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Boundaries control active
channel flows

Paarth Gulati®*, Suraj Shankar? and M. Cristina Marchetti®

Physics Department, University of California, Santa Barbara, Santa Barbara, CA, United States, ?Physics
Department, Harvard University, Cambridge, MA, United States

Boundary conditions dictate how fluids, including liquid crystals, flow when
pumped through a channel. Can boundary conditions also be used to control
internally driven active fluids that generate flows spontaneously? By using
numerical simulations and stability analysis we explore how parallel surface
anchoring of active agents at the boundaries and substrate drag can be used to
rectify coherent flow of an active polar fluid in a 2D channel. Upon increasing
activity, a succession of dynamical states is obtained, from laminar flow to
vortex arrays to eventual turbulence, that are controlled by the interplay
between the hydrodynamic screening length and the extrapolation length
quantifying the anchoring strength of the orientational order parameter. We
highlight the key role of symmetry in both flow and order and show that
coherent laminar flow with net throughput is only possible for weak anchoring
and intermediate activity. Our work demonstrates the possibility of controlling
the nature and properties of active flows in a channel simply by patterning the
confining boundaries.
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1 Introduction

Active fluids are composed of active entities, such as bacteria [1, 2], biofilaments
driven by motor proteins [3, 4] or self-propelled colloids [5, 6], that consume energy to
generate their own motion. Such active particles exert dipolar forces on their
surroundings, driving self-sustained active flows. The elongated nature of the active
units endows the fluid with liquid crystalline degrees of freedom, allowing for the onset of
orientational order, with either polar or nematic symmetry [7].

The orientationally ordered state of bulk active fluids is generically unstable at all
activities due to the feedback between deformations and flow [8], resulting in
spatiotemporal chaotic dynamics at zero Reynolds number that has been referred to
as bacterial or active turbulence [9]. Several strategies have been proposed to stabilize
laminar flows in active fluids such as the inclusion of substrate friction [10-13] or spatial
confinement [14-20], but a systematic treatment unifying these various results has
remained elusive.

The dynamics of confined two-dimensional (2D) active fluids also depends on the
symmetry of local order, though some features are common. Polar active fluids, such as
dense suspensions of swimming bacteria, transition from laminar to undulating and
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periodic travelling flows upon increasing the channel width,
eventually giving place to turbulent dynamics [21-24]. In active
nematics, both numerical studies [25-28] and experiments with
microtubule-kinesin suspensions [29] with strong anchoring to
the channel walls have revealed a transition from laminar to
oscillatory flows to a lattice of counter-rotating flow vortices
with associated order of disclinations in the nematic texture.
Similar flow states and transitions are also reported in other
geometries, such as in circular confinement [15, 19, 30]. Recent
work has also begun exploring the influence of varying and
conflicting anchoring boundary conditions in active nematics
in channels [24, 31]. In general the interplay of the geometry of
confinement and boundary conditions yields a rich variety of
flow states, but coherent flow with a finite throughput in the
channel is only achieved by finely tuning activity and other
system parameters. Hence, quantifying the conditions that yield
specific flow patterns, and especially identifying states of finite
throughput is important for controlling bacterial flow through
channels and for microfluidic applications of active flows
[32-36].

Motivated by the sensitivity of liquid crystals to surface
effects and anchoring on the boundary [37], in this paper, we
suggest a simple strategy to control channel flows of active
fluids by tuning boundary conditions. We consider an
incompressible polar active fluid confined to a two-
dimensional (2D) channel with friction, and examine the
the
spontaneously flowing states of the fluid. The model may be

role of parallel surface anchoring in selecting
appropriate, for instance, to describe the spontaneous flow of a
bacterial suspension in a channel. We show that the selection of
the flow patterns is controlled by the interplay of two length
scales: 1) the hydrodynamic screening length €, = \/#/T that
quantifies the scale beyond which dissipation by substrate
friction (I) dominates over dissipation from internal shear
viscosity (), and 2) the extrapolation length, ¢, = K/E,
governing the length scale over which elastic torques
controlled by the stiffness K of the polar fluid balance the
wall anchoring energy E, of the orientational degrees of
freedom. The hydrodynamic length screens flows and
controls the penetration of the boundary conditions on the
flow field v into the bulk of the channel. The extrapolation
length controls the relative strength between nematic elasticity
and surface anchoring. Strong wall anchoring corresponds to a
short ¢,, while weak anchoring corresponds to large ¢, [37].
We find that coherent active flows with finite throughput
are only possible when the orientational order parameter is
weakly anchored to the channel walls, corresponding to large £,
compared to the width W of the channel. In the opposite limit
of strong anchoring, the spontaneous flow transition leads
instead to a single file of flow vortices evenly spaced along
the length of the channel that we refer to as flow vortex lattice.
These vortices appear in counter-rotating pairs and their

number is determined by the aspect ratio of the channel and
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the activity. The succession of flow states obtained when activity
is increased above the spontaneous flow instability on the way
to turbulence are summarized schematically in Figure 1 for both
weak and strong homogeneous anchoring. For weak anchoring,
the spontaneous flow transition leads to coherent laminar flow
and associated splay deformation of the polarization field. At
higher activity the system settles into a state of shear banded
flow, with bend deformations of the polarization field across the
channel. For strong anchoring, in contrast, the spontaneous
flow instability first results in a lattice of flow vortices lined up
along the channel, with longitudinal bend deformations of the
polarization. At higher activity this gives way to the shear
banded flow as for weak anchoring, albeit with stronger
amplitude of polarization deformations. For all anchoring
strengths, the flow eventually becomes chaotic at larger
activity (not shown). By considering variable boundary
conditions, we unify previous results in a comprehensive
phase diagram that crucially combines the well-known active
length scale ¢, = \/K/[ay] (otp measuring the strength of the
active stress) [38, 39] controlling patterns in the bulk of the fluid
along with boundary related length scales in both flow (¢,) and
order (£,).

In the rest of the paper, we first introduce the hydrodynamic
model and the boundary conditions used in the channel
geometry. In section 3 we report results from numerical
solutions of the continuum equations and describe the
various spontaneous flow states observed with increasing
activity. We define and evaluate the mean normalized
throughput through the channel to distinguish between
coherent and non-coherent flows. In section 4 we present a
linear stability analysis of the hydrodynamic model for a
rectangular periodic box that qualitatively accounts for the
transitions between the various flow states. The results are
summarized in a comprehensive phase diagram in terms of
activity, hydrodynamic screening and anchoring strength. In
Section 5 we discuss the effect of a polar propulsive force in the
momentum equation which breaks flow symmetry and destroys
the non-flowing ordered state. Finally, we conclude with a
discussion of potential experimental realisations and possible

extensions of our work.

2 Hydrodynamic model

We consider a two-dimensional active polar fluid on a
frictional substrate, as appropriate, for instance, to describe a
thin film of a bacterial suspension [40]. At high bacterial
concentration, we assume both the suspension density and the
bacterial concentration to be constant and describe the dynamics
in terms of two fields, the bacterial polarization p that
characterizes the local direction of bacterial motility and the
flow velocity v of the fluid.

The dynamics of the polarization is governed by
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FIGURE 1

Schematic showing the effect of wall anchoring of the
polarization on the steady flow states of a polar active fluid in a
channel of width W. The blue arrows depict the flow field, v, and
the red arrows represent the polarization, p. The extended
arrow on the left indicates the direction of increasing activity |a|.

1
Dip=AS-p+-h, (1)
Y

where Djp = 0;p + v -Vp + Q -p is the material derivative that
embodies advection and rotation of polarization by flow, with
Q = (Vv - W!)/2 the vorticity tensor. The first term on the
right-hand side of Eq. 1 describes flow alignment, with § = (Vv +
VvT)/2 the strain rate tensor and A a microscopic parameter that
depends on the shape of the active entities (A > 1 for elongated
swimmers). The second term is the molecular field that drives
relaxation with a rate set by the rotational viscosity y. It is
determined by a Landau free energy as h = —6F/dp, with

1 2 , by
F:EJ{K(ain) —a(cc—o—l)p +3P } @

where a, b > 0 and the bacterial concentration ¢ controls the
transition to polar order. Here, we have assumed that a single
elastic constant K controls the stiffness to both bend and splay
distortions. For simplicity we neglect in Eq. 1 flow alignment
terms proportional to v which arise through a lubrication
approximation [40]. We have verified that these terms do not
qualitatively change our results.

At low Reynolds number the flow is governed by force
balance through the Stokes equation,

Iv = -VII+7Vv+ V- (c* +6"), (3)

where the pressure II is determined by the condition of
incompressibility, V -v = 0. Here, T is the friction with the
substrate. Dissipation is controlled by the interplay of friction
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FIGURE 2

The velocity correlation function along the channel, C;, for

the vortex lattice state (¢, = 0.30, a = —2.00) with strong anchoring
(¢, = 0.01). The flow profile v (bottom left) and polarization p
(bottom right) in the vortex lattice state are plotted at the
bottom.

and viscosity #, with £, = /y/T the viscous screening length that
controls the penetration of the no-slip boundary conditions into
the channel. The passive liquid-crystalline stress, ¢, describes
the elastic stresses due to distortions of the polarization field and
is given by
A+1 A-1

o = —%ph—Thp+KVp,~Vpi. (4)
Finally, the dipolar forces exerted by the swimmers on the fluid
yield an active stress o* [7],

2
o = oc(,(pp—%I), (5)
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where the activity a, provides a measure of the strength of active
forces, depending, for instance, on bacterial concentration and
swimming speed. Its sign depends on whether such forces are
extensile (ap < 0 as for pushers) or contractile (ay > 0 as for
pullers). Here we focus on extensile active forces which are
relevant to most bacteria. Note that, other sources of activity
such as self-advection are neglected here for simplicity, and their
effects are briefly discussed later in Section 5.

We assume that the fluid is confined to a channel of width W
and length L, in the geometry shown in Figure 2, with periodic
boundary conditions along the y direction. Below we focus on the
dynamics of the ordered state with ¢ > ¢, and p = Va/b . We
normalize the polarization so that |p| = 1 in the aligned state.

The hydrodynamic equations are solved with the boundary
conditions.

(6)
™

V-ow =0,

[Ea(p =) + K(0-VP)] oy = 0,

Where 11 is a unit normal pointing outward from the walls. The
boundary condition on the polarization expresses the balance
between a torque E,p, that penalizes misalignment with the
boundary, with E, an anchoring energy per unit length, and the
nematic torque Ko,p, that penalizes deviations from the aligned
state. The ratio ¢, = K/E, defines the extrapolation length [37],
with the following limiting cases

¢, — 0:
. — 00 :

[p],.ow =V strong anchoring
[axp]xzo)w =0 weak anchoring

The hydrodynamic equations for our model have nematic
symmetry, as they are invariant for p — —p. The boundary
conditions, however, break the symmetry in polarization by
aligning p with the channel walls in y direction. As we will
discuss later in Section 5, this still allows for symmetry in the flow
direction, which can by broken by introducing an active self
propulsion term in Eq. 3.

3 Numerical simulations

The hydrodynamic equations are solved numerically using
the finite element platform FEniCs [41, 42]. We use the width of
the channel, W, as unit of length, the nematic relaxation time,
7, = yla, as unit of time and the condensation energy a in the
polar free energy as a unit of stress. With this choice, the
dimensionless activity « = |agl/a = (L./6)? is simply the square
of the ratio between the active length £, = \/K/[ao[ and the
length &= +/K/a. Unless
otherwise, the results are shown for channel dimensions with

nematic  correlation specified
L =2W, flow alignment parameter A = 2, and nematic correlation
length £ = 0.1W. To carry out the finite element simulations, the
channel is triangulated into a rectangular mesh with grid size

dx ~ 0.01 W. The time step used in most simulations is dt = 7,,/10
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and we typically run simulations for a total time T = 10007, or
longer.

In bulk, an extensile active fluid ordered along y, is
destabilized at any value of activity by the unbounded growth
of bend fluctuations &p, (y, t) of the order parameter [8, 14]. Both
substrate friction (I) and a finite system size (L along the y
direction) generate a finite activity threshold for the onset of
spontaneous flow given by [12, 43].

,  2KT

_ 1 2me, g
“=ya+nl Uz )|

For vanishing friction (I' — 0), the screening length diverges

®)

(€, — o) and we recover the viscous limit of the finite size
activity threshold ocf = (2Kn/y(A+1)) (2nm/L)? [14].

As shown below, wall anchoring geometrically frustrates this
bulk instability mode and alters the mechanisms and nature of
the instability which is now controlled by an interplay of three
length scales: the channel width W, the flow screening length £,
and the extrapolation length ¢,.

Upon increasing activity, the quiescent state in a channel is
destabilized, driving the system through a succession of flowing
states. To classify such dynamical states, we examine the velocity
correlation function parallel to the channel, defined as

Ci(y) =<v(@)-v(r+y¥)u )

where {-), denotes a spatial average over the entire channel domain.
The number of oscillations in the correlation function is used to classify
the nature of the flow; see Figure 2 for an example of a flow state (the
vortex lattice) with the associated correlation function plotted.
While C; captures vorticity in flow patterns, states with finite
throughput are quantified by evaluating the normalized throughput
e

[v|

¢= > (10)

where {|v]), is the mean velocity.

3.1 Strong anchoring, ¢, <« W

The flow states obtained for strong anchoring (here £,/W =
0.01) are summarized in the phase diagram of Figure 3B obtained
by varying the activity « and the screening length ¢,. Upon
increasing activity at fixed €,, we first observe a transition from a
quiescent ordered state (grey region of Figure 3B) to a flowing
state (blue region) with {|v|) # 0. Strong anchoring suppresses
pure bend fluctuations. The instability is then controlled by a
growing mode that necessarily has both splay and bend
components, as discussed in Section 4. This is evident from
the polarization profiles displayed in Figure 4B. The resulting
flow is a lattice of counter-rotating flow vortices that span the
channel width, with zero net throughput. We refer to this state as
a “vortex lattice”.
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These phase diagrams show the various steady flow states in the channel as we change the screening length and the activity at a fixed anchoring
strength. The dashed lines are fits to the observed phase boundaries whereas the solid lines correspond to the curves calculated using linear stability
analysis in Section 4, with no fitting parameters. The solid blue line in both phase diagrams corresponds to the mixed bend-splay instability « and the
solid black line in (B) corresponds to the splay instability with weak anchoring, o (Eq. 16). (A) Weak Anchoring, ¢,/W =100. (B) Strong Anchoring,

¢/W =0.01.

The number # of counter-rotating vortex pairs in the vortex
lattice is controlled by the aspect ratio L/W of the channel,
together with the topological constraint that the net vorticity
must be zero. This can be understood by comparing the energy
cost of bend and splay deformations transverse and parallel to the
long direction of the channel, with the number of pairs of vortices
n ~ (LIW) (AJ/A,), where A; and A, are the amplitude of the
polarization angle in the vortex-lattice and the shear banded flow
states (Section 3.3). The minimum number of pairs of counter-
rotating vortices is equal to the integer part of the aspect ratio and
as we increase activity, additional vortices are added in pairs
(light and dark blue points in Figure 3B).

Upon further increasing the activity, we note a transition
(blue to orange in Figure 3B) from the ordered vortex lattice to a
shear banded flow, with increasing number of shear bands at
higher activities. This state is characterized by a bend about the
short channel direction, transverse to the original orientation of
the polarization field. Here, the flow and polarization are
invariant along the channel. Interestingly, the flow transitions
to a ‘more ordered state’ on increasing activity.

3.2 Weak anchoring, ¢, > W

For weak anchoring, and sufficiently large values of ¢,, the
steady state corresponds to coherent laminar flow with finite
throughput (green region in Figure 3A). But as we increase
activity, an ordered vortex lattice similar to that in the strong
anchoring limit forms transiently but then leads to a shear
banded flow as the long time steady state (Figure 4A).

Notably, the laminar flowing state has non-zero splay but
zero bend and can be seen only above a characteristic
screening length ¢; (dependant on the extrapolation length

Frontiers in Physics

¢,). From Figure 3A, this value £ = 0.2W for €,/ W = 100. This
absence of coherent laminar flow at short screening length is
further discussed in Section 4.

Figure 5 shows a phase diagram as a function of activity and
extrapolation length, at a fixed screening ¢, = 0.35> £;. As £,
decreases the coherent flow region for the splay state vanishes
and the ordered flow vortices become stable for larger activities.
We find that the transition to the flow vortex lattice (transient
in the weak anchoring limit) is largely unaffected by the
anchoring strength. Also, we observe that the activity
threshold for the onset of unsteady chaotic flows is not
affected by the extrapolation length, generalizing previous
results [19, 30].

3.3 Lattice of flow vortices

Upon transition from the quiescent to the vortex state, the
flow organizes into a single pair of counter-rotating vortices
spanning the channel length L and of size of order L/2 (when
L = 2W), as illustrated in Figure 4B for a = -2. This is
observed in simulations for a large range of ¢, and ¢,. Upon
increasing activity, the number of vortex pairs increases, until
eventually the system transitions to shear banded flow. The
that
accommodated in the channel depends of the channel’s

maximum number n of vortex pairs can be
aspect ratio. To estimate this number, we examine the
elastic energy of channel-spanning bend deformations of
the polarization field, described by the angle 6, with

cosf = p-x, given by

E= Kjdr (VO)2. (11)
Q
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FIGURE 4

10.3389/fphy.2022.948415

Vorticity
-1.0 -0.50 0.0 0.50 1.0
N— |

Some of the steady states observed in the phase diagrams (¢, = 0.35) are shown in terms of the flow v (left in each frame) and the polarization p
(right). The vorticity and the flow magnitude are colorized to show relative magnitudes and have been scaled by the corresponding maximum/
minimum. The arrows represent the vectors for v and p scaled by their magnitudes. ¢,. (A) Steady States with weak anchoring, ¢, W =100, and low
activity (bottom, a-1.75) and high activity (top, a=-4.00). (B) Steady States with strong anchoring, ¢, W =0.01, and low activity (bottom, a-2.00)

and high activity (top, a =-3.00).

In the shear banded state, the bend deformation is primarily
transverse to the channel direction (Figure 6A), corresponding to an
angle profile of the form 6, ~ A; sin (27x/W). In the vortex lattice
state, away from the walls, bend deformations are primarily along the
length of the channel (Figure 6B), corresponding to an angle profile
of the form 6, ~ A, sin (2mny/L), where n is the number of counter-
rotating vortex pairs. Note that the amplitudes A; and A, of the two
deformations depend on activity and on the strength of anchoring,
and are generally different.

The corresponding deformation energies E; and E, for the
shear banded and flow states are then immediately obtained by
substituting the respective deformations into (11), with the result
E; = KA’L/W and E, = Kn? A2W/L. By setting E, ~ E, we can
estimate the number of vortex pairs in the channel as

Frontiers in Physics

The scaling of the number of vortex pairs with the channel
aspect ratio for the lattice of flow vortices is confirmed by
numerical simulations in longer channels, as shown in
Figure 7, supporting the idea that the channel geometry
determines the number of flow vortices.

In the limit of weak anchoring, we observe transient
vortex lattices, but the stable state is always shear
banded. We can understand this because in this case the
system can easily accommodate bend deformations across the
channel, while bend deformations along the channel, which
would be required for a vortex state, are energetically more
costly.
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Phase diagram as we change the extrapolation length ¢, at a fixed screening length ¢, = 0.35.
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FIGURE 6

Schematic (L = W) for the shear banded and the vortex lattice flows. The line plot shows the angle 6 along the polarization p for the two flow
states from the numerical simulations (L = 2W) in the case of strong anchoring (¢,/W = 0.01, ¢,/W = 0.30). (A) Shear Banded Flow (angular profile is
shown for a =-3.80). (B) Flow Vortex Lattice (angular profile is shown for a =-2.00).

4 Linear stabi llty ana lyS is First, let us consider the stability of an unconfined active fluid
on a frictional substrate. For small activity, the uniform quiescent

The steady state channel flows summarized in the previous state with finite polarization p = ¥ and zero flow is stable. In the
section can be understood using a linear stability analysis of an absence of friction, this state is generically unstable for any
initial uniformly aligned state with no flow. activity [8, 14]. The presence of friction yields a finite activity
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FIGURE 7

Scaling of the number of vortices, n,, in the flow vortex lattice
state for strong anchoring as a function of the channel aspect ratio
L/W. The blue points correspond to n, observed in numerical
simulations (¢, = 0.01, ¢, = 0.35, « = —2.30) by increasing L/W

in steps of 0.25 from L/W = 2 to L/W = 9. The value of n, increases
in steps of 2, corresponding to the addition of a vortex/anti-vortex
pair so as to maintain zero net vorticity. The growth is linear, as
predicted by the simple scaling argument given in Section 3.3, but
with a slope 2.270 + 0.005 (dashed red line).

threshold for the onset of spontaneous flow [12]. A linear
stability analysis of the uniformly polarized state shows that
fluctuations in the Fourier amplitude of wavevector q of the
transverse component of polarization dp, evolve as 8p, (q, t) ~
"V with the growth rate

K, lol(q, - )

V(q) = _;q 2r(l + fﬁqz)

Ma:-4))-1]+0(q"), (3)
where, ¢ = |q|, 4,, =qxy/q and €, = /4/T is the viscous
screening length.

4.1 Bulk

For extensile systems (a < 0) of elongated active units (A > 1),
the decay rate given in Eq. 13 can become positive, signalling the
instability of the uniformly polarized state. It is known that in a
bulk system, defined as one with periodic boundary conditions in
all directions, the most unstable modes are bend deformations of
the polarization field, corresponding to spatial variations along the
direction of order, i.e., g, = 0 and finite g,. The hydrodynamic
instability sets in at the longest wavelength, which in a periodic box
of size L is 271/L, yielding an activity threshold & (Eq. 8). Note, here
the threshold is defined by its absolute value. The bend modes of
wavelength 277/L become unstable as ag < — a? or |ag| > ol
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The shaded region in the g,-g, plane corresponds to unstable
modes (v > 0) in an extensile active fluid. Beyond the critical activity
a? only the bend modes (g, = 0) become unstable. Further
increasing the activity beyond «Z, pure splay modes (g, = 0)

also become unstable. (A) af < ag < a. (B) ag > a

Viscous dissipation enters through the screening length £,
and shifts the instability to higher values of activity whenever ¢, ~
L. In other words, viscous dissipation stabilizes the uniform
quiescent state. When ¢, < L one recovers the infinite system
frictional threshold, a2 = 2KT/[y (A + 1)]. The bulk result given
in Eq. 8 fits very well with finite element simulations in a periodic
box (not shown).

Upon further increasing activity, splay modes, corresponding
to g, = 0, also become unstable. This splay instability occurs
above a threshold

o = KL [1 + (271—&7)2] (14)
Cy@A-1) w

Note the dependence on the width W of the channel rather
than the length L. In a periodic square box (L = W), for elongated
flow-aligning swimmers (A > 1), & > zxi’, i.e., the bend instability
always precedes the splay instability in an extensile system [7].
The situation can, however, be reversed for large values of 2, and
suitable aspect ratios (W/L).

The angular dependence of the instability threshold is displayed
in the polar plots of Figure 8, where the shaded region corresponds
to unstable modes (¥(q) > 0) in the g, — g, plane. It is evident that the
fastest growing modes are always along the ¢, = 0 direction and
become unstable for || > a?. Pure splay modes (corresponding to
gy = 0) are stable for |a| < & (Figure 8A) and only become unstable
for || > af, as evident by the emergence of the two additional lobes
elongated along the g, axis (Figure 8B).

4.2 Channel

In a channel geometry, boundary conditions can
differentially frustrate bend and splay distortions [31, 44],
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Linear instability for splay and the vortex-lattice state in the limits of weak and strong anchoring. In the insets, the orange regions delineate the
values of wavector where the instability can occur, as discussed in Section 4.2. The yellow shaded region marks the range of parameters where
a2 <o, allowing for a region of coherent flow. For the strong anchoring limit, & is always smaller than a2? and no coherent flow is possible. (A)

Weak Anchoring (¢, — o0). (B) Strong Anchoring (¢, =0).

allowing for distinct modes of spontaneous flow transitions to
emerge. As in Ref. [12], we first consider a quasi-1D model that
assumes only spatial variations along the direction x of the
channel width. This is consistent with the observation that in
the channel bend fluctuations (g, # 0) are suppressed either by
strong anchoring requiring p, = 0 at the boundaries [12, 14] and/
or by the condition of no-slip. The instability to spontaneous flow
is then controlled by splay fluctuations (g, # 0) and the threshold
activity generally depends on the anchoring length, ¢,. For
strong anchoring (¢, — 0) the no-slip requirement on the
velocity further excludes the possibility of a mode with
wavelength 2W. Hence the longest allowed wavelength
corresponds to g, = 27n/W and the splay (s) instability
threshold for the case of strong anchoring 1) can be
estimated as

W 2KT 26, \* ~
o, —m[l'l’(v) ], EK—O. (15)

For weak anchoring (¢, — ©0) conversely d,p, = 0at the
boundaries, allowing for a cosine wave of wavelength 2W instead
that also satisfies no-slip. Hence the splay (s) instability threshold
for the case of weak anchoring (w) is estimated as

o 2Ky )\, b — (16)
o Tya- w7

In the case of weak anchoring, this simple argument provides
a good estimate for the transition from the quiescent state to the
coherent laminar flow. This is shown in Figure 3A by comparing
the expression for a* (Eq. 16, shown as a solid black line) to the
spontaneous flow transition observed in numerical simulations.
On the other hand, this one dimensional model fails to account
for the onset of the vortex lattice with strong anchoring.

Frontiers in Physics

The transition to the vortex lattice can be described as arising
from the instability of a mixed bend-splay mode where both g,, g,
# 0. To capture this instability, we fix the transverse wave number
as g, = g} and then determine the critical activity above which
the eigenvalue v(qx =q},q,) becomes positive. Figure 5
indicates that the transition to the vortex lattice state depends
only weakly on the strength of anchoring. For this reason we
simply take g} = /W, as suggested by the fact that vortices
typically have the size of the channel width at onset. The resulting
critical activity for the transition to the vortex lattice state (which
we refer to as a mixed instability and denote by &) is compared
in Figure 9 to the splay lines given by Eqs 15, 16 for the case of
strong and weak anchoring, respectively. The critical activity "
is computed numerically by using the dispersion relation (Eq.
13), and computing the smallest activity such that we have an
unstable mode with g, = 7/W. For weak anchoring (Figure 3A),
the splay instability line o*" (solid black line) falls below the
mixed instability o/ (solid blue line) signaling the onset of
banded flow, allowing for an intervening region of coherent
laminar flow shown in green. For strong anchoring (Figure 3B),
the splay instability line «,, is always above the mixed instability
line o (solid blue line). The splay line is therefore not shown in
the figure and the systems transitions directly from the quiescent
state to the vortex lattice.

5 Role of self propulsion

Throughout the discussion we have described the bacterial
fluid using a polar order parameter, p but the model considered
has nematic symmetry. In this case the flow arises from
spontaneous symmetry breaking of the quiescent state and is
entirely determined by deformations of the polarization field.
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The symmetry of the boundary conditions for the polarization controls the steady flow states. Left frame: strong polar anchoring where the
polarization is anchored in the same direction on both channel walls suppresses splay deformations and yields bend deformation along the wall with
associated flow vortices. Right frame: strong apolar anchoring where the polarization is anchored in opposite directions on the two walls explicitly
breaks the nematic symmetry even in the absence of polar self propulsion (vo = 0) and leads to coherent flow. Both flow states can occur if the
boundary conditions are nematic, i.e., agnostic to the direction of the polarization vector.

The direction of flow is equally likely to be up or down the

channel, with associated “splay-in” and “splay-out”
configurations of polarization. In the simulations with finite
anchoring this symmetry is broken externally by the boundary
conditions on the polarization. The presence of a frictional
substrate can, however, allow an additional propulsive force
linear in p to be present in force balance [40, 45, 46] which

takes the form

(v -vp) =-VII+ Vv +V- (0" +3"). (17)

This polar active force explicitly breaks the up-down
symmetry of the flow. The homogeneous state in bulk is now
a uniformly flowing state with v = vop. As a result, any finite self-
propulsion v, then breaks the flow symmetry and selects the
direction of the flowing state. A small self-propulsion provides
therefore the minimal forcing required for creating sustained
unidirectional channel flows. For small values of v,
corresponding to vy <|ao|/T¢,, the dipolar active stress
dominates over the propulsive force and the structure of the
steady state flows is qualitatively unaffected. Above the critical
activity for spontaneous flow, we recover coherent laminar flows
arising from polarization splay for weak anchoring and flow
vortex lattices for strong anchoring, as in the absence of polar self
propulsion. The flow lattice, however, acquires a steady drift at

speed proportional to v,.

6 Discussion

Using a hydrodynamic model of extensile polar active
matter, we have examined the role of confinement and
the
temporal organizations of active flows in a channel. We

boundary alignment in controlling spatial and

show that surface anchoring controls the flow structures by
selectively frustrating bend or splay distortions in the

Frontiers in Physics

10

polarization and that flows with finite throughput can only
be
surface anchoring leads to the formation of lattices of flow

obtained with weak surface anchoring. Strong
vortices, with the number of vortices determined by the
aspect ratio of the channel, consistent with previous results
[25, 26].

Our hydrodynamic model is inherently polar as the
anchoring boundary conditions (Eq. 7) imposed at the
channel walls break nematic symmetry even in the absence
of any polar self propulsion (Section 5). As is evident, the
symmetry of the boundary conditions plays a profound role on
the selection of flow states. Strong polar anchoring, where the
polarization is forced to point in the same direction on both
sides of the channel, prevent splay deformation and facilitate
bend along the channel walls, resulting in a state of flow vortices
(Figure 10, left panel). Strong antipolar anchoring, where the
polarization is forced to point in opposite directions on the two
sides of the channel, allows bend deformation across the
channel, resulting in finite-throughput laminar flow
(Figure 10, right panel). We have also examined the case of
nematic anchoring where the polarization is forced to orient
with the channel wall, but with no preferred direction. This was

enforced by requiring

[(p-B)h+ & (R VP)]x:O,W =0. (18)

In this case both flow states depicted in Figure 10 coexist in the
phase diagram. Finally, we note that the lattice of flow vortices
reported here is distinct from the state of dancing half-integer
disclinations found earlier in active nematics confined to
channels [47]. Here we consider a polar system, where defect in
the polarization texture are +1 and —1 vortices. Such defects are
indeed observed in the turbulent state at high activity. The lattice of
flow vortices reported here is, however, a defect-free steady state.

Our work quantifies the role surface anchoring in controlling

the spatio-temporal structure of confined active flows. This
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understanding can be useful for the design of active microfluidic
devices where channel dimensions and boundary preparation
can be independently tuned to control viscous screening and
anchoring, respectively.

Recent experiments on microtubule suspensions in 3D
and associated numerical studies have demonstrated that
coherent flow is only possible for finely tuned geometries
[17, 48-50]. Our work suggests that it would be interesting to
additionally explore the role of anchoring in these 3D systems
where antagonistic boundary conditions on the three walls
could result in as of yet unexplored states.

Finally, it would also be interesting to explore the role of
surface anchoring on temporal as well as spatial organization
of active flows. Recent experiments in dense bacterial
suspensions [51] have revealed that viscoelasticity of the
suspending medium can drive a circular droplet to self-
organize in time-periodic states of vortical flow, consisting
of a system-spanning vortex that switches its chirality at a rate
controlled by the solvent relaxation time. The vortex state of a
circular drops corresponds to unidirectional laminar flow in a
channel. As we have seen, the direction of the flow is directly
determined by the splay-in or splay-out configuration of the
polarization field, which in turn can be controlled with
suitable anchoring. This suggest that anchoring may play
an important role in controlling temporal as well as spatial
organization and that it may be possible to control
oscillations between flows of opposite chirality by tuning
the boundary conditions. These questions are left for future
studies.
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