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Abstract: We study the assortment optimization problemwhen customer choices are gov-
erned by the paired combinatorial logit model. We study unconstrained, cardinality-
constrained, and knapsack-constrained versions of this problem, which are all known to be
NP-hard. We design efficient algorithms that compute approximately optimal solutions,
using a novel relation to the maximum directed cut problem and suitable linear-program
rounding algorithms. We obtain a randomized polynomial time approximation scheme for
the unconstrained version and performance guarantees of 50% and ≈ 50% for the
cardinality-constrained and knapsack-constrained versions, respectively. These bounds
improve significantly over prior work. We also obtain a performance guarantee of 38.5% for
the assortment problem undermore general constraints, such asmultidimensional knapsack
(where products have multiple attributes and there is a knapsack constraint on each attri-
bute) and partition constraints (where products are partitioned into groups and there is a
limit on the number of products selected from each group). In addition, we implemented
our algorithms and tested them on random instances available in prior literature. We com-
pared our algorithms against an upper bound obtained using a linear program. Our average
performance bounds for the unconstrained, cardinality-constrained, knapsack-constrained,
and partition-constrained versions are over 99%, 99%, 96%, and 99%, respectively.
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cal, andManufacturing Innovation (CMMI) [Grant CMMI-1940766].

Supplemental Material: The online appendices are available at https://doi.org/10.1287/opre.2021.2188.
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1. Introduction
A prevalent operational problem faced by many firms
is to select an assortment of products to offer their cus-
tomers in order to maximize profit. In order to make
such a decision, one needs to understand and model
customer behavior. Conventional approaches to
modeling customer behavior assume that every cus-
tomer has a product he or she is interested in buying.
If that product is offered, the customer makes the pur-
chase. If it’s not offered, then the customer leaves
without making any purchase. These approaches dis-
regard substitution behavior that has been observed
in customers. Customers may substitute their favorite
product for another one that is available if it meets
their needs. Discrete choice models have been widely
used to combat this issue. These models capture the
demand of a product based on the attributes of the
product itself and the attributes of the other products
in the offered assortment. Thus, they help in modeling

the substitution behavior exhibited by customers and
also capture relationships between different products.

In this paper, we study assortment optimization
problems when customer choice behavior is modeled
by the paired combinatorial logit (PCL) model. The
most basic versions of assortment optimization are
unconstrained, capacitated, and knapsack con-
strained. In the unconstrained version, we can offer
any subset of products. In the capacitated version,
there is a limit on the number of products that we can
offer. In the knapsack constrained (also called space
constrained) version, there is a size associated with
each product and there is a constraint on the total size
of offered products. These three versions were studied
by Zhang et al. (2020) and Feldman (2017). We provide
significantly improved approximation algorithms for
all of these problems. In addition, we provide the first
constant-factor approximation algorithms for PCL as-
sortment optimization under other natural constraints,
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such as partition and multidimensional knapsack con-
straints. These constraints are significantly harder to
handle and have not been studied previously. In the
partition version, products are partitioned into different
categories and there is a limit on the number of selected
products in each category. In the multidimensional-
knapsack version, each product has multiple attributes
(for example, weight, volume, length) and there is a
constraint on the total size of each attribute.

The PCL model is a random utility model, similar to
the widely used multinomial logit (MNL) and nested
logit (NL) models (McFadden 1974). In these models,
the customer has a random utility for each product
(drawn from some joint distribution) and chooses the
product with maximum utility. The MNL model as-
sumes that utilities of different products are indepen-
dent. The NL model generalizes MNL by partitioning
products into nests. Products in different nests have
independent utilities, and there is equal correlation be-
tween utilities of products within the same nest. In con-
trast, the PCL model allows for correlations between
utilities of any pair of products. So the PCL model is
preferable in situations where there are significant corre-
lations between the utilities of different products, for ex-
ample, in selecting travel modes (Bekhor and Prashker
1998). It turns out that the PCL model is more general
than MNL. Although the PCL model does not directly
generalize the NL model, it allows for more general cor-
relation structure as noted above; we refer the interested
reader to Zhang et al. (2020) for a more thorough discus-
sion on this. Moreover, as discussed in Koppleman and
Wen (2000), estimating the parameters for the PCL mod-
el is advantageous over NL because we do not need to
search among numerous NL nesting structures.

Although assortment optimization problems in the
MNL and NL models have been studied extensively
under various constraints (see, E.G., Talluri and van
Ryzin 2004, Davis et al. 2013, Gallego and Topaloglu
2014, Feldman and Topaloglu 2015), assortment opti-
mization in the PCL model was initiated only recently
by Zhang et al. (2020). Our work adds to this literature
by addressing PCL assortment optimization under
many types of constraints, as described next.

1.1. Our Contributions
First, we establish a novel connection from the PCL
assortment optimization problem to the maximum
directed cut (max-dicut) problem. Max-dicut is a fun-
damental combinatorial optimization problem that in-
volves selecting a subset of nodes in a directed graph
so as to maximize the weight of outgoing edges from
the chosen subset. The max-dicut instances obtained
through this connection contain negativeweight edges,
so existing approximation algorithms for max-dicut
are not directly applicable. However, using properties
of the PCL model, we show that every node in the

max-dicut instance has either all-positive or all-
negative arcs leaving it. This enables us to use and ex-
tend approximation algorithms for max-dicut (with
nonnegative weights).

Second, we combine the above insight with the ap-
proximation framework of Zhang et al. (2020) and new
linear program (LP) rounding algorithms to obtain im-
proved approximation algorithms for the unconstrained,
cardinality-constrained, and knapsack-constrained as-
sortment problems. For the unconstrained version, we
obtain a randomized 0:874− approximation guarantee
via a semidefinite program (SDP) relaxation. For the car-
dinality and knapsack versions, we obtain approxima-
tion guarantees of 0.5 and 0.25, respectively, using a line-
ar program relaxation and a rounding technique called
pipage rounding. Such a rounding method was previ-
ously known (Ageev et al. 2001) for the max-dicut prob-
lem with an equality constraint on the number of verti-
ces: we extend this method to the more general setting
of a knapsack constraint. We thus improve previously
known approximation guarantees for all the basic ver-
sions of PCL assortment optimization: unconstrained
(from 0.79 to 0.874), cardinality constrained (from 0.25 to
0.5), and knapsack constrained (from 0.083 to 0.25). For
the cardinality-constrained assortment problem, another
advantage of our approach is that it only requires solv-
ing two LPs as opposed to multiple (up to n) LPs need-
ed in the previous algorithm of Zhang et al. (2020).

Third, we present an alternative approximation
framework that is based on binary search and the rela-
tion to max-dicut. Our framework is more general
than the one presented by Zhang et al. (2020) in the
sense that we can use any approximation algorithm
for constrained max-dicut. We show that the assort-
ment optimization problem under any constraint C
admits an (αC − ε)-approximation algorithm where αC

is the approximation guarantee for max-dicut under
the same constraint C and ε > 0 is any constant. As ap-
plications, we obtain (i) an improved (0:5− ε)-approx-
imation algorithm for the knapsack-constrained as-
sortment problem and (ii) the first constant-factor
approximation algorithms for the assortment problem
under matroid and multidimensional knapsack con-
straints. The first application relies on an improved
(0:5− ε)-approximation algorithm for max-dicut un-
der a knapsack constraint that we obtain in this paper;
the running time is nO(1=ε). This result combines the
LP-based 0.25-approximation algorithm (mentioned
above) with an enumeration method that ensures
each vertex/product has a small weight of outgoing
edges. Because the overall algorithm here is not LP
based, we cannot use the approximation framework
from Zhang et al. (2020). The second application is
based on the observation that the directed cut function
is submodular. This allows us to directly use results
from Buchbinder and Feldman (2019) on maximizing
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nonnegative submodular functions over various con-
straints (these algorithms are also not LP based). In
particular, we can obtain a 0.385-approximation algo-
rithm for a multidimensional knapsack constraint
(with constant number of dimensions) and matroid
constraints. We note that even for max-dicut under a
single knapsack constraint, the best approximation ra-
tio prior to our work was 0.385, which followed from
Buchbinder and Feldman (2019).

Fourth, we obtain a randomized polynomial time
approximation scheme (PTAS) for the unconstrained
assortment optimization problem. For any ε > 0, our
algorithm provides a (1− ε) approximate solution
with high probability in nO(1=ε2) time. This is based on
our binary search framework and a new algorithm for
max-dicut instances arising in our “reduction” from
the PCL assortment problem. The new max-dicut al-
gorithm uses random sampling and enumeration to
formulate a new linear program, which is rounded
randomly. Some of the ideas in this algorithm are
based on the PTAS for unweighted max-cut on
“dense” graphs obtained by Arora et al. (1999). How-
ever, the analysis of our algorithm relies crucially on
various properties of the max-dicut instances that
arise in context of the PCL assortment problem. As-
suming the “unique games conjecture” of Khot (2002),
one cannot obtain an approximation ratio better than
≈ 0:878 for generic instances of max-dicut. So this re-
sult separates the approximability of PCL assortment
optimization from max-dicut. We note that uncon-
strained PCL assortment optimization was shown to
be strongly NP-hard by Zhang et al. (2020), so we can-
not expect a fully polynomial time approximation
scheme for this problem. We also obtain a randomized
PTAS for the cardinality-constrained problem when
the cardinality is not too small, namely, c �Ω(n).
Finally, we perform extensive computational ex-

periments on previously used test instances and ob-
serve that our algorithms perform very well. For all of
our experiments, we compute an upper bound for the
optimal value using an LP (see Section 7 for more de-
tails) and compare our algorithms against this upper
bound. For both the unconstrained and cardinality-
constrained versions, our empirical performance is
about 99% on average. For the knapsack-constrained
version, our average performance is above 96%. We
also note that the computational times for all three al-
gorithms remain nearly the same. For the partition
constrained assortment problem, we implemented
our new binary-search-based approximation frame-
work combined with a local-search algorithm for
max-dicut under partition constraints. The average
performance is above 99% (again, relative to an
LP-based upper bound). We also test our PTAS for the

unconstrained version and find that it is practical for
moderate-size instances (up to 50 products).

Table 1 lists the best approximation ratios under
various constraints for max-dicut and PCL assortment
optimization. For each result, we cite the relevant pa-
per or section in this paper.

1.2. Related Work
Operational problems under the PCL model have
received a fair amount of recent attention. Li and
Webster (2017) studied pricing problems, and Zhang
et al. (2020) and Feldman (2017) studied assortment
optimization problems. Zhang et al. (2020) proved
that even the unconstrained PCL assortment problem
is NP-hard and obtained approximation guarantees
for the unconstrained and cardinality-constrained ver-
sions (0.79 and 0.25, respectively). Feldman (2017)
obtained a 0.083 approximation guarantee for the
knapsack-constrained PCL assortment problem.

There is a considerable amount of work in the trans-
portation literature that uses the PCL model. Kopple-
man and Wen (2000) conducted empirical analysis on
travel-mode data and observed that the PCL model
achieved higher log-likelihood than MNL and NL
models, which indicates that the PCL model fits the
data better. Chen et al. (2014) and Karoonsoontawong
and Lin (2015) considered traffic equilibrium prob-
lems under the PCL model and discussed the benefits
of using this model. This research shows that the PCL
model outperforms the MNL and NL models in pre-
dicting user behavior, especially when there is a com-
plex correlation structure amongst the alternatives.

There has been a lot of work on assortment optimi-
zation and pricing problems under the multinomial
logit and nested logit models. Exact polynomial-time
algorithms for the unconstrained and cardinality-
constrained problems under the MNL model were ob-
tained by Talluri and van Ryzin (2004) and Rusmevi-
chientong et al. (2010). Davis et al. (2013) used a linear
program formulation to solve the MNL assortment
problem under “totally unimodular” constraints.

Davis et al. (2014) studied the assortment optimiza-
tion problem under the NL model. They obtained
polynomial-time algorithms in some special cases and
proved the problem to be NP-hard in general. Gallego
and Topaloglu (2014) and Feldman and Topaloglu
(2015) studied the cardinality- and knapsack-
constrained versions of the NL assortment optimiza-
tion problem.

Assortment optimization has also been studied un-
der other models, such as mixtures of MNL and the
Markov chain choice model. Rusmevichientong et al.
(2014) showed that the assortment optimization prob-
lem under a mixture of MNL models is NP-hard and
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provided approximation algorithms. Blanchet et al.
(2016) obtained an efficient algorithm for assort-
ment optimization under the Markov chain choice
model.

The max-dicut problem has been widely studied
in optimization and theoretical computer science. If
the underlying graph is undirected, we obtain the
maximum cut (max-cut) problem, which is a special
case of max-dicut. The seminal work of Goemans
and Williamson (1995) used semidefinite program-
ming to obtain approximation ratios of 0.878 and
0.796 for the max-cut and max-dicut problems, re-
spectively. The guarantee for max-dicut was later im-
proved to 0.874 by Lewin et al. (2002). Max-dicut is
NP-hard, and Håstad (2001) showed that one cannot
obtain an approximation ratio less than ≈ 0:917 assum-
ing P≠ NP. In fact, assuming the unique-games-conjec-
ture of Khot (2002), Khot et al. (2007) showed that one
cannot approximate max-cut better than ≈ 0:878. Ageev
et al. (2001) studied the max-dicut problem with a cardi-
nality constraint, where one wants to find a vertex sub-
set of a given size. Using structural properties of the
max-dicut LP and the pipage rounding technique, they
developed a 0:5−approximation algorithm for this
problem.

1.3. Organization
In Section 2, we set up the notation and formulate all
the versions of the assortment optimization problem.
In Section 3, we describe our key reduction from the
assortment optimization problem to the max-dicut
problem. In Section 4, we first review the requisite re-
sults from Zhang et al. (2020) and then present our
new algorithms for the unconstrained, cardinality-
constrained, and knapsack-constrained versions. In
Section 5, we present the new binary-search frame-
work that can handle more complex constraints. We
use this framework to obtain a better approximation
for the knapsack-constrained problem and the first
constant-factor approximation for partition and multi-
dimensional knapsack constraints. In Section 6, we
obtain the randomized PTAS for the unconstrained
assortment optimization problem. We present compu-
tational results in Section 7. All missing proofs appear
in the online appendices.

2. Preliminaries
The set of products is denoted by [n] � {1, 2, : : : ,n}.
Each product i has a revenue ri ≥ 0 and a preference
weight vi ≥ 0 associated with it. Let v0 be the prefer-
ence weight associated with the option of not making
a purchase. The set M � {(i, j) | i≠ j} of ordered pairs
denotes the collection of nests. For each nest (i, j) ∈M,
we let γij ∈ [0, 1] be the dissimilarity parameter of that
nest. The dissimilarity parameter γij characterizes the
correlation between the utilities of products i and j.
We will use the vector x ∈ {0, 1}n to denote the set of
products that are offered. The ith entry of x is one if,
and only if, product i is offered.

We model customer behavior using the paired com-
binatorial logit model. Here, a purchase decision can
be viewed as a two-stage process. In the first stage,
the customer either picks one of the n(n− 1) nests or
decides to not buy a product. The decision to not buy
a product is referred to as the no-purchase option. The
preference weight of each nest (i, j) is Vij(x)γij , where

Vij(x) � v
1=γij

i xi + v
1=γij

j xj. Thus, given x, the probability
that a customer picks nest (i, j) is

Vij(x)γij

v0 +∑
(k,l)∈MVkl(x)γkl

:

Then, in the second stage, given that the customer
picks nest (i, j), he or she picks either product i or j.
Conditioned on the customer picking nest (i, j), the
probability that product i is picked is

v
1=γij

i xi

v
1=γij

i xi + v
1=γij

j xj
,

and the probability that product j is picked can be cal-
culated analogously. Now, we let Rij(x) be the ex-
pected revenue obtained from nest (i, j) given that the
customer has chosen nest (i, j); by the law of total ex-
pectation, we have

Rij(x) �
riv

1=γij

i xi + rjv
1=γij

j xj

v
1=γij

i xi + v
1=γij

j xj
� riv

1=γij

i xi + rjv
1=γij

j xj
Vij(x) :

We will use π(x) to denote the expected revenue ob-
tained from a customer when x is offered. Again, by
the law of total expectation, we have

Table 1. Summary of Results: Max-Dicut vs. PCL Assortment Optimization

Constraint type Max-dicut PCL-AO

Unconstrained 0.874 (Lewin et al. 2002) 1− ε (Section 6)
Cardinality 0.5 (Ageev et al. 2001) 0:5 (Section 4.4)

1− ε if c �Ω(n) (Section 6)
Knapsack 0:5− ε (Section 5.1) 0:5− ε (Section 5.1)
Partition/multidimensional knapsack 0.385 (Buchbinder and Feldman 2019) 0:385− ε (Section 5.2)

Note. Our results are in bold.
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π(x) � ∑
(i, j)∈M

Vij(x)γij

v0 +∑
(k,l)∈MVkl(x)γkl

Rij(x)

�
∑

(i,j)∈MVij(x)γijRij(x)
v0 +∑

(k,l)∈MVkl(x)γkl
: (1)

The PCL model is usually defined using unordered
pairs M′ � {(i, j) | 1 ≤ i < j ≤ n} as the nests. In this pa-
per, we use a definition with ordered pairs because it
simplifies notation. We note that this is equivalent to
the PCL model defined using unordered pairs. In-
deed, given an instance of the usual PCL model
(where γij is defined for unordered pairs), we set γij �
γji for all i, j ∈ [n] and scale the preference weight
of the no-purchase option by two (i.e., set v′0 � 2v0).
This is an equivalent model that has ordered pairs.

Our goal is to find a subset of products, x∗, to offer
in order to maximize the expected revenue. Thus our
optimization problem is

z∗ � π(x∗) �max
x∈F π(x), (2)

where F ⊆ {0, 1}n is the set of all feasible subsets of
products. Throughout this paper, we assume that F is
downward closed, that is, for any A ∈ F and B ⊆ A, we
also have B ∈ F . We consider the following specific
constraints:

•Unconstrained: F � {0, 1}n.
• Cardinality constrained: F � {x ∈ {0, 1}n |∑ixi ≤ c},

where c is the limit on the number of products.
• Knapsack constrained: F � {x ∈ {0, 1}n |∑isixi ≤ c},

where each si represents the size of product i and c is
the limit on total size.

•Multidimensional knapsack constraint: F � {x ∈ {0, 1}n |∑n
i�1 skixi ≤ ck k � 1, 2, : : : ,q}, which involves q different

knapsack constraints. Herewe assume that q is a constant.
• Partition: F � {x ∈ {0,1}n |∑i∈Ikxi ≤ ck, k � 1, 2, : : : ,

q}, where the sets {Ik}qk�1 form a partition of the products
[n], ck is the limit on the number of products from part
k, and q is the total number of parts. Here, the number q
of parts can be arbitrarily large.

3. Relating Assortment Optimization to
Max-Dicut

We first define functions hz : {0, 1}n → R and f : R→ R

as

hz(x) �
∑

(i, j)∈M
Vij(x)γij(Rij(x) − z) for x ∈ {0, 1}n and

f (z) �max
x∈F hz(x) for z ∈ R: (3)

The reason to consider these functions is because the
original objective π(x) is a ratio (see (1)), which can be
“linearized” as follows. For any z ∈ R and x ∈ F , we
have π(x) ≥ z if and only if hz(x) ≥ v0 · z. So the optimal
value z∗ (see (2)) is the maximal value of z such that
maxx∈F π(x) ≥ z, which is equivalent to f (z) ≥ v0 · z. In

this section, we relate the function f(z) to the max-
dicut problem, which is defined as follows.

Definition 1 (Maximum Directed Cut). Given a direct-
ed graph (V, E) with edge weights w : E→ R, the goal
in max-dicut is to select a vertex subset that maxi-
mizes the total weight of outgoing edges, that is,

max
S⊆V

∑
(i, j)∈E:i∈S, j∉S

wij:

It is usually assumed that all edge weights are
nonnegative.

For any fixed z, we show how one can reduce the
problem of finding an optimal x for f(z) to the max-
dicut problem on an appropriately defined graph. The
reduction creates a vertex for each product and an ad-
ditional dummy vertex that will never be selected.
There are edges associated with every pair of vertices.
The edge weights are defined such that for any subset
of products, their objective value in hz equals the val-
ue of the corresponding cut in the graph.

The max-dicut instance is defined on a graph with
n + 1 vertices, where vertices [n] :� {1, 2, ⋯ n} represent
the products and vertex n + 1 is a dummy vertex. We as-
sociate a binary decision variable xi with each of the ver-
tices i ∈ {1, 2, ⋯ n+ 1} , which represents whether or not
each vertex is included in the cut. To ensure that the
dummy vertex is never included in the cut, we set
xn+1 � 0. In order to reduce notation, let ri � ri − z for all
i ∈ [n].

For every ordered pair (i, j) of products, we introduce
four edges: (i, j), ( j, i), (i,n+ 1), and ( j,n+ 1). The
weights of these edges are chosen so that they corre-
spond to the contribution of the (i, j) term in function
hz; this is formalized in Lemma 1. In particular, let

ξ+ij �
riv

1=γij

i

(v1=γij

i + v
1=γij

j )1−γij

and ξ−ji �
rjv

1=γij

j

(v1=γij

i + v
1=γij

j )1−γij

:

(4)

We set ξ+ij and ξ−ji to be the weights on the edges (i,n+
1) and ( j,n+ 1), respectively, corresponding to the or-
dered pair (i, j). Likewise, ξ−ij and ξ+ji are the weights
on edges (i,n+ 1) and ( j,n+ 1), respectively, corre-
sponding to the ordered pair ( j, i).

Further, let

ψ+
ij � viri − ξ+ij � viri 1 − v

1=γij−1
i

(v1=γij

i + v
1=γij

j )1−γij

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ and

ψ−
ij � vjrj − ξ−ji � vjrj 1 −

v
1=γij−1
j

(v1=γij

i + v
1=γij

j )1−γij

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠:

(5)

We set ψ+
ij and ψ−

ji to be the weights on edges (i, j)
and (j, i), respectively (corresponding to the pair (i, j)).
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Likewise, ψ−
ij and ψ+

ji are the weights on edges (i, j) and
(j, i), respectively, because of the pair (j, i). Figure 1(a)
represents this construction for a particular pair (i, j).
Note that every edge e is assigned weight because of
multiple (i, j) pairs. We define the final weight of an
edge e as the sum of its weights because of all order-
ed (i, j) pairs. Formally, the final weight of each edge
(i, j) is

wij(z) �
∑

k∈[n]\{i}
ξik, if i ∈ [n], j � n+ 1

ψij, if i, j ∈ [n],
⎧⎪⎪⎪⎨⎪⎪⎪⎩ (6)

where ξij � ξ+ij + ξ−ij and ψij � ψ+
ij +ψ−

ij . Note that these
are all linear functions of z. Figure 1(b) shows a
partial structure of the directed graph that is ob-
tained after the reduction.

Let Gz be the weighted graph obtained in the above
reduction. The vertices are [n+ 1] :� {1, 2, ⋯ ,n,n+ 1}
(also denoted by V) and the edge-set is denoted E.

Lemma 1. For any subset S ⊆ [n], we have hz(1S) �∑
(i,j)∈E:i∈S,j∉S wij(z), where 1S ∈ {0, 1}n is the indicator vec-

tor for subset S.

We note that graph Gz may have negative weights,
but there is additional structure.

Lemma 2. If ri < 0 (respectively ri ≥ 0) for a vertex i, then
every edge leaving vertex i in Gz has a negative (resp. non-
negative) weight.

For ease of notation, we define the following two
sets: Nz :� {i ∈ [n] | ri < 0} and Pz :� V\Nz. Note that
Nz consists of those vertices that have negative weight
outgoing edges. The dummy vertex has no edges leav-
ing it and thus is in the set Pz. Let subgraph G̃z consist

of all nonnegative weight edges in Gz. Note that G̃z

contains all edges leaving vertices of Pz. Next, we
show an equivalence between f(z) and the maximum
directed cut problem on Gz.

Consider the following two formulations:

maximize :
∑

(i, j)∈M

riv
1=γij

i xi + rjv
1=γij

j xj

Vij(x)1−γij

subject to : x ∈ {0,1}n (IP1(z))
x ∈ F ,

maximize :
∑

(i, j)∈E
wij(z) · yij

subject to : yij ≤ xi, ∀ (i, j) ∈ E
yij ≤ 1 − xj, ∀ (i, j) ∈ E
yij ∈ {0, 1}, ∀ (i, j) ∈ E (IP2(z))
xi ∈ {0, 1}, ∀ i ∈ V
xn+1 � 0
x ∈ F ,

where F represents the set of feasible solutions to the
assortment problem. Note that a feasible solution for
IP2(z) is (x,xn+1) ∈ F × {0}. We now argue that there
are optimal solutions for IP1(z) and IP2(z) such that no
i ∈Nz is included in the optimal assortment or in the
optimal cut.

Lemma 3. Given an optimal solution x∗ to IP1(z), we can
construct another optimal solution x such that for all
i ∈Nz, xi � 0, that is, no product with ri < 0 contributes to
the solution, and for all i ∈ Pz (excluding n + 1, because
there are only n products), xi � x∗i .

Figure 1. (Color online) Structure of the GraphGz

(a) (b)

Notes. (a) Edges added for pair (i, j). (b) Overview of all edges.
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Lemma 4. Given an optimal solution (x∗,y∗) to IP2(z), we
can construct another optimal solution (x,y) such that for
all i ∈Nz, xi � 0, that is, no vertex that has outgoing edges
of negative weight contributes to the solution, and for all
i ∈ Pz, xi � x∗i .

Lemma 5. The optimal value of IP1(z) is exactly f(z). The
optimal value of IP2(z) is the optimal max-dicut value on
Gz subject to the constraints that the dummy vertex is not
selected and that the set of chosen vertices lies in F .

Note also that both IP1(z) and IP2(z) are functions of z.

Lemma 6. The formulations IP1(z) and IP2(z) are equiva-
lent, that is, for all z ∈ R, the optimal value of IP1(z) is the
same as the optimal value of IP2(z).Moreover, for each z ∈ R,
the optimal value of IP2(z) equals the optimal max-dicut val-
ue on G̃z subject to the constraints that the dummy vertex is
not selected and that the set of chosen vertices lies in F .

3.1. Complexity of the Reduction
We note that even when the input to the assortment
problem (values ri, vi, and γij) is rational, the reduction
above may not be polynomial sized in the input, be-
cause the weights wij(z) may be irrational. As we saw
in the proof of Lemma 2, we can write wij(z) � ri · αij
where αij ≥ 0. In Online Appendix A.1, we give an ap-
proach to deal with irrational αij values using Dirich-
let’s approximation theorem. The idea is to compute
rational values αij with polynomial bit complexity
such that |αij −αij |≤ ε for ε � 1

rmaxn3
. Then, we use

wij(z) � αij(ri − z) in all our algorithms (instead of
wij(z)). As a consequence of this, at the loss of a 1+
o(1) factor in the objective, we can assume that all
edge weights are rational in the reduction to max-
dicut.

Based on the above relation to max-dicut, we obtain
the following result (proved in Section 5).

Theorem 1. Let αC be the approximation guarantee known
for the max-dicut problem under some constraint C. Then,
there is an (αC − δ)−approximation guarantee (for any
δ > 0) for the assortment optimization problem under con-
straints C in time O(log ρrρv=δ

( ) · p(n)) where p(n) is the
runtime of the constrained max-dicut algorithm, ρr �maxi(ri)
min i(ri) and ρv � maxi(vi)

min i(vi).

4. Unconstrained, Cardinality, and
Knapsack Constraints

In this section, we utilize the approximation frame-
work from Zhang et al. (2020) along with our reduc-
tion to max-dicut and new rounding algorithms to de-
sign approximation algorithms for the assortment
optimization problem. The approximation framework
has the following three steps:

1. Construct an upper bound g(z) on f(z) such that
g(z) ≥ f (z) for all z ∈ R.

2. Find the fixed point ẑ of g(·)=v0; that is, find a ẑ ≥ 0
such that g(ẑ) � v0ẑ.

3. Find an assortment x̂ ∈ F such that
∑

(i,j)∈M
Vij(x̂)γij(Rij(x̂) − ẑ) ≥ αg(ẑ) for some α ∈ [0, 1].
Theorem 2 (theorem 3.1 from Zhang et al. 2020). Assume
that we have an algorithm that satisfies steps 1–3 mentioned
above. Then, we have π(x̂) ≥ αẑ ≥ αz∗ ,where z∗ is the optimal
value. Thus, ẑ is an upper bound to the optimal value of the as-
sortment optimization problem and x̂ is an α−approximate so-
lution to the assortment optimization problem.

To use Theorem 2, we first find the fixed point of an
LP or SDP relaxation (an upper bound to f(z)). To this
end, as in Zhang et al. (2020), we use the dual LP/
SDP to compute the fixed point of the upper bound.
We emphasize that the LP/SDP relaxations used in
this paper are based on the relation to max-dicut and
are different from those used earlier. Finally, to imple-
ment step 3 in this approximation framework, we
need to round the LP/SDP solutions: this is the key
step that also determines the approximation ratio α.
Our main contribution is in this step.

Compared with the approximation framework in
Theorem 1 (which is based on binary search), the above
framework is better if there are LP/SDP-based approxi-
mation algorithms for max-dicut. This is because the
framework in Theorem 2 only requires solving two LP/
SDPs as opposed to a logarithmic number in Theorem
1. This is indeed the case for the algorithms studied in
this section. On the other hand, Theorem 2 is inapplica-
ble if the max-dicut approximation algorithms are not
LP/SDP based (as for the applications in Sections 5 and
6), whereas the Theorem 1 is still useful.

For the rest of this section, the set F �
{x ∈ {0,1}n |∑isixi ≤ c}, which simultaneously captures
the unconstrained, cardinality-constrained, and
knapsack-constrained versions.

4.1. Relating f(z) to Max-Dicut
We now relax IP2(z) into a linear program by letting
variables take values in [0, 1] and by explicitly stating
the constraint for x ∈ F .

g(z) �maximize :
∑

(i, j)∈E
yijwij(z)

subject to: yij ≤ xi, ∀(i, j) ∈ E
yij ≤ 1− xj, ∀(i, j) ∈ E
xi ≤ 1, ∀ i ∈ [n] (LP(z))∑
i∈[n]

sixi ≤ c

xn+1 � 0
x,y ≥ 0:
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Clearly, g(z) is an upper bound to f(z) for all z ∈ R, as
required in step 1 of Theorem 2. Recall that the graph
Gz may have negative weight edges. The following
lemma provides an algorithm to get a solution for
LP(z) where no negative weight edge contributes to
the value of the cut. Such a solution can then be used
in the rounding procedures described in the future
sections.

Lemma 7. Given an optimal solution (x∗,y∗) to LP(z), we
can construct another optimal solution (x,y) such that for
all i ∈Nz, xi � 0, that is, no vertex that has outgoing edges
of negative weight contributes to the solution, and for all
i ∈ Pz, xi � x∗i .

The proof of Lemma 7 is identical to the proof of
Lemma 4 and hence omitted. As a consequence of
Lemma 7, we can, without loss of generality, delete all
negative weight edges in Gz to obtain graph G̃z. Note
that G̃z has nonnegative edge weights and, hence, will
be a valid input for the approximation algorithms
used later. Moreover, because of Lemma 6, a maxi-
mum directed cut in G̃z corresponds to an assortment
that maximizes f(z).

We would like to point out that the edge weights of
the graph have a negative linear dependence on the
parameter z, and thus the following observation is
immediate.

Observation 1. Function g(z) is nonincreasing in z.

Lemma 8. There exists a fixed point for g(·)=v0.
The rest of this section is organized as follows. We

describe the overall algorithm in Section 4.2. We then
provide some preliminary results on the LP-rounding
approach that we use in Section 4.3. Finally, Section
4.4 addresses the cardinality-constrained and knapsack-
constrained problems.

4.2. The Overall Approach
Continuing with the approach from Theorem 2, we
now compute a fixed point for the upper bound that
we have constructed for f(z). We first write the dual of
LP(z) using variables αij, βij, γi, and δ for the con-
straints in LP(z).

minimize :
∑

(i, j)∈E
βi,j +

∑
i∈[n]

γi + cδ

subject to : αij + βij ≥ wij(z), ∀ (i, j) ∈ E
− ∑
j|(i, j)∈E

αij +
∑

j|(j, i)∈E
βji + γi + siδ ≥ 0,

∀ i ∈ [n]
α,β,γ, δ ≥ 0 (D(z))

In the above dual, z is fixed and can be thought of as
an input parameter. Next, we add a constraint to the

above dual and make z a decision variable. Consider
the following LP, which is obtained from the above
dual:

minimize:
∑

(i, j)∈E
βi,j +

∑
i∈[n]

γi + cδ

subject to : αij + βij ≥ wij(z), ∀ (i, j) ∈ E
− ∑
j|(i, j)∈E

αij +
∑

j|( j, i)∈E
βji + γi + siδ ≥ 0,

∀ i ∈ [n]∑
(i, j)∈E

βi,j +
∑
i∈[n]

γi + cδ � v0z

α,β,γ, δ ≥ 0, z free: (D)

Lemma 9. If (α̂, β̂, γ̂, δ̂, ẑ) is an optimal solution to D,
g(ẑ) � v0ẑ, that is, ẑ is the fixed point of g(·)=v0.

We now summarize the overall algorithm for
knapsack-constrained assortment optimization.

1. Solve the LP (D).
2. Using the value of z obtained in the above solu-

tion, solve (LP(z)) to obtain (x∗,y∗).
3. Using Lemma 7, find another optimal solution

(x,y) to (LP(z)), where xi � 0 for all i ∈Nz.
4. Round the (LP(z)) solution x to the constrained

max-dicut instance on graph G̃z with nonnegative edge-
weights.

Therefore, if we have an LP-based α-approximation
algorithm for constrained max-dicut with nonnegative
edge-weights, then we obtain an α-approximation al-
gorithm for the constrained PCL assortment optimiza-
tion problem. Moreover, this approach only requires
us to solve two LPs.

4.2.1. Application to the Unconstrained Problem. For
the unconstrained version, we use a semidefinite pro-
gram relaxation as the upper-bound g(z). The overall
algorithm remains the same as above, except for the
use of SDPs in steps 1 and 2 and an SDP-based lemma
(similar to Lemma 7) that ensures that we can focus
on nonnegative edge-weights. We note that Zhang
et al. (2020) also used an SDP relaxation to obtain their
0.79-approximation algorithm. However, our SDP and
its rounding are different. We obtain the following re-
sult (proved in Online Appendix B).

Theorem 3. There is a randomized 0.874-approximation
algorithm for the unconstrained PCL assortment optimiza-
tion problem.

4.3. Preliminary Results for the LP
Rounding Algorithms

Here we introduce a useful LP rounding technique
called pipage rounding that will be used in the algo-
rithms for cardinality-constrained and knapsack-
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constrained assortment problems. This technique was
developed for problems in which we want the feasible
set to be of a given cardinality. The interested reader
can refer to Ageev and Sviridenko (1999) for more de-
tails. Here, we consider a knapsack constraint on the
feasible sets, which involves arbitrary sizes.

Let a problemΠ be represented as the program (7).

maximize: F(x)
subject to : xi ∈ {0, 1}, ∀ i ∈ V∑

i
sixi ≤ c

(7)
maximize: L(x)
subject to : xi ∈ [0, 1], ∀ i ∈ V∑

i
sixi ≤ c, (8)

where F : [0, 1]n → R+ is a continuous function on the
n-dimensional cube and L is a linear function. We call
LP (8) a “nice” relaxation to (7) if L(x) � F(x) for all
x ∈ {0, 1}n. For solution x ∈ [0, 1]n, we say that the
knapsack constraint is active if it is satisfied at equali-
ty, that is,

∑
isixi � c.

We define two properties:

Definition 2. F/L lower bound: For a given
x ∈ [0, 1]n, F(x) ≥ αL(x).
Definition 3. ε−convexity: For each i, j ∈ [n] and
x ∈ [0, 1]n, the function φ(x, i, j,ε) � F x1, : : : ,xi+( ε, : : : ,
xj − si

sj
ε, : : : ,xn) is convex in ε for ε ∈ −[ min xi,{

sj
si
(1− xj)},min{(1− xi), sjsi xj}].
We now describe the pipage rounding procedure.

Let x be any solution to LP (8) that satisfies the condi-
tion in Definition 2. Starting with x � x, we repeat the
following as long as there are at least two fractional
variables in x:

1. Pick any two fractional variables, say i and j, that
is, 0 < xi,xj < 1.

2. By the ε−convexity property, we have φ(x, i, j,ε) ≥
F(x) for either ε � −min {xi, sjsi (1− xj)} or ε �min (1−{
xi), sjsi xj}. Let ε∗ denote the value so that
φ(x, i, j,ε∗) ≥ F(x).

3. Obtain a new solution, x̃ � (x1, : : : ,xi + ε∗, : : : ,xj−
si
sj
ε∗, : : : ,xn). Note that F(̃x) ≥ F(x) and either x̃i ∈ {0, 1}

or x̃j ∈ {0, 1}.
4. Update x← x̃.
Note that the number of fractional variables de-

creases by at least one in each iteration: so we need to
perform at most n – 1 iterations of the above proce-
dure. Also, the total size in the knapsack constraint re-
mains unchanged throughout, that is,

∑
isixi � ∑

isixi.
Let x∗ denote the final solution; note that F(x∗) ≥ F(x).
Clearly, x∗ has at most one fractional variable. More-
over, if si � 1 for all i ∈ [n], c ∈ Z+ and the knapsack
constraint is active, then it is clear that x∗ cannot have
exactly one fractional variable: so x∗ ∈ {0, 1}n in this

case. Finally, by the F/L lower bound property for x
(i.e., F(x) ≥ αL(x)) and F(x∗) ≥ F(x), we have F(x∗) ≥
αL(x).

To summarize,

Theorem 4. Consider an instance of a problem described
by (7) with a “nice” relaxation (8) and any solution x to
(8). Suppose that F satisfies the ε−convexity property and
the F/L lower bound property for x and some α < 1. Then
we can find a solution x∗ with at most one fractional vari-
able such that F(x∗) ≥ F(x) ≥ α · L(x). Furthermore, if si � 1
for all i ∈ [n], c ∈ Z+ and the knapsack constraint is active
for x, then x∗ is guaranteed to be an integral solution.

4.3.1. The LP Relaxation for Max-Dicut. We will apply
this method to max-dicut with a knapsack constraint. As
the nice relaxation, we use the following linear program:

maximize :
∑

(i, j)∈E
wij · yij

subject to : yij ≤ xi, ∀ (i, j) ∈ E
yij ≤ 1 − xj, ∀ (i, j) ∈ E
xi ≤ 1, ∀ i ∈ V∑
i∈[n]

sixi ≤ c

x, y ≥ 0:

(9)

Note that this LP is equivalent to (LP(z)) when we set
wij � wij(z). Moreover, as mentioned in Section 4.2, it
suffices to consider instances with nonnegative edge-
weights.

The following structural result on the basic feasible
solutions (x, y) of this LP is crucial in applying the pip-
age rounding technique. This result is a generalization
of a previous result in Ageev et al. (2001) that only
holds for cardinality constraints (i.e., every si � 1).

Theorem 5. Let (x, y) be any basic feasible solution to the
LP relaxation (9). Then there is some value 0 < δ < 1

2 such
that xi ∈ 0,δ, 12 , 1− δ, 1

{ }
for all i ∈ V. Moreover, if∑

isixi < c, then xi ∈ {0, 1=2, 1} for all i ∈ V.

4.4. The Cardinality and Knapsack
Constrained Problems

We now provide a rounding algorithm for max-dicut
with a general knapsack constraint, relative to the LP
(9). We formulate this problem as the integer program
(7) with F(x) �∑

(i,j)∈Ewijxi(1− xj). We also use L(x) �∑
(i,j)∈Ewijmin{xi, (1− xj)} in (8), which is equivalent to

LP (9). Note that the ε− convexity property (Definition
3) holds for F because the coefficient on the quadratic
term in ε is positive. Our algorithm is now given as
Algorithm 1.

Lemma 10. The solution x′ in step 2 satisfies
∑

isix′i �∑
isixi � c and is feasible to LP (9).
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Proof. For any i ∈ V1, the increase x′i − xi �
min{1− δ, (1− δ)S(V2)=S(V1)} �: Δ1. Similarly, for any
i ∈ V2, we have x′i − xi � −min{1− δ, (1− δ)S(V1)=
S(V2)} �: Δ2. So

Δ1 · S(V1) �min {(1− δ)S(V1), (1− δ)S(V2)}
� −Δ2 · S(V2),

and hence
∑

i∈Vsi(x′i − xi) � Δ1
∑

i∈V1si +Δ2
∑

i∈V2si � 0.
This shows

∑
isix′i �∑

isixi � c. Moreover, it is easy to
see that x′ ≥ 0. So x′ is feasible to (9). w

It now follows that the solution x∗ obtained in step 4
by pipage rounding (on either x or x′) also satisfies
the knapsack constraint. The next two lemmas bound
the objective value depending on whether or not the
knapsack constraint is active. Lemma 11 generalizes a
result of Ageev et al. (2001) that focused on the cardi-
nality case (where all si � 1).

Algorithm 1 (Max-Dicut with a Knapsack Constraint)
1: Let (x,z) be the optimal basic solution to the LP re-
laxation (9).

2: If
∑

isixi � c, then we define a new vector x′. Let
V1 � i | xi � δ{ }, V2 � i | xi � 1− δ{ }, V3 � i | xi � 1

2

{ }
and V4 � {xi | xi � 0 or 1}. Let S(V1) �∑

i∈V1si, and
S(V2) �∑

i∈V2si.

x′i �
min {1,δ+ (1− δ)S(V2)=S(V1)}, if i ∈ V1
max {0, (1− δ) − (1− δ)S(V1)=S(V2)}, if i ∈ V2
xi, if i ∈ V3 or V4

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(10)

We set x̂ ← argmax {F(x),F(x′)}.
3: If

∑
isixi < c, then we set x̂ ← x.

4: Apply pipage rounding (Theorem 4) to x̂ and ob-
tain solution x∗ with at most one fractional vari-
able (say x∗i ). Let I1 � { j ∈ V : x∗j � 1} and I2 � {i}.

5: (Cardinality constrained) If all si � 1, then output
the better of I1 and I1

⋃
I2.

6: (Knapsack constrained) Otherwise, output the
better of I1 and I2.

Lemma 11. If the constraint
∑

isixi ≤ c is active, then
max{F(x),F(x′)} ≥ 0:5 · L(x).
Lemma 12. If the constraint

∑
isixi ≤ c is not active, then

F(x) ≥ 0:5 · L(x).
We obtain the following guarantees for cardinality

and knapsack constraints.

Theorem 6. Algorithm 1 gives a 0.5-approximation algo-
rithm for max-dicut with a cardinality constraint relative
to the LP (9). Hence, there is a 0.5-approximation algorithm

for the cardinality-constrained PCL assortment optimiza-
tion problem.

Theorem 7. Algorithm 1 gives a 0:25−approximation
guarantee for the max-dicut problem with a knapsack constraint
relative to LP (9). Hence, there is a 0.25-approximation
algorithm for the knapsack-constrained PCL assortment op-
timization problem.

From the above analysis, we also see that if the total
weight of edges leaving every vertex was small, then
we would not lose much by dropping the fractional
vertex. Formally, we have the following:

Definition 4. We define δ(i) to be the sum of the
weights of the edges leaving vertex i ∈ V, that is,

δ(i) � ∑
(i, j)∈E

wij:

Corollary 1. If x is an optimal solution to LP (9) and
Ṽ � { j ∈ V : 0 < xj < 1}, Algorithm 1 obtains a solution of
weight at least 0:5 · LP−maxi∈Ṽδ(i), where LP is the opti-
mal LP value.

Proof. We will show that solution I1 achieves this
guarantee. Firstly, note that Algorithm 1 does not
modify integer-valued variables in x. So the fractional
variable i in x∗ (if any) must lie in Ṽ . From the proof of
Theorem 7 (see Online Appendix C), we know that
the cut value for I1 is

W10 +W1 ≥W10 + f ·W0 + (1− f )W1 −W0 � F(x∗) −W0:

Note that w0� total weight of edges from i to
{i ∈ V : x∗i � 0}, and here W0 ≤maxi∈Ṽδ(i). The corol-
lary now follows as F(x∗) ≥ 0:5 · L(x) � 0:5 · LP. w

We will show later (in Section 5) that this can be
used to obtain an improved (0:5− ε)-approximation
algorithm for knapsack-constrained max-dicut and
PCL assortment optimization.

5. Assortment Optimization Under
General Constraints

In this section, we prove Theorem 1 by providing a
binary-search-based approximation framework. This
can be used to solve PCL assortment optimization un-
der a much larger class of constraints. It is also useful
in obtaining improved approximation ratios for the
unconstrained and knapsack-constrained versions.
Unlike the framework from Zhang et al. (2020, theo-
rem 2), our approach here does not require approxi-
mation algorithms relative to LP/SDP relaxations.

Based on the reduction in Section 3, the function
value f(z) corresponds to solving a max-dicut instance
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on Gz. Although some edge weights in Gz may be neg-
ative, Lemmas 5 and 6 imply that f(z) equals the opti-
mal max-dicut value on G̃z subject to the constraints
that the dummy vertex is not selected and that the set
of chosen vertices lies in F . Recall that G̃z is the sub-
graph of Gz consisting of nonnegative edges. So the
(constrained) max-dicut instances that we need to
solve will only contain nonnegative edge weights. Let
C be the constraint on feasible assortments (and on
feasible cuts in the max-dicut instance). Let αC denote
the approximation guarantee for max-dicut under
constraint C: so we can obtain an αC-approximation to
f(z) for any z. We use a binary search technique to ob-
tain a value z̃ that is within an αC multiplicative factor
(and some additive error) of the optimal z∗. Recall that
z∗ is the expected revenue of the optimal assortment
and the fixed point of f (·)=v0. Let f̃ (z) be the objective
value of the αC-approximation algorithm on max-
dicut instance Gz with constraint C. Roughly speaking,
the binary search identifies the fixed point of the ap-
proximating function f̃ (·)=v0. Finally, we show how
the additive error can be absorbed into the multiplica-
tive approximation guarantee by a simple scaling
idea. Algorithm 2 describes this procedure formally.
In Online Appendix D, we show that it achieves the
guarantee stated in Theorem 1.

Algorithm 2 (Assortment Optimization under General
Constraints)

1: let L← Rmin :� min i(ri)·min i(vi)
2·max i(vi) , R← Rmax :�max i(ri)

and ε← δRmin.
2:while R− L ≥ ε do
3: z← L+R

2
4: let x̂ be an αC-approximate solution to max-

dicut under constraint C on graph G̃z.
5: ALGz ←∑

(i,j)∈MVij(x̂)γij[Rij(x̂) − z]
6: if ALGz ≥ v0z, then set L← z
7: else Set R← z
8: return αC-approximate solution to max-dicut on

graph G̃L under constraint C.

5.1. Improved Algorithm for Knapsack
Constraints

Here, we revisit the knapsack-constrained assortment
problem where the feasible subsets are F � {x ∈
{0,1}n |∑isixi ≤ c}. We obtained a 0.25-approximation
algorithm for this problem in Section 4.4. We now ob-
tain a better (0:5− ε)-approximation algorithm for max-
dicut under knapsack constraints (for any constant
ε > 0), which combined with Theorem 1 yields the
same approximation ratio for the assortment problem.
Prior to our work, the best approximation ratio even for
max-dicut under knapsack constraints was 0.385, which
followed from Buchbinder and Feldman (2019).

Our algorithm combines a partial enumeration
method with the LP-based pipage rounding algorithm

in Section 4.4. For any instance of knapsack-
constrained max-dicut (with nonnegative weights wij),
recall from Definition 4 that δ(i) denotes the total
weight of outgoing edges from vertex i ∈ V. Moreover,
by the pipage rounding algorithm (see Corollary 1)
we can obtain a solution of weight at least 0:5 ·OPT −
maxi∈Vδ(i) where OPT is the optimal value. So, if we
could bound all the δ(i) s by a small fraction of OPT,
we would obtain the desired result. To this end, we
perform an enumeration step described below.

We assume for now that our algorithm knows a
number U such that OPT ≤U ≤ 2 ·OPT (we will see
later how to remove this assumption). Given any
ε > 0, set ε′ � ε=2. Vertex i ∈ V is said to be heavy if
δ(i) ≥ ε′U. Let H ⊆ V denote the set of heavy vertices.
We enumerate all subsets S ⊆H of heavy vertices with
|S | ≤ �4ε′
 that are feasible, that is,

∑
i∈Ssi ≤ c. Note that

there are at most n1+4=ε′ possible subsets S: so this enu-
meration takes polynomial time for any constant ε.

For a particular choice of subset S, let LP(S) denote
the linear program (9) along with

xi � 1 for all i ∈ S
0 for all i ∈ H\S:

{
Basically, this fixes the decisions on all heavy vertices.
The algorithm solves LP(S) optimally to obtain solution
x and rounds it using Algorithm 1. The set of fractional
variables in x is Ṽ � {j ∈ V : 0 < xj < 1} ⊆ V\H, which
implies maxi∈Ṽδ(i) < ε′U. So Corollary 1 implies that
we obtain a cut of weight at least 0:5 · LP∗(S) − ε′U,
where LP∗(S) denotes the optimal value of LP(S).

It remains to show that there is some choice of S
(that we enumerate) for which LP∗(S) ≥OPT, which
relies on upper bounding the number of heavy verti-
ces in an optimal solution.

Lemma 13. For any ε > 0, if T denotes the set of heavy ver-
tices with respect to ε in an optimal solution, then |T | ≤ �4ε
.
Proof. Consider a subset S ⊆ T picked uniformly at ran-
dom and let cut(S) denote the weight of edges cut by solu-
tion S. Note that every subset S ⊆ T is still feasible for the
knapsack constraint. The expectedweight of cut edges is

E[cut(S)] � ∑
(i, j):i∈T, j∈V

P(i ∈ S, j ∉ S) ·wij

� ∑
(i, j):i∈T, j∈T

P(i ∈ S, j ∉ S) ·wij

+ ∑
(i, j):i∈T, j∉T

P(i ∈ S, j ∉ S) ·wij

� 1
4

∑
(i, j):i∈T, j∈T

wij + 1
2

∑
(i, j):i∈T, j∉T

wij

≥ 1
4

∑
(i, j):i∈T, j∈V

wij � 1
4

∑
i∈T

δ(i)

≥ 1
4
|T | ·ε ·OPT;
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where the first equality follows by applying linearity
of expectation, the third equality follows by indepen-
dence, and the last equality follows from the defini-
tion of δ(·). The final inequality follows from the
definition of a heavy vertex.

Moreover, E[cut(S)] ≤OPT as S is always feasible.
Combining the above two inequalities, we have
OPT ≥ 1

4 |T | ·ε ·OPT; rearranging we get
|T | ≤ 4

ε ≤ �4ε
. w

Lastly, we need to ensure that we can find some
value U with OPT ≤U ≤ 2 ·OPT. This is done by a
simple enumeration. Note that wmax �max(i,j)∈Ewij ≤
OPT ≤∑

(i,j)∈Ewij ≤ n2 ·wmax. We enumerate all values
U ∈ {2k ·wmax : k � 0, 1, ⋯ �log 2(n2)
}, run our algo-
rithm for each choice, and return the best solution
found. Clearly, one of these choices satisfies the de-
sired condition. Moreover, the number of choices is
O(logn).
Theorem 8. For any ε > 0, the above algorithm has an ap-
proximation guarantee of (0:5− ε) for max-dicut with a
knapsack constraint. Hence, there is a (0:5− ε)-approxima-
tion algorithm for knapsack-constrained assortment optimi-
zation for all constant ε > 0.

We note that the LP-based approximation frame-
work (Theorem 2) is not applicable here because our
improved approximation algorithm is not relative to
any LP.

5.2. Multidimensional Knapsack and Matroid
Constraints

It is well known that the directed cut function on any
graph with nonnegative edge weights is nonnegative
and submodular (but not monotone). Therefore, we
can use any algorithm for submodular maximization
under constraint C in order to solve the max-dicut
problem under C, which in turn (using Theorem 1)
provides an algorithm for the assortment optimization
problem under constraint C. Here we consider matroid
and knapsack constraints. In a matroid constraint, we
are given a matroid with ground set being the n prod-
ucts and the goal is to select any independent set of
products. Lee et al. (2010) gave a simple local search
algorithm for maximizing any nonnegative submodu-
lar function under a matroid constraint, with an ap-
proximation guarantee of 0.25. The approximation ra-
tio was improved to 0.385 by Buchbinder and
Feldman (2019); this algorithm is significantly more
complex than the local search algorithm. Combined
with the result of Kulik et al. (2013), the latter result
also implies a 0.385-approximation algorithm for sub-
modular maximization under any constant number of
knapsack constraints. Thus, using Theorem 1 we ob-
tain the following:

Theorem 9. Algorithm 2 provides a 0.385-approximation
algorithm for assortment optimization under the PCL mod-
el subject to a matroid or constant number of knapsack
constraints.

We now provide some examples of specific con-
straints for assortment optimization that can be cap-
tured by the above result. Consider an electronic retail
store that has a certain amount of space to showcase
their offered products. Each displayed product occu-
pies a fixed amount of space, and the total display
space is limited.

5.2.1. Partition Constraints. Suppose that the prod-
ucts are partitioned into different categories (televi-
sions, laptops, tablets, etc.) and the store wishes to
limit the number of displayed products from each cat-
egory. We can model this situation by introducing
partition constraints. Suppose we have q different
product-categories and that Ik is the set of products in
category k ∈ [q]; we assume that I1, ⋯ Iq is a partition
of all products. Let ck be the limit on the number of
displayed products of each category k ∈ [q]. We can
then represent the set of feasible subsets as
F � x ∈ {0,1}n |∑i∈Ikxi ≤ ck, k � 1, 2, : : : ,q

{ }
, which is a

matroid constraint.

5.2.2. Hierarchical Partition Constraints. A further
generalization of the above application allows product
categories to be nested and not just disjoint. Formally,
if A ⊆ [n] and B ⊆ [n] denote the products of any two
categories, then we must have A ∩ B � ∅, A ⊆ B, or
B ⊆ A. The first case (A ∩ B � ∅) corresponds to dis-
joint categories (as for partition constraints), whereas
the other two cases correspond to nested categories.
For example, products in the category “television
sets” may be subdivided based on screen size or pic-
ture quality. Given such a nested (or hierarchical) par-
tition into categories and a limit on the maximum
number of products of each category, the goal is to se-
lect a subset of products respecting all of these limits.
The resulting collection F of feasible subsets is again a
matroid, and we obtain a 0.385-approximation algo-
rithm from Theorem 9.

5.2.3. Multidimensional Knapsack Constraints. More
generally, the store may want to enforce constraints
involving overlapping sets of products. For example,
in addition to limits by categories (as above), one may
have limits on the number or space of all products
(from any category) having some feature, such as
luxury products or on-sale products. Although this
situation does not correspond to a matroid constraint,
it can be modeled as a multidimensional knapsack
constraint, with one dimension for each constraint.
For each constraint k (representing some category
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or feature), let ski be the space used by product i if
it participates in constraint k and zero otherwise
and let ck be the total space allocated to products
in constraint k. Then, the feasible subsets are
F � {x ∈ {0, 1}n |∑n

i�1 skixi ≤ ck k � 1, 2, : : : ,q}. As long
as the number q of constraints is constant, we
obtain a 0.385-approximation algorithm from
Theorem 9.

6. PTAS for Unconstrained Assortment
Optimization

The main result in this section is

Theorem 10. There is a randomized polynomial-time ap-
proximation scheme for the unconstrained assortment opti-
mization problem under the PCL model.

We will use the binary-search framework (Theorem 1)
combined with additional properties of the max-
dicut instances that arise from the assortment prob-
lem. In particular, we will show that for any z ≥ 0,
there is a randomized PTAS for the function value
f(z) in (3). Recall from Section 3 and Lemmas 5 and 6
that the function value f(z) equals the optimal max-
dicut value on G̃z (where the dummy vertex is not se-
lected). Our focus here is the unconstrained case: so
F � {0, 1}n. As before, G̃z is the subgraph of Gz con-
sisting of nonnegative edges.

In order to obtain a PTAS for max-dicut on G̃z, we
use the “exhaustive sampling” approach of Arora et al.
(1999), which involves sampling a random subset of
vertices and enumerating whether or not these verti-
ces appear in an optimal solution. This approach has
been used to provide PTASes for dense instances of
max-dicut (as well as other graph optimization prob-
lems). In our setting, however, the max-dicut instan-
ces are not necessarily dense: so we cannot directly
use prior results. Nevertheless, using the structure of
our max-dicut instances, we prove a lower bound on
its optimal value (see Lemma 14). Moreover, we show
that the additive error incurred because of the sam-
pling steps is only a small fraction of this lower bound
(see Lemma 16), which leads to a PTAS. As noted in
Section 1.2, there is no PTAS for max-dicut in general
(unless P � NP).

In our reduction described in Section 3, recall that
for every pair (i, j) ∈ [n] × [n], we add four edges:
(i,n+ 1), ( j,n+ 1), (i, j), and ( j, i) with weights ξ+ij ,ξ

−
ji ,

ψ+
ij , and ψ−

ji , respectively. From the definitions (4) and

(5), we have ξ+ij +ψ+
ij � viri and ξ−ji +ψ−

ji � vjrj. Also re-
call the edge weights wij(z) as defined in (6). In par-
ticular, for i, j ∈ [n], we have wij(z) � ψ+

ij +ψ−
ij . Let

Qz � {i ∈ [n] : ri ≥ 0}; recall that Pz �Qz
⋃ {n+ 1} and

Nz � [n+ 1]\Pz. Let N � |Qz |. For any i ∈Qz and j ∈
[n], we have wij(z) ≤ 2viri based on the calculations in

Lemma 2. For easier notation, for all i, j ∈Qz, we de-

fine σij � wij(z)
viri

∈ [0, 2]. Also, for any i ∈Qz, define
Ci(z) �∑

j∉Qzwij(z). Finally, note that the optimal max-

dicut on G̃z only contains vertices from Qz. So f(z)
equals the following:

max
A⊆Qz

∑
i∈A

viri ·
∑

j∈Qz\A
σij +

∑
i∈A

Ci(z)
( )

: (11)

Below, we use OPT to refer to the optimal solution to
(11) as well as its value. It will be clear from context
which of the two is being referenced. Let
OPT �Qz\OPT, THAT IS, the set of vertices that are not
in the optimal max-dicut solution. For every vertex
i ∈Qz, define Oi �∑

j∈OPTσij; note that Oi ≤ 2N. Conse-
quently, the optimal value can be written as

OPT � ∑
i∈OPT

viri ·Oi +Ci(z)( ):

The PTAS starts by sampling a random subset S ⊆Qz;
then for each partition (U,U) of S, it does the follow-
ing and picks the best solution found. (1) Define the
term αi �∑

j∈Uσij for each i ∈Qz. (2) Solve LP(α) (de-
scribed below). (3) Randomly round the solution ob-
tained on solving LP(α) to obtain an integral solution.
The main idea is that when the partition (U,U) is such
that U � S ∩OPT and U � S ∩OPT , the values {αi}i∈Qz

are unbiased estimators of {Oi}i∈Qz
. Using this, we

write a “sampled” linear program (LP(α) below) that
has optimal value roughly equal to OPT. Finally, ran-
dom rounding of this LP solution yields an integral
solution of value ≈OPT.

Algorithm 3 (Randomized PTAS for Max-Dicut on G̃z)
1: Sample S: for every i ∈Qz, add i to S independent-

ly with probability p �min 96logN
ε2N , 1

{ }
.

2: If |S |> 2Np , then set x̂ � x∗ � 0 and return solution
x∗.

3: for all splits (U,U):U ⊆ S, U � S\U do
4: Let αi :�∑

j∈Uσij for all i ∈Qz

5: Solve the following LP and let x̂ be its optimal
solution.

maximize:
1
p

∑
i∈Qz

αiviri · xi +
∑
i∈Qz

Ci(z) · xi

subject to:
∑
j∈Qz

σij · (1− xj) ≥ αi

p
−Nε, ∀i ∈Qz

xi ∈ [0, 1], ∀i ∈Qz

(LP(α))

6: From x̂, get integral solution x∗ as follows:

x∗i � 1, with probability x̂i
0, otherwise , for all i ∈Qz

{
,

7: Return the best x∗ found over all runs.
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Theorem 11. For any ε ∈ (0, 1), Algorithm 3 runs in
nO(1=ε2) time and finds a solution with the expected objective
at least 1− 8ε times the optimal max-dicut value on G̃z.

We first discuss the running time of Algorithm 3. If
the algorithm continues beyond step 2, the sample
size |S | ≤ 2Np ≤ 192logN

ε2 . So the number of iterations of
the for-loop, which is the number of possible splits of
S, is at most 2|S| � nO(1=ε2). Moreover, each iteration of
the for-loop involves solving an LP with N variables
and constraints and simple randomized rounding, all
of which takes polynomial time. So the overall run-
time is nO(1=ε2) as claimed in Theorem 11.

We now analyze the performance guarantee.
Throughout, we will assume that N ≥ 3

ε: otherwise (11)
can be easily solved by enumeration. The analysis in-
volves showing that OPT is a feasible solution to
LP(α) with high probability, showing a lower bound
for OPT with respect to the fractional solution to
LP(α) and finally showing that the expected objective
of our rounded solution is within a factor of ε from
OPT. We start with a key property that uses the struc-
ture of the max-dicut instance from Section 3.

Lemma 14. The optimal value OPT ≥ N−1
2
∑

i∈Qzviri ≥
N
3
∑

i∈Qzviri.

Proof. Consider a random solution R ⊆Qz to (11)
where each vertex i ∈Qz is in R with probability 1

2 in-
dependently. Using the definition of Ci(z), the objec-
tive value of R is

obj(R) � ∑
i∈R

∑
j∈Qz\R

wij(z) +
∑
j∈Qz

wij(z)
( )

:

By definition of R, for any i, j ∈Qz, we have P[i ∈ R] � 1
2

and P[i ∈ R, j ∉ R] � 1
4. So,

E[obj(R)] � 1
4

∑
i, j∈Qz

wij(z) + 1
2

∑
i∈Qz,k∉Qz

wik(z)

≥ 1
4

∑
i∈Qz

∑
j∈Qz

wij(z) + wi,n+1(z)
( )

� 1
4

∑
i∈Qz

∑
j∈Qz

wij(z) +
∑

k∈[n]\{i}
(ξ+ik + ξ−ik)

( )
(A)

≥ 1
4

∑
i, j∈Qz

(ψ+
ij +ψ−

ij ) + (ξ+ij + ξ−ij )
( )

(B)

�N − 1
4

∑
i∈Qz

2viri: (C)

Above, the equality (A) uses the definition of wi,n+1(z)
and the inequality in (B) uses the definition of wi,j(z)
and that all the terms are nonnegative. The final
equality (C) uses the observation that ξ+ij +ψ+

ij � viri �

ξ−ij +ψ−
ij from (5). The lemma now follows as

OPT ≥ E[obj(R)]. w

For any sample S ⊆Qz, define its canonical split as
(TS,TS) of S, where TS � S ∩OPT and TS � S ∩OPT.
Note that one of the iterations of the for-loop will consid-
er this split, and the algorithm chooses the best solution
over all iterations. In the analysis below, we will only
consider the solution resulting from the canonical split
of S. Specifically, for this split, random variable αi �∑

j∈S∩OPTσij and so ES[αi] � ∑
j∈OPTσij ·P[ j ∈ S] � p ·Oi.

We now have the following concentration bound.

Lemma 15. For each i ∈ Qz, PrS[| αi −E[αi] |> εNp] ≤ 2
N3

for all i ∈Qz.

So, we have αi ∈ [p ·Oi6εNp], for all i ∈Qz with
high probability, for the canonical split (TS,TS). Let x̂
be the optimal solution for LP(α) for the split (TS,TS)
and LP(x̂) be the corresponding value. Then we have
the following.

Lemma 16. The expected value ES[LP(x̂)] ≥ (1− 3
N2 )

OPT − εN
∑

i∈Qzviri.

Let ALG denote the objective value in (11) of our al-
gorithm’s solution x∗.

Lemma 17. The expected value ES[ALG] ≥ (1− 8ε) ·OPT.

This completes the proof of Theorem 11. Note that this
provides a guarantee on the expected objective. We can
obtain a high-probability guarantee as follows. Let q de-
note the probability that Algorithm 3 finds a solution of
the objective at least (1− 16ε)OPT. As the algorithm’s
objective is always at most OPT, its expected objective is
at most q ·OPT+ (1− q) · (1− 16ε)OPT. From Theorem
11, the expected objective is at least (1− 8ε)OPT, which
implies q ≥ 1

2. By repeating the entire algorithm indepen-
dently T times and picking the best solution, it follows
that we obtain a solution of value at least (1− 16ε)OPT
with probability at least 1− 2−T.

Finally, to prove Theorem 10, we combine this re-
sult with the binary-search based framework from
Section 5 (see Theorem 1). For any ε ∈ (0, 1), let α(ε) �
1− 16ε denote the approximation ratio obtained above
for the max-dicut instance (11). Setting δ � ε in Theo-
rem 1, we obtain an α(ε) − ε � 1− 17ε approximation
ratio for the unconstrained PCL assortment problem.
This assumes that the randomized PTAS does indeed
obtain an α(ε) approximation for every max-dicut in-
stance. Note that the number of max-dicut instances
that need to be solved in the algorithm of Theorem
1 is I �O(log (ρrρv=ε). Using T �O(log (nI)) repeti-
tions of Algorithm 3 for each max-dicut instance,
it follows that we obtain an α(ε)-approximation
for every instance with probability at least 1− I·
2−T ≥ 1− 1

n2. Thus, for any ε ∈ (0, 1), we obtain a 1−
17ε approximation ratio for the PCL assortment
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problem with probability at least 1− o(1), which im-
plies Theorem 10.

6.1. Cardinality-Constrained Assortment
Optimization

Using the above techniques, and some more ideas, we
obtain the following result (see Online Appendix E).

Theorem 12. There is a randomized polynomial-time ap-
proximation scheme for cardinality-constrained assortment
optimization in the PCL model when the capacity c ≥ δn,
where δ > 0 is some constant.

7. Computational Results
In this section, we provide computational results of
our approximation algorithms for unconstrained,
cardinality-constrained, knapsack-constrained, and
partition-constrained assortment optimization. We
conducted all of our computational experiments using
Python and Gurobi 8.0 with a 2.3-Ghz Intel Core i5
processor and 16-GB 2133 MHz LPDDR3 memory.

Based on Theorem 2, we use the fixed point ẑ of the
LP relaxation g(z) as an upper bound. For partition
constraints, we replace the knapsack constraint in lin-
ear program LP(z) by a set of linear constraints enforc-
ing the partition limits. Although the algorithm for
partition constraints does not use such an LP, the
value ẑ is still a valid upper bound to compare the
algorithm against. For each instance, we record our al-
gorithm’s performance as 100 × π(xALG)=ẑ, where xALG
is our solution. This gives a lower bound (percentage)
on how close our solution is to the optimal.

7.1. Instance Generation
We use the same instance-generation procedure as
Zhang et al. (2020). The preference weights {vi} for the
products are sampled uniformly at random from
[0, 1]. The revenues are sampled in two ways, which
lead to two types of problems, independent and corre-
lated. In the independent instances, the revenues {ri}
are independently sampled from the uniform distri-
bution on [0, 1]. In the correlated instances, we set

Figure 2. (Color online) Comparing Our Algorithm and Zhang et al. (2020)

Notes. The first plot (top left) is for the unconstrained case. The remaining three plots are for the cardinality-constrained case.
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ri � 1− vi, which captures the intuition of more expen-
sive products being less preferable. Parameters I and
C refer to independent and correlated instances, re-
spectively. In the unconstrained case, the test prob-
lems are labeled as (T,n,γ,P0), where T refers to the
type of instance, independent or correlated; n denotes
the number of products; the dissimilarity parameters
are sampled from the uniform distribution [0,γ]; and
the value P0 is used to generate the weight of the
no-purchase option. In this way, 36 configurations are
generated. For the cardinality-constrained test prob-
lems, we have an additional parameter δ; we set the
capacity c � �δn
. These test problems are labeled as
(T,n,γ,P0,δ). We generate 72 configurations this way.
For each configuration, 100 test instances are generat-
ed and solved using our approximation algorithm.

7.2. Reported Quantities
For conciseness, we group the results by
(T,n) ∈ {I,C} × {50,100}. For the unconstrained assort-
ment problem, we obtain four bar plots, which are all
plotted on the same graph. See Figure 2. Each

configuration of (T, n) involves nine configurations of
(γ,P0). Over these 900 instances, we record the aver-
age performance and the worst-case performance. We
use three graphs in the cardinality-constrained case,
wherein each graph corresponds to a value of
δ ∈ {0:2, 0:5, 0:8}. As in the unconstrained case, the
configurations are grouped by (T, n) values. Detailed
computational tables can be found in Online Appen-
dix F.

7.3. Comparison with Zhang et al. (2020)
For the unconstrained and cardinality-constrained
cases, we also compare our approach with that of
Zhang et al. (2020) by running both algorithms on the
same instances. We summarize the results in Figure 2.
In the unconstrained case, our overall average perfor-
mance is ~ 1% better than that of Zhang et al. (2020),
whereas we see an improvement of about 3% in the
worst-case performance. The differences are more
pronounced in the cardinality-constrained instances.
For δ � 0:2 and 0.8, the difference in average perfor-
mance is similar to the unconstrained case but the worst-

Figure 3. (Color online) Summary of Results for Knapsack Constrained Assortment Optimization
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case guarantees show a larger gap; for example, we ob-
serve ~ 8% difference in the worst-case for group
(C, 100) when δ � 0:8. On configurations with δ � 0:5,
our algorithm outperforms Zhang et al. (2020) by over
10% on average and by almost 15% in the worst case.

7.4. Knapsack and Partition Constraints
Test instances for knapsack constraints are labeled
(T,n,γ,P0,η). Here, the capacity is set to one and
η ∈ {0:1, 0:25,0:5, 1}, where each product’s size is cho-
sen uniformly from [0,η]. Figure 3 summarizes our re-
sults for knapsack constraints, where we divide the
configurations into four sets based on η values. Test
instances for partition constraints are labeled
(T,n,γ,P0,δ,k), where k ∈ {3, 7} is the number of parts
and products are assigned randomly to the k parts. Pa-
rameter δ ∈ {0:4, 0:8} indicates the capacity of each
part: if there are p products in a part, then its capacity
is set to δp. Figure 4 summarizes the results for parti-
tion constraints: we divide the configurations into
four sets based on the (δ,k) values.

The results for knapsack constraints vary based on
the value of η. Although the average performance is
greater than 92% for all groups, we observe a worst
case of ~ 59% when η � 1. Our approach performs ex-
tremely well in the case of partition-constrained as-
sortment optimization. The average, in all cases, is
over 99%, whereas the worst-case over all tests is 86%.

7.5. Computational Results for the PTAS
We also test our randomized PTAS for unconstrained
assortment optimization on moderately sized instan-
ces. We use the same instance-generation described
earlier (for the unconstrained problem) but with num-
ber of products n ∈ {30,50}. We set parameter ε � 0:1
in the PTAS (Algorithm 3). For this choice of ε and
instance size (n ≤ 50), the sampling probability p (in
Algorithm 3) turns out to be one, which would lead to
complete enumeration. Instead, we reduce the sam-
pling probability p to 0.15 (for n � 30) and 0.1 (for n �
50). Note that reducing p only worsens the algorithm’s
approximation guarantee. Finally, for each instance,

Figure 4. (Color online) Summary of Results for Partition Constrained Assortment Optimization
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we repeat the randomized PTAS three times and re-
turn the best solution. By executing these runs in par-
allel, one could potentially reduce the runtime by a
factor of ~ 3. We observe an average performance ratio
of 99% and worst-case performance ratio of 84%. The
worst-case runtime is less than 30 seconds for n � 30
and ~ 90 seconds for n � 50.

8. Conclusion
We demonstrated a close connection between the as-
sortment optimization problem under the PCL model
and max-dicut. Combined with good convex program-
ming relaxations and new LP-rounding algorithms, we
obtained significantly improved approximation algo-
rithms for the unconstrained, cardinality-constrained,
and knapsack-constrained assortment problems. Fur-
thermore, we designed a new approximation frame-
work for this class of assortment optimization problems
that bypasses the need for convex relaxations. This en-
abled us to handle more general constraints, such as a
multidimensional knapsack constraint and (nested) par-
tition constraints. Using additional properties of the
PCL model and the relation to max-dicut, we also ob-
tained a randomized PTAS for the unconstrained assort-
ment problem and the cardinality-constrained problem
when the capacity is not too small. Obtaining similar
improvements for the other constrained versions is an
interesting open question.
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