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Abstract. We consider the following general network design problem. The input is an
asymmetric metric (V, c), root r ∈ V, monotone submodular function f : 2V → R+, and bud-
get B. The goal is to find an r-rooted arborescence T of cost at most B that maximizes f (T).

Our main result is a simple quasi-polynomial timeO log k
log log k

( )
-approximation algorithm for

this problem, in which k ≤| V | is the number of vertices in an optimal solution. As a conse-

quence, we obtain an O log 2k
log log k

( )
-approximation algorithm for directed (polymatroid)

Steiner tree in quasi-polynomial time. We also extend our main result to a setting with ad-

ditional length bounds at vertices, which leads to improvedO log 2k
log log k

( )
-approximation algo-

rithms for the single-source buy-at-bulk and priority Steiner tree problems. For the usual
directed Steiner tree problem, our result matches the best previous approximation ratio but
improves significantly on the running time. For polymatroid Steiner tree and single-source
buy-at-bulk, our result improves prior approximation ratios by a logarithmic factor. For di-
rected priority Steiner tree, our result seems to be the first nontrivial approximation ratio.
Under certain complexity assumptions, our approximation ratios are the best possible (up
to constant factors).

Funding: This work was supported by the National Science Foundation Division of Civil, Mechanical
and Manufacturing Innovation [Grant CMMI-1940766] and Division of Computing and Communi-
cation Foundations [Grant CCF-1750127].

Keywords: approximation algorithms • network design • submodularity

1. Introduction
Network design problems, involving variants of the minimum spanning tree (MST) and traveling salesman problem,
are extensively studied in approximation algorithms. These problems are also practically important as they ap-
pear in many applications, such as networking and vehicle routing. Designing algorithms for problems on direct-
ed networks is usually much harder than their undirected counterparts. This difference is already evident in the
most basic MST problem: the undirected case admits a simple greedy algorithm, whereas the directed case re-
quires a much more complex algorithm (Edmonds [13]). Indeed, one of the major open questions in network
design concerns the directed Steiner tree problem. Given a directed graph with edge costs and a set of terminal
vertices, the goal is to compute a minimum cost arborescence that contains all terminals. No polynomial-time
poly-logarithmic approximation is known for directed Steiner tree. This is in sharp contrast with undirected
Steiner tree, for which a two-approximation is folklore, and there are even better constant approximation ratios
(Byrka et al. [3], Robins and Zelikovsky [26]). Most of the prior work on directed Steiner tree has focused on qua-
si-polynomial time algorithms, which have a running time of the form Nlog bN, where N is the input size and b is
some constant. Note that quasi-polynomial time algorithms are slower than polynomial-time algorithms but fast-
er than exponential-time algorithms.

In this paper, we consider a variant of directed Steiner tree, in which the goal is to find an arborescence maxi-
mizing the number (or profit) of vertices subject to a hard constraint on its cost. We call this problem directed
tree orienteering (DTO). To the best of our knowledge, this problem has not been studied explicitly before. Any
α-approximation algorithm for DTO implies an (α · lnk)-approximation algorithm for directed Steiner tree, using
a set-covering approach. No approximation-preserving reduction is known in the reverse direction: so approxi-
mation algorithms for directed Steiner tree do not imply anything for DTO. In this paper, we obtain a
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quasi-polynomial time O log k
log log k

( )
-approximation algorithm for DTO, where k is the number of vertices in an opti-

mal solution. This also implies an O log 2k
log log k

( )
-approximation algorithm for directed Steiner tree (in quasi-

polynomial time), where k denotes the number of terminals.
In contrast to DTO, the “path” or “tour” version of directed orienteering, in which one wants a path or tour of

maximum profit subject to the cost limit, is much better understood. There are polynomial time approximation
algorithms with guarantees O (log n) (Nagarajan and Ravi [24], Svensson et al. [29]) and O(log 2k) (Chekuri et al.
[10]). However, these results do not imply anything for DTO. Unlike undirected graphs, in the directed case, we
cannot go between trees and tours by doubling edges.

Our algorithm for DTO in fact follows as a special case of a more general algorithm for the submodular tree ori-
enteering (STO) problem. Here, we are also given a monotone submodular function f : 2V → R+ on the vertex set,
and the goal is to find an arborescence containing vertices T ⊆ V that maximizes f (T) subject to the cost limit.
The tour or path version of submodular orienteering was studied previously in Chekuri and Pál [8], in which a

quasi-polynomial time O log k
log log k

( )
-approximation algorithm was obtained. Although we rely on many ideas from

Chekuri and Pál [8], we also need a number of new ideas as discussed next.
Interestingly, our techniques can be easily extended to obtain tight quasi-polynomial time approximation algo-

rithms for several other directed network design problems, such as polymatroid Steiner tree, single-source buy-
at-bulk, and priority Steiner tree.

1.1. Results and Techniques
Our main result is the following:

Theorem 1. There is an O log k
log log k

( )
-approximation algorithm for submodular tree orienteering that runs in

(n log B)O(log 1+εk) time for any constant ε > 0.

The high-level approach here is the elegant “recursive greedy” algorithm from Chekuri and Pál [8] for the sub-
modular path orienteering problem, which, in turn, is similar to the recursion used in Savitch’s [28] theorem. In
order to find an approximately optimal s− t path with budget B, the algorithm in Chekuri and Pál [8] guesses the
“middle node” v on the optimal s− t path as well as the cost B′ of the optimal path segment from s to v. Then, it
solves two smaller instances recursively and sequentially:

1. Find an approximately optimal s− v path Pleftwith budget B′.
2. Find an approximately optimal v− t path Pright with budget B−B′ that augments Pleft.
Clearly, the depth of recursion is log 2k, where k denotes the number of nodes in an optimal path. The key step

in the analysis is to show that the approximation ratio is equal to the depth of recursion. In the tree orienteering
problem that we consider, there are two additional issues:

• First, there is no middle node v in an arborescence. A natural choice is to consider a balanced separator node as
v: it is well known that any tree has a 1

3− 2
3 balanced separator. Indeed, this is what we use. Although this leads to

an imbalanced recursion (not exactly half the nodes in each subproblem), the maximum recursion depth is still
O(log k), and we show that the approximation ratio can be bounded by this quantity.

• Second (and more importantly), we cannot simply concatenate arbitrary solutions to the two subproblems. If r
is the root of the original instance, the two subproblems find arborescences Tleft and Tright rooted at r and v, respec-
tively. Simply taking the union Tleft ∪ Tright may lead to a disconnected graph. In order to obtain an r-arborescence,
we additionally ensure that the subproblem with root r returns an arborescence Tleft containing the separator node
v. However, such requirements can accumulate recursively. Fortunately, there is a clean solution to this issue. We
generalize the recursion by also specifying a “responsibility” subset Y ⊆ V for each subproblem, which means that
the resulting arborescence must contain all nodes in Y. Crucially, we can show that the size of any responsibility
subset is bounded by the recursion depth d �O(log k). This allows us to implement the recursive step by addition-
ally guessing how the responsibility subset Y is passed on to the two subproblems. The number of such guesses is
at most 2d � poly(k), and so the overall time remains quasi-polynomial. The responsibility subset Y is empty at the
highest level of recursion and has size at most one at the lowest level of recursion: | Y | may increase and decrease
in the intermediate levels.

A direct consequence of Theorem 1 is an O log k
log log k

( )
-approximation algorithm for DTO and an O log 2k

log log k

( )
-ap-

proximation for directed Steiner tree. This matches the previous best bound (in quasi-polynomial time) for di-
rected Steiner tree (Grandoni et al. [18]). However, our approach is much simpler and also achieves a better
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exponent in the running time: our time is nO(log 1+εk), whereas the previous algorithm required nO(log 5k) time.
Grandoni et al. [18] also showed that one cannot obtain an o(log 2k=log log k)-approximation ratio for directed
Steiner tree in quasi-polynomial time assuming the projection game conjecture and NP�∩0<ε<1ZPTIME(2nε).
Hence, Theorem 1 is also tight under the same assumptions.

Another application of Theorem 1 is to the directed polymatroid Steiner tree problem, in which there is a mat-
roid with ground set V (same as the vertices), and one needs to find a minimum cost arborescence that visits
some base of the matroid. We obtain a quasi-polynomial time O(log 2k=log log k)-approximation, which im-
proves over the previous bestO(log3 k) bound (Călinescu and Zelikovsky [4]).

We also extend our main result (Theorem 1) to a setting with additional length constraints. In addition to the
input to STO, here we are given a length function ℓ : E→ Z+ and a bound L. The goal is to find an arborescence
on vertices T maximizing f (T) in which (i) the cost of edges in T is at most B and (ii) the sum

∑
v∈TℓT(v) ≤ L,

where ℓT(v) is the length of the r− v path in T. We assume that the lengths are polynomially bounded. Our tech-
nique can be extended to obtain the following:

Theorem 2. There is an O log k
log log k

( )
-approximation algorithm for submodular tree orienteering with length constraints that

runs in (nLlog B)O(log 1+εk) time for any constant ε > 0.

This algorithm follows a similar recursive structure as for STO, in which we guess and maintain some addi-
tional quantities: the length budget L′ available to the subproblem and a bound D(v) on the length of the r− v

path for each vertex v in the responsibility subset Y. This idea can also be used to obtain anO log k
log log k

( )
-approximation

for the variant of STOwith hard deadlines on length (see Section 4.3 for details).

As a direct application of Theorem 2, we obtain a quasi-polynomial time O log 2k
log log k

( )
-approximation for single-source

buy-at-bulk network design. This improves over the previous best O(log3 k)-approximation (Antonakopoulos [2]).
Buy-at-bulk network design is a well-studied generalization of Steiner tree that involves concave cost-functions
on edges. See Section 4.2 for more details. Our result holds for the harder “nonuniform” version of the problem,
in which cost functions may differ across edges.

Another application of Theorem 2 is to the priority Steiner tree problem, in which edges/terminals have priori-
ties (that represent quality of service) and the path for each terminal must contain edges of at least its priority.

We obtain a quasi-polynomial timeO log 2k
log log k

( )
-approximation even for this problem. We are not aware of any pre-

vious result for directed priority Steiner tree.
It follows from the hardness result in Grandoni et al. [18] that all our approximation ratios are tight (up to

constant factors) for quasi-polynomial-time algorithms, assuming the projection game conjecture and
NP�∩0<ε<1ZPTIME(2nε).

1.2. Related Work
The first approximation algorithm for directed Steiner tree was obtained by Zelikovsky [30], and it gives an

O
(
k ε(log k)1=ε

)
-approximation in nO(1=ε) time for any ε > 0. This result was improved by Charikar et al. [6], in

which an O(log3 k)-approximation ratio was obtained in quasi-polynomial time: this was the first poly-
logarithmic approximation ratio. The algorithm in Charikar et al. [6] is a recursive procedure with a very differ-
ent structure than ours: the idea there is to solve (approximately) the “density” problem that finds a partial
Steiner tree minimizing the ratio of the cost to the number of terminals. In contrast, we obtain a recursive approx-
imation algorithm for the “orienteering” problem that finds a bounded-cost Steiner tree maximizing the number
of terminals. Using a set-covering approach along with an algorithm for either the density or orienteering prob-
lem, it is straightforward to obtain an algorithm for directed Steiner tree (at the loss of an additional lnk-approxi-
mation factor). We note that the recursion used in Charikar et al. [6] relies on an explicit bound on the tree depth,
which results in the loss of an additional logarithmic factor (which we save). Moreover, the approach of Charikar
et al. [6] is not applicable to the orienteering problem (DTO), whereas any approximation algorithm for DTO im-
mediately implies one for the density problem.

The natural cut-covering linear programming (LP) relaxation of directed Steiner tree was shown to have an
Ω( ��

k
√ ) integrality gap by Zosin and Khuller [31]. Later, Friggstad et al. [14] showed that one can also obtain an

O(log3 k)-approximation ratio relative to the O(log k)-level Sherali–Adams lifting of the natural LP. (Previously,
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Rothvoß [27] used the stronger Lasserre hierarchy to obtain the same approximation ratio.) Very recently, Grand-
oni et al. [18] improved the approximation ratio to O(log2 k=log log k), still in quasi-polynomial time. Their
approach was to reduce directed Steiner tree to a new problem, called “label-consistent subtree” for which
they provided an O(log2 k=log log k)-approximation algorithm (in quasi-polynomial time) by rounding a
Sherali–Adams LP. In contrast, we take a simpler and more direct approach by extending the recursive-greedy
algorithm of Chekuri and Pál [8]. Our algorithm is easier to implement and has a much better running time. The
approaches in Friggstad et al. [14], Grandoni et al. [18], and Rothvoß [27] are also not applicable to the (harder)
tree orienteering problem that we solve.

A well-known special case of directed Steiner tree is the group Steiner tree problem (Garg et al. [16]), for which
the best polynomial-time approximation ratio is O(log2 k · log n). This is relative to the natural LP relaxation. A
combinatorial algorithm with a slightly worse approximation ratio was given by Chekuri et al. [9]. In quasi-
polynomial time, there is anO(log2 k=log log k)-approximation algorithm, which follows from Chekuri and Pál [8].
There is also an Ω(log2−ε k)-hardness of approximation for group Steiner tree (Halperin and Krauthgamer [20]).
Recently, Grandoni et al. [18] showed that this reduction can be refined to prove an Ω(log2 k=log log k)-hardness
of approximation (under stronger assumptions).

Călinescu and Zelikovsky [4] considered a polymatroid generalization of both undirected and directed Steiner
tree. For the directed version, they obtained an O(log3 k)-approximation in quasi-polynomial time by extending
the approach of Charikar et al. [6]. We improve this ratio to O(log2 k=log log k), which is also the best possible. It
is unclear if one can use LP-based methods, such as Friggstad et al. [14], Grandoni et al. [18], and Rothvoß [27],
to address this problem.

Buy-at-bulk network design problems that involve concave cost functions are studied extensively as they
model economies of scale (which is common in several applications). In the undirected case, a constant-
factor approximation algorithm is known for uniform single-source buy-at-bulk (Guha et al. [19]) and an
O(log k)-approximation algorithm is known for the nonuniform version (Meyerson et al. [23]). The nonuni-
form problem is also hard to approximate better than O(log log n) (Chuzhoy et al. [12]). For the directed
case that we consider, the only prior result is Antonakopoulos [2], which implies a quasi-polynomial time
O(log3 k)-approximation for the nonuniform version. Buy-at-bulk problems are also studied for multicom-
modity flows (Chekuri et al. [11]), which we do not consider in this paper.

The priority Steiner problem was introduced to model quality-of-service requirements in networking (Chari-
kar et al. [5]). It is fairly well understood in the undirected setting: the best approximation ratio known is
O(log n) (Charikar et al. [5]), and it isΩ(log log n)-hard-to-approximate (Chuzhoy et al. [12]).

The DTO problem in undirected graphs has also received significant attention (Garg [15], Johnson et al. [21],
Paul et al. [25]). In particular, a 2-approximation algorithm is known for it (Paul et al. [25]).

1.3. Preliminaries
The input to the submodular tree orienteering (STO) problem consists of (i) a directed graph G � (V,E) with
edge costs c : E→ Z+, (ii) root vertex r∗ ∈ V, (iii) a budget B ≥ 0, and (iv) a monotone submodular function
f : 2V → Z+ on the power set of the vertices. We assume throughout that all edge costs are integer valued. We
also use the standard value-oracle model for submodular functions, which means that, for any S ⊆ V, our algo-
rithm can evaluate f(S) in polynomial time. Finally, we assume (for simplicity) that the maximum function value
U :� f (V) is polynomially bounded in n � | V |. Using standard scaling arguments, we can handle arbitrary sub-
modular functions at the loss of an additional constant-factor in the approximation (see Appendix B). An arbo-
rescence T � (V(T),E(T)) is a subgraph of G with a special vertex r ∈ V(T) called its root, at which every vertex
v ∈ V(T) has a unique walk from r to v in T.

The goal in STO is to find an arborescence T∗ rooted at r∗ that maximizes f (V(T∗)) such that the cost of edges in
T∗ is at most B, that is,

∑
e∈E(T∗)c(e) ≤ B. For an arborescence T, when it is clear from context, we also use T to de-

note its vertex-set V(T); so f (T) � f (V(T)) is just the value of f evaluated at V(T).
For any subsets X ⊆ V and S ⊆ V, we use fX(S) :� f (X ∪ S) − f (X). For any X ⊆ V, the function fX is also mono-

tone and submodular.

2. Algorithms for Submodular Tree Orienteering
We first describe the basic algorithm that leads to an (nB)O(log k)-time O(log k)-approximation algorithm for STO
in Section 2.1. This already contains many of the main ideas. Then, in Section 2.2, we show how to make the
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algorithm truly quasi-polynomial-time by implementing it in (n log B)O(log k)-time. Finally, in Section 2.3, we

show how to obtain a slightly better O log k
log log k

( )
-approximation ratio in (n log B)O(log1+ε k)-time.

2.1. The Main Algorithm
This is a recursive procedure, described formally in Algorithm 1. Each recursive call involves parameters
(r,Y,B,X, i), where
• r ∈ V is the current root node, which means that we find an r-rooted arborescence.
• B is an upper bound on the cost of the arborescence.
• Y ⊆ V is a set of vertices that must be contained in the arborescence. We refer to set Y as the responsibility set

for this recursive call.
• X ⊆ V is the set of already-selected vertices. In this recursive call, we aim to maximize function

fX(T) � f (T ∪ X) − f (X), which represents the incremental value.
• i is the depth of recursion allowed, which means that the arborescence must contain at most (32)i vertices, ex-

cluding the root.
An arborescence T is said to be compatible with the parameters (r,Y,B,X, i) if it is rooted at r, contains all verti-

ces in Y, has cost at most B, and contains at most (32)i nonroot vertices.
The key aspect of this recursion is the responsibility-set Y. Figure 1 gives an example of how the responsibility

set changes over the recursive calls.

Algorithm 1 RG(r,Y,B,X, i)
1. if (| Y | > (32)i) then return infeasible
2. if i � 1 then
3. if (| Y | � 0) then .No responsibility for r
4. pick v ∈ V : c(r,v) ≤ B that maximizes fX(v) .Guess base-case vertex
5. return {(r,v)}
6. if (Y � {v}) then . rmust visit vertex v ∈ Y
7. if (c(r,v) ≤ B) then return {(r,v)}
8. else return infeasible
9. T← infeasible andm←−∞
10. for each v ∈ V do .Guess separator vertex
11. for S ⊆ Y do .Guess responsibilities for left/right subtrees
12. for 0 ≤ B1 ≤ B do .Guess subtree budget
13. T1 ← RG(r, (S ∪ {v}) \ {r},B1,X, i− 1)
14. T2 ← RG(v,Y \ (S ∪ {v}),B−B1,X ∪ T1, i− 1)
15. If ( fX(T1 ∪ T2) >m) then T← T1 ∪ T2 andm← fX(T).
16. return T

Remark 1. For any STO instance, our solution is RG(r∗,∅,B,∅,d), where d ≥ log1:5 k and k is the number of vertices
in an optimal solution. We show that the approximation ratio is log 1:5k and the runtime is (nB)O(log k). If k is not
known in advance, we can use d � �log1:5 n�: this provides the same approximation ratio at a slightly worse run-

time of (nB)O(log n).

We use the following well-known fact about vertex separators in a tree.

Proposition 1. Any tree on n+ 1 ≥ 3 vertices has a vertex v whose removal leads to connected components having size at
most n+1

2 each. These components can be grouped together to form two connected components (both containing v) of size at
most 1+ 2n

3 each.

Lemma 1. The maximum size of set Y in any subproblem of RG(r,∅,B,∅,d) is d.
Proof. To prove this statement, we argue that the invariant | Y | + i ≤ d holds in every subproblem of
RG(r,∅,B,∅,d) of the form RG(r,Y,B,X, i). We prove this by induction on the depth i � d,d− 1, ⋯ 1. The base case
has i � d. In this case, | Y | � 0, and thus, the aforementioned invariant clearly holds. Inductively, assume that the
invariant holds for some depth i > 1. Let RG(r′,Y′,B′,X′, i− 1) be any depth i – 1 subproblem arising from a
depth i subproblem RG(r,Y,B,X, i). From the algorithm, we can see that the size of the responsibility set increases
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by at most one in any subproblem: so | Y′ | ≤ 1+ | Y |. Combined with the induction hypothesis | Y | + i ≤ d, we get
| Y′ | + i− 1 ≤| Y | +1+ i− 1 ≤ d, which completes the induction.

Finally, as i ≥ 1, we have | Y |< d in any subproblem of RG(r,∅,B,∅,d). w

Lemma 2. The running time of the procedure RG(r,Y,B,X, i) is O((nB · 2d+2)i).
Proof. We prove this claim by induction on i. Let us denote the running time of RG(r,Y,B,X, i) by T(i). We want
to show that T(i) ≤ c · (nB · 2d+2)i for some fixed constant c. For the base case, let i � 1. From the description
of the procedure, we can see that when i � 1, it only performs a linear number of operations. Thus,
T(1) �O(n), which proves the base case. Inductively, assume that the claim holds for all values i′ < i. From
the description of the procedure, we have the following recurrence relation: T(i) � nB · 2d(2T(i− 1) +O(n)).
This follows from the fact that we have n guesses for the separator vertex, B guesses for the split in the
cost of the left and right subtrees, and at most 2d guesses on the responsibility set assigned to each sub-
tree (because | Y | ≤ d). For every combination of guesses, we make two recursive calls. Applying the in-
duction hypothesis, we get T(i) � nB · 2d(2 · (c · (nB · 2d+2)i−1) +O(n)) ≤ c · (nB · 2d+2)i, which completes the
induction. w

Lemma 3. Let T be the arborescence returned by RG(r,Y,B,X, i) and let T∗ be an arborescence compatible with the parame-
ters (r,Y,B,X, i). Then, fX(T) ≥ fX(T∗)=i.
Proof. We prove the lemma by induction on i. First consider the base case i � 1. As T∗ is compatible with i � 1,
we have T∗ � {r} or T∗ � {r,v∗} for some vertex v∗. If | Y | � 0, then one of our guesses has v � v∗ (if v∗ is present in
T∗) and fX(T) ≥ fX(T∗) because we return the maximum value over all guesses. If | Y | � 1, then T∗ must be of the
form {r,v∗}, where Y � {v∗}. Here, the only possibility is v � v∗, so fX(T) � fX(T∗). In either case, we get
fX(T) ≥ fX(T∗).

Suppose now that i > 1. Let v be the vertex in T∗ obtained from Proposition 1 such that we can separate T∗ into
two connected components: T∗

1 containing r and T∗
2 � T∗ \T∗

1. Note that T∗
1 is an r-rooted arborescence that con-

tains v and T∗
2 is a v-rooted arborescence. Let Y2 ⊆ Y \ {v} be those vertices of Y \ v that are contained in T∗

2 and
let Y1 � Y \Y2. Because T∗ contains Y, it is clear that {v} ∪ Y1 ∪ Y2 ⊇ Y. Finally, let c(T∗

1) � B1 and
c(T∗

2) � B2 ≤ B−B1. Note also that | V(T∗) \ r{ } |≤ (32)i. By the property of the separator vertex v, max(| V(T∗
1) | ,

Figure 1. An example of the calls made by the recursive greedy algorithm. In each call, we show RG(r,Y, i), where r is the root
node, Y is the responsibility set, and i is the recursion depth. If we keep following the left recursive call, the responsibility set in-
creases steadily by one until it grows to a size of three, after which it decreases.
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| V(T∗
2) |) ≤ 1+ 2

3 | V(T∗) \ r{ } |≤ (32)i−1 + 1. Excluding the root vertex in T∗
1 and T∗

2, the number of nonroot vertices in

either arborescence is at most (32)i−1. We can, thus, claim that

T∗
1 is compatible with (r,Y1 ∪ {v} \ {r},B1,X, i− 1) and (1)

T∗
2 is compatible with (v,Y \ (Y1 ∪ {v}),B−B1,X ∪ T1, i− 1): (2)

Now consider the call RG(r,Y,B,X, i). Because we iteratively set every vertex to be the separator vertex,
one of the guesses is v. Moreover, we iterate over all subsets S ⊆ Y, and thus, some guess must set S � Y1.
Because B1 ≤ B, we also correctly guess B1 in some iteration. Thus, we see that one of the set of calls
made is

T1 ← RG(r,Y1 ∪ {v} \ {r},B1,X, i− 1) and T2 ← RG(v,Y \ (Y1 ∪ {v}),B−B1,X ∪ T1, i− 1):
We now argue that T � T1 ∪ T2 has the property that fX(T) ≥ fX(T∗)=i. By (1) and induction,

fX(T1) ≥ 1
i− 1

fX(T∗
1): (3)

Let X′ � X ∪ T1. Similarly, by (2) and induction, we have

fX′ (T2) ≥ 1
i− 1

fX′ (T∗
2): (4)

We have fX′ (T∗
2) � f (T∗

2 ∪ T1 ∪ X) − f (T1 ∪ X) � fX(T1 ∪ T∗
2) − fX(T1). Using this in (4),

fX′ (T2) ≥ 1
i− 1

(fX(T1 ∪ T∗
2) − fX(T1)) ≥ 1

i− 1
(fX(T∗

2) − fX(T)), (5)

where the last inequality follows from the monotonicity of the function f.
We also have

fX(T) � fX(T1 ∪ T2) � f (T1 ∪ T2 ∪ X) − f (X) + f (T1 ∪ X) − f (T1 ∪ X) � fX(T1) + fX′ (T2):
Thus, using (3) and (5), we get

fX(T) ≥ 1
i − 1

(fX(T∗
1) + fX(T∗

2) − fX(T)) ≥ 1
i − 1

(fX(T∗) − fX(T)),
where the last inequality follows by the submodularity of fX. On rearranging the terms, we get

fX(T) ≥ 1
i
fX(T∗),

which concludes the induction. w

Lemmas 2 and 3 imply the following:

Theorem 3. There is a (log1:5 k)-approximation algorithm for the submodular tree orienteering problem that runs in time
O(nB)O(log k).

2.2. Quasi-Polynomial-Time Algorithm
Here, we show how our algorithm can be implemented more efficiently in (n log B)O(log k)-time. The idea here is
the same as in Chekuri and Pál [8] but applied on top of Algorithm 1.

Algorithm 2 RG-QP(r,Y,B,X, i)
1. if (| Y |> (32)i) then return infeasible
2. if (i � 1) then
3. if (| Y | � 0) then .No responsibility for r
4. pick v ∈ V : c(r,v) ≤ B that maximizes fX(v) . Guess base-case vertex
5. return {(r,v)}
6. if (Y � {v}) then . rmust visit vertex v ∈ Y
7. if (c(r,v) ≤ B) then return {(r,v)}
8. else return infeasible
9. T← infeasible andm←−∞
10. for each v ∈ V do .Guess separator vertex
11. for S ⊆ Y do .Guess responsibilities for left/right subtrees
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12. for 0 ≤ u ≤U do .Guess subtree function value
13. B1 ←minb(RG-QP(r, (S ∪ {v}) \ {r},b,X, i− 1) ≥ u) . Binary search for B1

14. if (B1 �∞) then continue
15. T1 ← RG-QP(r, (S ∪ {v}) \ {r},B1,X, i− 1)
16. T2 ← RG-QP(v,Y \ (S ∪ {v}),B−B1,X ∪ T1, i− 1)
17. If (fX(T1 ∪ T2) >m) then T← T1 ∪ T2 andm← fX(T).
18. return T.

The key idea here is that we no longer iterate through all values in [0,B] to guess the recursive budget B1. In-
stead, the step B1 ←minb(RG-QP(r, (S ∪ {v}) \ {r},b,X, i− 1) ≥ u) is implemented as a binary search over the
range {1, 2, ⋯ B} ∪ {∞}. We can perform binary search in this step because RG-QP(r, (S ∪ {v}) \ {r},b,X, i− 1) is
nondecreasing in b. We assume that U is an upper bound on the function value: by our assumptions (Section
1.3), this is a polynomial. The following results are straightforward extensions of those in Section 2.1.

Lemma 4. The running time of the procedure RG-QP(r,Y,B,X, i) is O((nU · 2d · log B)i).
Lemma 5. Let T be the arborescence returned by RG-QP(r,Y,B,X, i). Let T∗ be a compatible arborescence for the parame-
ters (r,Y,B,X, i), and fX(T∗) ≤U. Then, fX(T) ≥ fX(T∗)=i.

The proofs of these lemmas can be found in Appendix A. By Lemmas 4 and 5 and the fact that U is polyno-
mially bounded, we obtain the following:

Theorem 4. There is an O(log k)-approximation algorithm for the submodular tree orienteering problem that runs in time
O(n log B)O(log k).

2.3. Improved Approximation Ratio
Here, we show how to reduce the depth of our recursion at the cost of additional guessing. The high-level idea is
the same as a similar result in Chekuri and Pál [8], but we need some more care because our recursion is more
complex.

Let s � ε · log log k, where ε > 0 is some fixed constant. At each new level ℓ of recursion, the new algorithm
guesses all relevant quantities in s levels of the recursion in Algorithm 1. In particular, we guess the (r, Y, B) pa-

rameters for all these recursive calls. So the new recursion depth is d=s �O log k
log log k

( )
, where d �O(log k) was the

old depth. Recall that the number of guesses at each level of recursion in Algorithm 1 is n2dB. Because we guess
all parameters for the next s levels (that involve 2s recursive subproblems), each level in the new algorithm
makes (n2dB)2s guesses. As d �O(log k) and s � ε · log log k, the total number of recursive calls in the new algo-

rithm is at most (n2dB)2s d ≤ (nB)O(log 1+εk). The base case (ℓ � 1) in the new recursion corresponds to s levels of the
old recursion, so we are looking for an arborescence with at most (3=2)s nonroot nodes (that also contains the re-
sponsibility set Y). This can be easily found by enumerating over all such possibilities, which are at most nO(1:5s)

in number, and choosing the maximum value solution. So the overall runtime is (nB)O(log 1+εk).
Next, we prove a lemma bounding the objective value at each level of the new recursion. We use ℓ ∈ {1, 2, ⋯

d=s} to index the level in the new recursion.

Lemma 6. Let T be the arborescence returned by the new algorithm for parameters (r,Y,B,X,ℓ). If T∗ is an arborescence
compatible with these parameters, then fX(T) ≥ fX(T∗)=ℓ.
Proof. We prove the claim by induction on ℓ. The base case ℓ � 1 is trivial because we enumerate over all possi-
bilities. Now, consider ℓ > 1 and any call to the new algorithm with parameters (r,Y,B,X,ℓ). As T∗ is compatible
with the given parameters, one can iteratively obtain a choice of separator node v, responsibility set S, and bud-
get B′ at each subproblem in the next s levels (exactly as in Lemma 3). This allows us to write T∗ � ∪2s

j�1 T∗
j such

that each T∗
j is compatible with some subproblem at new level (ℓ− 1). For each j � 1, : : :2s, let Tj denote our algo-

rithm’s solution to the jth level-(ℓ− 1) subproblem. Then, the solution to the level-ℓ problem is T � ∪2s
j�1 Tj. By in-

duction, we have fXj(Tj) ≥ fXj(T∗
j )=(ℓ− 1), where Xj � X ∪ (∪j−1

a�1 Ta). Let h � 2s. We will show that

∑h
j�1

fXj(T∗
j ) ≥ fX(T∗) − fX(T): (6)
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This implies

fX(T) �
∑h
j�1

fXj(Tj) ≥
∑h
j�1

fXj(T∗
j )

(ℓ − 1) ≥
1

(ℓ − 1) ( fX(T
∗) − fX(T)),

which, upon rearranging terms, yields fX(T) ≥ fX(T∗)=ℓ as desired.
To prove (6), consider

∑h
j�1

fXj(T∗
j ) + fX(T) �

∑h−1
j�1

fXj(T∗
j ) + fXh(T∗

h) + fX(T)

� ∑h−1
j�1

fXj(T∗
j )

( )
+ f T∗

h ∪ X ∪ ⋃h−1
j�0

Tj

( )( )
− f X ∪ ⋃h−1

j�1
Tj

( )( )
+ f T ∪ X( ) − f X( )

applying submodularity to the 2nd and 4th term

≥ ∑h−1
j�1

fXj T
∗
j

( )( )
+ f T∗

h ∪ X ∪ T
( ) + f X ∪ ⋃h−1

j�1
Tj

( )( )
− f X ∪ ⋃h−1

j�1
Tj

( )( )
− f X( )

� ∑h−1
j�1

fXj T
∗
j

( )( )
+ fX T∗

h ∪ T
( )

inductively for all k � h − 1, ⋯ 1, 0, using the same steps as above

≥ ∑k
j�1

fXj T
∗
j

( )( )
+ fX

⋃h
j�k+1

T∗
j

( )
∪ T

( )

using k � 0 above

≥ fX
⋃h
j�1

T∗
j

( )
∪ T

( )
� f T∗ ∪ T ∪ X( ) − f X( )

≥ f T∗ ∪ X( ) − f (X) � fX(T∗):
This completes the proof. w

Remark 2. An alternative proof for the induction step in Lemma 6 is as follows. We can view this problem as a
submodular maximization problem constrained to a partition matroid. Let T j be the set of feasible solutions to
subproblem j for j � 1, 2, : : : ,h � 2s. The feasible solutions or “meta” elements of T j are trees themselves. We treat
each such tree as a unique element so that the sets {T j} are pairwise disjoint and, hence, form a partition matroid.
For any Z1, ⋯ Zp ∈∪h

j�1 T j, let g({Z1,Z2, : : : ,Zp}) :� fX(∪p
i�1 Zi). Observe that the function g(·) over the meta ele-

ments is monotone and submodular because fX(·) is monotone and submodular. We want to solve the following
optimization problem:

maximize g(T1, : : : ,Th) � fX(∪h
j�1 Tj)

subject to : Tj ∈ T j, ∀ j � 1, 2, ⋯ h:
(7)

We complete the proof by leveraging a result from Chekuri and Kumar [7] on a greedy algorithm for the maxi-
mum coverage problem under partition constraints. Although the result in Chekuri and Kumar [7] is stated only for
coverage functions, it also holds for any monotone submodular function. For completeness, we provide a proof
of this fact in Appendix C. This algorithm considers the parts in an arbitrary order and picks an element from
each part that (approximately) maximizes the increase in the function value. If the element chosen from each
part is an α-approximate maximizer, then this algorithm is an (α+ 1) approximation. Note that the steps in our
new recursive algorithm for STO correspond exactly to this greedy algorithm applied to (7) when α � (ℓ− 1),
which follows from the inductive hypothesis. So, we obtain an ℓ-approximation to (7) that proves Lemma 6.

2.3.1. Quasi-Polynomial Time for Improved Approximation. We can further improve the (nB)O(log 1+εk) runtime to a

truly quasi-polynomial time of (n log B)O(log 1+εk) by applying the binary-search idea described in Section 2.2. Note
that the dependence on B in the previous algorithm is because of guessing the cost budgets in the subproblems.
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We now modify the algorithm as follows. At each new level ℓ of recursion, we guess all the (r, Y) parameters
for s levels of the old recursion (Algorithm 1). Note that we do not guess the budgets B. So the number of guesses
in one level of the new algorithm is (n2d)2s � nO(log εk), which is quasi-polynomial. Recall that s � ε · log log k. Con-
sider any level-ℓ problem in the new recursion, denoted RG-IQP(r,Y,B,X,ℓ). This gives rise to h � 2s-level ℓ− 1
subproblems; we index these subproblems by j � 1, ⋯ h as in the proof of Lemma 6. For each subproblem j, let
(rj, Yj) denote the guessed (r, Y) parameters. So far, we have not fully specified these subproblems because the
budgets B1, ⋯ Bh have not been guessed. We now handle the budgets using the binary-search idea from Section
2.2. For each subproblem j � 1, ⋯ h, we guess a target uj ∈ {0, 1, ⋯U} on the “incremental function value.” Note
that the number of additional guesses is U2s �Ulog εk, which is quasi-polynomial by our assumption on U. We
then do the following for j � 1, 2, ⋯ h:

1. Perform binary search on b ∈ {0, 1, ⋯ B,∞} to find

Bj ←min{b : RG-IQP(rj,Yj,b,Xj, ℓ− 1) ≥ uj}, where Xj � X ∪ ⋃j−1
a�1

Ta

( )
:

2. If Bj �∞, then abort the current guess.
3. Tj ← RG-IQP(rj,Yj,Bj,Xj,ℓ− 1).
At the end, we check whether

∑h
j�1Bj ≤ B: if this is satisfied, then the current guess is said to be successful. Final-

ly, we return the solution T �∪h
j�1 Tj corresponding to a successful guess with maximum value fX(T). Note that

fX(T) � ∑h
j�1 fXj(Tj) ≥ ∑h

j�1uj.

The total number of recursive calls made in RG-IQP(r,Y,B,X,ℓ) is at most (n2dU)2s · 2s ·O(log B). So the overall

runtime is (nUlog B)O(log 1+εk) � (nlog B)O(log 1+εk) as U � poly(n).
For the performance guarantee, we claim that Lemma 6 also holds for RG-IQP. As in the proof of Lemma 6,

there exists a guess for the (rj, Y j) parameters so that T∗ �∪h
j�1 T∗

j , where each T∗
j is compatible with subproblem j.

Let B∗
j denote the cost of tree T

∗
j for each subproblem j, so

∑h
j�1B

∗
j ≤ B. We show that there exists a successful guess

{u∗j }hj�1 for the incremental function values for which our solution T �∪h
j�1 Tj satisfies fX(T) ≥ f (T∗)=ℓ, which would

prove Lemma 6. For each j, define u∗j :� 1
ℓ−1 · fXj(T∗

j ). Recall that Xj � X ∪ (∪j−1
a�1 Ta), where T1, ⋯ Tj−1 denote our al-

gorithm’s solutions for the first j – 1 subproblems (with guesses u∗1, ⋯ u∗j−1). Observe that

fX(T) ≥
∑h
j�1

u∗h �
1

ℓ− 1

∑h
j�1

fXj(T∗
j ) ≥

fX(T∗) − fX(T)
ℓ− 1

,

where the last inequality is by (6), which holds for any T∗ � ∪h
j�1 T∗

j , T � ∪h
j�1 Tj, X, and monotone submodular f.

Rearranging, we obtain fX(T) ≥ fX(T∗)=ℓ as needed. It remains to show that the guess {u∗j}hj�1 is successful, that is,∑h
j�1Bj ≤ B, where Bj is the cost of our solution Tj to subproblem j. We show that Bj ≤ B∗

j for each j, which would

imply the desired result as
∑h

j�1B
∗
j ≤ B. To prove Bj ≤ B∗

j , consider subproblem RG-IQP(rj,Yj,B∗
j ,Xj,ℓ− 1). Note

that T∗
j is compatible with these parameters, so by induction, the value of this recursive call is at least

fXj(T∗
j )=(ℓ− 1) � u∗j . As Bj is the minimum budget b for which RG-IQP(rj,Yj,b,Xj,ℓ− 1) ≥ u∗j , we have Bj ≤ B∗

j .
This completes the proof of Theorem 1.

3. Applications
3.1. Directed Tree Orienteering (DTO)
This is the special case of STO when the reward function is linear, that is, of the form f (S) � ∑

v∈Spv, where each

v ∈ V has reward pv ∈ Z+. So Theorem 1 applies directly to yield a quasi-polynomial-time O log k
log log k

( )
-approxima-

tion algorithm. To the best of our knowledge, no nontrivial approximation ratio followed from prior techniques.

3.2. Directed Steiner Tree
Here, we are given a graph (V, E) with edge costs c ∈ Z

E
+, root r, and a subset U ⊆ V of terminals. The goal is to

find an r-rooted arborescence that contains all of U and minimizes the total cost. By using the metric completion
of the graph, we may assume (without loss of generality) that the underlying graph is complete, and the costs c
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satisfy triangle inequality. Shortcutting over nonterminal vertices of degree at most two, we can assume that
there is an optimal solution in which every nonterminal vertex has degree at least three. So there is an optimal so-
lution containing at most 2k vertices in which k �|U | is the number of terminals. We can use a standard set-
covering approach to solve directed Steiner tree using DTO. We first guess (up to factor two) a bound B on the
optimal cost. Then, we iteratively run the DTO algorithm with budget B and a reward of one for all uncovered ter-
minal vertices. Assuming that the bound B is a correct guess, the optimal value of each DTO instance solved pre-

viously equals k′, the number of uncovered terminals in the current iteration. As we use a ρ �O log k
log log k

( )
approxi-

mation for STO, the number of iterations before covering all terminals is at most O(ρ · log k). When all terminals
have been covered, we return a min-cost arborescence in the union of all arborescences found so far. Using Theo-
rem 1, this implies the following:

Theorem 5. There is a deterministic O log2 k
log log k

( )
-approximation algorithm for directed Steiner tree in nO(log 1+εk) time for any

constant ε > 0.

Our approximation ratio matches that obtained recently (Grandoni et al. [18]). Our algorithm is deterministic
and has a better running time; the algorithm in Grandoni et al. [18] requires nO(log 5k) time. Moreover, our ap-
proach is much simpler. However, an LP-based approach as in Grandoni et al. [18] may have other advantages.

3.3. Polymatroid Directed Steiner Tree
This problem was introduced in Călinescu and Zelikovsky [4] with applications in sensor networks. As before,
we are given a directed graph (V, E) with edge costs c ∈ Z

E
+ and root r. In addition, there is a matroid defined on

ground set V (same as the vertices), and the goal is to find a min-cost arborescence rooted at r that contains some
base of the matroid. As matroid rank functions are submodular (and integer valued), we can apply Theorem 1 to

obtain an O log k
log log k

( )
-approximation algorithm for the corresponding STO instance (reward-maximization), in

which k ≤| V | is the rank of the matroid. We then use a set-covering approach as outlined earlier that iteratively
solves STO instances until the set of covered vertices contains a base of the matroid. Crucially, the contraction of
any matroid is another matroid, so the function f used in each such STO instance is still a matroid rank function.

This yields a quasi-polynomial time O log2 k
log log k

( )
-approximation algorithm for polymatroid Steiner tree as well.

This result improves over the O(log3 k) ratio in Călinescu and Zelikovsky [4].

4. Extensions of Submodular Tree Orienteering
In this section, we consider an extension of STO that involves additional length constraints. This is used to obtain
improved approximation algorithms for buy-at-bulk network design, priority Steiner tree, and hop-constrained
Steiner tree.

4.1. STO with Length Constraints
Here, along with the input to STO, we are given a length function ℓ : E→ Z+ and an additional length-bound L.
The lengths ℓ are unrelated to the edge costs c : E→ Z+. Note that, in an arborescence, given a vertex v, there is a
unique path from the root to v. Let pT(v) denote the path from the root r∗ to vertex v in arborescence T, and let
lT(v) � ∑

e∈pT(v)ℓ(e) denote the length of this path. The length constraint requires the sum of path lengths lT(v) to
be at most L. Formally, the goal now is to find an arborescence T∗ rooted at r∗, maximizing f (T∗) such that the
cost c(T∗) ≤ B and sum of lengths

∑
vlT∗ (v) ≤ L. We refer to this problem as STOwith length constraints.

Recall that, in the case of STO, we use a recursive algorithm that, in each step, guesses (i) a separator vertex v;
(ii) the cost bounds B1 and B−B1 for the two arborescences that are rooted at r and v, respectively; and (iii) a par-
tition of the responsibility set to assign to the two subproblems. For STOwith length constraints, we additionally
guess bounds L1 and L− L1 on the sum of lengths for these arborescences. As we need to bound the length of
paths from the original root r∗ (not the root r of the current subproblem), we also maintain the length kr from r∗
to r as a parameter in the recursion. Another issue is that, even if we guess the bounds L1 and L− L1 for the two
subproblems (rooted at r and v) correctly, the actual length from r to v in the first subproblem (rooted at r) may
not be the same as in the optimal solution. This is crucial because the length from r to v (in the subproblem rooted
at r) affects the sum of lengths in the subproblem rooted at v. To deal with this, every time we add a separator
vertex v to the responsibility set, we also guess a length bound to get from r to v and add this guess to a dictio-
nary D (which must be satisfied by the recursive subproblems).
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Recursive calls in this algorithm are denoted RG-DC(r,kr,Y,D,B,L,X, i), where the parameters r,Y,B,X, i are
the same as those described in Section 2.1. So we are looking for an r-rooted arborescence that contains all verti-
ces in Y, has cost at most B, and contains at most 1:5i nonroot vertices. The goal is to maximize the function
fX(T) � f (T ∪ X) − f (X), which is the incremental value over subset X. The role of the other parameters are as
follows:

• L is an upper bound on the sum of lengths of r∗ − v paths over all vertices v in this arborescence.
• kr indicates that the length of the path from r∗ to r is at most kr. This is used to enforce the constraint on the sum

of lengths. Formally, if T is a solution to this subproblem and lT(v) denotes the length of the r− v path in T, then we
must have

∑
v∈T(kr + lT(v)) ≤ L.

• D is a dictionary of vertex-length pairs for all vertices in the responsibility set Y. It contains pairs (w,D(w)) for
all w ∈ Y. The length of the r–w path in the arborescence must be at mostD(w) for eachw ∈ Y.
Again, we say that arborescence T is compatible with parameters (r, kr,Y,D,B,L,X, i) if T is rooted at r, visits all

vertices in Y while respecting the length bounds in D, has cost at most B, has sum of lengths
∑

v∈T(kr + lT(v)) ≤ L,
and contains at most (1:5)i nonroot vertices. See Algorithm 3 for a formal description. Our overall solution is RG-
DC(r∗, 0,∅,∅,B,L,∅,d), where d ≥ log 3=2k and k is the number of vertices in an optimal solution (as before).

Algorithm 3 RG-DC(r,kr,Y,D,B,L,X, i)

1. if (| Y | > (32)i) then return infeasible
2. if i � 1 then
3. if (| Y | � 0) then .No responsibility for r
4. pick v ∈ V : c(r,v) ≤ B and kr + ℓ(r,v) ≤ L that maximizes fX(v)
5. return {(r,v)}
6. if (Y � {v}) then . rmust visit vertex v ∈ Y
7. if (c(r,v) ≤ B, kr + ℓ(r,v) ≤ L and ℓ(r,v) ≤D(v)) then
8. return {(r,v)}
9. else return infeasible
10. T← infeasible andm←−∞
11. for each v ∈ V do .Guess separator vertex
12. for S ⊆ Y do .Guess responsibilities for subtrees
13. for 0 ≤ B1 ≤ B do . Guess subtree cost budget
14. for 0 ≤ L1 ≤ L do .Guess subtree length budget
15. for 0 ≤ d1 ≤ L do .Guess length from r to v
16. if v ∉ Y then setD(v) ← d1; else updateD(v) ←min{d1,D(v)}
17. D1 ←{(w,D(w)) : w ∈ S ∪ v} . Length guesses for r-subtree
18. D2 ←{(w,D(w) − d1) : w ∈ Y \ (S ∪ v)} . Length guesses for v-subtree
19. T1 ← RG-DC(r,kr, (S ∪ v) \ r,D1,B1,L1,X, i− 1)
20. T2 ← RG-DC(v,kr + d1,Y \ (S ∪ v),D2,B−B1,L− L1,X ∪ T1, i− 1)
21. If (fX(T1 ∪ T2) >m) then T← T1 ∪ T2 andm← fX(T).
22. return T

Lemma 7. The running time of RG-DC(r,kr,Y,D,B,L,X, i) is O((nBL2 · 2d)i).
The proof is very similar to that of Lemma 2, and hence, we omit it here.

Lemma 8. Let T be the arborescence returned by RG-DC(r,kr,Y,D,B,L,X, i) and let T∗ be any arborescence compatible
with (r,kr,Y,D,B,L,X, i). Then, fX(T) ≥ fX(T∗)=i.
Proof. We prove the lemma by induction on i. The base case is i � 1. Here, we have T∗ � {r} or T∗ � {r,v∗} for
some vertex v∗. If | Y | � 0, then one of our guesses has v � v∗ (if v∗ is present in T∗), and fX(T) ≥ fX(T∗) because we
return the maximum value over all guesses. If | Y | � 1, then T∗ must be of the form {r,v∗}, where Y � {v∗}. Here,
the only possibility is v � v∗, so fX(T) � fX(T∗). Thus, in either case, we get fX(T) ≥ fX(T∗), which proves the base
case.

We now prove the inductive step for i > 1. Let v be the vertex in T∗ obtained from Proposition 1 such that we
can separate T∗ into two connected components: T∗

1 containing r and T∗
2 � T∗ \T∗

1. Note that T∗
1 is an r-rooted arbo-

rescence containing v and T∗
2 is a v-rooted arborescence. Let Y2 ⊆ Y \ {v} be those vertices of Y \ {v} that are con-

tained in T∗
2, and let Y1 � Y \Y2. Because T∗ contains Y, it is clear that {v} ∪ Y1 ∪ Y2 ⊇ Y. Let c(T∗

1) � B∗
1 and
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c(T∗
2) � B∗

2 ≤ B−B∗
1. Let L

∗
1 � ∑

v∈T∗
1
(kr + lT∗ (v)) be the sum of lengths of the vertices in T∗

1, and L∗2, defined analo-
gously, is the sum of lengths of the vertices in T∗

2. Observe that L∗1 + L∗2 ≤ L. Let lT∗ (v) � lT∗
1
(v) � d∗1. Note that

lT∗
1
(u) ≤D(u) for all u ∈ Y1, so d∗1 � lT∗

1
(v) ≤D(v) if v ∈ Y. Define

D∗
1 � {(w,D(w)) : w ∈ Y1 \ v} ∪ {(v,d∗1)} and D∗

2 � {(w,D(w) − d∗1) : w ∈ Y2}:
For each u ∈ T∗

2, note that the length of the v− u path in T∗
2 is lT∗

2
(u) � lT∗ (u) − lT∗ (v). So

L∗2 � ∑
u∈T∗

2
(kr + lT∗ (u)) � ∑

u∈T∗
2

(
(kr + d∗1) + lT∗

2
(u)

)
. By Proposition 1, the number of nonroot vertices in both arbores-

cences T∗
1 and T∗

2 is at most (32)i−1. From this discussion,

T∗
1 is compatible with (r,kr, (Y1 ∪ v) \ r,D∗

1,B
∗
1,L

∗
1,X, i− 1) and (8)

T∗
2 is compatible with (v,kr + d∗1,Y \ (Y1 ∪ v),D∗

2,B−B∗
1,L− L∗1,X ∪ T1, i− 1): (9)

Now consider the call RG-DC(r,kr,Y,D,B,L,X, i). In one of the guesses, we have vertex v as earlier, subset S �
Y1, B1 � B∗

1, L1 � L∗1, and d1 � d∗1. Thus, one of the calls made is

T1 ← RG-DC(r, kr, (Y1 ∪ v) \ r,D∗
1,B

∗
1,L

∗
1,X, i− 1) and

T2 ← RG-DC(v, kr + d∗1,Y \ (Y1 ∪ v),D∗
2,B−B∗

1,L− L∗1,X ∪ T1, i− 1):
We now argue that T � T1 ∪ T2 has fX(T) ≥ fX(T∗)=i. By (8), (9), and induction,

fX(T1) ≥ 1
i− 1

fX(T∗
1) and fX′ (T2) ≥ 1

i− 1
fX′ (T∗

2),
where X′ � X ∪ T1. Adding these inequalities, the rest of the proof is identical to Lemma 3. w

Combining Lemmas 7 and 8 gives us the following.

Theorem 6. There is an O(log k)-approximation algorithm for the submodular tree orienteering problem with length con-
straints that runs in time (nBL)O(log k).

We can improve the approximation ratio and runtime, exactly as in Section 2.3 for STO. The only difference is
that here we have more recursive parameters. As in Section 2.3, in each new level ℓ of recursion, we guess all pa-
rameters other than the cost budget for s levels of the old recursion (Algorithm 3). That is, we guess the parame-
ters (r,kr,Y,D,L,X) for 2s recursive subproblems and check that these are compatible with the level-ℓ problem.
The cost budgets B are not guessed: they are handled using binary search as described in Section 2.3.1. This leads

to an O log k
log log k

( )
-approximation algorithm in O(nL log B)O(log 1+εk)-time, which proves Theorem 2.

4.2. Single-Source Buy-at-Bulk
Here, we use the approximation algorithm for STOwith length constraints to obtain an improved approximation
algorithm for the single-source buy-at-bulk problem. In this problem, we are given a directed graph (V, E), a set
of terminals S ⊆ V, and a source/root r∗. Moreover, each edge e ∈ E is associated with a monotone concave cost
function ge : R+ → R+. The goal is to route a unit of flow from r∗ to each terminal in S while minimizing the total
cost

∑
e∈Ege(xe), where xe denotes the total flow through edge e. It is straightforward to show (using concavity)

that the edges carrying nonzero flow must form an r-arborescence. We adopt an alternative representation of the
buy-at-bulk problem (at the loss of a constant factor in approximation) as described in Chekuri et al. [11] and
Meyerson et al. [23]. The input to the problem is now a directed multigraph (V, E), a cost function c : E→ Z+, a
length function ℓ : E→ Z+, a set of terminals S, and a source r. The goal is to find an r-rooted arborescence T that
has a directed path to all terminals such that

∑
e∈Tc(e) +∑

v∈SℓT(v) is minimized. As for STO with length con-
straints, the function ℓT(·) denotes the length of the r− v path in T.

We follow a set-covering approach as in Section 3. We first guess an upper bound B on the optimal value,
which implies the same bound on the cost

∑
e∈Tc(e) and the sum of lengths

∑
v∈SℓT(v) of the optimal arbores-

cence T. Using a binary search approach, the bound B is at most two times the optimal (for one of the
guesses). Then, we iteratively run the algorithm for STO with length constraints with both cost and length
bounds B and a reward of one for all uncovered terminal vertices. Notice that the term

∑
v∈SℓT(v) in the objec-

tive only takes into account the terminal vertices and not all vertices in the arborescence. Algorithm 3 can
easily be modified to incorporate this change. Assuming that the bound B is guessed correctly, the optimal
value of each STO instance solved equals k′, the number of uncovered terminals. As we use a
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ρ �O log k
log log k

( )
-approximation for STO with length constraints (Theorem 2), the number of iterations before

covering all terminals is at most O(ρ · log k).
Another (minor) issue is that Theorem 2 requires polynomially bounded lengths. In order to ensure this,

we perform a standard scaling/rounding as follows. We first remove all edges e ∈ E with ℓe > B as these are
not used in an optimal solution. Let B̃ � B=n4 and ℓ̃e � �ℓe=B̃� for all e ∈ E. Note that the new lengths ℓ̃e are inte-
gers between zero and n4, so these are polynomially bounded. We run the algorithm from Theorem 2 on the
instance with costs ce, cost bound B, lengths ℓ̃e, and length bound L � n4. Note that B̃ · ℓ̃e ≤ ℓe ≤ B̃ · ℓ̃e + B̃ for all
e ∈ E. It is clear that the optimal arborescence T to the buy-at-bulk instance is still feasible to this STO instance
with the new length constraint. On the other hand, any arborescence T̃ satisfying the new length constraint
has total length

ℓ(T̃) ≤ B̃ · ℓ̃(T̃) + n2B̃ ≤ n4B̃ + n2B̃ ≤ (1+ o(1))B,
where we use the fact that each path has at most n edges and there are at most n terminals (whose paths contrib-
ute to the objective).

Theorem 7. There is an O log2 k
log log k

( )
-approximation algorithm for the single-source buy-at-bulk problem in directed graphs

that runs in nO(log 1+εk) time.

4.3. STO with Deadlines and Hop-Constrained Steiner Tree
Here, we consider a variant of STO with length constraints in which vertices have hard deadlines on the path
lengths. Along with the input to STO, we have a length function ℓ : E→ Z+ and deadlines {dv}v∈V. The reward of
a vertex v in arborescence T can only be claimed if the r∗ − v path length lT(v) ≤ dv. So the goal is to find an arbo-
rescence T∗ rooted at r∗ maximizing f (S(T∗)) such that c(T∗) ≤ B, where S(T∗) � {v ∈ V : lT∗ (v) ≤ dv}. We call this
problem STOwith deadlines. We first point out the differences from STOwith length constraints:

• We do not compute the function f on all the vertices in the arborescence T, but only the vertices S(T) � {v ∈ T :
lT(v) ≤ dv} that are “visited by their deadline.”

• There is no sum of length bound on a feasible arborescence.
Our algorithm RG-DL for STO with deadlines is very similar to that in Section 4.1. Each recursive call in

RG-DL involves parameters (r, kr,Y,D,B,X, i) that have the same meaning as in Section 4.1 for STO with length
constraints. Note that there is no length bound L in this algorithm. Although there is no length bound, for
the recursive step, we still need to guess the length from the current root r to the separator vertex v. To
see why this is needed, suppose T∗ is the optimal arborescence rooted at r, and T∗

1 and T∗
2 are its compo-

nents rooted at r and v, respectively. If we do not reach vertex v from r within length lT∗ (v) in our solution
(rooted at r), then we are not able to claim the reward contained in T∗

2 as some of those deadlines may get
violated. We also need to modify how already-selected vertices X are updated between the two recursive
calls:

T1 ← RG-DL(r,kr, (S ∪ v) \ r,D1,B1,X, i− 1),
T2 ← RG-DL(v,kr + d1,Y \ (S ∪ v),D2,B−B1,X ∪ S(T1), i− 1),

where S(T1) � {v ∈ T1 : lT1(v) ≤ dv}. The base case also changes slightly (from Algorithm 3) to reflect the deadlines.
If | Y | � 0, then we pick v ∈ V with c(r,v) ≤ B and kr + ℓ(r,v) ≤ dv that maximizes fX(v). If Y � {v}, then we return
solution {r, v} only if c(r,v) ≤ B and kr + ℓ(r,v) ≤D(v).

The analysis is omitted as it is very similar to that in Section 4.1.

Theorem 8. There is an O log k
log log k

( )
-approximation algorithm that runs in (nℓmax log B)O(log1+ε k) time for the submodular

tree orienteering problem with deadlines.

Using this, we obtain an improved approximation algorithm for the hop-constrained (or shallow-light)
minimum Steiner tree problem (Althaus et al. [1], Gouveia [17], Kortsarz and Peleg [22]). Here, we are given a di-
rected graph (V, E), a set of terminals S ⊆ V, a root r∗, and a positive integer H. We want to find a minimum cost
r∗-arborescence spanning the set S with an additional constraint that the r∗ − v path has at most H edges for each
terminal v ∈ S. This problem models the design of centralized computer systems with quality-of-service (QoS)
constraints. The root node r∗ models a central computing resource, and the terminals S are users that require ac-
cess to the resource. The hop constraints guarantee a certain quality level to the users accessing the central com-
puting resource.
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We cast the hop-constrained Steiner tree problem as an instance of STOwith deadlines. The directed graph (V,
E), edge costs c, terminals S, and root r∗ for STO with deadlines are as given by the input to the hop-constrained
Steiner tree problem. We set length ℓ(e) � 1 for all e ∈ E and deadline dv � H for all v ∈ V. Combining Theorem
8 with the set-covering framework, we obtain the following:

Theorem 9. There is an O log2 k
log log k

( )
-approximation algorithm for the hop-constrained Steiner tree problem in directed

graphs that runs in nO(log 1+εk) time.

4.4. Priority Steiner Tree
This is another generalization of Steiner tree that has been used to model QoS considerations (Charikar et al. [5]).
In the priority Steiner tree problem, we are given a directed graph (V, E) with edge costs {ce : e ∈ E}, a set of termi-
nals S ⊆ V, and a root r∗. There are p priority levels with one denoting the lowest and p denoting the highest pri-
ority levels. Each edge e has a priority θe, which denotes its QoS capability. Each terminal t ∈ S also has a priority
λt, which denotes its QoS requirement. The goal is to find a minimum cost r∗-arborescence in which, for each ter-
minal t ∈ S, all edges on the r∗ − t path have priority at least λt.

We say that a vertex t is priority-connected in an r∗-arborescence if each edge in the r∗ − t path has priority at
least λt. We first consider the “maximum coverage” version of priority Steiner tree, in which we are given a
bound B on cost and want an arborescence that priority-connects the maximum number of terminals. We pro-
vide a quasi-polynomial time approximation algorithm for this problem (with a submodular objective f) by
slightly modifying the algorithm in Section 4.1. Each recursive call here has parameters (r,pr,Y,D,B,X, i), where
the parameters r,Y,B,X, i are as before (see Section 2.1), and

• pr is the minimum priority of any edge on the path from r∗ (original root) to r (current root).
• D is the dictionary that contains vertex-priority pairs for all vertices in the responsibility set Y. It contains a pair

(w,D(w)) for each w ∈ Y, which means that all edges on the r−w path in the arborescence must have priority at
leastD(w).

Compared with Algorithm 3, there is no longer a length constraint, so the parameters kr and L are not needed
here. Instead, we maintain the priority-level pr at the current root and also priority requirements (instead of
length bounds) in dictionary D.

For the recursion, as before, we guess the separator vertex v, responsibilities S ⊆ Y, and budget B1 for the
r-rooted subproblem. In addition, we guess the priority level q ≤ pr of the separator v, which is passed to the
two subproblems as follows: we set D1(v) � q for the r-rooted subproblem and pv � q for the v-rooted sub-
problem. We also need to modify how already-selected vertices X are updated between the two recursive
calls:

T1 ← recurse with (r,pr, (S ∪ v) \ r,D1,B1,X, i− 1),
T2 ← recurse with (v,q,Y \ (S ∪ v),D2,B−B1,X ∪ P(T1), i− 1),

where P(T1) � {v ∈ T1 : v is priority− connected}. The base case (i � 1) also changes slightly. If | Y | � 0, then we
pick v ∈ V with c(r,v) ≤ B and min{pr,θ(r,v)} ≥ λv that maximizes fX(v). If Y � {v}, then we return solution {r, v}
only if c(r,v) ≤ B and min{pr,θ(r,v)} ≥D(v). Using an analysis similar to Section 4.1, we can show that this algo-

rithm is an O log k
log log k

( )
-approximation algorithm for the maximum-coverage version in nO(log 1+εk) time.

Combined with the set-covering framework as before, we obtain the following:

Theorem 10. There is an O log2 k
log log k

( )
-approximation algorithm for the priority Steiner tree problem in directed graphs that

runs in nO(log 1+εk) time.

5. Conclusion
We obtained quasi-polynomial time approximation algorithms for several directed network design problems, in-
cluding tree orienteering, Steiner tree, and single-source buy-at-bulk. Our approximation ratios are nearly best
possible under certain complexity assumptions. Obtaining any poly-logarithmic approximation for these prob-
lems in polynomial time remains the main open question. Another interesting question is obtaining a
polynomial-time kε-approximation algorithm for submodular tree orienteering (for any constant ε > 0). Although
such a result is known for directed Steiner tree, it is not known for the submodular orienteering version.
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Appendix A. Missing Proofs

Proof of Lemma 4.
We prove the claim by induction on i. Let us denote the running time of RG-QP(r,Y,B,X, i) by T(i). We want to show
that T(i) �O((nU2dlog B)i). For the base case, let i � 1. From the description in Algorithm 2, we can see that, when i � 1,
it only performs a linear number of operations. Thus, T(1) �O(n), which proves the base case.

Inductively, assume that the claim holds for all values i′ < i. From Algorithm 2, we have the following recurrence rela-
tion: T(i) ≤ nU2d((log B+ 2)T(i− 1) +O(n)). Note that we no longer guess the value of the budgets for the subtrees. In-
stead, we guess a target u ∈ {0, 1, : : : ,U} on the incremental function value of the left subtree, which is used to guess a
budget on the left and right subtrees. The aforementioned recurrence relation now follows from the fact that we have n
guesses for the separator vertex, U guesses for the incremental function value of the left subtree, and at most 2d guesses
on the responsibility set assigned to each subtree (because | Y | ≤ d). Thus, for every combination of guesses, we make at
most log B+ 2 recursive calls. The log B recursive calls correspond to the binary search to determine the minimum budget
B1, and the remaining two recursive calls denote the calls made to obtain the partial solutions T1 and T2. Applying the
induction hypothesis, we get T(i) � nU2d((log B+ 2) ·O((nU2dlog B)i−1) +O(n)) �O(nU2dlog B)i, which completes the
induction.

Proof of Lemma 5.
We prove the lemma by induction on i. For the base case, let i � 1. Because T∗ is feasible for i � 1, T∗ is either empty or
contains a single edge. If | Y | � 0, then we guess the base-case vertex and return the one that maximizes fX subject to the
given budget, so fX(T) ≥ fX(T∗) in this case. If | Y | � 1, then T∗ has a single edge, say (r, v). Our procedure here returns the
arborescence (r, v), and so fX(T) � fX(T∗). Thus, in either case, we get fX(T) ≥ fX(T∗), which proves the base case.

Suppose that i > 1. Let v be the vertex in T∗ obtained from Proposition 1 such that we can separate T∗ into two con-
nected components: T∗

1 containing r and T∗
2 � T∗ \T∗

1, where max(| V(T∗
1) | , | V(T∗

2) |) ≤ 2
3 | V(T∗) |. Note that T∗

1 is an r-rooted
arborescence that contains v and T∗

2 is a v-rooted arborescence. Let Y2 ⊆ Y \ {v} be those vertices of Y \ v that are con-
tained in T∗

2, and let Y1 � Y \Y2. Because T∗ contains Y, it is clear that {v} ∪ Y1 ∪ Y2 ⊇ Y. Finally, let c(T∗
1) � B∗

1 and
c(T∗

2) � B∗
2 ≤ B−B∗

1. Note also that | V(T∗) \ r{ } |≤ (32)i. By the property of the separator vertex v,

max(| V(T∗
1) | , | V(T∗

2) |) ≤ 2
3 | V(T∗) |≤ (32)i−1 + 2

3. Excluding the root vertex in T∗
1 and T∗

2, the number of non-root vertices in ei-

ther arborescence is ≤ (32)i−1. We set B1 in the algorithm using a binary search approach. Because we iterate over all values

in [1,U], one of the guesses equals u′ � �fX(T∗
1)

i−1 �. For this guess u′, using the inductive hypothesis (for level i – 1) and the
fact that f is integer valued, the value of the arborescence returned by RG-QP(r,Y1 ∪ {v} \ {r},B∗

1,X, i− 1) is at least u′.
Also notice that RG-QP(r,Y,b,X, i− 1) is an increasing function in the parameter b (this allows us to use binary search to
find B1). Thus, the value B1 ←minb(RG-QP(r,Y1 ∪ {v} \ {r},b,X, i− 1) ≥ u′) has the property that B1 ≤ B∗

1. Hence,
B−B1 ≥ B−B∗

1 � B∗
2, which implies that

T∗
2 is compatible with (v,Y \ (Y1 ∪ {v}),B−B1,X ∪ T1, i− 1): (A.1)

Now consider the call RG(r,Y,B,X, i). Because we iteratively set every vertex to be the separator vertex, one of the
guesses is v. Moreover, we iterate over all subsets S ⊆ Y, and thus, some guess must set S � Y1. From this argument, the
guess u � u′ gives us B1 ≤ B∗

1. Thus, we see that one of the set of calls made is

T1 ← RG(r,Y1 ∪ {v} \ {r},B1,X, i− 1) and T2 ← RG(v,Y \ (Y1 ∪ {v}),B−B1,X ∪ T1, i− 1):
We now argue that T � T1 ∪ T2 has the property that fX(T) ≥ fX(T∗)=i. As the guess u � u′,

fX(T1) ≥ u′ ≥ 1
i− 1

fX(T∗
1) (A.2)

Let X′ � X ∪ T1. By (A.1) and induction, we have

fX′ (T2) ≥ 1
i− 1

fX′ (T∗
2) (A.3)

The rest of this proof is identical to the proof of Lemma 3.
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Appendix B. Polynomially Bounded Objective Function
We can ensure (at the loss of a small approximation factor) that the function f is integer valued and at most poly-
nomial in n, the number nodes in the input graph. This is necessary to obtain a truly quasi-polynomial time algo-
rithm using the binary search approach in Sections 2.3 and 2.2. We describe how this can be done for the

O log k
log log k

( )
-approximation algorithm from Section 2.3; the same idea also works for the O(log k)-approximation algo-

rithm in Section 2.2.
Given an arbitrary monotone submodular function f : 2V → Z+, we transform it into a function f̃ such that the transfor-

mation only loses a factor of (1− η) in the approximation ratio (for any η > 0), and has the property that f̃ is integral and
polynomially bounded. Let M :�maxu∈Vf ({u}). Note that f (V) ≤ nM by subadditivity. We assume that, for every v ∈ V, the
arborescence (r∗,v) satisfies the budget constraint: so the optimal value OPT ≥M.

Recall from Section 2.3 that k ≤ n is the size of the optimal solution, ε > 0 is a constant, s � ε · log log k, h � 2s, the old re-
cursion depth (for Algorithm 2) is d � log1:5 k, and the new recursion depth is g � d

s. Let δ :� ηM
2(4h)g. We now define function

f̃ as follows: f̃ (S) :� �f (S)δ � for any S ⊆ V. Note that the maximum function value is

U :� f̃ (V) ≤ nM
δ

� 2n
η
(4h)g � 2n

η
2(s+2)g ≤ 2n

η
23d � poly(n):

Thus, f̃ is integer valued in the interval [0,U]. Moreover, it follows that f (S)
δ − 1 ≤ f̃ (S) ≤ f (S)

δ for all S ⊆ V. Although f̃
may not be submodular, we have

f̃ (A) + f̃ (B) ≥ f̃ (A ∪ B) + f̃ (A ∩ B) − 2, ∀ A,B ⊆ V:

In the proof of (6), we applied this submodular inequality h times. Thus, with respect to f̃ , we obtain

∑h
j�1

f̃ Xj
(T∗

j ) ≥ f̃ X(T∗) − f̃ X(T) − 2h (B.1)

Instead of Lemma 6, the following modification holds true for f̃ . If T is the arborescence returned by the new algorithm
for parameters (r,Y,B,X, ℓ) and T∗ is an arborescence compatible with these parameters, then

f̃ X(T) ≥
f̃ X(T∗)

ℓ
− α(ℓ), (B.2)

where α(ℓ) � (4h)ℓ=ℓ. To prove this, we proceed as in Lemma 6. By induction and applying (B.1),

f̃ X(T) �
∑h
j�1

f̃ Xj
(Tj) ≥

∑h
j�1

f̃ Xj
(T∗

j )
ℓ− 1

− α(ℓ− 1)
( )

≥ 1
ℓ− 1

(
f̃ X(T∗) − f̃ X(T) − 2h

)
− h ·α(ℓ− 1),

which on rearranging gives

f̃ X(T) ≥
f̃ (T∗)
ℓ

− h
ℓ

(
(ℓ− 1) ·α(ℓ− 1) + 2

)
≥ f̃ (T∗)

ℓ
−α(ℓ):

The last inequality uses the following calculation:

h
ℓ · α(ℓ)

(
(ℓ − 1) · α(ℓ − 1) + 2

)
� h((4h)ℓ−1 + 2)

(4h)ℓ ≤ 3h(4h)ℓ−1
(4h)ℓ < 1:

This completes the proof of (B.2). Finally, if T denotes the algorithm’s solution for the first recursive call (with ℓ � g)
and T∗ is an optimal solution,

f (T) ≥ δ · f̃ (T) ≥ δ ·
(
f̃ (T∗)
g

− (4h)g
g

)
≥ δ ·

( f (T∗)
δ − 1
g

− (4h)g
g

)

≥ f (T∗)
g

− 2
(4h)g
g

· δ �OPT
g

− ηM
g

≥OPT
g

(1− η):

The second inequality follows from Equation (B.2), the equality uses the definition of δ, and the last inequality uses
OPT ≥M.

Finally, we need to ensure that the running time is quasi-polynomial. Recall that the final running time of the algo-

rithm in Section 2.3 is (nUlog B)O(log 1+εk), where U is an upper bound on the objective value. By construction, U � poly(n)
for f̃ , and so the overall running time is (n log B)O(log 1+εk), which is quasi-polynomial in n and log B as desired.
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Appendix C. Submodular Function Maximization Constrained to a Partition Matroid
Here, we show (for completeness) that the result of Chekuri and Kumar [7] extends directly to submodular function max-
imization under a partition constraint (SFM− PC). Formally, we are given a ground set V, and subsets S � {Si ⊆ V}mi�1. Fur-
thermore, we are given a partition of S into groups G1, : : : ,Gk. We are also given a nonnegative, monotone submodular
function f : 2V → R+. A solution H ⊆ S is feasible if H ∩ Gj � 1 for j � 1, : : : ,k. The objective is to find a feasible solution H
to maximize f (∪S∈HS).

In the case that m, the number of given subsets of V, is exponential in | V |, the sets must be defined implicitly. We
assume that there is a polynomial time oracle A that takes as input U ⊆ V and an index j ∈ [k] and returns a set S ∈ Gj

such that fU(S) ≥ 1
α ·maxT∈Gj fU(T). Here, α ≥ 1 is an approximation parameter. In other words, we assume there is an

α-approximation algorithm for finding a set in Gj with the maximum incremental function value. We refer to A as an
α-approximate oracle. The greedy algorithm considers the groups in an arbitrary order.

Algorithm C.1 (Greedy Algorithm for SFM-PC from Chekuri and Kumar [7])
1.H←∅, U←∅
2. for j � 1, : : : , k do
3. Aj ←A(U, j)
4. H←H ∪ {Aj}, U←U ∪ Aj

5. returnH

Theorem C.1. If A is an α-approximate oracle, then Algorithm C.1 is an (α+ 1)-approximation algorithm for submodular maximi-
zation constrained to a partition matroid.

Proof. Let H � {A1, ⋯ Ak} be the solution returned by Algorithm C.1, in which Aj ∈ Gj for all j ∈ [k]. It is clear that H is a

feasible solution. Let O denote an optimal solution, and let Oj ∈ Gj be the set picked by O from Gj. Let A( j) � ∪j
r�1 Ar.

Thus, A(j) refers to the sets selected in the first j iterations. We overload notation to let A � ∪k
r�1 Ar and O � ∪k

r�1 Or.
Because A is an α-approximate oracle, we have

f (A(j)) − f (A(j−1)) ≥ 1
α
·
(
f (Oj ∪ A(j−1)) − f (A(j−1))

)
≥ 1
α
·
(
f (Oj ∪ A) − f (A)

)
, (C.1)

where the last inequality follows from the submodularity of f because A(j−1) ⊆ A. Thus, we have

f (O) ≤ f (A) +∑k
j�1

(
f (Oj ∪ A) − f (A)

)
(C.2)

≤ f (A) +α
∑k
j�1

(f (A(j)) − f (A(j−1))) (C.3)

≤ f (A) +αf (A), (C.4)

where (C.2) follows from submodularity of f, (C.3) follows from (C.1), and (C.4) follows on simplifying a telescoping sum and
the fact that f (∅) ≥ 0. Finally, we obtain f (A) ≥ 1

α+1 · f (O) as desired.
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