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Active nematic defects in compressible and incompressible flows
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We study the dynamics of active nematic films on a substrate driven by active flows with or without the
incompressible constraint. Through simulations and theoretical analysis, we show that arch patterns are stable
in the compressible case, while they become unstable under the incompressibility constraint. For compressible
flows at high enough activity, stable arches organize themselves into a smecticlike pattern, which induce an
associated global polar ordering of +1/2 nematic defects. By contrast, divergence-free flows give rise to a local
nematic order of the +1/2 defects, consisting of antialigned pairs of neighboring defects, as established in

previous studies.
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I. INTRODUCTION

Active nematic liquid crystals are fluids of elongated
entities that exert forces on their environment, driving self-
sustained flows [1]. Nematic order is found ubiquitously in
active systems, from suspensions of cytoskeletal filaments
and associated motor proteins [2,3] to bacteria [4,5] and ep-
ithelial cells [6,7]. At high enough activity, all these systems
exhibit spontaneous spatio-temporal chaotic flows sustained
by the balance between energy input at the microscale and
energy dissipation via internal viscous stresses or friction
with the environment. This rich dynamics is controlled by
the energy exchange between flow and the elastic liquid
crystalline degrees of freedom that control the nematic tex-
ture. In the chaotic dynamical state, turbulentlike vortical
flows are accompanied by the generation of unbound half-
integer topological defects in the nematic texture [8]. Defects
in active nematics have been at the center of attention for
some time. They play a role in driving and controlling
flows [9-12], have been suggested to have possible biological
functions [13-16], and can themselves organize in striking or-
dered structures [17]. Key in controlling defect dynamics and
organization are the active flows generated by the distortions
in the nematic texture.

In this paper we examine the role of flow incompressibility
in controlling the emergent states of active nematics in two
dimensions. We do so by comparing two minimal models of
extensile active fluids, both at constant density, and where
dissipation is controlled entirely by frictional coupling to a
substrate. In the first model, we eliminate pressure by im-
posing incompressibility on the flow. In the second, we do
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not require incompressibility, but assume the density is kept
constant, for instance via birth and death processes, result-
ing in vanishing pressure gradients. The resulting minimal
model, referred to as compressible, exhibits emergent pat-
terns qualitatively similar to those obtained in “dry” systems
with density fluctuations [18]. We show that, even with-
out viscous stresses, incompressibility induces long-range
constraints in the flow that strongly alter the collective be-
havior of nematic defects. In the absence of incompressibility
and with increasing activity, flow-aligning (A > 1) extensile
nematics transition through the well-established bend insta-
bility [19] to a state of aligned arches of the director field
or kink walls of the order parameter field [20-22]. The
arches form a smecticlike structure and guide the defect dy-
namics, driving polar order of +1/2 defects which travel
along the arch walls, “unzipping” the nematic director field.
These structures have been predicted before [23] and ob-
served in simulations [20-22]. Evidence of aligned arches
has also been found in strongly damped cell layers [6]. We
demonstrate the linear stability of the arch states for com-
pressible flow through an analytical calculation. When the
flow is incompressible, in contrast, arches are unstable and
the system transitions directly from the bend state to active
turbulence. In this case, +1/2 defects exhibit only local ne-
matic order, corresponding to antialigned neighboring defect
pairs.

The remainder of the paper is organized as follows. We
introduce the two models in Sec. I, then present the results of
numerical simulations in Sec. III, including phase diagrams
in terms of activity. In Sec. IV, we perform analytically the
linear stability of the arch state and demonstrate the key role of
incompressiblity in destabilizing arches. Statistical properties
of defect ordering are discussed in Sec. V. We conclude in
Sec. VI with a brief discussion.

©2022 American Physical Society
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II. HYDRODYNAMIC MODEL

We consider a two-dimensional active nematic film on a
substrate described by a flow field u and an orientational order
parameter tensor Q;; = S(n;n; — %(Sij). Here, S is a scalar that
quantifies the magnitude of orientational order and the direc-
tor n = [cos @, sinf] is a headless unit vector that identifies
the direction of spontaneously broken rotational symmetry.
The evolution of the order parameter is given by [1,24,25]

1
(3,+u~V)Q+w-Q—Q-w=kD+;H, (1)

where D = 1(Vu+ Vu’ — 1V -u) and @ = §(Vu — Vu’)
are the traceless symmetric and antisymmetric parts of the
strain rate tensor, respectively. The flow alignment parameter
A is controlled by molecular shape and degree of orienta-
tional order. Here we consider a fluid of uniaxial elongated
nematogens where A > 1. The molecular field H controls
the relaxation dynamics, with y a rotational viscosity. It is
obtained from a Landau—de Gennes—type free energy given
by (assuming isotropic elastic stiffness K)

F= % / {AL(L = NTrQ? + r(TrQ*)*] + K (3 Q;j)°

+x(89;0u)*), 2)
which corresponds to a molecular field given by
SF
H= g =—A0-r+ 2rTrQH)Q + KV2Q — kV*Q.
3)

Here, A is a condensation energy and r controls the passive
transition between the nematic (» > 1) and isotropic (r < 1)
phases. Below we focus on the behavior in the nematic phase,
where the equilibrium magnitude is Sy = /(r — 1)/r. Finally,
k represents an effective surface tension (see Appendix C),
assumed isotropic for simplicity. As discussed below, this
term provides stability at small length scales.

At the low Reynolds numbers relevant to active nematics,
the flow field is determined by the Stokes equation

Mu=-Vp+V.o9 4)

which balances frictional forces controlled by the drag I', the
gradient of pressure p, and an active stress ° = «¢Q. Here we
focus on extensile systems because, to our knowledge, most of
the existing realizations of active nematics are extensile. As
described in Ref. [26], to linear order the behavior of active
nematics is controlled by the parameter aA: there is a duality
between, for instance, extensile (o < 0), rodlike and flow
aligning (A > 1) fluids and contractile (o > 0), disk-shaped
and flow tumbling (—1 < A < 0) ones. We have found that
this similarity extends to the nonlinear behavior, and the phase
diagram for contractile, flow-tumbling discotics has the same
qualitative form as shown in Fig. 1. In active fluids with
oA < 1 the uniform state is linearly stable. We have neglected
the elastic stress, whose effect on the linear stability of a
uniform nematic state is captured by the phenomenological
surface tension term with parameter « (see Appendices A
and C). This term is needed to provide stability at short scale
when the effective nematic stiffness becomes negative due to
activity.

We consider dense active nematics with constant density
in two situations: (i) An incompressible fluid with V - u = 0,
and (ii) a fluid where the density is maintained constant,
for instance by birth and death processes, without enforcing
V -u = 0. We refer to this second case as a compressible
fluid. In the first case, the pressure serves as a Lagrange
multiplier used to enforce the constraint of incompressibility.
In the second case, the pressure is assumed to only depend on
density, and therefore pressure gradients drop out of the force
balance equation due to the constraint of constant density.
This compressible, but constant density, limit has been used
in previous literature as a minimal model of active flows
on a substrate [20,27,28]. Additionally, as discussed further
below, the behavior obtained is qualitatively similar to that ob-
tained in particle simulations of dry (i.e., friction-dominated)
truly compressible fluids, where the density is allowed to
vary [21,22,29]. It therefore provides a useful minimal frame-
work for describing compressible active flows on a substrate.
Comparing the two models clarifies the role hydrodynamic
effects, introduced by the incompressibility constraints, play
in controlling emergent states in active nematics.

Our hydrodynamic model contains several length scales.
The coherence length § = /K/[A(r — 1)] controls the min-
imal scale for spatial variations of the order parameter. We
work here deep in the nematic regime with r = 2, giving an
equilibrium order parameter Sy = /1/2. The active length
£, = /K/|a| quantifies the relative importance of active and
elastic stresses. Finally, the length scale ¢, = /k /K controls
the typical size of smooth pattern formations in the Q tensor.
We have chosen the nematic correlation length £ as the unit
of length, the nematic relaxation time T = y /A as the unit of
time, and T2 /7 as the unit of stress. In these units our equa-
tions only contain four dimensionless parameters: the flow
alignment parameter which we fix at A = 1.5, r = 2 that tunes
the distance from the passive isotropic-nematic transition, ¥ =
Kk /(K&?) = (£,/&)* which we choose to be 1 unless otherwise
specified, and a dimensionless activity & = ay /(I'K). In the
following we drop the tildes on the dimensionless variables.

We solve Egs. (1) and (4) numerically using the finite
difference method in a square periodic box of size L = 128.
Spatial derivatives are evaluated with a fourth-order central
difference on a uniform square grid with spacing & = 0.5.
To integrate over time, we use the Euler scheme with a time
step 8t = 1073, Finally, we use the vorticity-stream function
formulation to account for flow incompressibility [30]. The
values of the parameters are listed in Table I.

III. NUMERICAL STATE DIAGRAM

Figure 1 shows typical configurations of active nematics
in compressible versus incompressible flows, starting from a
homogeneous ordered state and increasing activity. At low
activity, the homogeneous state remains stable, for both com-
pressible and incompressible systems [Figs. 1(a) and 1(d)],
due to the presence of substrate friction. Increasing activity
destabilizes the homogeneous state, giving rise to a bend
pattern (for A > 1) in the director field (Figs. 1(b) and 1(e)
and Movies 1 and 2 in the Supplemental Material [31]).
The instability threshold is the same for both compressible
and incompressible systems and is consistent with the value
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FIG. 1. State diagram for (a)—(c) compressible and (d)—(f) incompressible systems. The background color in each snapshot shows the
vorticity w with magnitude corresponding to the color bar on the far right. The black arrows are +1/2 defects, whose heads indicate the defect
polarization. Magenta dots are —1/2 defects. All simulations start from a uniform director oriented along x with S = 4/1/2. Some small noise
is added to the orientation to initiate the instability. For both compressible and incompressible systems, the uniform nematic state is stable
at |a| < 1 [black dots, panels (a) and (d)]. Then, at 1 < || < 1.5, the uniform state becomes unstable and both systems develop a parallel
band state through the bending instability typically found in active nematics [blue squares, panels (b) and (e)]. At |«| > 1.5, the band state can
no longer accommodate the strong activity. In this case, defect flocking emerges in compressible systems while dynamics in incompressible

systems becomes chaotic [red triangles, panels (c) and (f)].

obtained from linear stability analysis [20], which predicts
a critical activity |a] = % ~ (0.91. At higher activity,
however, relaxing the incompressibility constraint changes
fundamentally the character of the defect patterns. Incom-
pressible systems transition to a state of defect chaos [Fig. 1(f)
and Movie 4], with proliferation of half-integer defects in the
nematic texture and spatio-temporal chaotic vortical flows, as
observed in many previous studies [1,11]. When the flow is
compressible defect pairs also unbind at high activity. How-
ever, instead of the familiar chaotic dynamics, we observe a
well-organized structure, consisting of a smecticlike state of
equally spaced Néel or kink walls that have been referred to as
arches due to the structure of the director field [Fig. 1(c)] [22],
with associated polar order of +1/2 defects. Upon nucleation

TABLE I. Values of parameters.

Unit length Unit time Unit stress
E=JVK/A(r—1) T=y/A re2/z

r A k (default)
2 1.5 1

L h St

128 0.5 0.001

of defect pairs, the +1/2 defects move away from their —1/2
companions, leaving a kink-wall structure of the director field
in their wake. Active torques align the defect and the kink
walls, resulting in polar flocking of the 41/2 defects. This
ordered state of defect and nematic texture was found to be a
stable solution of the hydrodynamic of a defect gas derived in
Ref. [23]. These structures have been previously found to be
stable in continuum simulation of dry active nematics [21,29],
but seemed to be long-lived metastable states in particle sim-
ulations of the same system [22]. They are also similar to
the filamentous network of domain walls that was recently
shown to dominate the coarsening dynamics of polar active
matter [32]. In our compressible dry nematic, however, arches
form a stable ordered state.

IV. ARCH PATTERNS AND STABILITY

To quantify the periodicity of arches, we Fourier transform
the phase field 6(r) obtained from numerical simulations in
the regime where arches coexist with topological defects. The
peak of the Fourier spectrum allows us to extract a characteris-
tic wave number k of the arch pattern, and the results show that
k ~ ¢!, where ¢, = \/kc/K. Figure 2 shows k as a function
k on alog-log scale at a fixed activity « = —2, demonstrating
that indeed k ~ «~1/2.
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FIG. 2. Wave number k corresponding to the peak of the Fourier
transform of the nematic order phase field in the arch state as a
function of x on a log-log scale. k is scaled by ky = /L, which
is the minimal wave number allowed by the finite system size. The
two insets show typical snapshots from simulations at « = 1 (blue
box, corresponding to the blue dot on the plot) and x = 8 (red box,
corresponding to the red dot on the plot), respectively, and o« = —2.

To examine the stability of uniform arches in compress-
ible flows, we solve numerically Egs. (1) and (4) with an
initial condition given by an arbitrary number n of perfectly
aligned arches. Specifically, we set S = /(r — 1)/r and im-
pose an initial texture 6(r) = nwx/L (mod ), with n an
integer representing the number of equilibrium arches that
can be accommodated in a system of size L. Figure 3 shows
the critical activity || as function of the number of initial
arches n and above which the initial uniform arch pattern
becomes unstable to defect nucleation. We notice that |o|
increases monotonically with the initial arch wave number
k implying that the transition to the regime of coexistence
between arches and orientational defects depends on initial
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O Comp, simulation
3_
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FIG. 3. Critical activity above which a solution of uniform arches
of arch wave number k becomes linearly unstable for a compressible
system. The blue circles are the values obtained from numerical
simulations, while the blue solid line shows the prediction from the
analytical linear stability analysis in Eq. (17). The black dashed line
corresponds to the critical activity above which the uniform state
(k = 0) becomes unstable. The numerical parameter values are listed
in Table L.

conditions, thus the metastability of arches. The numerical
protocol of destabilizing initially uniform arches is done in the
absence of any noise and by gradually increasing activity. In
this case, arches remain metastable also for |«| < 1. However,
any additional noise perturbations will melt the arches into the
uniform ordered state as shown in the state diagram in Fig. (1).
This is not the case for || > 1, where many possible arch
states can be stable as discussed next.

By a theoretical stability analysis, we can also further un-
derstand the role of flow compressibility in stabilizing arch
patterns. To do this, it is convenient to write Eqs. (1) and (4)
in complex coordinates by introducing z = x + iy, 9, = (0, —
idy)/2, 0; = (3x +idy)/2, and 8% = 3.0;. The Q tensor and
flow velocity are written equivalently as complex scalar fields,
Y = Sexp{2i0} and u = u, + iu,. In this notation, Eqs. (1)
and (4) take the forms

OV = —udf — udsy + (;u — i)y + Adzu

A 4K 16
— S = Ay Py + 0Py — — 0%y
14 14 14

()
and
INu =200,y — 20:p. (6)

The incompressibility constraint reads ;i1 + d,u = 0. The
first two terms on the right-hand side of Eq. (5) are the con-
vective terms, which are followed by the terms for vorticity.

When the flow is compressible, the pressure gradients
vanishes and the flow velocity can be eliminated from the
¥ evolution. We seek a steady-state solution for perfectly
aligned arches,

¥ (x) = Sy exp(2ikx}, @)

where S is a complex amplitude. In this case, the advective
term and the term coupling to vorticity cancel each other, such
that we obtain an equation for Sy as

2\ A
Sk = — L K28, — = (1 — 1+ rISi Sk
r Y
4K , 16k
— —k“S, — —k7S;. (8)
Y Y

This equation has a nontrivial steady-state solution given by

1
S = ——% ©)
r

4K 2ary 16k 5\ ,
=|— —k" k*. 10
€k (A + TA + 1 ) (10)

where

For k = 0, ¢ vanishes and this reduces to the homogeneous
nematics.

To examine the stability of this arch solution against linear
perturbations, we let

V(2.2 = ¥ (x) + 8Y (2. 2) (11)
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and linearize Egs. (1) and (4) in 8, leading to
2uik 0 0a 5 )
0% = = (U009 + ¥{0:39 — v{o:5y)

=220y - )Y + (92 — 0759)

+ (J )azaw 16K 2525,
r Y
A 5 A 0 0
_ ;(1 —r+rS;)8y — ;zmuk (V2sy + v sv).

12)

Since Eq. (12) is a linear differential equation with x-
dependent coefficients, Fourier modes with different wave
numbers along x are generally coupled and the eigenfunctions
are not plane waves. One approach would then be to truncate
the Fourier expansion to some order and numerically diago-
nalize the operator on the right-hand side of Eq. (12), as done
for instance in Ref. [33]. For the purpose of determining the
critical activity, we find it suffices, however, to retain only the
wave number k that sets the periodicity of the arch solution
and write

Y (x,y) = &Y " syn(gq)e'®. (13)
q

Substituting Eq. (13) into Eq. (12) and keeping only the
lowest order mode in k, we find that, given S,% is real, the
4 x 4 dynamical equations for 6y (q), s (—q), ¥ (g) and
8Yk(—q) is block diagonal. The problem of finding the re-
laxation rate then reduces to the solution of two coupled
equations that can be written as

S(q) \ _ (my ma\ [ S¥u(q)
% (6%(—@) = <m2 m1><6wk<—q>>’ 19

where

K ai 8k K
mp = — ( + =+ k)c]z——q4
y 2I' vy 14

A 4K | 200 16
——(r—1)+<—+ : Kk2>k2
14 4 r 14
16
Kk2>k2 (15)
y

The eigenvalues of the dynamical matrix are vy = m;
my and correspond to the growth rates of the two modes. The
instability is controlled by the largest growth rate v_, given by

K o) S8k K
v_(q)=—< +—=+— 2>q2—;q4~ (16)

2r
Arches are therefore unstable for magnitudes of activity larger
than the critical value

A 4K  2a
m=—-——r—-—D+[—+="+
Y Y r

a.(k) = i—)r/(K + 8kk?), (17)

where the coefficient of g* changes sign. The wave number

of the most rapidly growing mode g. = lor] — ae)'/?

4KF (
vanishes at the onset of instability.

The analytically predicted dependence of «, on the arches
wave number k is shown as a solid blue line in Fig. 3 and
compares well with the results of numerical simulations.

V. DEFECT ORDERING

To quantify orientational order of defects, we define the
polarization of the ith +1/2 defect as p, =(V-Q/|V -

QDlr=r;, [34,35]. In the compressible fluid, we measure a
vector global polar order parameter of the +1/2 defects as
an ensemble average of the defect polarizations given by

1 N
5 2P0, (18)
i=1

where N is the number of +1/2 defects in the system at time
t. To quantify the correlation between arches and polar order
of +1/2 defects, we additionally measure the mean (spatially
averaged) phase gradient

Va(2) = (VO()), 19)

S,(t) =

as a global indicator of the arches periodicity. Figure 4(a)
shows that the magnitudes of both these measures increase in
time in a correlated manner, and both saturates to a constant
value on similar timescales. The inset is the histogram of
the angle between S,(¢) and V,(¢) and is strongly peaked at
/2, demonstrating that the polar defect order is normal to
the arches periodicity. These findings are consistent with the
hydrodynamic theory presented in Ref. [23]. In an incom-
pressible fluid, defects do not reveal global order, but may
exhibit local order, as previously reported in Ref. [36], and
which is extracted from the radial dependence of the defect
orientation correlation function on the distance r between
defects,

1
C=~ 2. PP (20)

r r<|ri—r;|<r+dér

where N, is the total number of defect pairs with separation
within (r, r + ér). Figure 4(b) shows the correlation function
for various values of activity a. C(r) has a pronounced dip
at small distances, signifying local nematic defect order. Fur-
thermore, when the distance r is scaled by the average defect
separation dsp, C(r) for different values of activity nearly col-
lapse into a single curve [inset of Fig. 4(b)]. Our findings on
local nematic defect order are consistent with those reported in
Ref. [36] for an incompressible active fluid with no substrate
friction.

VI. CONCLUSIONS

We have examined numerically and analytically the emer-
gent dynamics of two-dimensional active nematics on a
substrate with compressible and incompressible fluid flow.
We find that long-range constraints imposed by incompress-
ibility has a profound influence of the spontaneous flow
structures observed upon increasing activity. While incom-
pressible systems transition from a stationary homogeneous
state to chaotic spatiotemporal dynamics with proliferation of
unbound nematic defect pairs, compressible ones organize in
a smecticlike state of aligned arches in the nematic texture
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0 15 30

FIG. 4. Defect order: (a) For compressible systems the mean de-
fect polarization S, (solid blue) and mean phase gradient V, (dashed
red). Both grow with time and eventually saturate roughly at the same
time. The inset shows the probability distribution of the angle be-
tween S, and V,,, with a strong peak at 77 /2 (activity o = —2). (b) For
incompressible systems, in contrast, there is only local (nematic)
order and no long-range order. This is evident from the behavior
of the correlation function of the defect polarization C(r) for three
different activities. The inset shows the same correlation function
with distance r rescaled by the mean defect separation, di,.

and associated polar order of +1/2 defects. We demonstrate
explicitly that arch patterns are stable in the compressible case
below an arch-width dependent critical activity, which we cal-
culate analytically. These arches underlie defect ordered states
previously reported in compressible fluids that incorporate
density fluctuations [21,22].

To put our results in context, we briefly compare them
to previous work. Polar order of 41/2 defect and associated
smectic arrangement of arches has been reported previously in
simulations of hard spherocylinders [29] and in numerical so-
lution of the continuum hydrodynamics of dry active nematic
both in the “compressible” limit implemented here [20], as
well as for a truly incompressible fluid with conserved density
allowed to fluctuate [21]. Oza and Dunkel [27] also used a
dry continuum model, but placed themselves directly in the
unstable regime and neglected entirely the rotational effects of
the flow. In this limit they observed a variety of ordered struc-
tures, including defect lattices and antipolar order of defects.
Due to these differences in the model, a direct comparison
with other results is not straightforward. Arches and associ-

ated polar defect order have also been observed in numerical
simulations of a Viscek-like model of self-propelled point
particles that periodically reverse their direction of motion and
interact through both aligning and repulsive interactions [22].
Arches solutions were, however, found to be metastable in an
associated continuum formulation of the same model, and no
defect order was obtained in the continuum model.

Simulations of incompressible wet active nematics where
dissipation is controlled entirely by viscous stresses have re-
vealed local antialignment of +1/2 defects, but no longer
range order [36], as we find here in the dry limit. Finally,
Nejad et al. [37] recently examined the interplay between
viscous and frictional dissipation in incompressible fluids. At
large friction they observe arches and local polar defect order,
but this behavior seems to be transient. In fact we have also
observed such structures in the incompressible case, but they
are never present in the long-time steady state, consistent with
our analytical results on arches solutions. A more detailed
comparison with their work is, however, not possible since
these authors use the shear viscosity, which is zero in our
work, to determine the units of time. Additionally, their large
friction limit can also be interpreted as the limit of very low
activity. It is therefore not surprising that in these limits they
find no defect proliferation.

Our work demonstrates that nematic texture and defect
order in active liquid crystals depend strongly on the na-
ture of the flows. It further identifies the origin of apparent
discrepancies reported in the literature on polar or nematic
order of defects as arising from the constraint imposed by
incompressibility.

Finally, it may be possible to observe the smectic arch
state and polar defect order in dense, possibly jammed active
systems where friction is the primary dissipation mechanism.
In fact experiments in dense monolayer of spindle-shaped
cells have revealed structures that resemble arches at high cell
density, where the the cells are essentially jammed and defects
are no longer motile [6]. The phenomena described here may
also be relevant to bacterial colonies growing on a frictional
substrate.
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APPENDIX A: LINEAR STABILITY ANALYSIS WITH
ELASTIC STRESS

We present in this section the linear stability analysis of
the uniform nematic state with u; = 0 and Q¢ = %((1) _01),

where Sy = 1/%. We omit the phenomenological surface

tension term in this analysis and include a passive elastic stress

ol = —\H;; (Al)

ij
in the equation of the flow field. This analysis demonstrates
that, in the linearized theory, the phenomenological surface
tension term in the main text captures some of the effects of
the passive elastic stress. Appendix C provides a more general
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derivation of the surface tension term from elastic stress in a
compressible fluid.

The linearized equation of motion of the order parameter
is given by

1
0:60;j = A8D;; + Qo ixbwy; — Swix Qo kj + ;5Hijs (A2)

where

8Hij = —4ArSy80.Qo.i; + KV?8Q;;. (A3)

1. Incompressible fluid

In an incompressible flow, the linearized equations of the
flow are

Téu; = —0;8p + 9;(80; + 305), 9;8u; = 0, (A4)

where 805 = adQ;; is the active stress and 60ﬁ = —A0H;;
is the passive elastic stress. The flow field can be solved in
Fourier space as
a p_ P a | p
Su; = Suf + Su; = ?(lquO'kj + lquij), (AS)
where the transverse projection operator is Py = S — §igi-

The components of the active contribution to the strain rate
tensor are

oD, = ‘ZF [243(1

+24:4,(1 -
2
T [5in’(20)8Q. — sin(2¢) cos(2¢)8 Q] (A6)

— 4y 4 4;)8Q

247)80]

and

)
308, = S [(1 - 4022)80s — 20:4(& — 32)50.:]

—05612 2 :
T [cos”(2¢)8 Oy, — sin(2¢) cos(2¢)5 O]
(A7)

In the above equations, we have introduced g, = cos(¢),

and g, =sin(p), so that g7 —g; = cos(2p), 1—24; =

—cos(2¢), 1 —§2 + 42 = 2sin®(g). The active contribution

to the flow vorticity is -
ag?

say, = 5= [(a7

Xy T - qx)SQxy + ZCZJC%(SQM]

Olq2 .
= f[— co8(2¢)8Qyxy + sin(29)3 O ]. (A8)

The components of the passive contribution to the strain
rate tensor are

502, = L[(~ 9ArS2d: - 2K EG)0n
— AKq* (3} — 43)3xGy0 Qx|
;’; [(— 22ArS§ sin’(2¢) — 1K g’ sin*(20))3 Qs
+ 1K q* cos(2¢) sin(2¢)8 Q. | (A9)

and
‘12 2 a2

+ /\qu (@7 — 33)804]

— 40ArS§Gxdy — 20K q*4xGy)8 Qsx

2
— g—r cos(2¢)[[2AArS] sin(2¢) + AK g sin(2¢) |8 Qxx
— AK g cos(2¢)8 0y |-

The passive contribution to the vorticity is

(A10)

ol = [4,\Arso GGy8Qxx

+ )‘Kq [(q}; - in)any + ZC?Xqu(SQxx]]
2
- q—r[z,\Arsg $in(20)80

+ AKq*[— cos(2¢)3 0y + sin(2¢)80x1]-

We see that the passive parts of the strain rate tensor and vor-
ticity contain terms proportional to ¢*, which is an effective
surface tension term.

Collecting the above results into Eq. (A2) then gives an
explicit expression of the dynamical matrix for 6Q;;. One
can check that the most unstable mode in an extensile ac-
tive nematic system is the pure bend mode, corresponding to
¢ =0 [20]. In this case, the dynamics of §Qy, and 50y, are
decoupled as

(Al1)

24rS; K ,
3tSQx)c =\ - —q 8Qxx7
14 14
—arg*  Soaq* K , Kq*

0:60yy = — —— — —q¢" — == A+ S0) [60yy.

to |: i o VCI T (+0) Q}
(A12)

80,y is unstable if |o| > (2)\[?;) The O(g*) term provides

stability at short length scale

2. Compressible fluid

In a compressible fluid, the linearized equations of the flow
are

Téu; = 8;(80; + 80}) (A13)

The active and passive contributions to the flow vorticity re-
main the same as in Egs. (A8) and (A11). The active part of
the strain rate tensor is given by
o« _ —oq
8Df; = T‘SQU- (Al14)
The components of the passive contribution to the strain rate
tensor are given by

-1
5DV = E(zxArsnganx + 2K g*8Q.) (A15)
and
_1 4
8DY, = Sy Kq Q. (A16)

Similarly to before, the stability of 6Q;; can be analyzed by
substituting these results into Eq. (A2). The most unstable
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mode in a compressible fluid is also the pure bend mode, in
which case, the dynamics of §Q;; is given by

2ArS2  alg K

06Qu = [—TO 50 ;612

A 2

—29 (2)ArS? + 1K g ]SQXX

2r

—arg®  Soaq* K ’ Kq*
0,60,y = ——— — —q¢" — ==X+ 80) |8Qyy.
t Qxy |: o or yCI or ( + 0) Qxy

(A17)

The critical activity for instability is the same as the one in the
incompressible case.

APPENDIX B: ABSENCE OF ARCH SOLUTION
IN INCOMPRESSIBLE FLUIDS

In this Appendix we recall the existence of arch solution in
a compressible system and detail its absence for incompress-
ible flows. We start with the equations in complex coordinates,
as given in Eqgs. (5) and (6), with the incompressibility con-
straint d;it + d,u = 0. The first two terms on the right-hand
side of Eq. (5) are the convective terms, which are followed
by the terms for vorticity.

In the case of compressible flow the pressure gradient on
the right-hand side of Eq. (6) vanishes and one can imme-
diately eliminate the flow velocity from Eq. (5) using u =
2000,y /T". Substituting in Eq. (5) the solution for perfectly
aligned arches with a constant phase gradient in the form
given in Eq. (7), we then obtain Eq. (8), where the advec-
tive term and those coupling to vorticity exactly cancel. The
resulting equation can then be solved in a steady state, leading
to the value of S; given in Eq. (9).

The same arch structure is not a solution for the case of
incompressible flow because in this case the nonlinear advec-
tive term and the term coupling to vorticity do not cancel. To
see this, we solve for the pressure gradient in Eq. (4), with the
result

Vp = (@80, 0)" + Vh, (BI)

where we assume the Q tensor is independent of y, and 7 is
a real harmonic function. The T superscript denotes a vector
transpose. The flow is then given by

o T
u= 20,80, - Vi)

PP - Lan B2
—?(z"' z)(l/f—lﬂ)—Fz, (B2)

where the second line represents the flow in complex coordi-
nates. Using the ansatz in Eq. (7), the advective terms yield

ik
b — O = = (Och+ dch)dn (B3)
and
ik 20 - 20 A
0y = 1 @:h+ 0y — K (W = Y — K v

A 4K 16k
- ;(1 —r+rS)v — 7k2¢k - 7k41//k. (B4)

In other words the contribution from the coupling to vorticity
is no longer balanced by advection. The above equation can-
not be satisfied by a harmonic function h. A solution
would require, for instance, d.h = ‘%"ikwk which would give
0;0;h # 0. Therefore, the arch ansatz with constant phase
gradient is not a steady state solution when the flow is incom-
pressible.

We note that in Ref. [37] by focusing on the dynamics of
the phase field 6(r) and assuming constant order parameter
magnitude, the authors showed that the vorticity terms can be
tz)lzglranced by the elastic stiffness term at low activity, |o| <

Sor allowing arches solutions with spatially varying phase

gradient.

APPENDIX C: EFFECTIVE SURFACE TENSION

Here we show that the effective surface tension « arises
from the elastic stress defined by Eq. (Al) due to nematic
distortions, namely

ol ~ —AKV?Q;;. (CI)

1y -
The overdamped flow velocity induced by this is therefore

el AK 2
up = —?V 0% Qi (C2)
and contributes to the flow alignment of Q tensor from Eq. (1)
through an additional strain given by

el AK 2
D = —?V (0 Qjk + 0jx Qix — k1 Qridij), (C3)
where
i Qu = (8] — 87)Qur + 20,y Qs (C4)

From the symmetry of the Q tensor, it quickly follows that this
elastic strain is proportional to V#Q. Consequently, the flow
alignment due to this strain reduces to an effective surface
tension. To see this, we evaluate the xx component of Df;,
which is given by

el AK 5 inn2 AK

Dxx = _?V (28A Qxx + 28nyxy_alekl) = _?V Qxx-
(C5)

Similarly, it follows that

LK
D\elv = _?V4Q}’y = _D;eciv (Co)
where Q,, = —Qx,. The xy term is
LK LK

Dii = _?Vz (VZQXy + 3X>’Qxx + 8Xyny) = _?V4QXy'

(C7)

Thus, to this leading order, the surface tension reduces to
K= AZK/F. In general, however, it can also be taken as
an independent parameter, and this is the route considered
here.
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