
der, the how question can point us to specific conditions, methods, and degrees 
in which students’ reasoning and artifact interactions influence each other in the 
learning process. This lens can be important for informing the design of artifacts, 
tasks, and questioning around these ideas, as well as the analysis of students’ rea-
soning during those transitions.

To make this contribution, the current study aims to give an insight into how stu-
dents’ covariational reasoning may be shaped and reorganized as students transition 
between artifacts, and how the artifacts’ synergy may provide a constructive space 
for students to shape and reorganize their reasoning. In this article, we analyze data 
from a design experiment with sixth-grade students studying quantities that covary 
using a digital simulation, a table, and a graph. We focus on Moore and Thompson’s 
(2015) notions of emergent and static shape thinking to describe the development 
of students’ reasoning during transitions and use an instrumental genesis approach, 
and Mariotti and Montone’s (2020) concept of synergy to discuss how a collection 
of artifacts and students’ reasoning work together. The outcome of our analysis is a 
set of specific subcategories of complementarities, redundancies, and antagonisms 
(Soury-Lavergne, 2021) between artifacts that make this synergy productive.

Earlier Research on Covariational Reasoning

In this section, we provide a definition of covariational reasoning and a brief sum-
mary of the research that has been conducted to characterize students’ covariational 
reasoning (the what). We then discuss the role that artifacts played in these studies 
for engaging students with particular forms of reasoning, pointing to why this devel-
opment of reasoning happens. This research is the context for our exploration of how 
transitions between different artifacts can support students’ covariational reasoning.

Defining Covariational Reasoning

Covariational reasoning involves mentally imagining two quantities’ values (mag-
nitudes) changing simultaneously (Carlson et  al., 2002; Confrey & Smith, 1994). 
For instance, in explaining the Earth’s climate, a person may co-ordinate the simul-
taneous change in two quantities: as the distance from the equator increases, the 
air temperature tends to decrease. In the past three decades, mathematics educators 
have tried to characterize students’ covariational reasoning in different ways (e.g., 
Confrey & Smith, 1994, 1995; Saldanha & Thompson, 1998) and proposed frame-
works to characterize students’ progression of covariational reasoning over time 
(Carlson et al., 2002; Thompson & Carlson, 2017). Multiple studies used these two 



	 Digital Experiences in Mathematics Education

1 3

frameworks to characterize students’ covariational reasoning about various math-
ematical ideas such as rate of change (e.g., Johnson, 2012) and functional relation-
ships (Ellis et  al., 2015, 2018). More recent studies utilized those frameworks to 
also support students’ learning of scientific phenomena, such as gravity (Panorkou 
& Germia, 2021) and the greenhouse effect (Basu & Panorkou, 2019).

According to Moore and Thompson (2015), one of the difficulties that students 
have in relation to covariation is that, while graphing, students often focus on the 
shape of a graph, failing to reason about the covariational relationship between 
the quantities represented. While characterizing students’ ways of thinking about 
graphs, they distinguished between static and emergent shape thinking. Students 
who think statically operate on a graph “as an object in and of itself, essentially 
treating the graph as a piece of wire” (p. 784). In contrast, students with emergent 
shape thinking show an understanding of a graph as a trace in progress, or as a snap-
shot of an emergent trace, that illustrates the relationship between two covarying 
quantities. Students are also able to identify the same functional relationship as they 
move between different graphs that represent it. For example, Moore and Thompson 
discuss a student who was able to identify the same relationship in both a conven-
tional and an unconventional graph (e.g., axes switched) of the arcsine function.

The Role of Artifacts in Students’ Covariational Reasoning

What is common in the studies mentioned above is a focus on supporting students 
to reason covariationally in different levels or ways as they explore mathematical 
concepts and scientific phenomena. To achieve this, most of these studies mention 
the role of technology and multiple artifacts (simulations, tables, graphs) in their 
designs (e.g., Ellis et  al., 2015; Johnson et  al., 2016). For instance, Johnson and 
colleagues used a Ferris wheel animation designed on The Geometer’s Sketchpad 
(Jackiw, 2001), where students were able to control the motion and change the ani-
mation’s speed. Students were asked to use the simulation to graph the relationship 
between the car’s height from the ground and its distance traveled within one revo-
lution. Although these studies used different technologies, the common element is 
that, by engaging with digital artifacts, students were provided with opportunities 
for direct and dynamic manipulation of quantities and a prompt to explore their con-
tinuous change.

Often, the goal of these studies is for students to connect the dynamic representa-
tions of relationships with the graphing of those relationships. This has been shown 
to advance students’ conceptions of graphs of functions as a representation of co-
ordinated change (e.g., Ellis et al., 2018; Panorkou & Germia, 2021). For example, 
in our prior research, we asked students to examine covarying quantities by manipu-
lating digital simulations of scientific phenomena (e.g., gravity or the rock cycle), 
collecting data in a table, and then generating a graph. We found that having the 
students generate graphs by gathering data from a simulation was productive for 
supporting those who have just started learning graphs to understand that each point 
on the graph is a co-ordinated pair of two quantities’ values (e.g., Panorkou & York, 
2020).
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While the transitions that students make from one artifact to the next were found 
in our study and the studies above to be important for shaping students’ reasoning, 
none of these studies examined how these transitions are made. The following sec-
tion describes how the current study takes this different lens to examine the process 
by which students make connections within and across different types of artifacts.

Theoretical Framework: Studying the Transitions Between Artifacts

To study students’ connection-making within and across artifacts, we consid-
ered theories that focus on students’ interactions with tools and artifacts. We first 
acknowledge that students’ development of mathematics is dependent on the mate-
rial and symbolic tools that they have available in a learning situation (Artigue, 
2002). In other words, tools shape the learning environment as well as part of the 
actions and web of ideas embedded in that environment (Noss & Hoyles, 1996). 
While tools could be any object that is available for human activity, in this article 
we use the term artifact to refer to a tool made by humans that is used for per-
forming a specific task (Trouche, 2004; Verillon & Rabardel, 1995). As the student 
interacts with an artifact, the artifact imposes some affordances (Gibson, 1977) and 
constraints which shape both the actions and the ideas emerging from the activity. 
For instance, students can dynamically manipulate variables in a digital simulation 
in a way not possible with a static table or graph. Conversely, tables and graphs may 
offer the opportunity to study patterns in how the quantities are changing in more 
detail.

Through their interaction with an artifact, students build a mental construction 
of the tool or what research refers to as an instrument (Lagrange et al., 2001; Veril-
lon & Rabardel, 1995). This mental construction consists partly of the artifact and 
partly of cognitive schemes (Artigue, 2002). After distinguishing between an artifact 
and an instrument, our focus led to the theory of instrumental genesis (Verillon & 
Rabardel, 1995) to describe the process by which an artifact becomes an instrument. 
Instrumental genesis is linked both to the artifact’s characteristics (affordances and 
constraints) and to the user’s prior knowledge and experience (Rabardel, 2000).

In this study, we use Trouche’s (2003) notion of instrumental orchestration to 
discuss “the various devices that a teacher organizes with an aim of assisting the 
instrumental geneses of students” (p. 792). Instrumental orchestration is a plan of 
action that consists of a set of individuals, a set of objectives, a didactic configura-
tion, and a set of exploitation of this configuration (Guin & Trouche, 2002). The 
teacher can construct this plan of action at different levels (Trouche, 2005): first, at 
the level of the artifact itself, by forming some conjectures based on the affordances 
and constraints of the artifact; second, at the level of instruments or sets of instru-
ments, by acting as an orchestra conductor engineering the instrumental genesis of 
the whole class or a group of students; third, at the level of the relationship, the 
student maintains with the instrument, by engineering opportunities for students to 
reflect on their own activity and their observations of others.

When the user interacts with new artifacts, the new instruments formed from the 
instrumental genesis do not develop in isolation. As Rabardel and Bourmaud (2003) 
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explain, “the new functions form an overall system with the functions of instru-
ments developed earlier” (p. 679). As a result, this system of interlinked instru-
ments is constantly reorganized from interactions with new related artifacts and the 
development of new related instruments. We use the term reorganization (Piaget, 
1977/2001) to refer to humble inferences about their reflections and projections of 
particular forms of reasoning and their connection-making to a higher conceptual 
level where these initial forms of reasoning become part of a more coherent whole. 
For instance, students’ meanings of covariational reasoning are part of a system that 
links instruments that they formed related to covariation as they interacted with vari-
ous artifacts, and these meanings are reorganized to a higher conceptual level when 
they interact with another related artifact.

The “web of connections” (Noss & Hoyles, 1996, p. 105; italics in original) that 
students (re)construct is influenced by the students’ prior knowledge and experi-
ence, and this led our theoretical exploration to the notion of transfer. Marton (2006) 
referred to “transfer” to describe “how what is learned in one situation affects or 
influences what the learner is capable of doing in another situation” (p. 501). There 
have been many definitions of transfer in the literature, and what is common is that 
transfer is determined from the expert’s point of view (Lobato, 2003). For instance, 
current studies on students’ covariational reasoning involve the design of artifacts 
and sequences of artifacts for supporting students’ reorganizations of reasoning from 
the expert’s view, neglecting to examine the similarities and differences that students 
themselves view as relevant within and across these situations. Building on the work 
of Hoffding (1892) and Lave (1988), Lobato (2003, 2006) presented a reconceptu-
alization of transfer from an actor-oriented (learner) view as an active process that 
involves the learner’s personal construction of relations of similarity and difference 
between situations. This includes identifying the connections that the students make 
within and across different types of instructional experiences and examining how 
and why those connections could be constructive for students’ understanding.

To study students’ connection-making between situations, the works of Soury-
Lavergne (2021) and Mariotti and Montone (2020) provided an entry point. Soury-
Lavergne claimed that a system of instruments can be supported by having students 
interact with a duo of artifacts and their combined instrumental geneses. For the 
combined instrumental geneses to work, the two artifacts can differ with respect to 
their functional characteristics, but contribute to the same specific mathematical 
concept, even though the development of meanings about the concept is different 
in each one. The goal of the duo is for students to relate these different meanings 
emerging from the different uses of these artifacts: in other words, intertwining the 
instrumental genesis related to the interaction of each artifact. Mariotti and Montone 
refer to this phenomenon as a synergy between two artifacts where “an implicit or 
explicit reference to both artifacts creates a relationship between meanings emerg-
ing from their use” (p. 113). By taking a semiotic perspective, they argue that this 
results in “deepening and weaving the semiotic web” of mathematical meaning.

In designing experiences for students to engage with the synergy between 
artifacts, we followed Soury-Lavergne’s (2021) three characteristics of design 
that the duo of artifacts needs to have in order to lead to a system of instruments. 
First, a complementarity between the two artifacts needs to make the use of each 
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artifact necessary. Second, there must be some redundancy of some characteris-
tics of one artifact in the other. This may result in some continuity between them 
and make their connection visible. Third, there must be an antagonism between 
artifacts, where in each one some functionalities are constrained, and users need 
to challenge and reorganize their initial instruments to adapt to new conditions.

The duos used both by Soury-Lavergne (2021) and by Mariotti and Mon-
tone (2020) consisted of a physical and a digital artifact. As mentioned earlier 
in this article, studies examining students’ covariational reasoning usually com-
bine two or more artifacts in their designs. They often use either an instructional 
sequence of a dynamic simulation followed by a graph or a sequence combining 
a dynamic simulation, a table, and a graph. While we may design a sequential 
instructional process, our experience observing students’ transfer shows that the 
distinction between these different characterizations in the child’s actions and 
reasoning is rather blurred. Instead, students shift back and forth in unrestrained 
ways between different artifacts. In other words, each artifact becomes a tran-
sitional instrument for the continuous (re-)forming of a system of instruments. 
Accordingly, we use the term transitions to refer to the dynamic, continuous, 
transitional, and sometimes “messy” shifts (physical and cognitive) that the 
individual makes between artifacts as they (re-)form their system of instruments.

By situating our work within the above theories, we formulated the following 
research questions:

(a)	 How is students’ covariational reasoning shaped and reorganized through transi-
tions between artifacts?

(b)	 How does the artifacts’ synergy provide a constructive space for students to shape 
and reorganize their reasoning?

The following section describes the methods we employed to study these 
questions.

Methods

We followed a design experiment methodology (Cobb et  al., 2003) to develop 
and test a theory about both the process of learning and the nature of the syn-
ergy of artifacts that supported that learning. These experiments have a cyclic 
and iterative nature. The research team formed some preliminary conjectures 
about a projected process of learning, as students transition from one artifact to 
the next, as well as the characteristics of the synergy of artifacts which may sup-
port this process. Then, as the experiment unfolds, these conjectures evolve and 
are open to modifications. In the first part of this section, we describe the design 
and initial conjectures of the study. In the second part, we provide details on the 
methods of data collection and analysis.
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Design and Conjectures

Our prior studies showed that students as young as sixth grade are able to construct 
sophisticated forms of reasoning about covarying quantities when these were pre-
sented in a context meaningful to them, such as examining various scientific phe-
nomena (e.g., Panorkou & Germia, 2021). Consequently, our study’s instrumental 
orchestration included the design of artifacts based on the scientific phenomenon of 
climate, which involved the covarying quantities of temperature and latitude.

Our review of the literature showed that, by dynamically manipulating quantities 
using digital artifacts, students were able to reason covariationally about these quan-
tities (e.g., Ellis et al., 2018). Accordingly, for our design, we developed the climatic 
zones simulation (Fig. 1) which allows the student to examine how temperature and 
latitude covary dynamically. Specifically, the simulation presents the three major cli-
matic zones of polar, temperate, and tropical. To explore the simulation, the student 
uses their mouse to move the arrow on the right side of the screen up and down, in 
order to observe the changes in the two quantities.

We selected four cities that would represent the different climatic zones. Tem-
peratures in these zones are determined in this simulation mainly by the distance 
from the equator, which is referred to as latitude. The equator is at 0° latitude, and 
latitude always increases as the distance from the equator increases to the north or 
south. Although the relationship between latitude and temperature can be quite com-
plex in reality, due to the effects of many other variables, this simulation models a 

Fig. 1   The climatic zones simulation
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simplified version of this relationship in which the temperature always decreases as 
the latitude increases. While this is not perfectly accurate to true scientific realism, 
it offers an accessible data set for middle-school students to explore and is therefore 
a simplified model of a real scientific process designed to have useful pedagogical 
features (Weintrop et al., 2016).

Similar to earlier studies (e.g., Ellis et  al., 2018), our conjecture was that, by 
interacting with the dynamic simulation first, students would be supported in con-
structing an understanding of graphs as a representation of co-ordinated change. 
Accordingly, this would help them demonstrate emergent shape thinking (Moore 
& Thompson, 2015). We chose to have students construct the graphs themselves, 
so that they understand that each point on the graph is a co-ordinated pair of two 
quantities’ values. While some studies asked students to transition straight from the 
digital tool to the graph (e.g., Johnson et al., 2016), other studies found that includ-
ing a table before the graph was found to advance students’ conceptions of graphs as 
a representation of co-ordinated change (e.g., Ellis et al., 2015; Panorkou & Germia, 
2021). We decided to design two days of activities to examine both scenarios of 
instrumental orchestration.

Day 1: Transitioning Between a Digital Simulation and a Graph

On the first day of the design experiment, the students were prompted to identify 
latitudes and distinguish the climatic zones based on them. Specifically, we asked 
the students to explore the simulation and then graph the air temperature in the four 
cities and at the equator (Fig. 2).

Fig. 2   Graph students were 
asked to construct representing 
the latitudes in four cities and 
the equator and their tempera-
tures
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Our goal was to examine how students would reason as they transition between 
the simulation and the graph. Our conjecture was that, by examining the quantities 
dynamically with the simulation, students would reason covariationally about the 
two quantities in the context of the digital artifact, constructing an instrument. Sub-
sequently, we hoped that, by using the simulation to graph the relationship, students 
would be able to reason emergently about the graph and reorganize their system of 
previous instruments to include this new instrument.

Day 2: Transitioning Between a Digital Simulation, a Table, and a Graph

On the second day of the design experiment, students were prompted to further 
explore how the atmospheric temperature varies in different climatic zones. Con-
trary to day 1, on day 2, students were also asked to interact with a table. To exam-
ine this type of transition as well, we asked students to use the simulation to com-
plete the table in Fig. 3.

Our goal was to examine how students would transition between the digital 
simulation and the table, as well as to explore how students would reorganize their 
system of instruments to incorporate the new instrument they constructed by inter-
acting with this new artifact. Our conjecture was that the table could support their 
emergent shape thinking because it represents different values of the quantities as 
ordered pairs.

After creating the table, students were asked to use it to graph the values of the 
two quantities as shown in Fig. 4. In contrast to the day 1 graph, this graph did 
not include any scales and students had to create their own intervals on each axis 
prior to plotting the values.

Fig. 3   The table that students 
were asked to complete on day 2
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Our goal was two-fold. First, we were interested in examining how students 
would transition between the three representations to organize the grid and plot 
the graph. Second, we again aimed to explore how students would reorganize 
their system of instruments by transitioning between the different artifacts. Spe-
cial attention was given to their construction of emergent shape thinking, and how 
the transitions supported or impeded this type of thinking. Here, it is important 
to clarify that, although our design may seem to promote a sequential learning 
process, we expected that the student’s actions and reasoning would illustrate a 
variety of “messy” transitions between artifacts, both within each day and across 
the two days.

Fig. 4   The graph that students were asked to complete on day 2
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Data Collection and Analysis

We collected data from a whole-class design experiment (Cobb et al., 2003) in a sixth-
grade classroom from the northeast of the USA. The design experiment consisted of 
two 20- to 25-min sessions of virtual classes. Because of COVID-19 restrictions, the 
class was held on Google Meet (Google LLC, 2022a). The simulation is hosted on our 
ACMES (Assimilating Computational and Mathematical Thinking into Earth and Envi-
ronmental Science) project website (https://​acmes.​online/). Students were asked to use 
digital handouts and the image creation and editing tools of Google Slides (Google LLC, 
2022b) to create their tables and graphs. The students were divided in multiple breakout 
rooms where they engaged with the tasks individually and also in pairs. Students were 
assigned to a breakout room by the classroom teacher, who was asked by the researchers 
to pair together students who had all consent/assent forms signed and were known to be 
active participants in the class’s online sessions. A researcher joined each pair to record 
their activity and conduct interviews as the students engaged with the task design. The 
interview focused on the students’ creation and interpretation of the artifacts, including 
questions such as “What does your table show?” and “How did you create your graph?”.

To discuss in depth the transitions that students made between artifacts, in this 
article, we present the analysis of one pair of students, Mikhail and Tasif, who were 
placed in the same breakout room together for both sessions. This pair was chosen 
for analysis because they were present in the class throughout the data collection 
period and both showed a high level of engagement with the online format of the 
lessons. Screen-casting software was used to record the Google Meet breakout room 
sessions, including each student’s video, voice, and shared on-screen activity. All 
the recordings were transcribed for the analysis.

This article focuses on the retrospective analysis at the end of the design experi-
ment. During this analysis, the data was analyzed in three stages. In the first stage of 
the analysis, we identified excerpts that showed evidence of students’ covariational 
reasoning and shape thinking throughout the design experiment based on the first 
column in Table 1.

Table 1   Framework of data analysis

Characterizing students’ reasoning Characterizing students’ transitions

Covariational reasoning
  Reasoning about two quantities’ values changing 

simultaneously

Complementarity between the two artifacts makes 
the use of each artifact necessary

Static shape thinking
  Making inferences about the behavior of a simu-

lation, table, or graph as an object in and of itself

Redundancy of some characteristics of one artifact 
in the other. This may result in some continuity 
between them and make their connection visible

Emergent shape thinking
  Interpreting a simulation, table, or graph as 

an emergent trace of covarying quantities and 
identifying the same relationship by transitioning 
between representations

Antagonism between artifacts, where in each one 
some functionalities are constrained, and users 
need to challenge and reorganize their initial 
instruments to adapt to new conditions

https://acmes.online/
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In particular, we used the Moore and Thompson (2015) framework for shape think-
ing to identify students’ forms of reasoning, and characterize them either as static shape 
thinking or as emergent shape thinking. For example, reasoning about the steepness 
of a graph as going downhill exhibits static shape thinking, while reasoning about the 
covariational relationship between the temperature and the distance from the equator 
illustrates emergent shape thinking. Even though Moore and Thompson use this dis-
tinction to talk about students’ behavior in different representations of graphs, we con-
sidered students’ shape thinking to be a process that could possibly develop throughout 
their interactions with the previous artifacts. In other words, a student who is thinking 
emergently may be able to build a structure of covarying quantities that is not inher-
ently tied to one representational context, but is operative with other representational 
contexts, such as simulations and tables, that illustrate that same abstracted structure.

After identifying and characterizing students’ reasoning, in the second stage of 
analysis we reviewed the excerpts from each student chronologically to observe the 
progression of their reasoning as they transitioned from one artifact to the next. In 
particular, we examined how their forms of reasoning emerged as a reorganization 
of prior ways of reasoning, and identified the transitions that students made during 
those reorganizations. The outcome of this second stage is a set of reorganizations of 
reasoning students exhibited in specific transitions between artifacts.

In the third stage of analysis, we tracked the features of the artifacts that were neces-
sary and contingent in supporting those reorganizations during transitions. As shown 
in the second column in Table 1, we analyzed how the artifacts’ complementarities, 
redundancies, and antagonisms (Soury-Lavergne, 2021) provided a constructive space 
for students to shape and reorganize their reasoning. We used Lobato’s (2003) actor-
oriented transfer framework to study students’ dynamic (re-)construction of relations 
of similarity and difference as they transition between artifacts. We identified these 
relations by examining students’ reasoning and actions, including their gestures. Our 
goal was to analyze the affordances and constraints of the design functions of each 
artifact and observe how these artifacts are interpreted and used as instruments in a 
system. Our analysis in this stage was based on questions suggested by Lobato such 
as, What relations of similarity or difference are created by the students? and How are 
these similarities or differences supported by the instructional environment?

To illustrate the dynamic process of transitions, in the following “Results” sec-
tion, we present a chronological set of “situated accounts of learning” (Cobb et al., 
2003) that relate students’ reorganizations to the synergy of artifacts (Mariotti & 
Montone, 2020) by which they were supported, structured, and ordered. Afterwards, 
in the “Discussion” section, we use these accounts to present a profile of the types of 
relations between artifacts that students utilized to develop their reasoning.

Results

In this section, we present the excerpts we analyzed from the data to describe situ-
ated accounts of learning that related students’ reorganizations as they transitioned 
between a simulation and a graph in day 1, and between a simulation, a table, and a 
graph in day 2.
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Day 1: Transitions Between a Simulation and a Graph

On the first day of the design experiment, students were asked to explore the simula-
tion and then graph the air temperature in the four cities and at the equator. First, we 
asked the students freely to explore the simulation and to describe what they noticed. 
Mikhail and Tasif observed the simulation’s controls and outputs, noting that mov-
ing the arrow highlights different climatic zones with varying temperatures. Mikhail 
then discussed the observed changes in temperature in different climate zones.

Mikhail: The closer you go to the tropical, the hotter it is [moves the cursor 
slowly from the northern polar zone to the tropical zone]. The closer you go to 
the polar, the colder it is [moved the cursor from the tropical zone to the south-
ern polar zone]. And the temperature is more in the middle. And, and could go 
each way [moved the cursor within the southern temperate zone].

While exploring the simulation, Tasif made similar observations (see Fig. 5) 
and also used the term latitude, noting how the temperature could be seen to 
change in different zones: “in the northern hemisphere, the more south you go, 
[it] gets hotter. But if in the southern hemisphere the more north you go, it’ll 
be a little hotter until we reach zero latitude.” During this exploration, both stu-
dents identified the changing quantities of latitude and temperature in the simula-
tion. Moreover, although no numerical values were mentioned for the quantities, 
both students discussed how the more the location changes in one direction or the 
other, the more the temperature also changes. This conceptual connection of the 
changes they observed in the two quantities shows that both students were reason-
ing covariationally as they manipulated the simulation.

After the free exploration session, the students were further prompted to dis-
cuss how they saw the quantities of temperature and latitude changing in different 
regions in the simulation. In response, they began connecting positive and nega-
tive values to physical locations on the globe.

Mikhail: It’s [the temperature] also positive around here [pointing to the 
southern Temperate zone]. It depends where you go [moves cursor around 
the other northern and southern zones].

Fig. 5   Screenshots of Tasif’s simulation exploration
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Tasif: Yeah.
 
Interviewer: Is the latitude positive if you go down?
 
Mikhail: No, it goes negative [moves cursor over the southern hemisphere].

Similarly, Mikhail also described that, “The equator lies at zero because over 
here [is] the equator line, and zero degrees [latitude] is over here [moving cursor 
along the equator line].”

Next, the students were asked to read temperature data about different loca-
tions shown in the simulation and then graph this information on the provided 
set of axes. The students worked together but each produced their own graph. 
When asked what information they needed to complete their graphs, Mikhail 
described that, “it gives us the locations [points to some of the location names 
on the x-axis], but it doesn’t give us the temperature [moves the cursor along the 
y-axis]. The temperature is what we need to find.” His reasoning highlights the 
complementarity between the artifacts, as his identification of “what we need to 
find” shows that he recognized that he would need to call back to information 
from the simulation in order to complete the graphing task. At the same time, a 
redundancy between these two artifacts and their ability to represent the same 
information is also implied.

The students then began discussing their first data point, and in negotiating 
how to represent it on the graphs, they immediately realized that they needed to 
create an appropriate scale and range on the y-axis. As Mikhail stated, “We need 
to type out the temperatures [pointing to the y-axis].” They then discussed what 
spacing to use to best fit the data they expected to plot.

Tasif: What should each big line [darker lines on the y-axis] represent? 
Should it be twenty?
 
Mikhail: I think it should be with fives, right? zero, five, ten and then nega-
tives and there. Wait, no, it needs to start from minus thirty-five.

The students’ discussion shows that the graphing task required them to rea-
son about how temperature information could be represented in this new artifact. 
This is an antagonism between how the two artifacts encode information, as the 
simulation by itself did not require this kind of reasoning from students when 
they worked with it. Furthermore, as their process of labeling the axis continued, 
the students reasoned about which locations on their graphs represented different 
locations on the simulation, showing again the redundancy between the two arti-
facts. For example, in Fig. 6, Mikhail noted that, “this [pointing at 0° latitude on 
the y-axis] would be zero on the equator” and Tasif agreed.

Once their axis labeling was complete, the students were able to then plot their 
first data point for Station Nord. Tasif estimated that it should be “Around minus 
twenty degrees, right?” While Mikhail verbally agreed, he instead placed the 
marker for the data point closer to − 30°. The students’ use of estimation in plac-
ing their data points shows an antagonism between the encoding of information 
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in the simulation and graph. The graph seemed to require the students to actively 
reason about how to place and interpret data points where the simulation only 
required them to passively read this information. However, after being prompted 
by the interviewer to “check it again,” Mikhail referred back to the simulation 
and used this to refine his estimation of where the data point should be located 
(Fig. 7).

Mikhail’s use of the simulation to revise his reasoning about a data point when 
questioned about its placement is another kind of complementarity, in which one 
artifact was used to check and revise the students’ reasoning about another. The stu-
dents then continued to graph the rest of the required data points, each time referring 
to the simulation and then estimating where to place the marker on their graphs. The 
students’ process of calling back to the simulation for each data point seems to be 

Fig. 6   Students identified zero on the graph as representing the equator from the simulation

Fig. 7   Mikhail used the simulation to estimate data for Station Nord while creating a graph
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another result of the complementarity between the two artifacts, as one was needed 
in order to create the other.

As they progressed through their graphing process, the students also continued 
to make connections between locations in the simulation and how they were rep-
resented on their graphs, illustrating evidence of the redundancy between the two 
artifacts. For example, Tasif described that “for the equator, I put a latitude zero. So 
I got thirty-five Celsius.” Similarly, Mikhail reasoned that “The equator would be, 
it would be on this line [y-axis], and it would be over thirty [places a point on the 
y-axis between 30 °C and 40 °C]” (Fig. 8). This also again shows the antagonism of 
the graphing task requiring the students to actively reason about how this informa-
tion they had read from the simulation should be represented in their graph.

The interviewer asked them to describe what their completed graph looked like, 
and both students reasoned about the shapes of their graphs.

Mikhail: My graph looks like it’s very low in the beginning [uses cursor to 
trace a path between the points starting at the right side (Station Nord) to the 
left]. But then the numbers get closer together [uses hand gesture, moving 
thumb and pointer finger closer together] and it slowly goes higher and then 
dips down a bit [traces this path with a hand]. And add that little dip.
 
Interviewer: How about you, Tasif?
 
Tasif: Mine looks like from Station Nord, it goes up and up. But once you 
reach to Sao Paolo, it goes a little bit down [makes a hand gesture not fully vis-
ible on the video]. So, like a hill, sort of.

Fig. 8   Recreation of Mikhail’s 
completed day 1 graph
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Whereas their prior discussion using the simulation had resulted in statements 
of covariational reasoning, in discussing their graphs the students relied on reason-
ing about visual features such as “dips down a bit” and “like a hill” without describ-
ing what these might mean in terms of the quantities of the graph. This may imply 
another important antagonism between the simulation and graph, in which the former 
seems to support covariational reasoning, an example of emergent shape thinking, 
while the latter seems to encourage static shape thinking instead. We also acknowl-
edge the possibility that students’ static shape thinking might have been influenced by 
the nature of the question we asked pointing to what the graph “looks like.”

Table  2 summarizes the evidence we found in the students’ reasoning on the 
first day of the experiment that illustrates the complementarities, redundancies, 
and antagonisms between the two artifacts. In terms of complementarity, the stu-
dents’ transitions between the simulation and graph showed how they called back 
to the simulation in order to create the graph as well as how the simulation could be 
used to revise their thinking about the data in their graph. Being able to identify the 
location of the equator in both artifacts shows evidence of redundancy. In terms of 
antagonism, there appeared to be differences in how the students worked with the 
two artifacts based on how information is encoded differently in each and how each 
artifact seems to support particular forms of shape thinking (static or emergent).

Day 2: Transitions Between a Simulation, a Table and a Graph

During the second day of the experiment, students further explored how the atmos-
pheric temperature varies in different latitudes by using the simulation to collect 
data in a table and then graph the relationship. To begin with, we first asked students 
to use the simulation to complete a table by recording the air temperature for every 
given latitude. The two students agreed that Tasif would share his screen and record 
the temperatures on the table (Fig. 9), while Mikhail read the values out loud from 
the simulation.

Mikhail: How about this Tasif, you stay on the thing [table]. And I’ll go on my 
ACMES [simulation]. And I’ll just find the air temperatures. I’ll tell you, then 
you type them in. For minus twenty-three, it’s twenty-three. For minus ten, it’s 
twenty-four [...]

Table 2   Summary of day 1

Category Forms of evidence in our data

Complementarity Students call back to the simulation to gather data to create the graph
Student changes the location of a graphed data point after using the simulation to 

check his estimation
Redundancy Students identify the equator in both artifacts
Antagonism Students need to reason about how data is encoded in the graph but can simply read it 

from the simulation
Students tend to reason statically about the graph and emergently about the simulation
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Mikhail and Tasif worked together to transition between the simulation and the 
table as they looked for the values of air temperature corresponding to the given 
values of latitude. The students’ actions show both the redundancy and the comple-
mentarity between the simulation and the table as the information they found in the 
simulation provided the values they needed to complete the table.

Next, we asked the students to describe any patterns they found in their table. 
Mikhail stated, “there is some type of pattern repeating. […] when the latitude is 
minus twenty-three, the air temperature is twenty-three. And when the latitude was 
twenty-three, it was twenty-six. It is kind of similar.” We infer that Mikhail was exhib-
iting a form of static shape thinking by reasoning about a visual pattern in the tempera-
ture and latitude where “twenty-three” was a repeated value. His reasoning also shows 
an antagonism between the simulation and the table, where the table seems to encour-
age comparison of numerical values without constructing a relationship between quan-
tities as the students had done with the simulation. Mikhail also exhibited static shape 
thinking when we asked them to describe how the temperature changed in their tables.

Mikhail: The temperature, I say it would rise up from negative, I mean, it 
would become very low for negative [latitude] since minus nineteen [°C]. […] 
But then when it reaches minus forty-seven latitude, the temperatures start ris-
ing. And for the next, it’s like a slowly curved-rising [tracing a hill-like motion 
with his hand]. And then it slopes down again [moves from the peak to the 
original starting height].

We interpret that Mikhail’s reasoning illustrates static shape thinking because, 
although he discussed temperatures at different latitudes in his table, he focused on 
a visual description of the shape of the slope rather than a relationship between the 
quantities. On the other hand, Tasif reasoned covariationally about the distance from 
the equator and the temperatures based on what he observed from his table, stating, 

Fig. 9   Students’ completed 
table with values taken from the 
simulation
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“the farther you go from the equator, the colder it will be.” In contrast to Mikhail, 
Tasif’s reasoning illustrates emergent shape thinking.

After listening to Tasif, Mikhail added, “because there’s less direct sunlight. So, I’m 
guessing that the graph would be some type of curve hill.” Mikhail built from Tasif’s 
covariational reasoning about the temperature and the distance from the equator to 
explain why it was colder “because there’s less direct sunlight” when you go farther from 
the equator. Mikhail’s reasoning shows an interesting complementarity calling forward 
between the table and the graph he would create later, as he imagined the future shape of 
the graph while discussing the changes in latitudes and temperatures shown on the table. 
We also interpret Mikhail’s statements about the relationship between the directness of 
sunlight and the temperature as an example of reorganizing his static shape thinking 
about the possible shape of the graph into emergent shape thinking about the relationship 
it represents. Mikhail later finished his graph and shared it on his screen (Fig. 10).

Mikhail: It wasn’t as I predicted. It was a curve, a very steep curve from the 
beginning. But then the curve smallens, and then it steepens again [moved 
hand at about a 45° angle upwards] and goes to the highest point. It kind of 
slowly curves down until it comes to its peaks.

We interpret Mikhail’s reasoning about the steepness of the curve in the graph 
to be illustrating static shape thinking. This reasoning also shows a kind of com-
plementarity between the table and graph artifacts. To elaborate, the information of 
the values taken from the table complemented the shape of the actual graph, which 
prompted Mikhail to revise his description of his predicted graph.

When we asked Tasif to talk about his graph, he also reasoned about the change 
in steepness in different sections of the graph.

Fig. 10   Recreation of Mikhail’s 
completed day 2 graph
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Tasif: I’ve seen that at first it was going really steep but then, after it reached 
ten Celsius, it started, it got a little less steeper, as you can see right here [mov-
ing his mouse along the portion of his graph that corresponds with −55 to 0 
on the x-axis (latitude)]. But when it hits the equator [pointing at the peak of 
his graph where x = 0], it looks all the way down like this [moving his mouse 
along his graph from where x = 0 to x = 70].

Similar to Mikhail, Tasif reasoned about the visual features of the graph which 
illustrates his static shape thinking. His response shows the antagonism between the 
graph that encouraged static shape thinking and the simulation which did not.

When we asked Mikhail about the highest temperature that he found in his graph, 
he reasoned that it was 35 °C and “that’s the equator latitude.” When we asked him 
why that was the case, Mikhail reasoned:

Mikhail: I think that’s the case because if you look at the variables inside the 
ACMES simulation, and you put it [latitude] exactly at zero, it’ll rise exactly and 
stop at thirty-five degrees Celsiss. And I think this is because the equator is where 
it’s [the sunlight] more direct, it’s the most direct that it can be. And when it’s 
more direct, that means it’ll be more. […] And that’s why the equator’s super-hot.

Mikhail transitioned from the graph to the simulation and reasoned about the fea-
tures of the graph that were related to the simulation, using both artifacts to support 
his argument about the highest temperature (Fig. 11). His reasoning shows how the 
two artifacts share a redundancy of information.

When we asked the students to find where the temperature was at its lowest in 
their graphs, Mikhail reasoned about the shape of the graph while correctly identify-
ing the lowest and highest temperatures.

Mikhail: When it gets far from the equator, like Tasif said. Like, the farther 
it goes the more, that’s how both of ours became steep. [Tasif points to the 

Fig. 11   Mikhail referred to the latitude of the equator from the simulation to explain the peak of the tem-
perature at the equator on the graph
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far left side of the graph with his mouse.] Because it raised the latitude, it got 
closer to the equator from the negative latitude. And since it was rising up, as 
soon as the equator the temperature raised as well. But also, when it, when you 
go higher past the equator, it [temperature] also goes down.

Although he is again discussing the visual shape of the graph, in this excerpt Mikhail also 
displays emergent shape thinking in his connection of the steepness and the distance from 
the equator. He had earlier described this while working with the simulation, so this rea-
soning also again shows the redundancy between the graph and the simulation representing 
the same information. This exemplifies a tendency we noticed for students’ thinking to shift 
back and forth between static and emergent shape thinking while discussing their graphs.

We found another example of this tendency when we probed the students to talk 
about the pattern in the northern and southern hemispheres (see Fig. 12).

Mikhail: Except for when you get to the northern hemisphere area. That’s 
where it’s just steep. But in the southern hemisphere, it’s steep at the begin-
ning, but then it starts clustering when it reached the equator.
 
Tasif: The more south you go [points his mouse to the left side of the graph], 
the more colder it is than compared to the northern hemisphere [points to 
the right side of the graph]. As you can see, it’s a way down here [points to 
approximately (−70, −19)]. But then, at the northern hemisphere, it’s up here 
[points to approximately (70, −8)], which isn’t as low as this [points back to 
approximately (−70, −19)]. And they’re both sixty-seven latitude.

Fig. 12   Recreation of Tasif’s illus-
tration of the change in tempera-
tures in the southern and northern 
hemispheres
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Mikhail’s reasoning shows static shape thinking about the different amounts of 
steepness he saw in the graph, although he had previously reasoned emergently about 
his graph. Tasif’s reasoning shows emergent shape thinking that connects these visual 
features to a meaningful relationship between the latitude and the temperature. How-
ever, in other instances he reasoned about the shape of the graph, such as stating that 
“from the equator is pretty much the same [tracing from the y-intercept to the end of 
the graph], which would mean that they have the same latitude. […] it’s sort of sym-
metrical [pointing at the y-axis].” In this instance, Tasif did not explain this symme-
try in terms of a relationship between the latitude and temperature, illustrating static 
shape thinking.

When we further prompted Tasif to reason about the changes in temperature as 
the distance from the equator changed, he used the simulation to respond emergently.

Tasif: When you are at the Temperate zone, it [temperature] slowly decreases 
as you can see in simulation [points the mouse within the Temperate zones 
in both hemispheres], but once you reach the Polar zones [points the mouse 
within the Polar zones], it [temperature] starts decreasing rapidly.

Tasif transitioned to the simulation to reason about the rate of change in the 
temperature while he co-ordinated this with the changes in climatic zones. His 
use of the simulation seemed to directly support his reasoning about the relation-
ship between temperature and distance from the equator. This also again illus-
trates the same antagonism between the simulation that encouraged emergent 
shape thinking and the graph that seemed more likely to encourage static shape 
thinking.

Towards the end of the interview, when we asked the students to use their 
graphs to define the relationship between the latitude and the air temperature 
just in the northern hemisphere, Tasif shared his graph and reasoned, “from our 
graph, you can see the farther you go from the equator the colder it will be.” 
When they were asked a similar question about the relationship between the lati-
tude and the air temperature for the southern hemisphere, Mikhail responded, 
“as the distance from the equator increases, the air temperature decreases. It 
goes for both hemispheres.” Then Mikhail added a generalization about the rela-
tionships for the two hemispheres, saying, “that is why it is the rule of global cli-
mate: the farther you get [from the equator], the colder you are.” Here, both stu-
dents showed emergent shape thinking as they reasoned about the covariational 
relationship in their graphs. This shows the redundancy between the graph and 
the simulation, since after moving back and forth between the different artifacts, 
the students reasoned about how the same information was also represented in 
their graphs.

Table 3 summarizes the evidence we found in the students’ reasoning on day 2 
that illustrates the complementarities, redundancies, and antagonisms between the 
three artifacts. Much of the evidence found on day 2 reflected the evidence on 
day 1. To elaborate, students were able to identify the equator as the location 
with the highest temperature in both artifacts, showing similar evidence of 
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redundancy as in day 1. Also, similar to day 1, we have further evidence of 
antagonisms created by the different encoding and different support offered by 
the three artifacts. However, on day 2, Mikhail also used his table to make a 
conjecture about what he believed his graph would look like and then revised 
this thinking after actually completing his graph. Using one artifact to make 
a conjecture about another shows evidence of a form of complementarity that 
was not noted in day 1.

Discussion

In this section, we discuss the situated accounts of students’ learning from two 
different but interrelated perspectives. To respond to the research question (a), 
in the subsection below titled “Reorganizations of Students’ Systems of Instru-
ments,” we first discuss how students’ covariational reasoning was shaped and 
reorganized through transitions from one artifact to the next. Through this 
discussion, we make inferences about their reorganizations of their system of 
instruments. To respond to the research question (b), in the subsection below 
entitled “A Profile of Types of Relations Between Artifacts,” we then present 
a profile of the types of relations between artifacts that students constructed to 
discuss how the artifacts’ synergy provided a constructive space for students to 
shape and reorganize their reasoning.

Reorganizations of Students’ Systems of Instruments

By taking an actor-oriented perspective (Lobato, 2003), our analysis was able 
to give an insight into how students may reorganize (Piaget, 1977/2001) their 

Table 3   Summary of day 2

Category Forms of evidence in our data

Complementarity Students use the simulation to gather data to create the table and then use the simula-
tion and table to create the graph

Student uses the table to make a prediction about the graph before creating it

Student compares his prediction about the graph with the actual result and notes the 
differences

Redundancy Students identify the equator as the point of highest temperature in both artifacts
Antagonism Students need to reason about how data is encoded in the graph but can simply read it 

from the table and the simulation
Students tend to reason statically about the table and the graph and emergently about 

the simulation
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reasoning as they interact with multiple artifacts representing the same relation-
ship with two covarying quantities. The students’ moves between the artifacts 
were not sequential, even though the new artifacts were introduced sequen-
tially. Instead, students moved back and forth between the different artifacts in 
a “messy” process of on-going transitions, giving us the opportunity to exam-
ine their reorganizations of their reasoning. Similar to their “messy” transitions 
between the artifacts, we observed that the progression of their reasoning was 
also a “messy” process of generating and reorganizing their system of instru-
ments (Rabardel & Bourmaud, 2003) with which to reason about how tempera-
ture changes with latitude.

To illustrate, on the first day of the interview, Mikhail and Tasif exhibited sim-
ilar reasoning while engaging with both the simulation and the graph. Both stu-
dents reasoned covariationally as they manipulated the simulation by connecting 
the changes observed in temperature and latitude in terms of the climatic zones or 
distance from the north or south poles. This covariational reasoning is a form of 
emergent shape thinking (Moore & Thompson, 2015). However, when we asked 
them to describe their graphs, both students exhibited static shape thinking as they 
discussed the visual features of their graphs without connecting these to any covari-
ational meaning. While the simulation had become part of an instrument with 
which the students could reason covariationally, the graph did not yet serve this 
purpose for them.

During the second day of the interview, the two students continued gener-
ating and reorganizing their systems of instruments to include new table and 
graph artifacts. The two students exhibited different forms of reasoning as they 
worked on their tables and graphs, indicating that their processes of instrumen-
tal genesis and reorganization were proceeding in different ways. Mikhail’s rea-
soning tended to show static shape thinking as he identified visual patterns in 
his table and described the shape of the curves in his graph without connecting 
these to any covariational meaning. Tasif also exhibited static shape thinking 
when he described similar visual features of his graph. However, Tasif also dis-
played emergent shape thinking when he described the temperature changes in 
his table by stating that, “the farther you go from the equator, the colder it will 
be.” Mikhail engaged with Tasif’s emergent reasoning when he agreed that this 
was “because there’s less direct sunlight” before then returning to his static rea-
soning about the possible shape of a graph created from the data in his table. 
As they responded to further questions about the patterns and relationships 
shown in their graphs, both students displayed a mix of static and emergent 
shape thinking, with Mikhail’s reasoning tending to be more static while Tasif 
showed more emergent reasoning.

After moving back and forth between the different artifacts, both students 
had shown evidence of reorganizing their reasoning in a higher conceptual level 
that included reasoning covariationally about the quantities in the graph, which 
is considered to be a typical difficulty that students face when interpreting 
graphs (e.g., Moore & Thompson, 2015). The transition process led students to 
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observe a structure of covarying quantities that was not tied to one artifact but 
rather was operative with all other artifacts. In other words, they were able to 
reason emergently about the quantities across multiple representations. There-
fore, to characterize students’ development of shape thinking as they transition 
between artifacts, in our analysis we extended the Moore and Thompson dis-
tinction between static and emergent shape thinking from focusing on graphs 
only to include student inferences about the behavior of a simulation, table, 
or graph. Table 4 presents this expanded framework and provides examples of 
student reasoning from our analysis. This framework can be useful for other 
studies examining students’ development of reasoning during their transitions 
between artifacts.

Table 4   Examples of static and emergent shape thinking in different artifacts

Simulation Table Graph

Static Shape Thinking: 
Making inferences 
about the behavior 
of an artifact as an 
object in and of itself

Reasoning about simula-
tion features without 
connecting them to an 
underlying covari-
ational meaning

Reasoning about a 
visual pattern of 
numbers without 
connecting this to an 
underlying covari-
ational meaning

Reasoning about the visual 
features of a graph’s 
shape without connect-
ing this to an underlying 
covariational meaning

e.g., discussing the 
simulation: “the yel-
low arrows are the sun 
rays hitting this side of 
the earth. […] it shows 
you the polar, the 
temperate, or the tropi-
cal, tropical zones and 
the things that separate 
them.”

e.g., discussing the 
table: “it’s a close 
repeated pattern, but 
it really isn’t com-
pletely repeated. […] 
when the latitude is 
minus twenty-three, 
the air temperature 
is twenty-three. And 
when the latitude was 
twenty-three, it was 
twenty-six. It is kind 
of similar.”

e.g., discussing the graph: 
“Mine looks like from 
Station Nord, it goes up 
and up. But once you 
reach to Sao Paolo, it 
goes a little bit down 
[makes a downward hand 
gesture]. So, like a hill, 
sort of.”

Emergent Shape 
Thinking: Interpret-
ing an artifact as 
representing an 
emergent trace of 
covarying quantities 
and identifying the 
same relationship by 
transitioning between 
artifacts

Reasoning about how 
simultaneously vary-
ing quantities in the 
simulation are related 
to each other

Reasoning about 
numerical patterns 
that describe a covar-
iational relationship

Reasoning about the graph 
as a trace that records 
the relationship between 
covarying quantities

e.g., discussing the 
simulation: “in the 
northern hemisphere, 
the more south you go 
[it] get[s] hotter.”

e.g., discussing the 
table: “the farther 
you go from the 
equator, the colder it 
will be.”

e.g., discussing the graph: 
“the farther you go from 
the equator, the colder 
it will be [moves the 
pointer from x = 0 to 
x = -65].”
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A Profile of Types of Relations Between Artifacts

Our findings show how students’ reorganizations of their systems of instruments 
were supported by the synergy (Mariotti & Montone, 2020) of complementarities, 
redundancies, and antagonisms (Soury-Lavergne, 2021) between these different arti-
facts, as summarized in Tables 2 and 3. Our analysis expanded the Soury-Lavergne 
framework to identify subcategories of complementarities and antagonisms that are 
possible when students engage with these transitions. A profile of these subcatego-
ries is presented with descriptions and examples from our data in Table 5.

To elaborate, we found that the complementarity between the artifacts took three 
kinds of forms in the students’ work: callbacks to previous artifacts, conjectures 
about subsequent artifacts, and revisions of reasoning based on considering other 
artifacts. Callbacks to previous artifacts were common, for example, as the students 
first discussed and then completed the process of finding data in the simulation in 
order to create their table or graph. The students also referenced back to the simula-
tion while reasoning about their graph, making connections about features common 
to both artifacts. Conjectures about subsequent artifacts were rarer, though one stu-
dent did make comments reasoning about what he expected the shape of his graph to 
look like based on what he saw in his table before he had actually begun graphing. 
Revision of reasoning then occurred later, when this same student considered his 
completed graph and revised his earlier conjecture about its shape. Similarly, the 
students used their further consideration of the simulation to revise their reasoning 
about finding maximum points on their graph.

In terms of redundancies, the simulation, table, and graph artifacts all served to 
represent the same information, namely the covariational relationship between the 
two quantities of latitude and temperature. This redundancy supported students in 
reasoning about these quantities and their relationship across each of the different 
representations. For example, the students identified features of the simulation such 
as the equator as also being found in their tables and graphs and also used the simu-
lation to check or justify their reasoning about their graphs.

In contrast, the multiple antagonisms we noted between the artifacts were high-
lighted by the different ways in which the students reasoned about them. There 
were two notable subcategories of these differences. First, we found that the graphs 
required active placement and interpretation of data points as opposed to the pas-
sive reading and recording of data in the simulation and table. This difference in 
how information is encoded in the different artifacts resulted in students actively 
reasoning about axis labels and point estimation while graphing and interpreting 
their graphs. The students thus interacted with the data in their graphs in a way that 
they did not need to in order to use the simulation or table. Second, we found that 
the table and graph artifacts seemed to support students in engaging in static shape 
thinking where the simulation did not. While the students had reasoned covariation-
ally while working with the simulation, their discussions of their tables and graphs 
showed many examples of static reasoning about the visual features of these arti-
facts without connecting those to a covariational meaning. It was only after moving 
back and forth between the different artifacts that both students reasoned emergently 
about their graphs.
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Table 5   A profile of complementarities, redundancies, and antagonisms

Description Example from our data

Complementarity
Callback Student references a previous 

artifact while creating the 
next

“How about this Tasif, you stay on the thing 
[table]. And I’ll go on my ACMES [simulation]. 
And I’ll just find the air temperatures. I’ll tell 
you, then you type them in.”

Conjecture Student uses an artifact to 
make a prediction about a 
new artifact

After creating a table: “So I’m guessing that the 
graph would be some type of curve hill.”

Revision Student changes their think-
ing after considering other 
artifacts

After creating a graph: “It [the graph] wasn’t as 
I predicted… it was a curve, a very steep curve 
from the beginning. But then it goes, but then the 
curve smallens [gets smaller].”

Redundancy
Same information Student identifies how different 

artifacts represent the same 
information

“The equator [a feature found in the simulation] 
would be, it would be on this line [the y-axis of 
the graph].”

Antagonism
Different encoding Student operates differently 

on different artifacts based 
on how the information is 
encoded

Student reasons about how data is encoded in a 
graph:

“So, what should each big line [the darker lines 
on the temperature axis] represent? Should it be 
twenty?”

Student reads data from a table or simulation with-
out reasoning about how it is encoded:

“It’s [the temperature] also positive around here 
[pointing to the southern temperate zone]. It 
depends where you go [moves cursor around the 
other northern and southern zones].”

Different support Student is supported in reason-
ing at different levels of 
sophistication by different 
artifacts

Student is supported in reasoning statically about 
the visual features of a graph’s shape or the 
numbers in a table:

“Mine [graph] looks like from Station Nord, it 
goes up and up. But once you reach to Sao 
Paolo, it goes a little bit down [makes a hand 
gesture not fully visible on the video]. So like a 
hill sort of.”

“There is some type of pattern repeating [in my 
table]. […] when the latitude is minus twenty-
three, the air temperature is twenty-three. And 
when the latitude was twenty-three, it was 
twenty-six. It is kind of similar.”

Student is supported in reasoning emergently about 
the covariation in a simulation:

“So, the closer you go to the tropical, the hotter it 
is [moves the cursor slowly from the northern 
polar zone to the tropical zone in the simula-
tion].”
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The development of an expanded profile of the types of relations between arti-
facts that students utilize to develop their reasoning will inform future studies aim-
ing to design and analyze instructional learning experiences to support connection-
making. Recall that previous studies examining students’ covariational reasoning 
emphasized in their designs the role of dynamic simulations in combination with 
tables and graphs (e.g., Ellis et al., 2015; Johnson et al., 2016). Studies supported 
that this instructional design seems to advance students’ conceptions of graphs of 
functions as a representation of co-ordinated change (e.g., Ellis et  al., 2018; Pan-
orkou & Germia, 2021). Our work provides information to explain how this instruc-
tional design is effective for student learning. To elaborate, both students tended to 
transition back to the simulation to support their covariational reasoning during the 
discussion of their tables and graphs. We thus found that the dynamic simulation 
helped students to reason emergently about graphs because the simulation’s inclu-
sion set up a synergy between artifacts that supported them in reorganizing their 
reasoning.

Concluding Remarks

This was an exploratory study examining students’ transitions between related arti-
facts designed to illustrate the same relationship between two covarying quanti-
ties. Our findings provide an insight into how students’ transitions between artifacts 
may shape their constructions and reorganizations of reasoning. We use the term 
“insight” here to emphasize our study’s small sample limited to one pair of students. 
We focused on only one pair in order to present a detailed analysis of their transition 
processes; however, more studies are necessary before we can make claims that are 
generalizable to a wider population.

Our results show the significance of design for engineering a potential synergy 
between artifacts and providing a constructive space for such constructions and 
reorganizations. We observed that although our design led students to a specific 
sequence in exploring the different artifacts, students’ transitions involved dynamic, 
continuous, and “messy” shifts between these artifacts that were not restricted by 
our sequence. Our study provided evidence that the extension of the Moore and 
Thompson (2015) distinction of static versus emergent shape thinking in graphs to 
include a description of similar student behaviors in simulations and tables is pro-
ductive for describing the “messy” reorganizations of students’ reasoning. However, 
other studies would need to validate whether this extended version is applicable for 
describing the behavior of other students and different populations of students. Our 
contribution is thus to characterize this extension to Moore and Thompson with 
examples that may or may not be applicable elsewhere, but that provide insight into 
avenues for further research.

Our analysis assembled a profile of the types of relations between artifacts that 
students utilized to construct and reorganize their system of instruments. The pro-
file expands Soury-Lavergne’s (2021) work to include specific types of comple-
mentarities and antagonisms as subcategories. This expanded profile can be useful 
for orchestrating future synergies of artifacts to support students’ reorganizations 
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of systems of instruments. At the same time, it can be used as a tool for teachers 
and researchers to self-evaluate whether such orchestrations have engineered con-
structive transitions for students. Specifically, from a teacher standpoint, this study 
provides an insight into how teachers may design appropriate activities with a syn-
ergy of artifacts in mind that could support students’ transitions and instrumental 
genesis, and engineer opportunities for them to collectively construct knowledge 
through peer interaction and targeted questioning. This design insight touches on 
all three levels of instrumental orchestration (Trouche, 2005). At the first level, a 
teacher might choose or design individual artifacts around a single topic which offer 
different affordances and constraints. At the second level, a particular group of these 
artifacts might be presented to students to highlight certain redundancies, comple-
mentarities, and antagonisms which support their instrumental genesis. Finally, at 
the third level, the teacher might design and pose certain questions to the students to 
prompt them to reflect on their activity and the relationship they developed with the 
set of instruments.

While our work sheds light on how instrumental orchestration may be used to 
engineer and evaluate these transitions, the profile was developed based only on the 
particular synergy of our study. Other studies are needed to put this profile in harm’s 
way to validate, compare, and add new forms of complementarities, redundancies, 
and antagonisms between artifacts. In conjunction with examining whether this pro-
file is representative of other designs (artifacts, tasks, questioning), future studies 
also need to explore the “messiness” of students’ transitions between artifacts that 
may support the learning about other quantities that covary in different ways (e.g., 
linear, piecewise linear, non-linear) or even other mathematical concepts aside from 
covariation.

To conclude, our study showed the importance of studying the how questions in 
the learning process. In contrast to other studies examining the what and why of the 
development of students’ reasoning through interactions with specific artifacts, our 
study explains how this development happens as students transition between these 
artifacts. This actor-oriented lens (Lobato, 2003) proved to be important for examin-
ing the “messy” development of mathematical thinking that is constantly organized 
and reorganized through corresponding “messy” transitions.
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