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Abstract | In active matter systems, individual constituents convert energy into non-conservative
forces or motion at the microscale, leading to morphological features and transport properties
that do not occur in equilibrium and that are robust against certain perturbations. In recent years,
a fruitful method for analysing these features has been to use tools from topology. In this Review,
we focus on topological defects and topologically protected edge modes, with an emphasis on
the distinctive properties they acquire in active media. These paradigmatic examples represent
two physically distinct classes of phenomena that are robust thanks to a common mathematical
origin: the presence of topological invariants. Beyond active matter, our Review underscores

the role of topological excitations in non-equilibrium settings of relevance, from open quantum
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systems to living matter.

A variety of media can be regarded as active matter, that
is, out-of-equilibrium systems composed of individual
components that convert energy into non-conservative
forces and motion at the microscale'~. Examples include
self-propelled particles, such as micron-sized colloids
powered by chemical reactions*’, biofilaments with
molecular motors®” and biological systems ranging from
epithelial tissues and bacterial colonies to bird flocks®°.
Describing these media using continuum equations, as
one would for passive fluids or solids, requires a care-
ful re-examination of the symmetries and conservation
laws that are present (or, indeed, absent) in each active
system’. The most obvious example is the conservation
of energy, which is manifestly violated by the presence of
molecular motors or other mechanisms of energy trans-
duction at the microscale that power self-sustained flows
and active stresses. This energy injection at the micro-
scale is responsible for morphological features and trans-
port properties that do not occur in equilibrium and that
are robust against certain perturbations. Some of these
robust features have been fruitfully analysed using the
tools of topology.

Topology describes properties of objects that are pre-
served under continuous deformations of their shapes.
A common example is the smooth deformation of a
doughnut into a mug. During this transformation, the
shape of the object changes but the number of holes, s,
is preserved, as long as the material is not torn or glued
together. The integer s, called the genus, is an example
of a topological invariant. In condensed matter physics,
a prime application of topological invariants is in the
characterization of topological defects, which are
particle-like objects that describe global deformations
of an ordered medium''-". For example, a system of

elongated molecules lying in a plane can be described
by a 2D vector field. An isolated vortex (BOX 1) in
the field can be parameterized by the position of its
centre — it is a particle-like object. However, its presence
disrupts molecular alignment throughout space — the
deformation is global.

The global character of a vortex is captured mathe-
matically by the definition of its winding number. The
local angle that the molecules make with respect to a
fixed direction in the plane can be described by the field
O(r) (that is, the vector order parameter). The winding
number, s, is then an integer that tracks the cumulative
change in 0(r) along any path enclosing the vortex:

s:iy§v9-d1.

Much like how the number of holes on a surface is pre-
served under continuous deformations of its shape, the
integer s is also a topological invariant. The only dif-
ference is that, in this case, s is preserved under con-
tinuous deformations of the vector order parameter.
As aresult, a vortex characterized by the non-vanishing
winding number s=1 is said to be topologically stable
or robust: it cannot be made to disappear (s — 0) unless
annihilated with a topological defect characterized by a
winding number of opposite sign, that is, an anti-vortex
(BOX 1). Note that, if the line integral in Eq. (1) is evalu-
ated along a path that encircles multiple vortices and
anti-vortices, s measures the net number of topological
defects (to which a positive or negative sign is assigned,
depending on their individual winding numbers).

A similar mathematical mechanism ensures the
robustness of so-called chiral edge modes in topological

(1)
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Key points

* Topology plays a defining role in understanding robust features in active
media whose basic constituents convert energy into non-conservative forces

and motion.

* Topological defects in active media can acquire self-propulsion and non-reciprocal

interactions.

* Local stresses and flows generated by active defects can have biological functionality

in living systems.

* When detailed balance is broken, unidirectional density waves emerge that are
protected against scattering by the presence of topological invariants in the band

structure of the media.

* Non-Hermitian band theory naturally arises in active materials because energy
is both consumed and dissipated, resulting in the presence of skin modes and odd

viscoelasticity.

* The full potential of these ideas extends from the fundamental understanding
of topology in non-equilibrium systems to applications including materials design

and tissue mechanics.

Reciprocity
The symmetry between
perturbation and response.

Detailed balance

The symmetry between the
past and the future within
the dynamics of microscopic
processes.

Circulators
Aring in which air is constantly
moved by a fan.

Metamaterials

Materials with properties
arising from their macroscopic
structure, rather than their
chemical constituents.

A simple example is a ‘holey
sheet’: a slab of rubber with
holes that have size and shape
tailored to achieve a specific
mechanical response.

insulators'*""”. These are waves that propagate unidirec-

tionally along sample boundaries without experiencing
any backscattering, even if they encounter sharp cor-
ners or obstacles on their way'®'". This property can be
traced to the presence of a topological invariant called
a Chern number®. This integer, which we denote by C,
measures the net number of unidirectional — that is,
chiral — edge modes present. The Chern number is
positive or negative, depending on whether the modes
propagate clockwise or counterclockwise. Chiral edge
modes are topologically robust, much like the vortices
discussed above. In this case, the Chern number (and,
hence, the very presence of an edge mode) is preserved
under continuous changes in the physical parameters,
such as lattice geometry (rather than under continuous
deformations of the order parameter). On a more techni-
cal level, topological invariants, such as Chern numbers,
can also be viewed as winding numbers encircling topo-
logical defects, but in wave vector space, as discussed in
this Review.

Topological defects and topologically protected
modes (such as chiral edge states) are intertwined?'~*".
In addition to boundaries, topological modes can be
localized around defects such as vortices, dislocations
or domain walls. Topological defects'"'>* and topolog-
ically protected modes**' occur in a variety of physical
contexts, but in active media they acquire distinctive
properties, which are the focus of this Review.

Active media display non-conservative stresses and
spontaneous flows, and, therefore, they naturally break
key symmetries that passive materials would possess™’.
For example, active media can violate reciprocity’>* and
detailed balance***. Non-equilibrium violations of either
of these principles introduces an arrow of time and ena-
bles the presence of non-vanishing currents (of energy,
momentum or particles) in the steady state of active sys-
tems. In turn, these currents endow topological modes
and defects with properties absent at equilibrium and, in
some cases, enable their very existence. We illustrate this
point with two examples.

First, topological defects (which normally cost a
large elastic energy”) can unbind and proliferate even
at zero temperature if active stresses are present™™.
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This unbinding occurs in active nematics***, which
are liquid-crystalline media composed of, for instance,
cytoskeletal filaments driven by molecular motors”*.
Moreover, the resulting topological defects can move
by themselves, that is, even in the absence of external
forces or fields™**. This spontaneous ‘self-propulsion’
depends on the winding number of the defects” (such
that defects with a positive winding number can
self-propel) and ultimately originates from the pres-
ence of non-conservative internal forces generated by
adenosine-triphosphate-powered molecular motors on
the microscale.

Second, chiral edge modes occur in mechanical,
optical and electronic systems'>**~*', but, in the simplest
situation, external fields (for instance, applied magnetic
fields) are typically required to break the symmetry
between left-moving and right-moving waves. A simple
way to break this symmetry in mechanics is to build a
lattice of circulators**!. Experiments*** reveal that, when
many such circulators are assembled into a lattice, the
sound waves propagating on top of the flowing fluid
are topologically protected. If one now fills the rings
with self-propelled particles (instead of a passive fluid
like air), the required flow arises spontaneously without
motorizing the circulators: the microscopic particles
themselves are motorized*!

In this Review, we build on the examples considered
above and provide an introduction to the theory of topo-
logical active matter and a survey of its rich experimental
ramifications. We first explain the mechanisms whereby
topological defects self propel and proliferate in active
nematics, leading to collective states that can be manip-
ulated by geometry and patterning. Possible implications
for active microfluidics and biological tissues are pre-
sented. We then illustrate how the propagation of waves
in active fluids and solids is affected by the presence of
topological invariants that characterize their dispersion
relations. We discuss the relevance of these ideas for the
design of robotic metamaterials and the properties of
active granular and colloidal systems.

Topological defects in active matter

In passive materials, topological defects are inevitably
formed when the system is quenched from the disor-
dered into the ordered state, or when order is frustrated
by curvature, external fields or boundary conditions.
Topological defects constitute elementary excitations
of the homogeneous ordered state and their statistical
mechanics offers a picture dual to that of the familiar
order parameter'’. Order—disorder transitions in many
passive 2D systems, including superfluid and super-
conducting films, crystalline layers and 2D nematics,
are controlled by the unbinding of topological defects
through the superfluid-like Berezinskii-Kosterlitz—
Thouless (BKT) mechanism**. The BKT theory reveals
a distinct universality class of defect-induced continuous
phase transitions at equilibrium™. The theory relies on
mapping the statistical physics of point defects onto a
gas of interacting Coulomb charges. At low temperature,
opposite-sign defect pairs are bound by Coulomb-like
attraction and the state remains ordered. Above a crit-
ical temperature, entropic effects overcome energetic
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attraction, resulting in defect unbinding, which destroys
the ordered state'>*.

Likewise, defects play an important role in the spa-
tiotemporal dynamics and relaxation of active ordered
phases. We focus here on orientationally ordered flu-
ids, which can host point-like defects in 2D, and both
point-like defects (monopoles, also called asters) and
line-like defects (disclinations) in 3D (REFS'"'?). One
class of such active ordered fluids is polar active fluids,
also called Toner-Tu fluids®~**. These collections of
polar active particles with aligning interactions, akin to
‘flying spins, can order in states characterized by collec-
tive motion, in which the order parameter is the mean
velocity of the flock (TABLE 1). In such polar active fluids,
the ordered state is a state of mean motion that sponta-
neously breaks rotational symmetry and time-reversal
symmetry (TRS) on a global scale. Another class of orien-
tationally ordered fluids is active nematics**’, which are

composed of head-tail symmetrical rod-like entities that
exert internally generated stresses on their surround-
ings and organize in states of orientational order that is
apolar. These fluids display no net motion on average,
but combine the rich rheology of liquid crystals with
active driving. TABLE | describes some commonly used
continuum models to describe such systems.

Active ordered fluids have been assembled from
a variety of soft materials®”*>*. The orientationally
ordered state becomes unstable on length scales L when
the active stresses (see TABLE 1) exceed elastic stresses
~K/L* (REF.”), where K is the stiffness. Bulk ordered
states (L — o) are, therefore, unstable for any amount
of activity, but can be stabilized below a critical value of
activity by confinement® or friction with a substrate®.
At large activity, all liquid-crystalline active fluids display
turbulent-like dynamics with a proliferation of topolog-
ical defects. Polar fluids with vectorial order parameters

Box 1| Topological defects in passive and active ordered fluids

Topological defects are special zeros of the order parameter field. They
are point-like in 2D liquid-crystalline media and are classified by their
winding number or topological charge s=A®/2n (also see Eq. (1)),
where A® is the net angle through which the order parameter rotates as
one encircles the defect. The charge v is positive if the order parameter
rotates in the same direction as the path traversed and negative if it rotates
in the opposite direction. In a 2D XY magnet, the order parameteris a
vector field and the lowest-charge topological defects are asters and
vortices (both with s=+1), and anti-vortices or cross hairs (with s=-1),
as shown in part a of the figure. In a nematic film, the broken symmetry
identifies only orientation (not direction) and the order parameter is a
line field, and the lowest energy defects are disclinations with s=+1/2
(part b of the figure).

In 2D passive liquid crystals, two defects of strength s, and s; and
separation r; interact via a Coulomb potential, mediated by nematic
elasticity (K) and cut off by the defect core size (a):

|'}'j|
V(ry) = 2rKs;s; In| —
a

In 2D active nematics, defects behave like quasiparticles ‘dressed’ by the
active flows they produce®****?. Such a description is appropriate deep in
the nematic regime, where the defect core size (a) is the smallest length

a Polar order: vector field c

S N N\
1 /.>\f¢ Wz VA
™ RN N
s=+1 s=+1 s=-1
b Nematic order: line field
—_— /o)
,_//// ?/:'i\\
s=+1/2 s=-1/2 core

scale in the system. The flow generated by a +1/2 defect is finite at the
core, rendering the defect a self-propelled particle with a well-defined
polarization (e,), as shown in part d of the figure. On the other hand, the
flow generated by a —1/2 defect vanishes at the core. To leading order in
activity, defects interact via the same Coulomb force as in the passive case
but also exert active torques on each other. Defects in active nematics,
therefore, behave as an interacting mixture of active (+1/2) and passive
(-1/2) charged quasiparticles®.

Defects with s=-1/2 generate a flow that vanishes at their core and are,
thus, passive particles to leading order in activity; defects with s=+1/2
generate a flow that is finite at their core, rendering them self-propelled
particles with velocity v, . ~ |a|, where a is the strength of the active
stresses (part c of the figure)**3%“,

Bulk active nematics support topologically neutral disclination loops that
smoothly interpolate +1/2 and —1/2 defect textures in local cross sections
of the loop. The £1/2 wedges are equivalent in 3D by escape into the third
dimension. The simplest of such wedge—twist (W-T) loops is characterized by
arotation vector (Q2) in the plane of the loop (y=m/2), making an angle S with
the local tangent (t) (see part e of the figure). Like their 2D counterparts, such
disclination loops generate local active flows that drive complex dynamics in
3D bulk active nematics®’.

Figure part d adapted with permission from REF.*’. Figure part e adapted
with permission from REF*".

d
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Table 1| Models of active fluids

System

Active polar fluids, such
as polar fluid composed
of colloidal rollers

Active nematic fluids, such

Chiral active fluids, such as
colloidal spinning magnets

as a microtubule—kinesin film

Particles Order parameter

Polar: Collective polar order:

self-propulsion  vector order parameter 0,p+VV-
speed v, P= (ziﬁis(r — ri)>

vV, /
[ 4

S
77

Apolar: Nematic order: tensor order
exerts force parameter (in d dimensions)
dipolea~fl Q= (5@~ 2)o(r—r))

+f1A/i

S
77

V-u=0

Scalar active
particle with
no alignment

Phase separation: scalar
order parameter, the density
difference between liquid
(p,) and gas (p;) phases

p=(S8r-r))., ¢ = %

.
V¥,

¢

Chiral active Collective chirality: scalar

Example model

Toner-Tu equations®***:

3P +AP-VP=[a,—q,|P['IP
+KV?P - VI

Incompressible hydrodynamics
of nematic order (Q) coupled with
flow (u) driven by an active stress
(0,=aQ)*:

0,Q+u-VQ+w,Ql=
AE +[a, - q,5°]1Q +KV*Q,
11V2u—1"u+V- g, —VII=0,

Motility-induced phase separation
described by Cahn-Hilliard dynamics

involving the density (p)**:
9,p=V -[D(p)Vyl,

p=Inlpvip)] + x(p) V2p

Hydrodynamics of an isotropic chiral

Model notes

v, and A are active parameters
capturing advection; a,

and a, control the ordering
transition; K is an elastic
constant; and I[1(p) a
density-dependent pressure

(pP)=0,

Force balance involves
friction (I), viscosity () and
pressure (I1); E and w are the
symmetric and antisymmetric
parts, respectively, of the
strain rate tensor (Vu);

Ais the flow alignment
parameter; nematic ordering
[S?=tr(Q%d/(d - 1)]is
controlled by a, and a,; and K
is the elastic stiffness

The effective chemical
potential ¢ includes the
density suppression

of motility v(p) and
nonintegrable gradient
terms (k'(p) # 0); density also
suppresses the diffusion
constant (D« [v(p)]?)

Besides regular viscosity (1)

particle field, the intrinsic rotation active fluid in 2D, including density and friction ('), odd viscosity
self-spinning frequency Q=(X.Q.d(r-r))  (p),flow (u) and the internal spin (11,) and rotational viscosity
atrate (),in 2D density (€)1%%17° (175) are also present, the latter
Q 9,p+V-(pu)=0, in the antisymmetric stress;
2 chirality enters through terms
@ du=nV'u-Tu involvingu, =2 X uand the
+,VL(2Q - w) + WOVZUJ_ _VII, vorticity w = zZ. (V_ xu); the
active torque (1) injects
0,Q=1-T,Q - 211,(2Q - w) spin into the fluid, which is

+D,V2 Q)

damped by spin friction (T')
and diffusion (D)

f. active force; ¢, particle length; £, orientation or direction of propulsion of particle i. Polar fluids image adapted from REF.*, Springer Nature Limited. Nematic
fluids image adapted from REF’, Springer Nature Limited. Scalar active matter image adapted with permission from REF.?**. Chiral fluid image adapted from REF.""%,

Springer Nature Limited.

Colloidal rollers

Micron-sized dielectric spheres
suspended in an ionic solvent
that can undergo an electro-
hydrodynamic instability
(Quincke instability), causing
the spheres to spontaneously
roll upon the application of a
strong enough DC electric field.

exhibit defects that are characterized by an integer topo-
logical charge, such as vortices and asters. In contrast,
the inversion symmetry of nematic order means that the
order parameter maps onto itself after a winding of only
180° around the defect core (the small, roughly circu-
lar, region of space that surrounds the defect centre and
in which the nematic order parameter vanishes). Thus,
defects with half-integer charge known as disclinations
(TABLE 1) are allowed. Because the energetic cost of a
defect is proportional to the square of its charge, +1/2
disclinations are the lowest-energy defects in nematics;
they are not allowed in polar (vector) fluids. The pres-
ence of +1/2 defects, therefore, provides a fingerprint of
the apolar nature of the broken symmetry and a criterion
for distinguishing nematic from polar order.

Asters and vortices have been observed in high-density
motility assays*”®, confined and membrane-bound
reconstituted cortical extracts>**** and suspensions
of colloidal rollers motorized by an electric field®.
Nematic disclinations have been identified in systems
including cytoskeletal filament-based active nematic
suspensions”**¢>*, collections of living cells**~"? and
even multicellular organisms”. In recent years, topo-
logical defects have been the focus of intensive research,
particularly in active nematics®. Such systems exhibit
self-sustained and spatiotemporally chaotic large-scale
flows accompanied by the spontaneous proliferation
of topological defects. It is, therefore, natural to ask
whether the chaotic dynamical state of active nemat-
ics can be understood from the perspective of defect
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unbinding and whether the equilibrium BKT transition
has an analogue in the active realm.

In both passive and active liquid crystals, distor-
tions of orientational order generate flows, and flows,
in turn, deform the ordered state. The key distinction
between passive and active systems is that, in pas-
sive systems, flows and deformations are generated by
applying external fields or via boundary conditions.
Such flows are transient: the system always relaxes to
the equilibrium (ordered) state upon removal of per-
turbations or constraints. In active systems, by contrast,
flows and deformations are internally generated and
self-sustained. In 2D, bulk active nematics are generi-
cally unstable to bend or splay deformations generated
by local active fluctuations”. As these distortions grow
in time, they generate flows that further enhance the
deformations, ultimately generating unbound pairs
of topological defects. Such spontaneously generated
defects are themselves strong distortions of orientational
order and yield distinctive flow patterns*>”*. This inti-
mate connection between defects and flows offers the
opportunity to direct and localize nonlinear active flows
by controlling the dynamics of topological defects™”>".
There is evidence that biological systems may exploit
this connection between structure and dynamics, and
use defects to localize stresses and perform specific bio-
logical functions’~">""-*". These subjects are the focus of
the rest of this section.

Spontaneous motion of active defects. One of the dis-
tinguishing aspects of defects in active matter is their
capacity for spontaneous and autonomous motion. The
large distortions of the order parameter around a topo-
logical defect generate local active flows, the symmetry
and profile of which are controlled by the defect geom-
etry. In particular, in 2D active nematics, the comet-
like +1/2 defect (BOX 1) generates a flow that is finite
at the defect core. The +1/2 defect then rides along with
the flow it generates, behaving like a self-propelled polar
particle*>®'. In contrast, the flow generated by a —1/2
defect vanishes at the defect core, owing to the defect’s
threefold symmetry (BOX 1), and to leading order in
activity, such a defect remains a ‘passive’ particle. The
direction of motion of the +1/2 defect is determined
by its local orientation or polarity and by the sign of
the active forcing. Active stresses that cause material
extension along the ordering axis are called ‘extensile}
whereas those that contract along the same axis are
called ‘contractile’ In extensile fluids, +1/2 defects
actively propel themselves along the head of the comet,
while in contractile systems, the active propulsion is
directed along the comet’s tail. If chiral active stresses
are present, +1/2 disclinations self-propel instead at an
angle relative to their polarity*>*, and intrinsic active
spinning renders defect trajectories circular®. In polar
fluids, spiral vortices of charge +1 undergo spontaneous
rotation® owing to the chirality of their spiral texture.
Other low-charge defects, such as circularly symmetrical
asters and anti-vortices, perform neither rotational nor
translational spontaneous motion. In contrast to defect
motion in externally driven systems, the motion of active
defects is dictated by the local geometry of the defect

itself and not by a fixed external field, as would be the
case, for example, for driven vortices in a superconduct-
ing film. This profound distinction leads to a plethora of
phenomena characteristic of active matter.

Defects can also occur in 3D active suspensions,
but they are less well understood. As in 2D, bulk active
nematics in 3D are susceptible to a generic hydrodyna-
mic instability” that spontaneously generates individual
charge-neutral disclination loops*~** (BOX 1). Unlike in
2D, where topological charge conservation constrains
point defects to be created and annihilated in pairs of
opposite charge, in 3D, charge-neutral disclination
loops'* can be nucleated on their own. The active flows
caused by the director distortion around such a discli-
nation loop cause it to stretch, twist and buckle®. The
complex configurational dynamics of these loops com-
bined with topological reconnections leads to chaotic
3D flows that have been observed in simulations®>*
and experiments”. Similar ideas have been extended
via theoretical work to chiral phases such as bulk active
cholesterics®~". In the case of cholesterics, A-lines, which
are defects in the cholesteric pitch with no director sin-
gularity at their core®, and other nonsingular topological
textures called half-skyrmions or merons” can sustain
coherent rotations and steady defect patterns along with
spatiotemporal chaotic flows, even though these defects
are not self-propelled.

Defect dynamics, unbinding and ordering out of equilib-
rium. From a fundamental point of view, defect motil-
ity raises intriguing possibilities for phase transitions.
The consequences of defect self-propulsion have been
explored predominantly in 2D active nematics®**>7+8%2,
The defect-driven chaotic flows lead to a state dubbed
‘active turbulence”*”, which is characterized by vorticity
and shear flows on a typical length scale that controls
the mean defect separation and is set by a balance of
active and elastic stresses®®’**~%. The phenomenology
and scaling properties of active turbulence have been
reviewed in recent years™*”. Here, we focus on the topo-
logical aspects of active turbulence and sketch the phys-
ical arguments underpinning the unbinding of active
defects™.

In passive liquid crystals, defects in 2D behave as
point charges that interact via a Coulomb potential. This
pair interaction is mediated by the underlying elasticity
of the ordered fluid and scales as KIn(r/a), where r is
the pair separation and a the defect core size (TABLE 1).
In a 2D active nematic, an isolated +1/2 disclination pair
continues to experience the passive attractive force ~K/r
from elasticity, but, in addition, for certain configura-
tions, such as that shown in BOX 1, the +1/2 defect can
propel itself with speed ~v, away from the —1/2 defect.
The balance of elastic and active forces sets a length
scale r_~ K/v,, beyond which activity always rips apart
the defect pair, causing it to inevitably unbind. This
simple picture is spoiled by the fact that +1/2 defects
do not travel in a straight line. Instead, their direction
of motion is affected by rotational noise and changes
in the local nematic structure. Because the motility of
+1/2 disclinations is determined by their local geometry,
the +1/2 defect has a finite persistence length £,=v,7,,
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Geometrical confinement of defects

20 um
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Defects in cellular nematics
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B Actin
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<« Fig. 1| Dynamics of defects under confinement. a,b | Geometrical confinement of
defects. Circulating +1/2 defects in a microtubule—kinesin active nematic film confined
to a disc (200 um), with more pairs of defects unbinding to create turbulent flows for
large disc diameters (800 um) (part a); the same system now condensed onto a spherical
vesicle exhibits periodic oscillations of the four +1/2 defects present (part b). ¢ | Schlieren
texture of a colloidal polar fluid in a disc geometry displaying a system-spanning vortex
(left) and a pattern of pinned vortex—anti-vortex pairs (right) induced by randomly located

obstacles'"

.d | Active £1/2 disclinations have been identified in aligned populations of

spindle-shaped mouse fibroblasts. e,f | Cells accumulate at the cores of +1/2 defects and
deplete at the cores of —1/2 defects (part e). The +1/2 defects seed mound formation in
dense monolayers of neural progenitor cells. Similar defects in epithelial monolayers of
Madin-Darby canine kidney (MDCK) cells (part f) generate large compressive stresses

(in blue) only at the head of +1/2 disclinations that locally trigger cell extrusion and
apoptosis’’. Part a adapted with permission from REF.'*°, Part b adapted with permission
from REF.**. Part c adapted with permission from REF.'**. Part d adapted from REF.%,
Springer Nature Limited. Part e adapted from REF.’?, Springer Nature Limited. Part f
adapted from REF."%, Springer Nature Limited.

Smectics

Describes a type of liquid
crystal in which molecules
order in periodic layers; each
layer behaves like a fluid in
its plane.

Focal conic domains
Characteristic defects seen in
smectic liquid crystals. They
occur when equidistant layers
of the smectic form geometric
structures consisting of nested
surfaces generated by conic
sections, the foci of which lie on
a curve given by the conjugate
conic section.

beyond which its motion is not ballistic, where 7, con-
trols the rate of rotational noise from active processes.
Comparing this persistence length with the length scale
r.at which pair attraction and defect propulsion balance
yields a simple criterion for active defect unbinding®.
Defect pairs unbind if £, > r,. Conversely, when £, <r,,
the +1/2 defect changes its direction of motion before
overcoming Coulomb attraction, resulting in a local
change of the nematic texture that allows the pair to
remain bound. It is interesting to note that, in this situ-
ation, the rotational noise stabilizes the quasi-ordered
nematic phase below a finite activity threshold by dis-
rupting the persistent motion of the +1/2 defect. This
order-from-disorder mechanism highlights the differ-
ence between active and driven defects: in purely driven
systems, the latter inevitably unbind under the action of
any external field because nothing disrupts their straight
line motion.

Above a critical value of activity, the BKT-like
unbinding yields an interacting gas of unbound defects
that swarm. This gas provides a useful picture to
describe the state of active turbulence. Several mod-
els of varying complexity have been proposed for the
dynamics of active defects®*>¢+8-%-12 Although details
differ, the basic physics is the same: the unbound defect
gas is a mixture of self-propelled (the +1/2 defects)
and passive (the —1/2 defect) charged particles that
interact via Coulomb forces. More recent work has
also emphasized the non-reciprocal nature of active
defect interactions'>'®*, although its detailed conse-
quences remain to be explored. Coarse-graining over
many defects allows a hydrodynamic description of
the active defect gas®'*, along the lines of previous
classic works in the context of superfluid vortices'®
and 2D crystal melting'®. Importantly, a hydrodyna-
mic treatment of defects offers a theoretical handle on
the strongly interacting many-body dynamics of this
far-from-equilibrium system.

As a crucial ingredient, this description includes a
polarization field that captures the average orientation
of a collection of active +1/2 defects. This field accounts
for self-propulsion actively driving material flow; fur-
thermore, being a vector, the orientation of the field also
experiences active torques. When activity is sufficiently
strong, and viscous stresses are negligible compared

with frictional dissipation with a substrate, the +1/2
defects spontaneously condense into a polar-ordered
collectively moving state — a defect flock”. The fleet-
ing defects constantly turn over owing to creation and
annihilation events, but polar order persists for infinitely
longer than the individual defect lifetime. Heuristically,
such a state arises when the underlying nematic elasticity
is too slow to relax the distortion created in the wake of
an unbinding defect pair. Similar defect-ordered states
have been observed previously in simulations, either
with polar ordering'”~""? or defect lattices'". In addi-
tion, a nematic ordered defect state has been observed
in experiments on active nematic films consisting of
microtubules and kinesin'”’. Although continuum
simulations recover largely transient nematic defect
ordering'''?, this observation continues to be a the-
oretical puzzle. Work published in 2020 suggests that
elastic torques may play a role in antipolar ordering of
defects' >,

Finally, vortex unbinding has been shown to also
play a role in disordered polar active fluids'"®. In such
fluids, active flows conspire with quenched obstacles
to realize a dynamic vortex glass that can be explained
through an effective BKT-like argument, in analogy
with dirty superconductors. How to generalize similar
ideas to active matter in heterogeneous environments''®
remains an open question.

Active defects under confinement. The direct connection
between defects and active flows offers new avenues
for rectifying and controlling the spontaneous chaotic
dynamics of active nematics (FICS 1,2). Doing so would
pave the way to develop active microfluidic devices using
these systems'"’. Active nematic films built by depleting
microtubule bundles and kinesin motor complexes onto
an oil-water interface” have emerged as a versatile plat-
form to manipulate defects by controlling the material
properties and structure of the supporting interface. One
simple approach for such control is to tune the visco-
sity of the oil layer that hydrodynamically constrains the
nematic flow''®. Other techniques involve using more
structured environments that can be controlled by
external fields and themselves patterned with defects,
such as by using bulk smectics as a substrate for active
nematics’'" (FIG. 2b). For example, when in contact with
the active nematic layer, focal conic domains in the smec-
tic cause the active disclinations to swirl along circular
trajectories”. In 3D, active drops in a passive nematic
fluid can also entrain and activate the dynamics of pas-
sive defects, such as ring disclinations in the surround-
ing nematic'**'*!. These methods provide a neat way to
rapidly reconfigure and channel flows in the system by
rectifying defect motion.

Physical confinement has also been studied, par-
ticularly in the disc geometry. Spiral vortices were first
stabilized in bacterial suspensions by confinement'*>'*,
although their size was limited ($80-100 um) by their
intrinsic instability towards turbulence. High solvent
viscoelasticity can ‘calm’ active turbulence and allow
larger, millimetre-scale bacterial vortices that exhibit
both coherent and globally oscillating flows'**. Another
example is polar fluids of colloidal rollers, which lack
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the hydrodynamic interactions that cause bacterial
turbulence. These fluids self-organize into a macro-
scopically stable vortex pattern when confined to cir-
cular tracks®. They also exhibit states consisting of
pinned vortices in the presence of quenched disorder
in the substrate'"® (FIC. 1¢). Another system that develops
steady circulating flows when strongly confined to discs

45 50pm

Time (min)

Fig. 2| Controlling and patterning defects. a | Directing vorticial polar flows of bacteria
dispersed in a nontoxic liquid crystal patterned with a periodic array of alternating

+1 defects (upper panel). The bacteria take counterclockwise trajectories around the
defects (lower panel). b | A passive bulk smectic aligned by an external magnetic field
couples hydrodynamically to an adjacent microtubule—kinesin active nematic film, forcing
defects to orient and flow along alternating shear bands (scale bar: 100 um). ¢ | Patterning
a tissue of human fibroblast cells (HDF) growing on a liquid crystal elastomer with a
predesigned texture of +1 defects (scale bars: 300 um). d | Time series of dynamically
assembled asters transported by local light activation along a predetermined trajectory
within a bulk microtubule—kinesin suspension. Part a adapted with permission from REF."**.
Part b adapted with permission from REF.'*°, Part c adapted with permission from REF."*,
Part d adapted from REF.*, Springer Nature Limited.
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is microtubule-based active nematics, though, in these,
the steady flow is driven by a pair of +1/2 defects (as topo-
logically required) that nucleate at the boundary and
orbit around each other'*>'*°. For large disc sizes, more
defects nucleate and unbind in the bulk, degenerating
into active turbulence (FIC. 12). Finally, laterally confined
nematics support shear states into which +1/2 defects are
continually injected, as the defects swim around each
other in a dancing fashion'*'*. Although experiments
and continuum simulations agree well in many regards,
there are discrepancies in predictions related to defect
nucleation and steady flow states in confined nematics'*,
suggesting that more theoretical work is required.

Another way to control the dynamics of active fluids
is to confine them using curved substrates. Curvature
frustrates order and often necessitates defects', pro-
viding a means of patterning active fluids. Nematics
assembled onto spherical vesicles must accommo-
date a net topological charge of +2, as required by the
Poincaré—Hopf theorem?>'*’. In equilibrium, for equal
bend and splay elastic constants, the configuration lowest
in energy corresponds to four +1/2 defects located at
the corner of a tetrahedron inscribed by the sphere'**'*.
In active nematic vesicles, the four defects are motile
and oscillate coherently between two equivalent tetra-
hedral configurations, driving spontaneous cell-like
shape oscillations®***'* (FIC. 1b). On a torus, the spatially
varying positive and negative Gaussian curvature causes
defects to unbind, attracting disclinations to regions of
matching sign curvature®, thereby filtering them by
charge. On a sphere, polar fluids instead form vortices at
the poles and a distinctive polar band that concentrates
near the equator as a result of active advective fluxes
pushing material towards the equator'**'*.

Experimental advances and defect-based control of
active matter. A further challenge in controlling active
matter is to engineer reconfigurable and program-
mable materials. A key strategy to this end is to use
topological defects as natural motifs to build dynamic
structures with organized flow. Biocompatible liquid
crystals perfused with swimming bacteria afford simple
static control through pre-patterned topological defects
(FIC. 2a) that capture bacteria and direct their collective
motion based on topological charge'*>'*°. A related strat-
egy has also been employed more recently to pattern
defects in aligned epithelial monolayers (FIC. 2¢) grown
on structured substrates with strong anchoring'*”'*.
Advances in optical control of biomolecular activity
provide a platform to dynamically control and pattern
active materials at will”>’>'*. This has been demonstrated
in microtubule-kinesin-based gels”®, in which local light
activation reversibly self-assembles 3D asters that are
dynamically stabilized by the clustering and polarized
motion of motor proteins. These defect structures can
be moved and arranged in arbitrary patterns in both
space and time (FIG. 2d). A similar strategy has also been
employed in active nematic films to locally pattern active
stresses and direct defect motion using spatiotemporal
activity gradients”. Inhomogeneous activity profiles
can act as ‘electric fields’ that sort defects by topological
charge”, primarily owing to the self-propulsion of +1/2
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Poincaré—Hopf theorem

A theorem in differential
geometry and topology (also
colloquially called the ‘hairy
ball theorem’) that relates the
number of zeros of a tangential
vector field on a closed surface
to the Euler characteristic of
the same surface.

Bend and splay elastic
constants

Material constants of a liquid
crystal that quantify the energy
cost of distorting orientational
order through bend or splay
deformations, respectively.

Morphogenesis

The process by which
biological tissues, organs

and organisms acquire their
distinct shapes over the course
of development.

Actomyosin

A complex of biopolymer
filaments called actin,
molecular motors called
myosin and associated
proteins. Actomyosin is
commonly found in the
cytoskeleton and cortex
of cells, and is responsible
for generating contraction,
particularly in muscle.

Myoblasts
A type of embryonic stem cell
that gives rise to muscle cells.

Mitotic spindle

A self-assembled cytoskeletal
structure, consisting largely

of stiff biopolymers called
microtubules and a host of
molecular motors and proteins,
that plays a key role in
eukaryotic cell division for
segregating chromosomes

to the two daughter cells.

Actin treadmilling

A dynamic process relevant to
cell motility and crawling, by
which cytoskeletal filaments
such as actin get continually
disassembled at one end, while
monomer units are added at
the other end.

Oocytes

Immature egg cells or germ
cells involved in sexual
reproduction.

Bulk gap
The region of frequency space
where bulk modes do not exist.

disclinations that accumulate in regions of low activity,
unlike non-motile —1/2 disclinations. This sorting can
be exploited to create defect patterns in active fluids and
concomitantly design functional materials with targeted
transport capabilities. Defect-based control is poised to
create innovative active metamaterials in the future’'*’,
possibly facilitated by data-driven techniques''~'*.

Biological relevance of topological defects. An exciting
development in active matter has been the characteri-
zation of topological defects in living tissues, bacterial
colonies and even in multicellular organisms viewed
as active materials. Elongated cells can form ordered
liquid-crystalline textures interrupted by +1/2 disclina-
tions. In confluent epithelial tissues” and dense cultures
of neural progenitors™, cells preferentially migrate and
accumulate at +1/2 disclinations and escape from —1/2
disclinations (FIC. 1¢). This behaviour originates from
the large distortion of order around the defect, which
generates strong local active stresses (FIG. 1. These large
compressive stresses drive cell response and ultimately
lead to cell extrusion and death in epithelia”. The struc-
ture and role of these active stresses have been confirmed
by direct traction force microscopic measurements
and by comparison with simulations of active nematic
hydrodynamics. Similar phenomena have also been
reported in bacterial systems. In growing biofilms, —1/2
defects instead provide sites for mound formation and
buckling”, and geometrically patterned +1 asters have
been suggested to support verticalization®. Motile bac-
teria also display related behaviour: for instance, starved
myxobacteria use +1/2 defects to seed multilayers and
cavities to initiate fruiting body formation”, while slow-
moving Pseudomonas aeruginosa cells outcompete faster
mutants, as the latter form jams at defects, which hinders
their ability to colonize space’.

Another exciting frontier is the role of defects in organ-
izing tissue morphogenesis. In the context of developing
Hydra™, topological defects in aligned supracellular
actomyosin have been shown to correlate with specific mor-
phogenetic processes in regenerating tissue. Remarkably,
along with motile +1/2 disclinations, stable +1 defects
emerge at locations that coincide with the eventual mouth
and foot of the organism, thereby defining the body axis
well before morphological features appear. In vitro experi-
ments with confined myoblasts show tornado-like mound
morphogenesis at patterned +1 asters that provide sites
for growth and cellular differentiation'**'**. Active defects
also control the dynamic morphologies of growing cell
layers'*, 2D bacterial colonies'*"'* and shape-shifting
active shells'”’. General principles to unify these obser-
vations are not yet known, but these results suggest inter-
esting ways in which active defects can constrain or be
harnessed to serve diverse evolutionary, developmental
and survival strategies.

On a subcellular level, the mitotic spindle exempli-
fies a self-organized aster-like defect maintained in
constant flux by actin treadmilling and motor activity'*’.
In a different example, in vivo experiments on starfish
oocytes also demonstrate excitable biochemical spiral
waves and defect chaos in the expression of certain
membrane-bound signalling proteins'*'. Although the

full implications of topological defects to biology remain
to be seen, it is clear that this framework for studying
biological systems is productive and at the frontier of
active matter research.

Topological band structures in active matter

The topological defects discussed above are robust
features of the order parameter of active media. We now
turn to topologically protected waves, the robustness of
which stems instead from their band structures. In gen-
eral, a band structure describes the frequencies at which
waves (such as sound modes) are allowed to propagate
as a function of their wavevectors, along with the way the
system vibrates at a given frequency. Frequency ranges in
which waves are not allowed to propagate are called band
gaps. As a simple example, consider a ring filled with air
or any other fluid at rest. The clockwise and counter-
clockwise modes that correspond to density waves in
the ring are degenerate, resulting in a point where the
bands ‘touch’ in a lattice of such ring resonators. If a fan
that circulates the air in a given direction is added to
each ring, the degeneracy is broken (a bit like a spinin a
magnetic field). As a result, a lattice of such circulators
exhibits a band gap rather than a degeneracy**.

The lattice of circulators exhibits two somewhat sur-
prising properties characteristic of a class of materials
called Chern insulators'>'. First, there are so-called edge
states, which have frequencies in the bulk gap, the existence
of which is guaranteed by topological invariants in the
band structure. Second, these edge states propagate only
along the boundaries of the material and — because the
states arise from broken TRS — only in a single direction.

The construction of the topological invariants
controlling this robust edge wave propagation can be
intuited via a simple mathematical analogy. When the
intrinsic (Gaussian) curvature of a toroid is integrated
over the entire surface, the result must always equal
zero, independent of the precise shape. This is an exam-
ple of the Gauss-Bonnet theorem'”, which relates the
integrated Gaussian curvature of a closed 2D surface
to its genus. This powerful theorem makes it possible to
calculate global topological features of a smooth surface
from purely local geometric quantities. Analogously, the
topological invariants of band structures are obtained
by integrating an abstract curvature describing the
geometry of eigenvalues and eigenvectors for the linear
operator that governs wave propagation (BOX 2).

Here, we review the explanation for how topological
band structures result in topologically protected modes
at the boundary of a finite sample or at interfaces between
systems with topologically distinct band structures. At
an edge, the Chern number must go from its value in
the bulk of the medium to zero (its value outside of the
sample). This change cannot happen smoothly because
the Chern number is an integer. Instead, the condition
for defining a Chern number, namely, that the system
is gapped, must cease to be valid at the edge, giving rise
to confined wave propagation. The edge states resulting
from this mechanism exhibit topological protection: they
persist even if the properties of the medium are changed,
as long as the bulk gap is not closed. As a consequence,
the states exist even if defects, obstacles or sharp features
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Box 2 | Topological band theory in active fluids

Upon linearization, the hydrodynamic models presented in TABLE 1 a
generically yield equations of the form

9,X =DX, €)

where D is a matrix and X is a vector containing the departure

of the hydrodynamic fields from their steady-state values (for
instance, X=(p—p,, u) combines the velocity field u and deviations
of density p from steady-state value p, for a chiral active fluid with
fixed rotation Q). Equation (3) can be solved by performing a
Fourier transform in space and time (that is, X(t,r) » X e“97). As an
example, consider the spectrum of a chiral active fluid experiencing
a Coriolis force f;=Quu, that breaks time-reversal symmetry'®

q, q
plp, IR (V2

iw|u,/c|=i|9% 0 ~UQg = 1,0y, /c|, 4
u/e| g, iQ5-1,4") 0 u,/c

where 77, denotes the odd viscosity coefficient discussed in the main text
and TABLE 1. Diagonalizing D(q) in Eq. (4) yields its eigenvalues (plotted in
black in part a of the figure), which, in turn, yield the dispersion relations
w,(q) for band n. The associated eigenvectors X (q) can be used to
determine the relevant topological invariant using a standard recipe
(see REFS'7*** for proofs and generalizations to systems with different
spatial dimensions and symmetries).

First, calculate the so-called Berry connection A ,(q) from the
eigenvectors (in a similar fashion to how one calculates the so-called spin
connection of a surface?*®):

A (@) =iX(@]" - [VX, (). (5)

Second, determine the Berry curvature (as one would determine the
Gaussian curvature from the spin connection”®):

B,(@) =Yy x A (). ®)

Third, obtain the relevant topological invariants, called the first Chern
numbers C, (REF?°) (one per band) using a generalized Gauss-Bonnet
formula. These topological indices can be seen as a generalization of the
Euler characteristic of a surface'?*”*°, but with the Gaussian curvature
replaced by the Berry curvature:

1
C.=— | dq B.(q). 7
=5 [ daB@ %

T

In the example discussed here, the first Chern number of the band with
positive frequencies is'®:

C, =sign(Qg) + sign(qo). (8)

The existence of non-vanishing first Chern numbers has striking physical
consequences at the boundary of the system. In many cases, the algebraic
number N of unidirectional modes with frequencies in the bulk band gap
at an interface between two systems with Chern numbersC and C’ is
given by:

N=C-C. 9

This relationship is called the bulk-boundary correspondence. Here,

N is the number of modes propagating along the interface from left to
right (or clockwise), minus the number of modes going from right to left (or
counterclockwise). The band of these chiral edge states is shown as a green
line (with positive slope) spanning the band gap in part a of the figure. One
example of a specific edge state is shown in part b of the figure, which was
obtained by driving the edge at a frequency within the band gap in a fluid
dynamics simulation'.

The Gauss—Bonnet formula directly gives the genus only of compact
surfaces without boundary. Similarly, the first Chern numbersin Eq. (7) are
defined only under certain conditions: the band n should be well separated
from the others by band gaps, and momentum space should be compact.
These conditions hold for fluids under periodic confinement* or subject
to substrate curvature'**'*” but they are not generally guaranteed in fluids.
As a consequence, the bulk-boundary correspondence does not always
hold*®%171=174176 |n our example, it is possible to compactify momentum
space to get well-defined Chern numbers, as long as 7, is non-zero. When

11, vanishes, subtle effects can occur that require thinking outside of (this)
b0X168,171—174‘17h,178!

Figure adapted with permission from REF.*%,

such as corners are present along the boundary. The
waves propagate unabated through and around these
obstructions without any backscattering: they cannot go
back because the edge mode is unidirectional, and they
cannot penetrate the gapped bulk.

Topological wave propagation is not unique to
active media. Besides optical and quantum systems'**,
it can also occur in mechanical systems, such as cou-
pled oscillators”'*>'>* and simple fluids in circulator
arrays>*. Similar consequences ensue by harnessing
active components to induce nontrivial band topol-
ogy. As examples, a topological solid can be realized
using ball-and-spring models with active feedback
control'™*'** or by connecting motorized gyroscopes
with springs'**'*. The combination of the rotation of
the gyroscopes and the geometry of the lattice breaks
TRS and leads to a mechanical Chern insulator with chi-
ral edge states at its boundary. These persist even when

some of the gyroscopes are removed or immobilized.
We illustrate the occurrence of topological waves in two
classes of active fluids: polar active fluids composed of
self-propelled particles and chiral active fluids composed
of self-rotating particles.

Topological states in confined polar active fluids. Polar
fluids naturally break TRS through spontaneous flows,
which can be directed by geometric confinement to
realize emergent chirality and topological edge states.
We begin with the example of a polar active fluid con-
fined in periodic microfluidic channels® (FIG. 3a—c). The
channel geometry is composed of coupled rings, each
reminiscent of an acoustic ring resonator'* (FIG. 3d).
Although the fluid itself is polar and achiral, because it is
confined in a ring, the fluid has a spontaneously broken
chiral symmetry, which distinguishes between clock-
wise and counterclockwise spontaneous flow®!241¢0:161,

NATURE REVIEWS | PHYSICS

VOLUME 4 | JUNE 2022 | 389



REVIEWS

Galilean invariance

The principle that constant
boosts in velocity leave the
system unchanged.

For a periodic geometry of rings on a square lattice'®,

TRS is restored on average, because the neighbours of a
clockwise ring must be counterclockwise and vice versa
(in analogy with interlocking gears), so there is an equal
number of clockwise and counterclockwise rings. By
contrast, removing a single ring from a 2 x 2 supercell
of the square lattice results in a so-called Lieb lattice,
which has three rings per square unit cell in an L-shaped
pattern (FIG. 3b). In this case, TRS is broken on the scale
of the unit cell.

This difference between the square and Lieb lattices
has drastic consequences for density waves. Owing to the
presence of TRS, the square lattice has band crossings
at certain symmetrical wavevectors. By contrast, TRS is
broken in the Lieb lattice and band gaps open®. Each
of these gapped bands indexed by n can be assigned a
Chern number C,, (BOX 2), the value of which is gener-
ically non-zero, and is controlled by both the chirality
of the flow and the geometry of the lattice. Note that,
in other lattices (such as a honeycomb lattice), it is also
possible to obtain topological states without a net unit
cell vorticity'® (FIC. 3¢). In the limit in which the speed
of flow v is smaller than the speed of sound ¢, the pen-
etration depth for the localized mode scales as cd/v
(where d is the lattice spacing), approaching d if v=c¢
(REF.*). In contrast to driven fluids****, in which achiev-
ing this condition requires moderate Mach numbers or
resonances, active fluids afford independent control of
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flow and sound speed, both of which are typically of the
same order in experimental realizations™'**. As a result,
active fluids host well-confined edge modes with pene-
tration depth on the order of lattice spacing. This feature
may be technologically advantageous in the design of
miniaturized sonic waveguides'>'%>'%,

Instead of periodic confinement, it is possible to use
substrate curvature to produce topological edge states in
polar active fluids'** (FIG. 3¢). Gaussian curvature coupled
with mean flow breaks Galilean invariance and generically
gaps long-wavelength sound modes that acquire a topo-
logical character owing to the absence of TRS. On the
surface of a sphere, a polar active fluid spontaneously
circulates around the equator in a chiral fashion'*>'*,
experiencing an active analogue of the Coriolis force
that likewise changes sign across (and vanishes at) the
equator. Passive fluids on a rotating sphere, common
in geophysical and atmospheric contexts, also exhibit
well-known equatorially localized topological sound
modes'®” due to the inertial Coriolis force (FIG. 3f,g).
In both cases, the equator acts as a gapless interface
between two topologically distinct hemispheres. As a
result, density waves in a polar active fluid on a spher-
ical surface exhibit unidirectional propagation and
topological protection along the equator, in addition to
the polar fluid flows'**. This phenomenon is generic
to active flow on any surface with non-zero Gaussian
curvature and leads to long-wavelength topological

p/p,

Fig. 3| Topological edge states in fluids far from equilibrium. a,b | Pheno-
menology of topological edge states in a polar active fluid confined inside
a Lieb lattice of annuli. Steady-state flow in terms of the azimuthal compo-
nent of the velocity field v, normalized by the self-propulsion speed v,
(part a) and topological density excitations at edges and interfaces of the
lattice (part b) are shown. c | A polar active fluid with topological edge states
but no net vorticity per unit cell. d | A topological material based on air
driven within circulators, in which each unit cell has a net vorticity. Colour
indicates the normalized pressure p. e | Topologically protected states arise
at the equator in a polar active flock confined to the surface of a sphere (left)
or a catenoid (right). f,g | Topological waves like those in part e arise on the
scale of the Earth. The Earth has rotation vector Q. At any point on its sur-
face, the Coriolis parameter is f=2Q - i, where 1 is the normal to the

surface, and eigenmodes with wavefunction ¥, are found in the space
(k, k. f), where a sphere S surrounds the origin. The equator serves as
a boundary along which geophysical waves are topologically protected
by a Berry monopole that exists owing to the Earth’s overall rotation.
h | Boundary conditions that do not satisfy bulk—-boundary correspondence
can be exploited to create perfect absorption: a wavepacket of density
excitation dp around the steady-state density p, is sent in from the left (top);
the wave is absorbed when it encounters a change in boundary conditions
(middle), leading to the wavepacket being entirely absorbed (bottom).
Parts a and b adapted from REF.**, Springer Nature Limited. Part c adapted
with permission from REF.'*. Part d adapted from REF.*. Part e adapted with
permission from REF.**. Parts f and g adapted with permission from REF.'*".
Part h adapted with permission from REF."%,
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Dynamical matrix

In the linear approximation,
the dynamical matrix D,
defines the potential energy V
of a solid as the quadratic form
V= 2'— X uiDyu;, where u; are
particle displacements and the
/and jindices run over all dN
degrees of freedom for an
N-particle system in d
dimensions.

Hermitian

A matrix D is Hermitian
ifD=D". The t denotes
a conjugate transpose,
(D");=Dj. Amatrix Dis
anti-Hermitian if D=-D'.

Advection

The transport of matter and
other quantities, such as
momentum, temperature or
concentration, by the bulk
motion of a fluid.

sound modes localized along paths that are both
geodesics and flow streamlines (FIC. 3e).

Topological waves and odd viscosity in chiral active
fluids. In the above examples of polar active fluids,
band-structure topology emerges from the spatial
environment that the fluid inhabits. Activity primarily
serves to break TRS, which, in turn, allows for non-zero
Chern numbers. However, chiral active fluids exhibit
topological states even in the absence of structured
confinement'*® (BOX 2). In this case, activity itself endows
the fluid with chirality and mesoscopic length scales,
leading to topologically protected edge states.

For topological states in chiral fluids to exist, acti-
vity needs to simultaneously play two distinct roles:
breaking TRS and creating a mesoscopic length scale in
the fluid response. Consider a bulk chiral active fluid
inside a disc. The fluid spontaneously rotates, owing to
the balance between dissipation and the local torques
arising from self-rotating constituents; over a broad
parameter range, the preferred steady state is rigid-body
rotation (having angular velocity Q,)'**-'”° (BOX 1). This
rigid-body rotation not only breaks TRS owing to the
flow but also opens up a band gap around zero frequency
in the fluid bulk. The origin of the band gap is, once
again, rooted in the breaking of a basic symmetry of
classical hydrodynamics: Galilean invariance. Rigid-
body rotation breaks Galilean invariance by having a
fixed rotation axis and leads to the presence of a band gap.
Whereas polar fluids require confinement to generate
rotation>%>'*»*, chiral active fluids do so intrinsically in
the bulk'**-17°.

In fluids, the Chern number is not always well
defined's*!7!-'7* (BOX 2), because the acoustic bands of a
fluid are defined on the plane of wavevectors q, which
is a non-compact space. In contrast, in lattice systems,
the wavevectors are only defined modulo reciprocal lat-
tice vectors (they form a torus called the Brillouin zone,
which is compact). In the example described in BOX 2,
it is possible to replace the plane by a sphere because
of the presence of a dissipationless viscosity called odd
viscosity #, (TABLE 1) that can act as a short-distance
regularization'®®"77>175176 " A striking feature of chi-
ral active fluids is that the Chern number in Eq. (7) in
BOX 2 can change without closing the band gap. This
jump occurs when 7, changes sign. The band gap does
not close, because its width is determined solely by the
rotation rate ()}, but the Chern number in Eq. (7) still
changes. In this unusual topological phase transition,
the hydrodynamic theory breaks down at short scales
because the penetration depth of one of the edge modes
goes to zero, and the transition can proceed without band
inversion or band gap closure'®®. For the same reason,
topological continuum theories also allow for violations
of the bulk-boundary correspondence’s%!7!-174176177,
This violation can, in turn, be exploited to construct
waveguides that perfectly absorb a mode in the pres-
ence of dissipation'”® (FIC. 3h). (A change in the Chern
number without a band gap closing is also possible
in polar active fluids on curved substrates, when the
density and orientational sound speeds become equal,
causing Galilean invariance to effectively be restored'**.

REVIEWS

However, this mechanism is unrelated to any short-scale
regularization.)

Non-Hermitian band theory in active media. So far in
our discussion of topological band theory, we have tacitly
assumed that the dynamical matrix D is Hermitian. When
this assumption does not hold, the band structure can be
literally more complex: the eigenvalues are neither purely
real nor purely imaginary. The real parts correspond to
the oscillation frequencies of the relevant perturbation
and the imaginary parts correspond to the decay rates
(or vice versa). In addition, we have also assumed that
D is a normal operator, that is, [D, D] =0. This is always
true if D is Hermitian. When this assumption does not
hold, the eigenvectors of D need not be orthogonal to
each other (BOX 3). Loosening these two assumptions
requires generalizations of topological band theory'”-'%.
An analogous relaxation of these assumptions exists
in quantum mechanics, in which the Hamiltonian is
Hermitian in a closed system, but need not be for open
quantum systems. Two broad themes have been explored
in non-Hermitian physics: non-Hermitian skin modes
and exceptional points. Before providing an intui-
tive explanation of these concepts, we stress that their
occurrence in classical systems is generic: there is no
a priori reason why the linearized operator D should be
Hermitian or even normal (BOX 3).

Consider, as a simple example, the advection—
diffusion equation'* that describes the transport of a dye
with density p in a fluid with viscosity # and moving with
constant velocity v,

9P = Vodep + 1133p.

The Fourier-transformed dynamical matrix D(q,)
of this system is just a complex number given by
D(g ) =ivyq, - r/q (where g, is the wavevector).
Mamfestly, D(qx) #=D'(q,) because it has both real and
imaginary parts. In this case, D(g,) is normal but not
Hermitian.

When a boundary is inserted in the fluid, the dye
accumulates at one end because of the advection v,.
While hardly a surprising conclusion, this is, in fact,
a very simple manifestation of the non-Hermitian
skin effect: a general phenomenon in which the eigen-
modes of a non-Hermitian operator are almost all
localized to the edge of the system. An iconic example
of non-Hermitian quantum mechanics is the so-called
Hatano-Nelson model'®, which is essentially a quan-
tum version of Eq. (2). From a classical perspective, the
asymmetric hopping of electrons (leading to skin modes
localized at the edge) in the Hatano—Nelson model can
be simply thought of as a biased random walk: if the elec-
trons are more likely to hop to the right than to the left,
they accumulate at the right edge. As explained in BOX 3,
the skin effect is characterized by a non-Hermitian
winding number'®*-'¥, a topological invariant distinct
from the Chern number discussed in BOX 2.

In active media (FIC. 4a—c), various strategies have been
devised to engineer the localization of energy using the
non-Hermitian skin effect'”?-'#31%-2 These approaches
mostly rely on breaking a family of symmetries collectively
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Box 3| PT symmetry, exceptional points and skin modes in non-Hermitian band theory

In active systems, the dynamical matrix D is not always Hermitian (or even normal). Hence, its eigenvalues s=w —io are not
necessarily real: there can be a growth or decay rate ¢ in addition to the oscillation frequency w. In general, the eigenvalues
of D are real if and only if there is an antiunitary operator O, with O?=1 (where | is the identity matrix), that commutes

with the dynamical matrix D and such that the eigenvectors y;, of D satisfy Oy, =y, The operator O is a symmetry of the
dynamical matrix, called generalized P7” symmetry for historical reasons**2. A situation can arise when O commutes with D
while simultaneously Oy, =y, for at least one of the eigenvectors of D. In this case, the (generalized) P7 symmetry is said

to be spontaneously broken (it is unbroken when Oy, =y for all i). The notion of P7” symmetry can be thought of as a
generalization of the statement that the eigenvalues of a real matrix must come in complex conjugate pairs. When all

the eigenvalues are real, the P7 symmetry is unbroken, otherwise, it is broken. To see this structure in a familiar context,
consider the damped harmonic oscillator (part a of the figure) described by the non-normal matrix

-I'/M -k|p
1/M 0 |[x

Pl

, , (10)
X

where M is the mass, I' the damping coefficient and k the spring constant. Transitions between P7 -unbroken and P7 -broken
states are generically accompanied by exceptional points, where the two eigenvectors coalesce (red lines in part b of the
figure). For the harmonic oscillator, the exceptional point occurs at critical damping, separating the overdamped and
underdamped regimes.

An active example is given by a solid that has bonds that are described by the non-conservative force law
F(r) = — (kf + k°)dr, where f (@) is a unit vector pointing along (transverse to) the bond vector, ér is the change in length
of the bond, and k and k® are spring constants (part c of the figure)*”>. When the bond is taken on a closed cycle, the work
done W= ¢F - dr is equal to k* times the area enclosed by the path. The dynamical matrix that governs the motion of asingle
particle in the trap shown in part d of the figure exhibits an exceptional point at a critical value of k*/k = 1/~/3. Similar
phenomena occur in overdamped solids made of non-conservative bonds whose linear evolution can be expressed through
a non-normal dynamical matrix via

B+u K°
-K°-A u

Uil _ 2 Y

T (11)

u W)
Here, u/(q) and u, (q) indicate the Fourier modes of the longitudinal and transverse displacement field. The coefficients B
and y are the bulk and shear moduli, while K° and A are two additional active moduli*”* that exist in 2D isotropic media.

Exceptional points in P7 -symmetric systems generically mark the crossover between oscillating and strictly relaxing
behaviours. In some cases, such as the active spring and simple harmonic oscillator, this transition can be readily visualized
as a crossover between linear and circular motion'*. The ability of non-Hermitian systems to host non-orthogonal eigenvectors
gives rise to striking vibrational features, such as the non-Hermitian skin effect®*'9:1%>% as shown in part e of the figure. Unlike
Hermitian topological edge modes, in which a subextensive number of modes are localized to the boundary, non-Hermitian
systems exhibit skin modes that are extensive in number. Given a number A in the complex plane, it is useful to introduce a
winding number, s(A) (REFS*#>1%7):

A 1o d Indet[D(q) -] d
= —In - ,
s 2mi Y0 dq e d (12)

where d is the lattice spacing. When s is non-zero, a semi-infinite system will host a mode at the complex frequency A
localized at, say, the left or the right boundary, depending on the sign of s. In FIG. 4b, for instance, the frequency of a skin
mode in an active beam (star) is encircled by the periodic boundary spectrum (solid line). The non-Hermitian invariant s
distinguishes inequivalent paths in the complex eigenvalue plane, whereas the Chern number measures the winding of the
eigenstates (BOX 2).
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Figure part e adapted with permission from REF.**’.
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Fig. 4 | Topology and exceptional points in active and robotic metamaterials. a | Experimental realization of a
self-sensing metabeam with active elasticity. A single unit cell featuring three piezoelectric patches: one that acts as

a sensor and two that act as actuators. Each unit cell has an electronic feedback. b | Eigenmodes with open periodic
boundary conditions with frequency corresponding to the star in the bottom panels. The localization of this eigenmode
is determined by the sign of the winding of the energy in the complex plane. Sketches of the spectrum with periodic
boundaries for each of the three cases: right localization, no localization and left localization. The arrows indicate
directions of increasing wave number k. ¢ | A robotic metamaterial composed of an array of sensors and motors (black,
with red rods attached) coupled together by soft elastic beams (blue). The motors enforce non-reciprocal interactions
in response to forces exerted by neighbours and detected using the sensors. The edge of this 1D metamaterial realizes

modes corresponding to a non-Hermitian skin effect. Adapted from REF.***. d | A swarm of robots programmed to interact
as non-reciprocal spins. Rather than aligning like a ferromagnet or anti-aligning like an antiferromagnet, the robots
spontaneously rotate either clockwise or counterclockwise, despite having no average natural frequency and there being
no external torque. The robotic spins are separated into two populations, A (blue) and B (red). The intraspecies exchange
interactions J,, and Jy; are reciprocal, but the interspecies interactions are not, with J,; = —J;,. € | A mechanical lattice with
cells that are subject to active feedback forces processed through autonomous controllers. The A sites in cell {i,j} are
subject to active forces f* with either a positive or a negative relative phase. This system can be programmed to generate
desired local response in real time, including topological edge states. f | A robotic metamaterial is built using a honeycomb
lattice with robotic joints, the angular deflections of which are asymmetrically coupled. It exhibits an odd elastic modulus
that couples the two shear modes (while maintaining conservation of both linear and angular momentum) and non-
Hermitian skin modes. Parts a and b adapted from REF.'”’. Part c image courtesy of Martin Brandenbourger. Part d adapted
from REF.*, Springer Nature Limited. Part e adapted with permission from REF.**. Part f image courtesy of Corentin Coulais.

known as reciprocity”**'-*"". For example, one approach™*

uses a 1D chain of coupled robots, the motors of which
effectively violate Newton’s third law and, therefore, break
reciprocity (FIG. 4c). Similar effects have been observed in
1D microfluidic crystals®® and other soft and active mat-
ter systems in which non-reciprocal interactions naturally
emerge as a result of the particles being immersed in a
medium or in contact with a substrate or field that provides
lll’leal‘ or angular momentum2,4,5,52,53,l64,169,170,192,2037205,2087224.
In this case of non-reciprocal interactions, the presence
of non-Hermitian skin modes can be explained using
a simplified heuristic argument. Because the forces (or
torques) at the two ends of a non-reciprocal bond are
not equal and opposite, there is a net momentum flux

across each bond. As a result, momentum or energy
accumulates at one of the two ends of an open chain,
as determined by the direction of the force (or torque)
imbalance, much like the advected dye described
by Eq. (2).

So far, we have explained how violations of linear
and/or angular momentum conservation lead to non-
reciprocity. Can one achieve similar effects (and the
resulting non-Hermitian mechanical response) in a self-
standing system not coupled to a substrate or any other
momentum source or sink? The answer is yes — for
example, when the system is active. To grasp this point,
we need to consider a notion of reciprocity that is dis-
tinct from Newton’s third law. This reciprocity, called
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Gauge fields

Terms that appear in the
definition of an objective

and covariant derivative

(akin to the vector potential

in electromagnetism) that
capture how specific fields

or order parameters transform
under the action of local
symmetries.

Maxwell-Betti reciprocity, can be intuitively defined as
the symmetry between perturbation and response in
a linear elastic solid. Consider an example in the con-
text of Cauchy elasticity in which the deformation of a
solid is described by a strain tensor u; and the internal
forces by a stress tensor o,. When a passive or active
mechanical system is deformed, the infinitesimal work
done is dW=0,du,. For small perturbations about an
undeformed state, the stresses are related to strain defor-
mations through o, = C;,u,, where C,;, is the tensor of
elastic moduli. If the stress—strain relation can be derived
from a free energy V = zlcijkluzjukl’ then C, is symmetric,
thatis, ;= Cy;. This symmetry is called Maxwell-Betti
reciprocity™.

When the microscopic forces are not conserva-
tive, Maxwell-Betti reciprocity is, in general, violated
because C;,# C,;;, and additional active elastic moduli
are present, which we refer to as odd elasticity’”. As a
consequence, the dynamical matrix D;(q) = C;;,q,q, that
describes the propagation of elastic waves (BOX 3) is not
Hermitian, allowing for the appearance of wave propa-
gation in overdamped solids** and the presence of the
skin effect'”’. Two example realizations of metamaterials
with odd elasticity are an active metabeam with asym-
metric coupling between shearing and bending'”” and
a honeycomb lattice with robotic joints, the angular
deflections of which are asymmetrically coupled (FIC. 4).
In both systems, the skin effect has been observed.
Its existence has also been inferred either from lattice
models'?>"1**?2¢ or from continuum equations based
only on symmetries and conservation laws'>'"”. Besides
synthetic metamaterial or colloidal systems'””**, odd
elastic responses have recently been reported in living
chiral crystals self-assembled from swimming starfish
embryos™.

So far, we have mostly focused on the eigenvalues of
non-Hermitian dynamical matrices, but the correspond-
ing eigenvectors play as crucial a role. When D is not
normal, it is not always enough to know the eigenval-
ues to assess the linear stability of the system, because
the eigenvectors can fail to be orthogonal to each other
with respect to the physically relevant scalar product,
for example, in a quadratic potential energy density.
The extreme limit of this failure occurs when two (or
more) eigenvectors become collinear: this is called an
exceptional point*’. As a consequence of this colline-
arity, there can be a transient amplification of pertur-
bations that can dramatically affect the stability of the
system?*!84215230-232 " A simple example of exceptional
points occurs in the damped harmonic oscillator: the
overdamped and underdamped regimes are separated by
an exceptional point at critical damping (BOX 3). Likewise,
in active metamaterials, odd elastic waves start propa-
gating at the point where the eigenvalues of D go from
being real (decay) to occurring in complex conjugate
pairs (oscillations). This transition can be viewed as a
spontaneous breaking of a symmetry called P7” symme-
try (BOX 3). When D is viewed as a differential operator in
real space, its normality also depends on the boundary
conditions. The skin effect occurs precisely when the
eigenmodes of a system are orthogonal Fourier modes
for a system with periodic boundaries, but become

non-orthogonal localized modes in a semi-infinite or
finite system. Exceptional points can also mediate unu-
sual phase transitions in active many-body systems with
non-reciprocal interactions®>****",

Outlook

Open avenues for exploration remain when it comes to
the relevance of topological properties of active systems
to biology. Although defects in tissues have been noted as
mechanically active centres of morphogenesis’ ">, cur-
rent understanding of the interplay between active forc-
ing and tissue response in manipulating cell organization
is still limited. Integrating biologically relevant mecha-
nisms such as growth, cell differentiation and mech-
anotransduction with the physics of active fluids would
be crucial to this end. On a different scale, although
biofilament-motor assemblies routinely display defects
when reconstituted in vitro”**>**>** the relation of
these phenomena to in vivo cortical organization'**'*"*>
remains mysterious and continues to be an open ques-
tion. During development at the organ and organismal
level, both collective motion and pattern formation are
ubiquitous®**?’, offering an intriguing possibility for
the realization of exotic, topologically protected states.
There is also evidence of a role for topological states in
non-equilibrium stochastic**, excitable**-*** and evolu-
tionary dynamics** networks. One challenge faced by
future theoretical work is the robustness of topologi-
cal states to biologically relevant perturbations. In this
regard, more systematic experimental investigations
are needed.

Active metamaterials and synthetic active matter also
offer a platform for engineering topological states, with
an eye to applications®'*. Controlling and patterning
defects using activity gradients has already emerged as a
direction of research’’>’¢. Whereas the focus so far has
been on 2D systems, topological states in 3D offer new
possibilities, including more complex defect textures®
and topological degeneracies in band structure, such as
Weyl nodes****. Designing synthetic gauge fields*>'>**¢
and exceptional points in active fluids and solids™'*"***
would be a powerful strategy to exploit these states
for sensing and transport. Active flow is already being
exploited, for example, to enhance in vitro fertiliza-
tion****, and creating topologically protected trans-
port could be a route towards new technologies based
on active matter.

From a theoretical perspective, important questions
remain. Beyond topological band theory, the role of
non-equilibrium noise and nonlinear interactions within
active materials remains largely unexplored’>*°%*".
As discussed extensively, topological defects in active
systems acquire much of their uniqueness from their
dynamics®. Although much work has been done, a
detailed understanding of defect-driven phase tran-
sitions and exotic defect-ordered states remains elu-
sive. Towards this end, comparing and contrasting
active defects with the collective dynamics of vortices
in open quantum systems and driven dissipative
condensates®?-**! promises to be a fruitful endeavour.
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