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The k-Supplier problem is an important location problem that has been actively studied in both 
general and Euclidean metrics. Many of its variants have also been studied, primarily on general 
metrics. We study two variants of k-Supplier, namely Priority k-Supplier and k-Supplier with Outliers, 
in Euclidean metrics. We obtain (1 + √

3)-approximation algorithms for both variants, which are the first 
improvements over the previously-known factor-3 approximation (that is known to be best-possible for 
general metrics). We also study the Matroid Supplier problem on Euclidean metrics, and show that it 
cannot be approximated to a factor better than 3 (assuming P �= NP ); so the Euclidean metric offers no 
improvement in this case.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

In the k-Supplier problem, the input consists of a set of sup-
pliers I and a set of clients J contained in some metric space 
(I ∪ J , d), and k ∈N . The goal is to choose a subset C ⊆ I of k sup-
pliers to minimize maxv∈ J d(v, C) where d(v, C) := minu∈C d(v, u). 
A basic problem in the large and well-studied class of location 
problems, k-Supplier has various applications in operations re-
search including choosing sites for opening plants, placing servers 
in a network, and clustering data. An important special case of k-
Supplier is k-Center where the set of clients J is equal to the set 
of suppliers I .

The approximability of k-Supplier and k-Center on general met-
ric spaces is well understood. A 2-approximation for k-Center and 
3-approximation for k-Supplier follow from the work of Gonza-
lez [8] and Hochbaum and Shmoys [11,12]. Simple reductions from 
Vertex Cover show that these approximation ratios are tight as-
suming P �= NP.

However, the approximability of k-Supplier and k-Center on Eu-
clidean metrics (which is a practically important special case) is 
still open. Feder and Greene [7] showed that it is NP-hard to 
approximate k-Supplier and k-Center better than 

√
7 ≈ 2.65 and √

3 ≈ 1.73 respectively. While it is still open whether one can ob-
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tain a (2 − ε)-approximation for k-Center for some constant ε > 0, 
Nagarajan et al. [17] obtained a (1 + √

3) ≈ 2.73 approximation al-
gorithm for Euclidean k-Supplier.

Motivated by various practical needs, many variants of k-
Supplier and k-Center also have been proposed and studied in the 
literature. In the Priority k-Supplier problem, the clients are ad-
ditionally weighted with a priority function p : V → R+ . Given 
a set of chosen suppliers C ⊆ I , the objective function is now 
maxv∈ J p(v)d(v, C). This problem naturally models the scenario 
where each client has a different “speed”.1 Plesnik [18] gave a 
3-approximation algorithm for Priority k-Supplier, matching the 
approximability of the basic version.

Another variant is k-Supplier with Outliers where the input ad-
ditionally contains a bound � ∈ N and the goal is to choose k
suppliers C ⊆ I and � outliers O  ⊆ J to minimize maxv∈ J\O d(v, C). 
This problem was introduced by Charikar et al. [4]. Recently, 
Chakrabarty et al. [3] obtained a 3-approximation algorithm for 
this problem, again matching the approximability of the basic k-
Supplier problem. Yet another variant is the Matroid Supplier prob-
lem: instead of a cardinality bound on the chosen suppliers, the set 
C of chosen suppliers is required to be independent in some ma-
troid. Chen et al. [5] obtained a 3-approximation algorithm for this 
problem as well.

1 This problem is sometimes called Weighted k-Supplier. We choose the current 
name in order to be consistent with the recent literature [1] and to distinguish 
from supplier-weighted versions.
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Results and techniques To the best of our knowledge, the study of 
the above k-Supplier variants has been limited to general metrics. 
In this paper, we study these problems in Euclidean metrics. Our 
first result is the following:

Theorem 1. There is an (1 + √
3) ≈ 2.73-approximation algorithm for 

Euclidean Priority k-Supplier.

This is based on a relation to the minimum edge-cover prob-
lem, as in [17]. However, the graph for the edge-cover instance is 
constructed differently: we need to select “representative” clients 
(that correspond to nodes in the graph) in decreasing order of their 
priorities.

Our second and main technical result is the following:

Theorem 2. There is an (1 + √
3) ≈ 2.73-approximation algorithm for 

Euclidean k-Supplier with Outliers.

This requires a linear-program (LP) in conjunction with the re-
lation to edge-cover. Moreover, we do not know how to solve the 
resulting LP in polynomial time. Instead, we use a “round or cut” 
approach that is built atop the ellipsoid algorithm, and in each step 
it either finds an approximate solution or a violated LP constraint. 
We note that round-or-cut has been used recently to address some 
other k-Supplier problems [2], but the focus there was on general 
metrics and dealing with complex constraints on the suppliers. In 
contrast, our goal is to exploit the Euclidean metric to improve the 
approximation ratio (beyond 3). Another important step in proving 
Theorem 2 is an integrality property for the edge-cover polytope 
with a special type of cardinality constraint; this result might also 
be of some independent interest.

Remark 1. Shortly after the arXiv version of this paper appeared 
(https://arxiv.org /abs /2112 .01700), Angelidakis, Sergeev, and West-
ermark posted a manuscript (https://arxiv.org /pdf /2112 .05083 .
pdf) that contains an independent and similar proof of Theo-
rem 2.

Finally, we show that not all natural variants of k-Supplier are 
strictly easier in Euclidean metrics. In particular, we consider the 
Matroid Supplier problem where there is a matroid constraint on 
I and the goal is to find an independent set C that minimizes 
maxv∈ J d(v, C). While this problem admits a 3-approximation al-
gorithm in general metrics [2], we prove the following theorem 
that Euclidean spaces do not strictly improve the approximation 
ratio.

Theorem 3. For any constant ε > 0, it is NP-hard to approximate Eu-
clidean Matroid Supplier within a factor of (3 − ε).

Other related work Apart from k-Supplier/k-Center, such variants 
have also been studied for k-Median (where the objective is 
to minimize the sum of connection costs). In particular, there 
are constant-factor approximation algorithms for k-Median with 
outliers [6,16] and Matroid Median [15,21]. Moreover, there is 
an extensive literature on obtaining better approximation ratios 
(and runtime) for k-Median on Euclidean metrics, see e.g., [14,
10].

2. k-supplier with priorities

Given a set of suppliers I and clients J , where clients have a 
priority function p : J → R+ , the goal is to choose k suppliers 
to minimize the maximum “priority weighted distance” over all 
clients. That is, we want to find
116
min
C⊆I
|C |≤k

max
v∈ J

p(v) · d(v,C).

For a given set of suppliers C , the priority distance of any client 
v ∈ J is p(v) · d(v, C).

Assuming optimal value of 1 As is common for min-max optimiza-
tion problems (see e.g., [11]), we assume that the algorithm knows 
the optimal value B . Then, the algorithm either finds a solution 
of objective at most α · B (where α is the approximation ratio), 
or proves that the optimal value is more than B . As the optimal 
value belongs to the set {p(v) · d(v, c) : c ∈ I, v ∈ J }, the number 
of choices for B is polynomial, so we can try each one. Finally, by 
scaling all distances by B , we can assume that the optimal value is 
1.

Our algorithm is similar to that in [17] for the basic k-Supplier. 
This involves constructing a graph with some clients S ⊆ J as 
nodes and suppliers as edges, and finding the minimum edge-
cover in this graph. The key difference is that we need to include 
clients into the node-set S in decreasing order of priorities. See 
Algorithm 1 for details.

Algorithm 1: Algorithm for Priority k-Supplier.
initially nodes S = ∅ and edges E = ∅;
while J �= ∅ do

v̄ = argmaxv∈ J p(v);

E v̄ ← {v ∈ J : p(v) · d(v, ̄v) ≤ √
3};

J ← J \ E v̄ and S ← S ∪ {v̄};
forall supplier u ∈ I do

if ∃ distinct v̄1, ̄v2 ∈ S s.t. p(v̄1)d(u, ̄v1) ≤ 1 and p(v̄2)d(u, ̄v2) ≤ 1 then
add edge (v̄1, ̄v2) to E and label it u;

else if ∃v̄ ∈ S s.t. p(v̄)d(u, ̄v) ≤ 1 then
add self-loop to (v̄, ̄v) to E and label it u;

Find the minimum edge cover M in graph (S, E);
if |M| ≤ k then

output the suppliers labeled on edges of M;
else

the optimal value is more than 1;

For the analysis, we will show that if the optimal value is at 
most 1, the algorithm returns solution M with objective at most 
1 + √

3. Henceforth, we assume that the optimal value is at most 
1.

Lemma 1. Each client v ∈ J is within priority-distance (1 + √
3) from 

some supplier in M.

Proof. Consider any v ∈ J : it must lie in E v̄ for some “selected” 
client v̄ ∈ S . Note that v̄ must be covered by some edge in M , say 
labeled by supplier u. Then,

p(v)d(v,u) ≤ p(v)d(v, v̄) + p(v)d(v̄,u)

≤ p(v)d(v, v̄) + p(v̄)d(v̄,u) ≤ √
3+ 1.

The second inequality uses the fact that at the point when v̄ was 
added to S , client v was still in J : so p(v̄) ≥ p(v). The third in-
equality is by definition of E v̄ and edges E . �
Lemma 2. No supplier can serve more than two clients of S within 
priority-distance 1.

Proof. Suppose for a contradiction that for supplier u ∈ I and 
clients v1, v2, v3 ∈ S are within priority-distance 1 from u. Then, 
we have p(vi)d(vi, u) ≤ 1 for i = 1, 2, 3. There is at least one pair 
of vi, v j such that the angle θ = � viuv j ≤ 2π/3. See Fig. 1. Sup-
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Fig. 1. Illustration of Lemma 2.

pose without loss of generality that p(vi) ≥ p(v j), so that vi is 
added to S before v j . By the cosine law,

d(vi, v j) =
√
d(vi,u)2 + d(v j,u)2 − 2 · d(vi,u) · d(v j,u) · cos θ

≤
√

1

p(vi)
2

+ 1

p(v j)
2

+ 1

p(vi)p(v j)

≤
√

3

p(v j)
2

=
√
3

p(v j)

It follows that

p(v j)d(v j, vi) ≤ p(v j)

√
3

p(v j)
= √

3.

Therefore, v j should have been in Evi and can not be in S , a con-
tradiction. �
Lemma 3. The minimum edge cover M satisfies |M| ≤ k.

Proof. Let M∗ ⊆ I be the optimal set of suppliers. Note that 
M∗ covers each client within priority distance 1. Moreover, by 
Lemma 2, each supplier can cover at most two clients of S within 
priority distance 1. In other words, taking the edges corresponding 
to the suppliers M∗ in graph (S, E), we get an edge cover. There-
fore, the minimum edge cover M has size at most |M∗| = k. �

Combining the lemmas above, we obtain Theorem 1.

3. k-suppliers with outliers

Here, we are given a set of suppliers I and clients J along with 
bounds k on the number of chosen suppliers and � on the number 
of outlier clients. As mentioned earlier, we assume that the optimal 
value is 1, and aim to find a solution with objective at most 1 +√
3. This would prove Theorem 2.
We start with a natural LP relaxation where decision variables 

yi correspond to selecting suppliers and z j correspond to choosing 
outlier clients.∑
i∈I

yi ≤ k (1)

z j +
∑
i∼ j

yi ≥ 1 ∀ j ∈ J (2)

∑
j∈ J

z j ≤ � (3)

0 ≤ z, y ≤ 1 (4)

Above, i ∼ j denotes client j being within unit distance from sup-
plier i, i.e., supplier i can serve client j. While these constraints 
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ffice to obtain a 3-approximation algorithm (even on general 
etrics), we need to add stronger constraints for the improved 

 + √
3 approximation ratio.

Define a subset of clients S ⊆ J to be well-separated if all pair-
ise distances in S are greater than 

√
3, i.e., d( j, j′) >

√
3 for 

very j, j′ ∈ S . Also, for any set of clients S , we will denote the set 
f suppliers which can serve at least one client in S by f (S) ⊆ I . 
he stronger constraints we want to add are the following:

(S) + y( f (S)) ≥ �|S|/2� ∀S ⊆ J well-separated. (5)

bove, we use the shorthand z(S) := ∑
j∈S z j and y( f (S)) :=

i∈ f (S) yi .
We now show that these constraints are valid for any (integral) 
lution to k-Supplier with Outliers. Consider any well-separated 
t S . Note that no supplier can serve more than two clients in S: 
is follows from Lemma 2 with all priorities being 1 (or Lemma 1 
 [17]). Hence, a total of at least �|S|/2� suppliers from f (S) or 
utliers in S are needed to “cover” the clients in S .
Our final LP relaxation, referred to as the “Master LP” consists 

f constraints (1)-(4) and (5). There are an exponential number of 
ell-separated constraints, and we are not aware of a separation 
racle for these. So, this LP is difficult to solve directly. Instead, we 
ill use a round-or-cut approach that either (i) finds a solution 
f objective at most 1 + √

3, or (ii) proves that the Master LP is 
feasible.
We are now ready to describe the algorithm, which relies on 

e ellipsoid algorithm with separation-oracles. We will maintain 
 candidate solution (y, z) for the Master-LP, and an ellipsoid F
at is guaranteed to contain Master-LP.
In each iteration below, we either (i) find an approximate so-

tion to k-Supplier with Outliers, or (ii) identify a violated con-
raint for the Master-LP, which is used to update our solution 
y, z) and the ellipsoid F . Formally, we repeat the following steps.

1. If (y, z) violates any of the (polynomially many) constraints 
(1)-(4), then update solution (y, z) and ellipsoid F based on 
the violated constraint. Continue to the next iteration.

2. Let nodes A = ∅, B = J .
3. Order clients by outlier values from the LP solution: z1 ≤ z2 ≤

. . . ≤ zn , where n = | J |.
4. While B �= ∅ do:

• Let j ∈ B with the client with lowest z j .
• Take all clients in B within distance 

√
3 of j (including it-

self) and assign them to R j .
• Remove R j from the set B .
• Let a( j) = |R j | denote the number of clients assigned to j.
• Add node j to A.

5. Construct a graph G with nodes A and the following edges. 
For each supplier i:
• If there are two distinct clients j1, j2 ∈ A within distance 1

from i, add edge ( j1, j2) labeled by i.
• Otherwise, if there is just one client j ∈ A within distance 1

from i, add self-loop ( j, j) labeled by i.
Let E be the set of all edges added above. Furthermore, add a 
distinct set L of self-loops at each vertex j ∈ A: the loop at j
represents making j an outlier. All edges of E have weight 0. 
Each loop ( j, j) in L has weight a( j).

6. Check whether (y, z) satisfies the following constraints:

z(S) + y( f (S)) ≥ �|S|/2� ∀S ⊆ A. (6)

These constraints exactly specify the edge cover polytope of 
graph G = (A, E ∪̇ L) and can be efficiently checked [20].

7. If (y, z) violates (6) for some S ⊆ A, then:
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• Update solution (y, z) and the ellipsoid F based on the con-
straint for S . (Note that the constraint for S appears in (5)
of the Master-LP as S ⊆ A is well-separated.)

• Continue to the next iteration.
8. If (y, z) satisfies (6), apply Theorem 4 below to obtain a so-

lution M to min-weight edge-cover on graph G with a cardi-
nality constraint on E . Output the suppliers in M ∩ E as the 
approximate solution, and stop.

Assuming that the algorithm never stops in step 8, the stan-
dard analysis for the ellipsoid algorithm (see e.g., [9]) implies that 
we can terminate after a polynomial number of iterations and con-
clude that the Master-LP is infeasible. Therefore, the overall algo-
rithm is guaranteed to run in polynomial time. Moreover, we either 
return some solution M (in step 8) or prove that the Master-LP is 
infeasible. In the analysis below, we will show that the solution M
obtained in step 8 is a 1 + √

3 approximation for k-Supplier with 
Outliers.

Edge cover with a cardinality constraint Consider a graph G on 
nodes A and edges E ′ = E ∪̇ L, where L only contains self-loops. 
(Edges in E can be 2-edges or self-loops.) Note that we use the 
same notation as for the graph constructed in step 5 of the above 
algorithm. Each edge e ∈ E ′ has a weight we . We are interested in 
solving the minimum weight edge-cover problem on G subject to 
a cardinality constraint of k on E . That is, we want a min-weight 
edge cover M ⊆ E ′ where |M ∩ E| ≤ k. Note that the cardinality 
constraint does not include all edges E ′ , but only those in set E . 
We will show that this problem can be solved in polynomial time 
using the natural LP relaxation.

Consider the following linear program LP ECC for the above 
edge-cover problem with a cardinality constraint. Recall that the 
edges are E ′ = E ∪̇ L. We use decision variables y ∈ RE for the 
edges in E and z ∈RL for the remaining edges L.∑
e∈E

ye ≤ k (LP ECC )

z(S) + y( f (S)) ≥ �|S|/2� ∀S ⊆ A

z, y ≥ 0

Theorem 4. LP ECC is integral. Moreover, there is a polynomial time al-
gorithm for the min-weight edge-cover problem with a cardinality con-
straint.

We defer the proof of this theorem to Section 3.1.

Completing the proof of Theorem 2 We now use Theorem 4 to show 
that the solution M found in step 8 of our algorithm is a feasible 
solution to k-Supplier with Outliers of objective at most 1 + √

3.
When the algorithm reaches step 8, observe that all constraints 

in (6) are satisfied by the current solution (y, z). Moreover, by 
step 1, all the basic constraints (1)-(4) are also satisfied. It follows 
that this solution (y, z) is also feasible for LP ECC . By definition of 
the edge-weights in the edge-cover instance, the weight objective 
of this solution is:∑
e∈E

we · ye +
∑

( j, j)∈L

w( j, j) · z j

=
∑
j∈A

a( j) · z j =
∑
j∈A

|R j| · z j ≤
∑
j∈A

∑
j′∈R j

z j′ ≤
∑
j′∈ J

z j ≤ �.

The first inequality uses the fact that we select clients into A in 
increasing order of z-values: so z j ≤ z j′ for all j′ ∈ R j . The second 
inequality uses that {R j : j ∈ A} are disjoint. The last inequality 
118
uses constraint (3). Therefore, the integral solution M to LP ECC

(found by Theorem 4) has weight 
∑

e∈M we = ∑
( j, j)∈M∩L a( j) ≤ �. 

Let A′ ⊆ A denote the clients/nodes in graph G that are covered 
by the edges M ∩ E . Note that every client in A′ is within distance 
1 from some supplier of M ∩ E . Hence, every client in ∪ j∈A′ R j is 
within distance 

√
3 + 1 from M ∩ E . Moreover, M ∩ L must con-

tain the loops at each of the clients A \ A′ . It then follows that ∑
j∈A\A′ |R j | ≤ ∑

( j, j)∈M∩L a( j) ≤ �. We set O  = ∪ j∈A\A′ R j to be 
the outlier clients. From the above discussion, it is clear that each 
non-outlier client is within distance 

√
3 + 1 from M ∩ E and the 

number of outliers |O | ≤ �. Finally, |M ∩ E| ≤ k because of the car-
dinality constraint. It now follows that M ∩ E is a feasible solution 
to k-Supplier with Outliers of objective at most 1 + √

3.

3.1. Proof of Theorem 4

We note that if the set L = ∅ (i.e., the cardinality constraint 
involves all edges) then LP ECC is known to be integral: see the dis-
cussion in page 464 of [20]. However, this does not directly imply 
Theorem 4. Moreover, the following example shows that Theo-
rem 4 is not true for a cardinality constraint on an arbitrary edge 
subset. Hence, our proof below relies crucially on the fact that L
only contains self-loops.

Example: suppose graph G is a 4-cycle with edges a, b, c, d in 
that order. The cardinality constraint is imposed on E = {a, c}, 
with a bound of k = 1. Note that any integral solution to LP ECC

must be of the form (0, α, 0, β), (1, α, 0, β) or (0, α, 1, β), where 
α, β ∈ Z≥1. It can be checked directly that the solution ( 12 , 12 , 12 , 12 )

cannot be written as a convex combination of integer solutions, 
which shows that LP ECC is not integral for this instance.

Recall that the set of edges is E ′ = E ∪̇ L, y ∈ RE , and z ∈ RL , 
where the set L only contains self-loops. (E may contain self-loops 
too.) For any multi-subset S ⊆ E ′ of edges, we use 1(S) ∈ ZE ′

to 
denote the vector of multiplicities. Before proving Theorem 4, we 
show the following key lemma.

Lemma 4. Consider any feasible solution (y, z) for LP ECC . There is a 
collection { J i}ri=1 of integral solutions (i.e., edge covers that satisfy the 
cardinality constraint) and convex multipliers {λi}ri=1 such that (y, z) ≥∑r

i=1 λi · 1( J i).

Proof. Fix any fractional solution (y, z) to LP ECC . Clearly, this is 
also feasible to the basic edge-cover LP (without the cardinality 
constraint). By integrality of the edge-cover LP (Theorem 27.3 of 
[20]), it follows that (y, z) dominates a convex combination of in-
tegral edge-covers. Let (y, z) ≥ ∑r

a=1 λa · 1( Ja) denote such a con-
vex combination where the Ja are integral edge-covers and the λa

are convex multipliers. Over all such possible convex combinations, 
choose the one which produces the least “variance” as measured 
by

r∑
a=1

λa ·max (0, |E ∩ Ja| − k) .

We can assume (without loss of generality) that each integral 
edge-cover Ja is minimal. Indeed, if Ja is not minimal, we can 
replace it by a minimal edge-cover J̄a � Ja: the variance of the 
resulting convex combination can only decrease.

If the variance is 0 then we must have |E ∩ Ja| ≤ k for every a, 
which implies that each Ja is an integral solution to LP ECC . In this 
case, the lemma is trivially true.

We now suppose (for a contradiction) that the variance is 
positive. As the variance is positive, we have some i ∈ [r] with 
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Fig. 2. Converting edge-cover to a perfect matching.

|E ∩ J i | ≥ k +1 by integrality. As (y, z) satisfies the cardinality con-
straint, we have 

∑r
a=1 λa|E ∩ Ja| ≤ ∑

e∈E ye ≤ k. Therefore, there is 
some � ∈ [r] with |E ∩ J�| ≤ k − 1 (again by integrality).

Let C = E ∩ J i and Co = L ∩ J i . Note that both C and Co are sets 
(not multisets) because of minimality of J i . Likewise, let D = E∩ J�
and Do = L ∩ J� .

We now convert edge-cover J i = C∪̇Co into a perfect matching 
(with loops) as follows.

1. Let C̄ ⊆ C be any maximal matching using only 2-edges.
2. Then, for any other edge e = (u, v) ∈ (C ∪ Co) \ C̄ , if one of its 

nodes (say u) is incident to the matching M then we modify e
into the self-loop (v, v); otherwise edge e remains unchanged. 
Note that such an edge e cannot have both nodes u, v incident 
to matching M , by minimality of edge-cover C ∪ Co .

Let C̄o denote all edges created in step 2 above. Note that C̄ ∪ C̄o

is a perfect matching: each node has exactly one edge (either 2-
edge or self-loop) incident to it. Note also that there is a 1-to-1 
correspondence between the edge-covers J i = C ∪ Co and C̄ ∪ C̄o . 
See Fig. 2 for an example.

We apply the same procedure to modify edge-cover J� = D∪̇Do

into (D̄, D̄o). We now have two graphs, each of which is a per-
fect matching (with self-loops). Let G denote the disjoint union 
C̄∪̇C̄o∪̇D̄∪̇D̄o of all these edges. Note that each connected compo-
nent in G is either an even cycle (with 2-edges) or a path with 
self-loops at both ends.

Assign a value of 1 (resp. −1) to all edges in C̄∪̇C̄o (resp. 
D̄∪̇D̄o) that correspond to E-edges. All the other edges (corre-
sponding to L-edges) are assigned value 0. Note that every 2-edge 
has value +1 or −1. Over the entire graph, the total value is posi-
tive as

|(C̄∪̇C̄o) ∩ E| = |C | > |D| = |(D̄∪̇D̄o) ∩ E|.
So, there is some component H in G with positive total value. Note 
that component H cannot be a cycle: any cycle is even and hence 
has value 0. So H is a path with self-loops at both ends. (The path 
may also be empty, in which case we have a node with two self-
loops.) Moreover, the 2-edges on the path have alternating positive 
or negative value. The self-loops at the end of path H have either 0
value or the opposite sign as the 2-edge they’re incident to. Hence, 
component H has total value −1, 0, or 1. Since it has positive 
value, it must have value exactly 1. We now define two new edge-
covers: X (resp. Y ) consists of the edges from J i (resp. J�) in all 
components except H , and edges from J� (resp. J i) in component 
H . Note that X and Y are indeed edge covers. Moreover, |X ∩ E| =
| J i ∩ E| − 1 = |C | − 1 and |Y ∩ E| = | J� ∩ E| + 1 = |D| + 1 (Fig. 3).

We now construct a new convex combination that has smaller 
variance, which leads to a contradiction. Recall the edge-covers 
{ Ja}ra=1 in the original convex combination. Let Jr+1 = X and 
Jr+2 = Y be the two new edge-covers. Let ε = min{λi, λ�} > 0. The 
convex multipliers are now:
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Fig. 3. Cases for a component H with positive value.

λ′
a =

⎧⎨
⎩

λa − ε if a = i, �
ε if a = r + 1, r + 2
λa otherwise

, ∀a ∈ [r + 2].

Clearly, 
∑r+2

a=1 λ′
a · 1( Ja) = ∑r

a=1 λa · 1( Ja) ≤ (y, z). We now bound 
the increase in variance:

r∑
a=1

(λ′
a − λa)max (0, |E ∩ Ja| − k) + ε ·max(0, |C | − 1− k)

+ ε · max(0, |D| + 1− k)

= − ε · max(0, |C | − k) − ε ·max(0, |D| − k)

+ ε · max(0, |C | − 1− k) + ε · max(0, |D| + 1− k)

≤ − ε,

where the last inequality uses the fact that |C | − 1 − k ≥ 0 ≥ |D| +
1 − k. As ε > 0, this contradicts the choice of the original convex 
combination (of minimum variance). This completes the proof. �
Continued Proof of Theorem 4. We first prove the integrality of 
LP ECC . Given any fractional solution (y, z) to LP ECC , Lemma 4
implies (y, z) ≥ ∑r

i=1 λi · 1( J i) for some convex combination of 
integral solutions. We now show that we can ensure equality, 
i.e., (y, z) is equal to a convex combination of integral solutions. 
Clearly, this would prove that LP ECC is integral.

We can write (y, z) = ∑r
i=1 λi · 1( J i) + (y′, z′) for some y′ ∈

RE , z′ ∈ RL with y′, z′ ≥ 0. Note that k ≥ y(E) = ∑r
i=1 λi | J i ∩ E| +

y′(E). So, if y′(E) > 0, there exists i ∈ [r] such that | J i ∩ E| < k. 
Choose an edge e ∈ E such that y′

e > 0. We now perform one of the 
following modifications that maintains (y, z) = ∑r

i=1 λi · 1( J i) +
(y′, z′) and y′, z′ ≥ 0 while strictly decreasing y′(E).

1. If λi > y′
e , let λi ← λi − y′

e and create a new index r + 1 such 
that λr+1 = y′

e and Jr+1 = J i ∪̇ {e}. Let r ← r + 1 and y′
e = 0.

2. If λi ≤ y′
e , let J i ← J i ∪̇ {e} and y′

e ← y′
e − λi .

The above step 1 strictly decreases the support of y′ , so cannot 
be done more than |E| times. Between two consecutive applica-
tions of step 1’s, each application of step 2 strictly increases the 
size of one J i : so it can be done at most rk times. (And r increases 
by at most one for each application of step 1.) Therefore, the above 
procedure can be repeatedly applied and finished in finite time so 
that y′(E) = 0 at the end. The same procedure can be applied for 
z′ as well, which is even easier because we do not have the cardi-
nality constraint for L. At the end, we have (y, z) = ∑r

i=1 λi · 1( J i)
where each J i is an integral edge cover that satisfies the cardinal-
ity constraint. We note that these edge-covers J i may be multisets 
(and not minimal edge covers).

To obtain a polynomial time algorithm for min-weight edge-
cover with a cardinality constraint, we first solve LP ECC optimally 
using the ellipsoid algorithm. This can be done because there is 
an efficient separation oracle for the edge-cover LP. The resulting 
solution (y, z) may not be an extreme point of LP ECC (and hence 
not integral). However, we can apply a standard polynomial-time 
method for converting an arbitrary LP solution into an extreme 
point solution (assuming a separation oracle for the constraints); 
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Fig. 4. Example of the part corresponding to clause x1 ∨ ¬x2 ∨ ¬x3.
see e.g., Lemma 3.3 in [13]. Hence, we can find an optimal extreme 
point solution (y∗, z∗) to LP ECC in polynomial time. By integrality 
of LP ECC , (y∗, z∗) is an integral optimal solution. �
4. Hardness for Matroid Supplier

We now consider the Euclidean Matroid Supplier problem. Its 
input consists of I ∪ J ⊆ Rs and a matroid I on ground set I , 
and the goal is to find an independent set C ∈ I that minimizes 
min j∈ J d( j, C), where d denotes the Euclidean distance. We prove 
that this problem is (3 − ε)-hard to approximate for any constant 
ε > 0, proving Theorem 3.

We reduce from the NP-hard 1-in-3-SAT problem [19]. This in-
volves n binary variables and m clauses, each consisting of three 
literals (of any variable or its negation). The goal is to decide 
whether there is an assignment where exactly one literal is true 
in each clause.

Suppose that we have a (3 − ε)-approximation algorithm for 
Euclidean Matroid Supplier (for any ε > 0). Define c := 2π

cos−1(1− ε
2 )
. 

Given any instance H of 1-in-3-SAT, we generate an instance E of 
Euclidean Matroid Supplier as follows. Let the variables in H be 
x1, . . . , xn , and suppose it has m clauses. Let d be an integer with 
d ≥ max( c+1

4 , m). In E , we create n cycles embedded as regular 
4d-gons of unit side length, with each cycle Ci representing vari-
able xi . The cycles are placed far apart so that no vertex is within 
distance 3 of a vertex from a different cycle. For each cycle Ci , we 
label its vertices alternatively as clients and suppliers. Moreover, 
the suppliers on cycle Ci are alternatively labeled as xi or ¬xi . 
More precisely, if the vertices on Ci are numbered j = 1, 2, . . . , 4d
then we label the vertices as follows:

f ( j) =

⎧⎪⎨
⎪⎩
xi (supplier) if j ≡ 0 mod 4,

¬xi (supplier) if j ≡ 2 mod 4,

ci j (client) otherwise.

Note that the number of suppliers in each cycle is 2d, leading 
to 2nd suppliers in total. Let I denote the set of all suppliers. Now 
we construct a partition matroid over I in the following way. For 
each clause k ∈ [m], say involving variables xi1 , xi2 , xi3 , part Pk ⊆ I
consists of one supplier each from cycles Ci1 , Ci2 , Ci3 , where we 
take a supplier labeled xi j (resp. ¬xi j ) if the clause uses xi j (resp. 
¬xi j ). See Fig. 4 for an example. We ensure that each supplier is 
in at most one part: that is possible because each cycle contains 
d ≥ m suppliers of each label. Finally, we gather all suppliers not 
in any part Pk into another part P0 = I \ (∪m

k=1Pk
)
. The partition 

matroid is required to pick at most one supplier from each part 
{Pk}mk=1 and at most dn −m suppliers from part P0.

Yes case Suppose that the 1-in-3-SAT instance H is satisfiable by 
some assignment a = {ai}ni=1 of variables. Consider the Matroid 
Supplier solution S that selects from each cycle Ci all the xi (resp. 
¬xi ) suppliers if ai = true (resp. ai = f alse). The total number of 
selected suppliers |S| = dn. Note that each client is within distance 
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one from some supplier in S . Moreover, for each clause k ∈ [m], ex-
actly one literal of this clause is true in assignment a: this implies 
that |S ∩ Pk| = 1. It follows that a total of m suppliers are selected 
from ∪m

k=1Pk , which means |S ∩ P0| = nd − m. Hence, S satisfies 
the partition matroid constraint. So, the optimal value of instance 
E is at most 1.

No case Suppose that S ′ is a solution to Matroid Supplier of ob-
jective at most 3 − ε . Note that the distance between any client 
and supplier is either 1 or at least 1 + 2 cos(π − 4d−2

4d π) > 1 +
2 cos( 2c π) = 3 − ε . So the objective value of solution S ′ must be 
one.

Claim 1. Consider any solution S ′ to E with objective 1. For each i ∈ [n], 
S ′ contains either all the xi suppliers or all the ¬xi suppliers in cycle Ci . 
Moreover, |S ′ ∩ Pk| = 1 for all k ∈ [m].

Proof. By the matroid constraint it is clear that |S ′| ≤ dn. Note 
that each supplier is at unit distance from at most 2 clients, and 
each cycle has 2d clients. Therefore, solution S ′ must contain at 
least d suppliers in each cycle Ci . As there are n cycles, we must 
have |S ′| = dn, and the first statement follows. To see the second 
statement, note that the only way we can have |S ′| = dn is to pick 
exactly one supplier from each {Pk}mk=1. �

Now, consider the assignment a′
i = true if S ′ contains all the 

xi-suppliers in cycle Ci , and a′
i = f alse otherwise. For each clause 

k ∈ [m], we have exactly one true literal in a′ because |S ′ ∩ Pk| = 1. 
So a′ is a valid assignment for instance H.

Therefore, if H is unsatisfiable, the optimal value of E is more 
than 3 − ε . Theorem 3 now follows.
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