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Abstract
High-spatial-resolution satellite imagery enables transformational 
opportunities to observe, map, and document the micro-topographic 
transitions occurring in Arctic polygonal tundra at multiple spatial 
and temporal frequencies. Knowledge discovery through artificial 
intelligence, big imagery, and high-performance computing (HPC) 
resources is just starting to be realized in Arctic permafrost science. 
We have developed a novel high-performance image-analysis frame-
work—Mapping Application for Arctic Permafrost Land Environment 
(MAPLE)—that enables the integration of operational-scale GeoAI 
capabilities into Arctic permafrost modeling. Interoperability across 
heterogeneous HPC systems and optimal usage of computational 
resources are key design goals of MAPLE. We systematically compared 
the performances of four different MAPLE workflow designs on two 
HPC systems. Our experimental results on resource utilization, total 
time to completion, and overhead of the candidate designs suggest 
that the design of an optimal workflow largely depends on the HPC 
system architecture and underlying service-unit accounting model.

Introduction
Big image-data analysis has become essential in an array of scientific 
applications, such as computer vision (Kucuk et al. 2017), medical 
imaging (El-Baz and Suri 2020), materials science (Okunev et al.
2020), and astronomy (Kremer et al. 2017). The advancements of 
satellite sensor technology, coupled with the ever-increasing spatial 
resolution and temporal frequency of image acquisitions, ideally 
position remote sensing applications in the big-data landscape (Wang 
et al. 2015; P. Liu et al. 2018). Satellite imagery archives are being 
radically transformed from terabytes to petabyte scale (Witharana et al.
2021). The sheer volumes of imagery pose new challenges in storage, 
analysis, and visualization techniques (P. Liu 2015; Y. Ma et al. 2015), 
and the requirements exceed the capabilities of existing general-pur-
pose computing resources. Therefore, highly efficient workflows with 
high-performance computing resources are required for implementing 
big-imagery applications.

High-throughput computing (HTC) and high-performance comput-
ing (HPC) are both important in high-resolution imagery analysis on 
a petabyte scale. HTC is used for workloads that consist of tasks that 
are independent of each other and can start or complete in any order 
(e.g., automated feature extraction from thousands of satellite images 
in repeated mapping applications). Therefore, there is a lot of flex-
ibility in scheduling these HTC jobs in HPC systems. In contrast, an HPC

workload is characterized by its scalability or running time. Typically, 
an HPC workload consists of a single job that coordinates multiple 
processes which run at the same time. When running these jobs, input–
output requirements are important. Usually, HTC tasks operate on a 
small volume of data and HPC workloads operate on large volumes 
of data. But in running many HTC jobs, the limitations of input–out-
put bandwidth become significant. Usually, most supercomputers 
are designed for HPC workloads. Huerta et al. (2019) argue that new 
applications require a paradigm shift in computing architecture to ad-
dress large data sets, deep-learning algorithms, and hybrid workloads 
using both HPC and HTC. It is imperative to find out how applications 
with hybrid workloads can be run efficiently in existing HPC resources. 
Remote sensing (RS) big-data applications typically consist of hybrid 
workloads requiring efficient use of existing HPC systems. Lee et al. 
(2011) reviewed advances in HPC applied to remote sensing problems, 
and in particular HPC-based platforms, such as multi-processor systems 
and large-scale and heterogeneous networks of computers.

A seamless application of HPC resources for translating big satellite
imagery into science-ready products can enable knowledge discovery
at the nexus of the human and natural systems (Chi et al. 2016). In re-
cent years, the use of HPC resources has become an inextricable compo-
nent in big-imagery applications (Wang et al. 2018). A plethora of ap-
plications can be found in the literature involving big imagery and HPC. 
Amat et al. (2015) developed a workflow for light-sheet microscopy,
which involves several tens of terabytes of data. Schmied et al. (2016)
compared the performance of an automated workflow on a single
workstation and an HPC cluster. J. Liu et al. (2016) analyzed a geo-
sciences workflow on multi-core processors and graphical processing
units (GPUs), achieving a 5× speedup on a multi-core processor and a
43× speedup for some parts of the workflow on GPU. In a recent study,
Al-Saadi et al. (2021) compared workflow application designs for
high-resolution satellite-imagery analysis. They analyzed three work-
flow designs using the Extreme Science and Engineering Discovery
Environment (XSEDE) HPC system for two use cases, for a total of 4672
high-resolution satellite and aerial images and 8.35 TB of data.

Modern HPC systems consist of many HPC computer nodes. Each 
node contains multi-core central processing units (CPUs) and multi-
GPUs. RS big-data applications need to use both CPUs and GPUs in their 
workflow, because GPUs are efficient at processing RS images and CPUs 
are efficient at executing complex algorithms. Several traditional paral-
lel paradigms are widely used in these systems, such as OpenMP and 
Message Passing Interface. Implementation of parallel RS algorithms 
using Message Passing Interface is difficult, and HPC systems are not 
optimized for data-intensive computing (Wang et. al. 2016). RS work-
loads involve both HPC and HTC features, so they are considered hybrid 
HPC/HTC workloads. A single RS workload may not be large enough 
for use in many multiple nodes. It is therefore critical to examine 
how to optimize RS hybrid HPC/HTC workloads in a single node with 
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multi-CPU and multi-GPU cores. The use of HPC resources is measured 
using service units (SUs). RS workflows with big-imagery analysis need 
to be optimized for both Sus and running time. Different HPC systems 
measure the use of SUs by different accounting models. These different 
configurations present new challenges in designing efficient workflows 
for targeted applications which require both CPU and GPU processing.

Traditional remote sensing image-analysis algorithms fail to 
grapple with the image complexities and high-level semantics arising 
from sub-meter-resolution satellite imagery (Blaschke 2010; Blaschke 
et al. 2014; Lang et al. 2018). Sophisticated algorithms which exploit 
color, texture, spatial arrangement, and context, and construct high-
level abstractions based on low-level motifs, are needed for automated 
object detection, segmentation, and classification (L. Ma et al. 2019). 
Deep-learning convolutional neural nets (DLCNNs; LeCun et al. 2015) 
have shown great potential for semantic object-instance segmenta-
tion in detecting and delineating each distinct object in an image of 
common objects from everyday images. The success of DLCNNs in 
computer-vision applications has received great interest from the 
remote sensing community (L. Ma et al. 2019). But DLCNN algorithms 
are computationally intensive and demanding of memory. Thus, it is 
important to optimize data management, image processing, classifica-
tion, and visualization techniques, because they serve as key bottle-
necks in image-to-assessment pipelines.

Archived observation data was predicted by the Open Geospatial 
Consortium to exceed an exabyte by 2015 (Karmas et al. 2016). But 
it is estimated that up to 95% of the data present in existing archives 
have never been accessed (Nikolaou et al. 2014). Over the last decade, 
the entire Arctic has been imaged at 0.5-m resolution several times 
by commercial satellite sensors of Maxar Technologies (previously 
known as DigitalGlobe; Witharana et al. 2020). The image repository 
at the Polar Geospatial Center at the University of Minnesota provides 
transformational opportunities to observe, monitor, and document per-
mafrost thaw occurring across the Arctic tundra, which is a logistically 
challenging region with an extremely sparse field observation network. 
Landscapes of Alaska, Canada, and Russia harbor approximately 
5 million km2 of tundra. But imagery is underutilized, and derived 
science products are rare despite their unprecedented potential for pan-
Arctic permafrost monitoring and modeling applications.

Permafrost—unique landscapes comprising Earth materials that 
remain at or below 0°C for at least two consecutive years—cov-
ers approximately 24% of the exposed land surface of the Northern 
Hemisphere (Brown et al. 1997). Ice-rich permafrost can be identi-
fied by atypical surface features called ice-wedge polygons (IWPs), 
which are underlain by ice wedges several meters wide and deep that 
form a connected network across the tundra (Kanevsky et al. 2016). 
Vegetation and geology maps suggest that about two-thirds or more 
of the Arctic landscape is occupied by polygonal ground (Kokelj et 
al. 2015; Raynolds et al. 2019) and therefore ice-rich ground, but the 
exact extent and the prevailing IWP types (i.e., whether the ice wedges 
experience melt or not) are largely unknown.

Over recent decades, ice-wedge degradation—the transforma-
tion of low-centered polygons into high-centered polygons—has 
been documented at several locations across the Arctic tundra in the 
field and through localized remote sensing analyses (Liljedahl et al. 
2016; Steedman et al. 2017). The shift from one IWP type to the other 
is documented to occur in less than a decade (Liljedahl et al. 2016), 
with unusually warm summers, wildfires, or human activities initiat-
ing the onset of ice-wedge degradation (Jorgenson et al. 2006; Jones 
et al. 2015; Raynolds et al. 2020). Degradation of ice wedges is a 
quasi-cyclic process, often occurring over a shorter time scale than the 
formation of new permafrost (aggradation), with the latter controlled 
by the accumulation of organic and mineral soil above the ice wedge 
(Kanevskiy et al. 2017). Understanding the spatiotemporal dynamics 
behind the evolution of ice-wedge polygonal tundra demands objec-
tive and detailed maps consolidating the extent of ice wedges and their 
prevailing successional stages (Witharana et al. 2021).

Despite the alarming signals, the Arctic science community has 
a limited understanding of the spatiotemporal continuity of these 

otherwise locally observed changes. The lack of knowledge about the 
larger geographical extent and successional stage of IWPs introduces 
uncertainties to regional and pan-Arctic estimates of carbon, water, and 
energy fluxes. Remote sensing provides transformational opportunities 
to observe, monitor, and measure the Arctic polygonal landscape at 
multiple spatial scales and in varying temporal windows (Nitze et al. 
2018; Witharana et al. 2019). IWPs are difficult to detect in any remote 
sensing imagery with a spatial resolution coarser than 4 m (Muster 
et al. 2012). Sub-meter-resolution commercial satellite imagery 
(e.g., Maxar) demonstrates greater promise for accurate delineation 
and characterization of ice-wedge polygonal networks. Due to IWPs’ 
varying spectral and morphometric characteristics, visual inspection 
and manual digitization has so far been the most widely adopted and 
promising method for delineating polygons from high-resolution re-
mote sensing imagery (Witharana et al. 2021). A considerable number 
of local-scale studies have analyzed ice-wedge degradation processes 
using satellite imagery, as well as imagery and lidar data from manned 
and unmanned aerial vehicles (Muster et al. 2013). Most studies to 
date have relied on manual image interpretation or semi-automated 
approaches (Skurikhin et al. 2014) and been confined to site-to-local-
scale mapping. Therefore, there is a need and an opportunity to use 
very-high-spatial-resolution imagery in regional-scale mapping efforts 
to spatiotemporally document microtopographic changes due to thaw-
ing ice-rich permafrost.

Despite the remarkable performance of DLCNNs in everyday image 
understanding, bottlenecks still exist in the translation to geo-object 
detection from remote sensing imagery. Image dimensions, multiple 
spectral channels (more than the standard red, green, and blue chan-
nels), spatial reference, seasonality, and most importantly the semantic 
complexity of geo-objects aggregated into multiple spatial scales 
impose greater friction on the inferential strength of DLCNN model 
predictions. The scalability of automated analysis over millions of 
square kilometers comprising heterogeneous landscapes reinforces 
the need for efficient workflows. To surmount these challenges, we 
have developed a novel image-to-assessment pipeline—Mapping 
Application for Arctic Permafrost Land Environment (MAPLE)—which 
can be deployed in heterogeneous supercomputing resources. MAPLE is 
a first-of-its-kind pan-Arctic mapping effort that attempts to charac-
terize microtopography using sub-meter-resolution imagery without 
compromising geographical extent.

The overarching goal of MAPLE is to produce the first pan-Arctic 
IWP map using a large volume of commercial satellite imagery avail-
able at the Polar Geospatial Center and HPC resources from computing 
facilities funded by the US National Science Foundation. In the first 
stage, we will produce a circumpolar IWP map for the regions that have 
been identified as high-probability ground ice content by Brown et al. 
(2002). Then we will progressively extend the mapping to medium- 
and low-probability ground ice areas of Brown et al., ultimately cover-
ing the entire tundra. The ongoing mapping area (Figure 1) includes 
around 25 000 satellite images and over 180 TB of data.

The main objective of this article is to analyze the computational 
efficiency of the MAPLE workflow in heterogeneous HPC environments, 
which involve both CPUs and GPUs. We further aim to understand how 
different workflow designs interact with underlying SU accounting 
models of the HPC systems, which in turn support optimal resource us-
age to complete image-analysis problems at hand.

Methods
Mapping Application for Arctic Permafrost Land Environment (MAPLE)
Figure 2 shows a generalized framework for high-performance image 
analysis with MAPLE using imagery from the Polar Geospatial Center 
and computing resources from multiple computing environments, 
such as Frontera at the Texas Advanced Computing Center and XSEDE, 
to produce science-ready products. The MAPLE workflow (Figure 3) 
is threefold: image preprocessing, DLCNN prediction (inferencing), 
and postprocessing. While the first and last segments involve CPU 
implementations, prediction can operate on GPUs or CPUs. MAPLE takes 
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high-resolution satellite images as input and outputs two key geospatial 
layers: ice-wedge polygons and surface water bodies. The spatial reso-
lution of satellite imagery is acquired at 0.5 m, comprising multispec-
tral channels (blue, green, red, near-infrared, or more depending on 
the sensor) at 16-bit radiometric resolution with a typical footprint of 
20×20 km (i.e., 160 million pixels/image). At the initial stage, we pro-
cess the high-probability region of the IWP map using MAPLE. Figure 1 
shows the progress of MAPLE deployment in polygonal tundra.

We use Mask RCNN (He et al. 2016) as the key DLCNN model in 
MAPLE. DLCNN models show better performance in GPUs than in CPUs. 
Usually, the amount of memory available in GPUs (on average, 16 GB) 
is much smaller than that in CPUs. Therefore, we cannot perform DLCNN 
operations for the complete satellite image in GPU memory. Due to this 
limitation, we need to split the satellite image, which is around 5 GB 
on disk (40 000×40 000 pixels) into small tiles (200×200 pixels). To 
alleviate any terminological ambiguities, throughout this article we will 
use the term image scene to refer to an entire satellite image and the 
term image tile to refer to a subsetted array obtained by tiling the image 
scene according to predefined tile dimensions. Due to this splitting, 
the ice-wedge polygons can be intersected by the boundaries and may 
be missed in the prediction stage. To alleviate this effect, we keep a 
10% overlap between image tiles, resulting in more than 40 000 image 
tiles per image scene. These image tiles are saved using a compressed 
HDF5 binary data format, after excluding water bodies and no-data 
areas. Subsequently, compressed tiles are accessed in parallel within 
the workflow and output detected ice-wedge polygons. Each parallel 
process stores predicted ice-wedge polygons as an individual shape file.

In the postprocessing stage (stage 3), the shape files generated by 
each GPU are stitched into a single shape file. The resulting shape file 
contains duplicate polygons along the seams of images tiles due to the 
10% overlap. We remove those duplicate polygons during this stage. 
Figure 4 depicts automated mapping results of ice-wedge polygons and 
water bodies from example locations comprising different tundra types 
in Alaska and Canada.

Figure 1. Ongoing deployment of Mapping Application for Arctic 
Permafrost Land Environment (MAPLE) in Arctic polygonal tundra. 
The map is overlain by the circumpolar Arctic vegetation map of 
Raynolds et al. (2019) and the high-probability ground ice map of 
Brown et al. (2002). Colored grid cells (200×200 km) represent 
the progress of the mapping. Red and dark-green squares represent 
completed areas and areas in progress, respectively. Gray squares 
represent the area to be mapped. Blue shading represents the 
Circum-Arctic Map of Permafrost and Ground-Ice Conditions, 
Version 2 (Brown et al. 2002), and light-green shading represents the 
Circumpolar Arctic Vegetation Map (Raynolds et al. 2020), which 
were used as guides to prioritize mapping areas.

Figure 2. General semantic diagram for high-performance analysis 
of very-high-spatial-resolution satellite imagery using Mapping 
Application for Arctic Permafrost Land Environment (MAPLE). 
The images are obtained from the Polar Geospatial Center at the 
University of Minnesota, then processed by the MAPLE workflow 
using high-performance computing (HPC) resources from the 
Frontera system at the Texas Advance Computing Center and 
the Bridges system from the Extreme Science and Engineering 
Discovery Environment (XSEDE). The ice-wedge polygon map and 
the surface water-body map serve as the two key science-ready 
products of the workflow.

Figure 3. General semantic diagram of the Mapping Application for 
Arctic Permafrost Land Environment (MAPLE) workflow. MAPLE 
is a modular workflow consisting of three stages relying on both 
central processing unit (CPU) and graphical processing unit (GPU) 
resources. Stage 1 is a CPU-based implementation, which involves 
two operations: automated extraction of surface water bodies and 
tiling of the input image scene into small patches for use in later 
stages. Stage 2 is a GPU-based operation. It implements the deep-
learning convolutional neural net (DLCNN) algorithm for predicting 
ice-wedge polygons. In stage 3, stitching of shape files and removal 
of duplicates are performed using CPU resources. The final output 
of the MAPLE workflow are the ice-wedge polygon map and surface 
water-body map of the input image scene.
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An efficient workflow is required, because we need to process 
thousands of high-resolution satellite images. We use several techniques 
to optimize our workflow. The first is to minimize the area of processing 
by removing large numbers of water bodies. The Arctic region contains 
many water bodies, on scales from sub-meter to hundreds of meters. 
The MAPLE workflow first detects these water bodies using techniques 
developed by Kaiser et al. (2021). The predicted water from stage 1 of 
the workflow is used as a precursor layer for tiling the image. This will 
avoid unnecessary implementation of the IWP prediction algorithm on 
water areas in stage 2. Iterative prediction and use of the water mask not 
only produces a sub-meter-scale map of surface water but also speeds up 
the IWP prediction. The second optimization strategy is to remove image 
overlaps. A given satellite footprint has a considerable number of spatial 
overlaps with its neighbors, due to different imaging times and different 
sensors. We can significantly reduce the processing volume and comput-
ing resources (caused by duplicate application of the DLCNN model on 
the same spatial locales) by removing these image overlaps. We have 
developed an algorithm that calculates the image overlaps and excludes 
them from processing in our workflow for a given image footprint.

Model Training
We used a transfer learning strategy to retrain the Mask RCNN network. 
Using the online tool VGG Image Annotator, an annotated ice-wedge 

polygon data set was created from satellite imagery comprising hetero-
geneous tundra types. We randomly selected 512 cropped subsets from 
different tundra types (tussock, non-tussock, and sedge) considering 
the spectral and spatial variability. The training data set consists of 
9200 hand-annotated ice-wedge polygons. We started with pretrained 
weights generated by the COCO data set and trained only the head lay-
ers of the Mask RCNN network. The training was implemented using 
an NVIDIA GeForce RTX 2080 GPU with 10 GB of memory. We trained 
the Mask RCNN model with a mini-batch size of two image tiles, 250 
steps per epoch, a learning rate of 0.001, a learning momentum of 0.9, 
a weight decay of 0.0001, and 50 epochs.

Workflow Designs
Modern HPC resources such as Frontera and XSEDE consist of multiple 
nodes. Each node contains multiple CPUs and GPUs. Each CPU and GPU 
contains multiple cores. Programs should be designed to use these 
resources optimally. Figure 5 shows a semantic diagram of the sequential 
workflow (design 1) in a single computing node. In this setup, we do not 
use multiple CPUs and GPUs available in the node. The three stages of 
preprocessing, inferencing, and postprocessing are executed sequentially.

Figure 5. A semantic diagram of a single-CPU (central processing 
unit), single-GPU (graphical processing unit) Mapping Application 
for Arctic Permafrost Land Environment (MAPLE) workflow design 
using a single high-performance computing node (design 1). The 
workflow analyzes a single image at a time in three stages. The first 
stage (preprocessing) and the last (postprocessing) are executed on a 
CPU, and the second stage is executed on a GPU.

Figure 6 shows a semantic diagram of the design in which multiple 
GPUs in a single computing node are used in the inferencing stage. Here 
the image tiles generated in the preprocessing stage are stored in a single 
multi-threaded queue and processed using multiple GPUs on a single node.

Figure 6. A semantic diagram of a single-CPU (central processing 
unit), multi-GPU (graphical processing unit) Mapping Application 
for Arctic Permafrost Land Environment (MAPLE) workflow design 
using a single high-performance computing node with a single 
multi-threaded queue for all GPU cores (design 2). A single image is 
preprocessed using a single multi-core CPU and sent to multiple GPUs 
for detection using a single multi-threaded image queue. The detected 
ice-wedge polygons are postprocessed using a single multi-core CPU.

Figure 7 shows a semantic diagram of a design similar to the one 
in Figure 6. In this workflow, we use a dedicated queue for each GPU 
core, as illustrated. The image tiles generated in the preprocessing 
stage are distributed among separate queues and then inferenced by a 
dedicated GPU core. Figure 8 shows a multi-CPU, multi-GPU workflow 

Figure 4. Sample input image and output ice-wedge polygons and 
water bodies of different scales from the Mapping Application for 
Arctic Permafrost Land Environment (MAPLE) workflow for (a) the 
North Slope of Alaska, and (b and c) Canada (see inset map at left). 
In each subfigure, the leftmost image shows the high-resolution 
satellite image. The second column shows the water-body map 
(blue) and ice-wedge polygon map of the corresponding area. The 
third column shows a zoomed view of two separate areas of the 
previous image patch. The rightmost column shows the water-body 
map (blue) and ice-wedge polygon map of the previous images. 
Imagery © 2016 DigitalGlobe, Inc.
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design in which we processed multiple images per batch (design 4). In 
preprocessing, we use multiple CPU cores in a single node. Then tiles 
from each image are processed in separate nodes for the inferencing 
stage using the optimum number of GPUs available in that node. The 
shape files generated in the inferencing stage are processed in a single 
HPC node using multiple CPU cores in the postprocessing stage.

Figure 7. A semantic diagram of a single-CPU (central processing 
unit), multi-GPU (graphical processing unit) Mapping Application 
for Arctic Permafrost Land Environment (MAPLE) workflow design 
using a single high-performance computing node with a dedicated 
queue for each GPU core (design 3). A single image is preprocessed 
using a single multi-core CPU and sent to multiple GPUs for detection 
of ice-wedge polygons using a dedicated image queue for each GPU. 
The detected ice-wedge polygons are postprocessed using a single 
multi-core CPU.

Figure 8. A semantic diagram of a multi-CPU (central processing 
unit), multi-GPU (graphical processing unit) Mapping Application 
for Arctic Permafrost Land Environment (MAPLE) workflow design 
using multiple high-performance computing nodes with a dedicated 
queue for each GPU core (design 4). A set of images is preprocessed 
using multiple CPU cores in a single node and sent to multiple GPUs in 
different nodes for detection of ice-wedge polygons, with a dedicated 
image queue for each GPU. The detected ice-wedge polygons are 
postprocessed using a single node with multiple CPU cores.

Numerical Experiments
The numerical experiments were carried out on the Frontera Longhorn 
HPC system computing nodes and XSEDE Bridges2 computing nodes. 
The former consists of 96 computing nodes and the latter of 24 com-
puting nodes. Node specifications are listed in Table 1.

The effective use of HPC resources depends on the underlying 
resource accounting model, HPC architecture, and workflow design. 
Project resources are allocated based on SUs. In the Frontera Longhorn 
system, one SU is calculated by multiplying the job duration in wall-
clock hours, the charge rate per node hour, and the number of nodes 
per job. Therefore, to get maximum resource use we need to use all 
four GPUs per job. In contrast, on XSEDE Bridges2, one SU is calculated 
by multiplying the job duration, the number of GPUs per node, the 
charge rate per hour, and the number of nodes. Here we must calculate 
the optimum number of GPUs for a single job. We can optimize our 
workflow based on node time and SUs. In Frontera Longhorn, these 
two are proportional, but in XSEDE Bridges2, the optimum workflows 
for time and SUs can be different. We will examine the four different 
MAPLE workflow designs illustrated in Figures 5 through 8 to find the 
optimum designs on different HPC systems.

Results and Discussion
We evaluated the time taken for three stages of the sequential workflow 
(design 1) described in Figure 5 for different image dimensions as a 
base case. Figure 9 shows the computation results for Frontera: prepro-
cessing time, inferencing time, postprocessing time, and total time for 
images with different sizes on a CPU or a GPU. The gray bars show the 
time taken for a 400-million-pixel image on a CPU. Orange, green, and 
brown bars respectively, represent 400-, 1600-, and 3600-million-pixel 
images on a GPU. The computation time depends on the image size as 
well as the number of polygons detected. Comparing the first two bars 
for inferencing, it is evident that using a GPU for inferencing achieves a
9.0× speedup. The reason for this speedup is that DLCNN computations 
can be performed in parallel with many GPU cores. Increasing the size 
of the image increases the time in all stages. The time taken to process 
a 3600-million-pixel image on a GPU is on the same order as the time 
taken to process 400 million pixels using only a CPU.

Figure 9. Comparison of time taken for Mapping Application for 
Arctic Permafrost Land Environment (MAPLE) workflow design 
1 on Frontera for different image sizes on CPUs and GPUs. Gray 
represents the computation times for a 400-million-pixel image 
on a CPU. Orange, green, and brown represent the computation 
times for a 400-million-, 1600-million-, and 3600-million-pixel 
image, respectively, on a GPU. The first three groups of bars 
show computation times for preprocessing, inferencing, and 
postprocessing stages, respectively. The last group shows the total 
time taken to process each image.

Figures 10 (Frontera Longhorn) and 11 (XSEDE Bridges2) show the 
comparison of inferencing times for designs 2 and 3 with a 160-mil-
lion-pixel image. The use of a dedicated queue in design 3 improves 
the running time for all four cases. Using four GPUs, we manage to 
obtain a 3.6× speed up in Frontera and a 2.0× speedup in XSEDE. The 
perfect speedup cannot be obtained because of input–output operations 
and serial sections in the workflow.

Table 1. Computing node configurations for Frontera Longhorn (Texas 
Advanced Computing Center) and Extreme Science and Engineering 
Discovery Environment (XSEDE) Bridges2.

System Frontera Longhorn XSEDE Bridges2

Processor IBM Power 9 Intel Xeon Gold 6248

Total Processors/Node 2 2

Total Cores/Processor 20 20

Total Cores/Node 40 40

Clock Rate (GHz) 2.3 2.5

RAM (GB) 256 512

GPUs/Node 4 × NVIDIA Tesla V100 8 × NVIDIA Tesla V100

GPU RAM/Core (GB) 16 32

GPU = graphical processing unit; RAM = random-access memory.
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Figure 10. Comparison of inferencing times for multiple GPUs in a 
single Frontera Longhorn HPC node to process a 1600-million-pixel 
image with design 2 (orange) and design 3 (green). GPU = graphical 
processing unit; HPC = high-performance computing.

Figure 11. Comparison of inferencing times for multiple GPUs in a 
single XSEDE Bridges2 HPC node to process a 1600-million-pixel 
image with design 2 (orange) and design 3 (green). GPU = graphical 
processing unit; HPC = high-performance computing.

Service units are important in processing large numbers of images, 
because the number of computing resources is limited. In Frontera, 
running time and service units consumed are proportional because of 
its accounting model; therefore we will only present results for running 
time in Frontera. But in XSEDE those two can be different, so we exam-
ine both service units and running time in that system.

Figure 12 shows the service units consumed by inferencing a 
1600-million-pixel image with up to eight GPUs in XSEDE with designs 
2 and 3. The most efficient use of service units can be obtained with a 
single GPU—that is, design 1. But with the four GPUs, we can achieve a 
2× speedup with 2.2 service units.

Figure 12. Comparison of service units used in inferencing a 
1600-million-pixel image with multiple GPUs in a single XSEDE 
Bridges2 HPC node with design 2 (orange) and design 3 (green). GPU 
= graphical processing unit; HPC = high-performance computing.

Figure 13 shows the computation times for a full workflow (design 
3) for a 1600-million-pixel image with up to four GPUs in Frontera.
The speedup achieved for a full workflow using four GPUs is 2.0×. The
reason for the lower speedup is the increase in the percentage of serial
workload. Figure 14 shows the running times for design 3 in XSEDE,
where we can use up to eight GPUs per node. The speedup achieved
with multiple GPUs saturates at 1.5× with four GPUs.

Figure 13. Comparison of times taken for multiple GPUs to process a 
1600-million-pixel image in a single Frontera HPC node with design 
3. Preprocessing time, inferencing time, and postprocessing time are
represented by blue, orange, and gray, respectively. GPU = graphical
processing unit; HPC = high-performance computing.

Figure 14. Comparison of times taken for multiple GPUs to process 
a 1600-million-pixel image in a single XSEDE HPC node with design 
3. Preprocessing time, inferencing time, and postprocessing time are
represented by blue, orange, and gray, respectively. GPU = graphical
processing unit; HPC = high-performance computing.

Figure 15 shows the total SUs consumed in XSEDE when using up 
to eight GPU cores. The most efficient use of SUs occurs when the code 
is run with one GPU core. But we can get a 1.5× speedup for four GPUs 
with 1.75× SU use. Figure 16 shows the total amount of time taken to 
process one 1600-million-pixel image using design 4 with four GPUs in 
a Frontera HPC node. Preprocessing and postprocessing are done using 
multiple CPU cores in a GPU node. The speedup using 10 CPU cores in a 
single computing node for preprocessing is 7.5×, and for postprocessing 
it is 9.7×, which results in a combined speedup of 8.4×. Preprocessing 
is a memory-intensive task. It needs four times the memory of the im-
age. With 256 GB RAM available in one node, we can only process up 
to 10 1600-million-pixel images. The first bar of Figure 16 shows the 
result we obtain with design 3. A speedup of 2.4× with five CPUs and 
2.9× is achieved with design 4 compared to design 3 with a full work-
flow. Compared with design 1, a speedup of 3.4× with five CPUs and 
4.0× with 10 CPUs is achieved. This 4.0× speedup means we can pro-
cess four times faster than design 1 with the same resources in Frontera.

Figure 17 shows the total time taken with design 4 in XSEDE. 
Preprocessing and postprocessing are done using up to 10 CPUs cores 
per image batch and four GPUs per image. The speedup saturates after 
four CPU cores. Figure 18 shows the SUs consumed to process images 
with design 4 using up to 10 CPU cores per image batch and a single 
GPU core per image. The SUs at first decrease slightly with the increase 
of CPU cores, but increase again after four cores due to the restriction 
that only four CPUs are allowed for allocation to one unit (GPU) in the 
shared GPU queue. If we want to allocate more than four CPU cores, we 
need to allocate two GPUs. This increases the SUs used by the calcula-
tions, because SUs are proportional to the number of GPUs. The same 
happens when we use more than eight CPU cores.

ConclusionWe developed the Mapping Application for Permafrost 
Land Environment (MAPLE) by combining deep learning, big imagery, 
and HPC resources. Our workflow can run on heterogeneous HPC sys-
tems, demonstrating its interoperability for large-scale implementation. 
We tested the workflow with different HPC settings and compared the 
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speedup and resource utilization. Four workflow designs were checked 
with the Frontera Longhorn and XSEDE Bridges2 HPC systems.

The speedup achieved with design 4 in Frontera is 3.4× with five 
CPUs and four GPUs. The number of parallel processes that can be used 
depends on the amount of main memory in the computing node. The 
pipeline saturates in Frontera after four GPUs and five CPUs. It is safe 
and effective to use five images per batch, as the gain in speedup is very 
small with 10 images (which is the memory limit) per batch. We can 
process an image with 33% of SUs with five images per batch in design 4 
compared to design 1, according to the Frontera accounting design. The 
speedup achieved in XSEDE design 4 is 2× for the full workflow, which 
is obtained with five CPUs and four GPUs. But this will use more SUs per 
single image, due to the XSEDE accounting model. In XSEDE, design 4 
uses the fewest SUs with four images per batch and one GPU per image.

The multi-CPU, multi-GPU design can be used effectively with het-
erogeneous HPC systems. Design 4 is the fastest of all the designs. But 
with a different HPC system, the optimum number of images per batch 
(CPUs) can be different. Design 4 also has the lowest SU usage with dif-
ferent numbers of GPUs per image. The resource usage can be different 
with different HPC systems due to the accounting design and system ar-
chitecture. Therefore, we need to test design 4 in different HPC systems 
to find out optimum CPU and GPU combinations before doing large-scale 
calculations to optimize our workflow. Design 4 is suitable for big-
imagery GeoAI workflows such as MAPLE in existing HPC systems.
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