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ABSTRACT

The outbreak of seasonal flu costs billions of dollars in health care utilization and lost productivity.
Despite the effectiveness of vaccination and antiviral medications to prevent serious flu-related
complications and slow down the spread of an influenza epidemic, only 52% of the U.S. popula-
tion aged 6 months and older received flu vaccines in the 2019-20 flu season. In addition, a costly
out-of-pocket expense results in fewer patients seeking treatment, leading to potential hospitaliza-
tions and even flu-related deaths. In this study, we develop an integrated healthcare insurance
mechanism that optimizes two incentive policies, vaccination reward and cost-sharing, to alleviate
the medical cost and disease burden while preventing the outbreak of seasonal influenza. We
model the dynamic interaction between a single insurer and multiple insureds as a Stackelberg
vaccination game; we then embed the game into an agent-based simulation to model the spread
of flu in a population under different policies. Finally, we apply machine learning and simulation
optimization to optimize healthcare incentive policies in a large-scale flu transmission simulation.
Simulation results indicate that the proposed methodology efficiently identifies a set of good
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incentive policies under different scenarios of flu vaccine efficacy and reproduction numbers.

1. Introduction

Flu is a contagious respiratory illness caused by the influ-
enza virus that infects about 3%-11% of the U.S. population
in each flu season (CDC, 2019¢). The Centers for Disease
Control and Prevention (CDC) estimated that, in the
2019-2020 (2018-2019) flu season, approximately 35 million
(29 million) people contracted the flu, resulting in 16 mil-
lion (13 million) people visiting a health care provider, 380,
000 (380, 000) hospitalizations, and 20, 000 (28, 000) deaths
(CDC, 2019a, 2020a). The CDC recommends an annual flu
vaccine, offering protection against the influenza virus, as
the first and most effective step in preventing the seasonal
flu (CDC, 2020c; Grohskopf et al., 2018). Getting a yearly
vaccine is especially important for vulnerable populations
such as infants and the elderly. Each vaccinated individual
also protects others in the community who cannot be vacci-
nated since susceptible individuals are now less likely to
catch the flu. If more individuals become vaccinated, com-
munity immunity, also called “herd immunity,” protects the
unvaccinated masses by decreasing the circulation of the
influenza virus. Vaccination also reduces the risk of flu-asso-
ciated hospitalization and death. To promote vaccination in
the U.S,, flu shots are often widely available and covered at
no out-of-pocket expense for individuals with health insur-
ance. Nevertheless, in the 2019-2020 flu season, the CDC
estimates that only 48.4% of adults (an increase of 3.1 per-
centage points from the prior flu season) and 63.8% of chil-
dren (an increase of 1.2 percentage points from the prior flu

season) in America received flu vaccines (CDC, 2019b,
2020b). Many individuals fail to vaccinate due to personal,
religious, and philosophical beliefs, as well as access barriers
including complexity in scheduling, inconvenience, and lack
of knowledge and perceived benefit. Value-based insurance
models routinely offer a variety of incentives to encourage
more efficient health-seeking behavior. Pharmacies and
other healthcare providers often offer financial rewards to
all individuals seeking flu shots, in the form of a $5-25 store
coupon or direct cash reward.

Once having symptoms of the flu, the CDC recommends
that individuals at high risk, e.g., young children, the elderly,
or those with chronic respiratory diseases, visit healthcare
providers. Medical treatments such as antiviral drugs can be
used to treat the flu and further prevent serious flu-related
complications (Atkins et al., 2011; CDC, 2021; Spagnuolo
et al, 2016). However, many studies have shown that
patient’s out-of-pocket expenses, known as “cost-sharing
charge” in health insurance terminology, reduce the health-
care resource utilization in preventive care, drug treatment,
and adherence (Eaddy et al, 2012; Goldman et al, 2007;
Huskamp et al., 2003; Mann et al., 2014). Specifically, high
cost-sharing discourages infected insureds from seeking
treatment, resulting in potential hospital stays or even flu-
related deaths. On the other hand, insureds with flu-like
symptoms are more likely to visit healthcare providers if the
cost-sharing charge is low, potentially leading to excessive
medical costs for the insurer. To improve vaccination
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Insurer
Actions:

- Vaccination reward
- Cost-sharing

(ii) Stackelberg Vaccination Game

(iif)
Simulation Optimization &
Machine Learning

Insured

Actions:

- Receiving a vaccine

- Seek medical treatment

Other insureds

Figure 1. Interactions between a single insurer and insureds and mechanism design.

coverage while lowering the medical cost and the loss of
productivity, it is thus necessary to consider the impact of
vaccination reward and cost-sharing on individuals’ vaccin-
ation and treatment-seeking behaviors, as well as the popu-
lation health outcome.

We are interested in the following questions from an
insurer’s perspective: What are near-optimal policy ranges
on vaccination reward and cost-sharing and their impact on
the percentage of the population vaccinated, infected, and
overall medical cost? Moreover, how sensitive are these
health outcomes to limited information before the flu season
starts, e.g., uncertain vaccine efficacy and unclear flu basic
reproduction numbers?

We propose an incentive mechanism design approach to
address these questions. As illustrated in Figure 1, our
approach considers two main players, an insurer, and insur-
eds. The insurer could be a health plan or purchaser (for
example, Kaiser, Geisinger or HealthPartners) that combines
insurance and health care, or a government agency that
manages socialized medicine (for example, the National
Health Service in the UK, or Medicare in Canada). The
insurer takes a risk of paying a high medical cost incurred
by antiviral treatment, hospitalization, and death. To minim-
ize the insurer’s expected medical cost while considering the
population health, the insurer adopts two incentive-based
healthcare policies: the first is to provide a monetary incen-
tive to encourage vaccination uptake among susceptible
insureds, and the second is to adjust the cost-sharing to
ensure appropriate medical care-seeking behavior among
infected insureds. We assume that pharmacy chains and
other healthcare providers have enough supply to offer flu
vaccines to all insureds (i.e., with no vaccine shortages or
delays). Susceptible insureds determine whether or not to
receive a vaccine by considering their convenience cost of
vaccination, the incentive offered by the insurer, cost-shar-
ing, risk of infection, and direct (e.g., healthcare expenses)
and indirect costs (e.g., lost productivity). At each time
period during the flu season, a susceptible insured decides
to receive the flu vaccine only if their expected cost of vac-
cination is lower than their expected cost of not getting vac-
cinated. Similarly, an infected insured determines whether to
seek medical treatment by comparing their respective
expected costs of treatment vs. not taking treatment.

The flu vaccine cost is not factored into the insureds and
insurer’s objectives. Flu vaccinations are covered at no out-
of-pocket cost for insureds under the Affordable Care Act
since insurers are required to cover the cost of immuniza-
tions and preventive care. We consider the manufacturing
and distribution cost of the vaccine, as discussed in Chick
et al. (2008) and Mamani et al. (2013), a fixed cost. In this
research, we focus on costs impacted by the actions of
the insureds.

Our proposed incentive mechanism design approach
includes three components:

(i) Agent-based simulation: Although a wide variety of
research has been conducted for controlling and pre-
venting infectious disease using vaccination promo-
tion, they either adopt mandatory vaccinations or
model a population-level response toward incentives
instead of considering individuals’ response toward
incentives. We first present an agent-based simulation
model to simulate the spread of influenza virus con-
sidering individual decision-making.

(ii)  Stackelberg vaccination game model: We build a
Stackelberg vaccination game that incorporates insur-
eds” vaccination and treatment-seeking behaviors and
the dynamic interaction between the insurer and insur-
eds, and integrate it into the agent-based simulation.
The integrated model allows us to take the behavior
and decision-making process of individuals with differ-
ent characteristics into consideration. The integration
is implemented by extending an open-source validated
flu simulation model, FIuTE (Chao et al., 2010).
Simulation optimization and machine learning
approaches: The integrated model involving complex
interactions among individuals in a large-scale setting
is computationally challenging to optimize. We,
therefore, apply simulation optimization and machine
learning to efficiently solve for near-optimal incentive
policies and analyze the sensitivity of these policies to
model parameters.

(iii)

Previous research has shown that an effective vaccine
incentive should be carried out at the individual and inter-
personal levels (Kolff et al, 2018). Significant research



efforts have concentrated on either modeling realistic disease
spread in a population under various levels of vaccination
coverage or investigating the theoretical aspects of long-term
infectious disease equilibrium under different vaccination
behaviors. There is a gap in creating computational models
that can handle the complexity of disease spread while solv-
ing for near-optimal vaccination incentives at the individual
decision-making level. Our study provides insights into the
impact of incentives on vaccination uptake and dis-
ease outcomes.

This paper makes several contributions to the health-
care literature:

e We consider a novel incentive combination of vaccin-
ation reward and cost-sharing charge to reduce the
spread of seasonal flu in a health insurance setting, which
includes the self-interest behavior of each individual
insured and the cost-minimizing objective of the insurer.
We develop a Stackelberg vaccination game to character-
ize the individual-level model of the insured by his/her
own attributes (i.e., age and risk type) when making the
vaccination and treatment decisions. The hierarchical
and two-stage decision-making processes provide health-
care payers an understanding of how incentive policies
may impact individuals throughout the entire flu season.

e We integrate the agent-based simulation with a game
theoretic approach to simulate the dynamic spread of
influenza in a heterogeneous population while providing
a realistic outlook of economic and health outcomes.
Using the integrated simulation model, we can observe
the response of a particular age and risk group to various
policies, and estimate the population outcome such as
vaccination rate, the number of influenza illnesses, med-
ical visits, flu-associated hospitalizations and deaths, and
corresponding medical cost.

e The proposed simulation optimization and machine
learning approaches allow an insurer to efficiently iden-
tify a set of incentive policies that minimize total flu-
related medical cost while considering the population
health outcome under different scenarios (e.g., different
vaccine efficacy and basic reproduction number) in a flu
simulation model. In other words, instead of finding one
unique Stackelberg equilibrium, the proposed approach
efficiently discovers multiple Stackelberg equilibria that
provide near-optimal performance. Providing a set of
good incentive policies gives the insurer flexibility in pol-
icy implementation.

e Furthermore, using the combination of simulation opti-
mization and machine learning, the quality and sensitiv-
ity of the solutions can be explored in practical
computation time with realistic large population net-
works. The approach provides insights into the sensitivity
of cost, percent of the population vaccinated, and percent
of the infected under uncertain or limited information.

In summary, the proposed mechanism not only estimates
the burden of influenza in the population and the impact of
influenza vaccination reward and treatment cost-sharing, but
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it also provides an incentive-optimization solution for effect-
ive and efficient healthcare management. Our research,
therefore, highlights the potential societal benefit gained
from improving the policy-setting process in healthcare
organizations. Going beyond seasonal flu, our proposed
approach may impact millions of individuals by providing
policy makers with a tool to design vaccination incentives
for other seasonal vaccines and the emerging COVID epi-
demic with annual or biannual booster vaccine scenarios.
The rest of the paper is structured as follows. Section 2
briefly reviews related work. In Section 3, we propose the
insurance-based incentive mechanism design framework for
preventing the spread of seasonal flu. Section 4 presents the
details of the experimental setting of the simulation consid-
ering flu transmission in Seattle, and Section 5 presents the
experimental results and the sensitivity analyses. Section 6
summarizes our findings and closes with a discussion.

2. Literature review

Financial incentive reward is a practical and common
approach to encourage vaccination behavior (Briss et al,
2000; Tan, 2018). The United States Preventive Services
Task Force demonstrated that even small monetary interven-
tions are effective and successful in improving adult immun-
ization coverage (United States Preventive Services Task
Force, 2015). For example, Bronchetti et al. (2015) showed
that college students were more willing to get a flu vaccine
when offered a $20 reward (19% vs. 9%). Francis (2004)
explored the conditions under which the free-rider problem
can be overcome through the use of taxes and subsidies.
Furthermore, convincing evidence has suggested that reduc-
ing out-of-pocket costs and adding incentives are effective
interventions for improving vaccination coverage and over-
coming vaccination hesitancy (Betsch et al., 2015). Vardavas
et al. (2007) found that offering vaccination incentives are
necessary to prevent severe epidemics. Nowalk et al. (2010)
found that a $5 financial incentive increased flu vaccination
rates in the workplace. Also, recent COVID-19 vaccine pro-
motion events have demonstrated that financial incentives,
such as store coupons, or small amount of cash rewards, can
effectively boost vaccination rate (American Association of
Retired Persons (2021), Campos-Mercade et al. (2021)).
Antiviral treatments for influenza symptoms can be a
second-line of defense against the spread of seasonal flu.
Treatments are able to prevent serious flu complications and
shorten recovery time. In some cases, they may be used to
prevent the flu. However, a high cost-sharing charge in
healthcare insurance may reduce the chance of individuals
making a doctor visit. Cost-sharing is used to change the
utilization of services or prescription drugs for the enrollees
of health insurancee The RAND Health Insurance
Experiment has demonstrated that the amount of copayment
affects a patient’s usage of medical care and service (Gruber,
2006). The introduction of a cost-sharing charge will
decrease the utilization of most types of medical services
(Andersen & Newman, 2005; Wong et al.,, 2001). Goldman
et al. (2007) showed that increased cost-sharing in
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healthcare insurance is associated with lower rates of drug
treatment, poorer adherence among existing patients, and
more interruption of continuation of therapy. Fishman et al.
(2012) showed that unmet deductibles lower the likelihood
for an individual to make an initial therapy visit for treat-
ment of depression. Cherkin et al. (1989) found that a $5
copay significantly modified utilization of outpatient doc-
tor visits.

Several approaches have been applied to model a flu epi-
demic at a population level. One approach is to apply a
deterministic compartmental model commonly used in epi-
demiology, such as the Susceptible-Infectious-Recovered
(SIR) model based on ordinary differential equations (Chick
et al., 2008, 2017; Kermack & McKendrick, 1927; Sun et al,,
2009; Yamin & Gavious, 2013). Although compartment dif-
ferential equation modeling is less computationally intensive
than agent-based simulation models, the model itself
assumes homogeneity in each compartment and adding add-
itional compartments and equations into the model is
required if any additional characteristic is considered, e.g.,
age, risk type, economic status, and vaccination status, mak-
ing the model more complicated to solve. Agent-based mod-
eling, on the other hand, captures heterogeneity across
individuals and interactions among them in the network.
Each individual agent in the network can have his/her own
characteristics, which affect his/her own decision making
and thus influence the likelihood of changing status. Many
simulation programs are available in an open-source format,
including FIuTE, EpiFire, GEM and GSAM (Dunham, 2005;
Grefenstette et al., 2013).

Game-theoretical analyses of epidemics are widely used
to explore the population response to disease dynamics or
interventions. For example, Bauch et al. (2003) focused on
smallpox and studied the conflict between self-interest and
group interest; Bauch and Earn (2004) further developed a
game-theoretical interpretation based on an epidemic model
of the rational exemption phenomenon. However, it is sug-
gested that pure voluntary contributions make eradicating a
vaccine-preventable infectious disease nearly impossible due
to free-riding (Barrett, 2007; Galvani et al., 2007; Vardavas
et al., 2007). On the other hand, Schimit and Monteiro
(2011) studied the effect of a mandatory vaccination pro-
gram promoted by the government against the propagation
of a contagious infection. These previous models study man-
datory vaccination or voluntary participation at a population-
level response. However, there is a strong public health and
scientific rationale for studying the interaction of disease
dynamics and individual behavior (Wang et al., 2017).

Research interested in incorporating the effects of indi-
vidual vaccination choices into flu epidemic modeling has
been growing in recent years. For example, Fu et al. (2011)
studied the roles of individual imitation behavior and popu-
lation structure in vaccination uptake. Perisic and Bauch
(2009) simulated the transmission of a vaccine-preventable
disease using a Susceptible-Exposed-Infectious-Recovered
model through a random, static contact network and exam-
ined individual vaccination behavior based on neighbor-
hood. Nevertheless, an individual’s motive to vaccinate is

not only influenced by disease factors such as infectious
neighbors or vaccination costs but also by incentives pro-
vided by policy makers, eg., insurance companies.
Incentives designed for controlling and preventing flu
should also be factored into a rational self-interested deci-
sion-making process.

3. Methodology: Incentive mechanism design

In this section, we describe our approach to incentive mech-
anism design in an insurance-based setting. The goal is to
design incentive policies that minimize the insurer’s overall
flu-related medical cost and population health burden.
Section 3.1 builds an agent-based simulation to model flu
transmission. It captures the dynamic population health evo-
lution and the effect of insurance policies during the spread
of seasonal flu. Section 3.2 formulates the insurer and the
insureds’ decision-making problems in the agent-based
simulation. Section 3.3 demonstrates how to address the
computational issue of optimizing the healthcare policy in a
simulated population network by applying machine learning
and simulation optimization techniques.

3.1. Flu transmission agent-based simulation

The agent-based simulation model simulates the spread of
seasonal influenza with a modified SIR structure (Kermack
& McKendrick, 1927), incorporating vaccination and corre-
sponding rules that govern the transmission of flu, as
depicted in the flow diagram in Figure 2. Each individual
insured is represented as an agent in the model. Agents are
grouped into eight health state compartments, three of
which are absorbing compartments. The first compartment
consists of susceptible (S) agents, who may become infected.
The second compartment consists of vaccinated agents (V),
who receive flu vaccines. The third compartment consists of
infectious agents (F), who are contagious. The fourth com-
partment consists of untreated agents (U), who are infected
with the flu and decide not to receive outpatient healthcare
services. The fifth compartment consists of treated agents
(T), who receive outpatient healthcare services after becom-
ing infected. After the infection period, the treated and
untreated agents may recover from the flu and enter the
recovery compartment (R). The seventh compartment con-
sists of hospitalized agents (H), who are being hospitalized.
The eighth compartment consists of agents that die (D) due
to flu-related illness.

In the flow diagram in Figure 2, agents in the susceptible
compartment S may acquire the infection with a given infec-
tion probability and move into the infected compartment F.
Agents in F may infect their neighbors with a given prob-
ability. Agents in the treatment compartment T will recover
(move into R) after the infected period. Catching the flu
twice in one flu season is possible due to different strains of
the virus; however, this is unlikely (Sonoguchi et al., 1986).
In this research, we assume that recovered agents are resist-
ant to the seasonal flu during a single season (as also
assumed in other flu studies (Chao et al., 2010; Francis,



—

Susceptible (S)

Does an insured get

] Vaccinated (V)

Is an insured infected?

Ves lYes

Infected (F) —

| Health status compartment
. Absorbing status compartment
: Individual decision

: Environmental chance

IISE TRANSACTIONS ON HEALTHCARE SYSTEMS ENGINEERING e 5

Does an insured seek
medical care?

—>

Untreated (U)

Treatment (T)
No l

Is an insured recovered?

l Yes

Yes
Is an insured recovered? ——— Recovered (R)
v No
I : J Yes
s an insure o
T——— —> Hospitalized (H)
v No
Yes
Is an insured dead? ~ —» Dead (D)

L 1 No

Figure 2. Flow diagram for the agent-based simulation involving individual decision making.

2004)), and will not return to the susceptible compartment
S. Therefore we treat the recovered compartment as an
absorbing state. The hospitalized (H) and dead (D) compart-
ments are also absorbing states since there is no follow-up
decision-making from the insureds’ side. Agents in the
untreated compartment U may recover (move into R), be
hospitalized (move into H), or die from flu-related illness
(move into D) based on given recovery, hospitalization, and
death probabilities.

Although we adopt a stochastic approach to traverse
agents’ health states using infection, recovery, hospitaliza-
tion, and death probabilities, two health state transitions are
determined by the insureds themselves: the vaccination deci-
sion “Does the insured get vaccinated?” (traverse from the
compartment S to the compartment V); and the outpatient
visit decision “Does the insured seek medical care?” (traverse
from the compartment F to the compartment T). We
assume the insureds make the vaccination decision in every
time period (i.e., if the insured does not get vaccinated this
time period, s/he faces the same decision in the next time
period). Each infected insured makes the treatment decision
only once. The susceptible and infected agents calculate their
expected costs associated with the insurance policies and
decide whether to get a vaccination and/or treatment based
on their expected costs.

3.2. Stackelberg vaccination game model

In this section, we derive the expected cost for insureds by
modeling the dynamic interaction between the insurer and

insureds as a Stackelberg vaccination game played by a sin-
gle insurer and multiple insureds. It is assumed that the
insurer and insureds are risk-neutral, as is commonly
assumed in game theory. The insurer and insureds are mod-
eled as a leader and followers, respectively. The insurer
moves first by announcing the incentive policies before the
flu season, i.e., vaccination reward and coinsurance rate to
insureds. We adopt a coinsurance rate, where the insureds
pay a percentage of the cost for a health care service, as a
form of cost-sharing policy in health insurance. Each indi-
vidual insured responds to the insurer’s policies by calculat-
ing two expected costs. The expected cost of vaccination is
used to determine whether to get a vaccine each day given
the seasonal policy announcement. If a non-vaccinated
insured is infected, the expected cost of an outpatient visit is
used to determine whether or not to seek treatment, i.e., vis-
iting with a doctor or other health care professional.
Incorporating the game-theoretic approach into the agent-
based simulation model allows individual agents to act in
their own self-interest in response to the influenza evolution
and neighboring environment.

3.2.1. Vaccination and treatment seeking problem for

the insured
The expected cost of the insured depends on whether s/he
eventually gets vaccinated or infected. Table 1 presents the
notation used in the Stackelberg vaccination game. Note

that the medical cost for an outpatient visit, ¢’ ., includes

med, T
not only an office visit fee but other treatment-associated
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Table 1. Notation for Stackelberg vaccination game modeling.

Indices
a index of insured’s age, a € {0 — 4,5 — 17,18 — 49,50 — 64,65+}
r index of insured’s risk type, r € {normal, high risk of severe complications from influenza}

Input parameters

& v medical cost in the case of no medical attendance for an untreated insured with age a
iy medical cost of an outpatient visit for a treated insured with age a and risk type r

(S medical cost of hospitalization for a hospitalized insured with age a and risk type r

(s medical cost of death for a dead insured with age a and risk type r

Crd,u indirect cost, i.e., lost productivity, not medically attended for an untreated insured with age a
cf};; r indirect cost, i.e., lost productivity, for a treated insured with age a and risk type r

cf};;’H indirect cost, i.e., lost productivity, for a hospitalized insured with age a and risk type r
Cind,v indirect vaccination cost, e.g., the value of work loss time for vaccination

fy coinsurance rate of medical expense for a hospitalized insured

fp coinsurance rate of medical expense for a dead insured

pg‘s probability that an unvaccinated insured with age a will be infected in a given time period
pﬁw probability that a vaccinated insured with age a will be infected in a given time period
pﬁ”F probability that an infected insured with age a is hospitalized

pg‘F probability that an infected insured with age a dies due to flu-related illness

w weight of health outcomes

Decision variables

Xreward monetary vaccination reward in healthcare insurance given to vaccinated insured (unit: dollar)
Xsharing coinsurance rate in healthcare insurance (unit: percentage)
Intermediate variables
Ej" expected cost of insured with age a and risk type r when not receiving treatment
E¢T expected cost of insured with age a and risk type r when receiving treatment
EST expected cost of insured with age a and risk type r when not vaccinated
Ey’ expected cost of insured with age a and risk type r when vaccinated
Output
by proportion of vaccinated insureds

i proportion of infected insureds with age a and risk type r
qﬁ‘;‘; proportion of the infected insureds with age a and risk type r that receive treatment
‘7’(:/\; proportion of the infected insureds with age a and risk type r that are hospitalized
¢‘5"’F proportion of the infected insureds with age a and risk type r that die

fees such as laboratory tests and prescription medications.
Antiviral treatment and drugs that are recommended to be
taken as early as possible for the higher risk patient to avoid
influenza complications are included in c;;/; ;. Even though
an individual insured makes a vaccination decision before
the treatment-seeking decision, we first discuss treatment-
seeking since the expected cost from the treatment decision
should be factored into the vaccination decision. Insureds
choose whether or not to seek treatment based on their
respective expected costs with and without medical care.
This is a one-time decision. The expected cost of an
untreated insured with age a and risk type r is

Eg" = (1 = phye — Poip) (Cmeq,u + Cina,u)
+ Pre(fuCea n + Cing, 1) + PO (e, p) 1)

where ¢o5 v + g v fiCeq 1t T Cing, i A0 fDCyg p are an
untreated insured’s cost for no medical care, hospitalization,
and death, respectively.

The expected cost of a treated insured is

a,r __ a,r a,r
ET = XsharingCrned, T + Cind, T @)

If E?" <E}’, then the insured decides to seek med-
ical care.

Insureds choose whether or not to vaccinate based on
their respective expected costs with and without vaccination.
If the insured does not get vaccinated today, s/he can still

receive a vaccination in the following days. The expected
cost of an unvaccinated insured with age a and risk type r
staying in compartment S is

ES" = plysmin{E5, ES") 3)

where p¢ is the infection probability for a susceptible

insured that is continually updated in the implementation
every time period, and min{E“’r,E”}’r} is an infected insur-
ed’s minimum expected cost involving treatment-seeking
behavior. At each time period, the infection probability Pis
changes according to the health state of an insur-
ed’s neighbors.

The expected cost of a vaccinated insured is,

E?/,r = (1 - P;\v)(cind‘v — x?‘ewurd)
+ p;|V(Cind, v — Xreward + min{Ea,r’ E?’r}) (4)

_ a . a, a, 1
= Cind, V. — Xreward +pF|Vm1n{E ’ET }

where py is the infection probability for a vaccinated

insured that is continually updated in the implementation
every time period, ¢4 v is an indirect vaccination cost, and
Xreward 1S the monetary incentive given to the vaccinated
insured. Since an insured’s immune response to the flu vac-
cine is not perfect, the following infection cost,
min{E};", E7"}, is added.



Comparing the expected cost to remain unvaccinated,
Eg" in (3), with the expected cost to get vaccinated, E};" in
(4), we can see the influence of the infection probability,
Plys versus pyy. If the flu vaccine is effective, we expect Py

to be much smaller than pg. In addition, Ej;" in (4) con-

tains the incentive reward for vaccination X,.,.4 and an
indirect cost for vaccination c¢;,4, v, assuming the direct cost
is free. If Ey;" < E¢’, the insured decides to receive a flu
vaccine; otherwise, s/he may still receive a flu vaccine in the
future using the same decision rule.

3.2.2. Incentive policy setting problem for the insurer

The insurer’s goal is to minimize the total expected cost
from both vaccination and flu infection while considering
other hidden economic costs. Let ¢y and ¢%" be the pro-
portion of the population that is Vaccinated and infected (by
age and risk), respectively. Let ¢7,;, ¢ and @ be the
proportion of influenza-attributable cases that lead to out-
patient visits, hospitalization, and death, respectively. We
express the insurer’s objective as

min  Epgurer (5)

Xreward> *sharing
where

Elnsurer - d)ereward
Z (1
ot ¢H\F(

+WZ qbl“; .

The first term is the total reward cost for vaccination and
the second term is the total medical cost paid by the insurer
for outpatient visits, hospitalization, and death. The insurer’s
medical cost includes the product of each population pro-
portion and the associated cost of the insurer’s responsibil-
ity. The last term reflects the hidden economic cost of flu
on the insurer, for example, the productivity loss of insureds
or other possible medical service utilization after getting the
flu. We use the parameter w as a weight of health outcomes
to capture the hidden costs of infection from the insurer’s
point of view.

It is worth noting that X,eyurg and Xgaring in Equation (5)
are time-independent and determined before the start of the
flu season but the proportions ¢y, d)T‘F, ¢H|F’ an

¢pr are outputs of the simulation model. Even though the

a,r
xsharing) Cmed, T

— fu) i (5)
— fp)Cpeq. )

relationship between induced total outpatient/hospitaliza-
tion/death cost and the corresponding proportion is linear,
these proportions are non-linear functions of the decision
variables Xreward and Xsharings €8 d);,r(xreward) xsharing)-
Therefore, the relationship between induced total medical
cost and the amount of incentive is also non-linear.

A coupling relationship exists between X,eyarg and Xgnaring.
A high X,e4:q Will increase the total vaccination reward cost,
while a low X,.u.¢ may cause a lower vaccination rate,
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leading to a higher infection rate. On the other hand,
increasing Xguaring Will discourage the infected insureds from
seeking treatment, leading to higher hospitalization and
mortality cases while decreasing Xgqring increases the insur-
er’s medical payment.

The Stackelberg vaccination game is incorporated into
the agent-based simulation logic as follows. The simulation
proceeds over iterations and one iteration can be seen as
one decision-making period (e.g., daily). The insurer’s incen-
tive policy, Xrewara and Xgaring is determined at the begin-
ning of the flu season simulation. The behavior of insureds
is modeled with two decisions, i.e., vaccination uptake and
treatment seeking. In the first decision, each insured decides
whether or not to vaccinate based on Equations (3) and (4)
every decision period. Once an insured is infected, the
second decision is made whether or not to receive medical
treatment based on Equations (1) and (2). An insured’s
decision is determined via comparing expected costs based
on direct and indirect costs, the incentive policy, and the
probability of being infected. The probability of an agent
becoming infected is updated every time period based on
the health status of its contact agents in the same group, i.e.,
family, neighborhood, workplace, playgroup, daycare, and
school. At the end of each iteration, the health status of all
insureds is updated to simulate the spread of flu. The pro-
cess continues until the end of the flu season.

3.3. Simulation optimization and machine learning to
analyze healthcare incentive policies

The agent-based simulation with the Stackelberg game pro-
vides a model of a population during the flu season. It is
used to predict the population’s behavior under different
insurance policies and guide policy decisions. However, fully
exploring the simulation for policy optimization is impracti-
cal since a single simulation run requires significant compu-
tation time. In order to efficiently identify good incentive
policies within a reasonable computation time, we combine
the advantages of a simulation optimization algorithm and a
machine learning approach.

From the insurer’s perspective, the proposed agent-based
simulation with embedded Stackelberg vaccination game
described in Sections 3.1 and 3.2 can be seen as a black-box
function evaluation, with vaccination reward X,.,.,q and
coinsurance Xggring as the input, and the observed cost
Eipsurer as the output. We develop a low-fidelity model, simi-
lar to surrogate modeling or meta-modeling approaches, to
use in the optimization that allows us to generate high qual-
ity solutions using computer resources efficiently. In this
paper, we apply random forest regression to construct a stat-
istically valid low-fidelity model. Further, we couple the ran-
dom forest regression model with a simulation optimization
method, Probabilistic Branch-and-Bound (PBnB) algorithm
(Huang & Zabinsky, 2013; Zabinsky & Huang, 2020), to
analyze the incentive policies and corresponding population
behavior. The proposed methodology is presented in Figure
3 and consists of four main steps.
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Figure 3. Simulation optimization and machine learning framework in the agent-based simulation and Stackelberg game.

3.3.1. Simulation sampling using Latin hypercube design
First, we use a space-filling Latin hypercube sampling design
(Stein, 1987) to determine the sample points (i.e., values of
Xreward ANd Xgaring) as the initial input to the agent-based
simulation. As illustrated in Figure 3’s upper-right corner, a
Latin hypercube sampling design ensures that the sampling
space is evenly sampled.

3.3.2. Low-fidelity model design using random

Forest regression

After running the agent-based simulation at each sample
point, we acquire a data set consisting of policies (inputs) and
corresponding total costs (outputs). We use machine learning
(specifically, random forest regression) to capture the input-
output relationships in the simulation. An example of the
low-fidelity model is illustrated in Figure 3’s center-right pos-
ition. Random forests are one of the widely-used ensemble
machine learning techniques (Ho, 1995). A random forest is
useful for the regression task due to its simplicity and quality
of fitting even without hyperparameter tuning. To understand
infectious disease models, other techniques such as the active-
learning approach can be used to build surrogate models
(Willem et al., 2014). While these approaches give a good
approximation of the response variable when all the model
parameters are given; the learning process is not able to be
traced if the model involves a large number of parameters.

3.3.3. Low-fidelity model evaluation using the coefficient
of determination

The model fit is measured by the coefficient of determin-

ation (R?). The R* value is calculated by the proportion of

the variance in the overall cost that is predictable from the
given incentive policies. An R’ value close to 1 indicates
that the random forest regression can replicate the observed
response well.

If the R* measurement is above the specified threshold,
the methodology can continue to PBnB to identify near-
optimal policies. If the R? is smaller than the threshold, we
can divide the policy space into two subsets, and use an aug-
mented Latin hypercube sampling design to sample more
points and build a random forest regression in each sub-
region. An augmented Latin hypercube sampling design
adds more points to the original Latin hypercube sampling
design while maintaining the space-filling properties
(Stein, 1987).

3.3.4. Optimal incentive policies identification using prob-
abilistic branch-and-bound

We apply PBnB (Huang & Zabinsky, 2013; Zabinsky &

Huang, 2020) to the random forest regression model to

determine a set of near-optimal reward and cost-shar-

ing policies.

PBnB approximates a target level set of good solutions by
partitioning the solution space into subregions and updating
its estimate of a good subregion (Huang & Zabinsky, 2013;
Zabinsky & Huang, 2020). The target level set is specified by
a desired quantile level . For examaple, setting 6 = 0.1 can
be interpreted as seeking the solutions with the best 10%
objective function values.

The lower-right corner of Figure 3 illustrates PBnB out-
puts to visualize the partitioning and target level set
approximation. The deep blue (dark gray) regions are



“maintained” regions representing the approximate set of
top 10 percent quantile solutions, the white regions are
“pruned” regions (i.e., with statistical confidence there is no
overlap with the target 10% quantile set), and the light blue
(light gray) are undecided regions. In this manner, we
approximate the set of solutions with near-optimal
performance.

By providing a set of solutions, as opposed to a single
solution, policy makers can explore a range of decisions that
provide similar good performance. Since the implementation
and execution of a desired solution will not align exactly
with model predictions, having multiple solutions allows
decision makers to see how large the range may be and still
provide top quality performance.

4. Numerical experiment

In this research, we demonstrate our mechanism design
approach with a stochastic influenza epidemic simulation
model, FIUTE (Chao et al., 2010), which has been used in
many policy-making studies to compare the effectiveness of
interventions (Kasaie & Kelton, 2013; Longini et al., 2005).
The FIuTE software is written in C++ and simulates the
stochastic spread of influenza across age- and risk- struc-
tured population of individuals interacting in known popu-
lation groups (FIuTE, 2010). The Stackelberg game with
realistic incentive policies is incorporated into FIuTE with a
natural history of influenza infection.

We extend the FIuTE model by: (i) adding two more
health states, i.e., flu-associated hospitalizations and flu-asso-
ciated death, which CDC uses to estimate influenza disease
burden in the United States each year; and (ii) replacing the
policy makers or government-led compulsory interventions,
i.e., vaccination intervention and outpatient treatment, with
individual ~decision-making governed by self-interested
behavior (Equations (1)-(4) in Section 3.2).

We incorporate hospitalization and death absorbing-state
compartments (H and D) into FIuTE based on the flow dia-
gram illustrated in Figure 2 and described in Section 3.1.
The population sizes of these compartments contribute to
the expected cost for the insurer.

We also add the insureds’ vaccination and treatment
decision-making processes (Equations (1)-(4)) and the insur-
er’s total cost calculation (Ej,., in Equation (5)) into
FIUuTE. The costs and infection probabilities in the agent-
based simulation model are associated with age and risk
type. Table Al in Appendix A lists the data that are used as
simulation inputs to obtain the near-optimal solutions. To
account for variation in costs by age and risk, the cost is
estimated for five age groups: <5, 5— 17, 18 — 49, 50 — 64,
and > 65 years. In addition, the cost is varied for high-risk
and non-high-risk groups. The probability of influenza-
attributable hospitalizations and deaths, the corresponding
medical cost, and the value of the lost productive day (indir-
ect cost) are from Molinari et al. (2007), which estimated
the annual economic burden of influenza epidemics. The
age 65+ group has higher hospitalization and death prob-
ability than other groups. Healthcare costs and productivity
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losses are greater in high-risk groups than in non-high-
risk groups.

We simulate a flu epidemic in Seattle with a population
of 563, 441 agents. The agents are randomly generated using
the U.S.-wide family-size distribution from the 2000 Census.
The FIuTE model has been calibrated to past influenza pan-
demics, Asian A (H2N2) and 2009 novel influenza A
(HIN1) influenza (Chao et al., 2010), so that outcomes are
consistent with these influenza viruses. The infection prob-
ability of an individual agent is updated daily based on the
vaccination status of the agent, the agent’s age, and the
infection status of his/her connected agents in family, neigh-
borhood, workgroup, or school transmissions. The infection
probability of a group (e.g., family, neighborhood, work, and
school) is updated in FIuTE based on the number of
infected in the group and the basic reproduction number R,
of influenza. We adopt the default values of the flu and
Seattle population parameters in the model but further
extend it for more comprehensive infection phases in our
Stackelberg vaccination game.

In the configuration file, the number of agents initially
infected at the beginning of the simulation is set to 100. No
healthcare intervention, e.g., compulsory pre-vaccination, is
implemented before the epidemic. Fractions of individuals
in each of the five age groups who are at high risk of com-
plications from influenza are set to 0.089, 0.089, 0.212,
0.212, and 0.9, respectively (Chao et al, 2010). The time
horizon in the simulation is 365 days, which corresponds to
an insurer making annual adjustments to policies and covers
a flu season. Each time period corresponds to a day.

We simulate 100 sample points, resulting in 100 simula-
tion runs. The interval for vaccine reward X,e, .0 is $0-$30,
to reflect the current practice of giving store coupons to flu
vaccine seekers. The range of values for coinsurance rate
Xsharing is the interval [0, 1].

We use the Python package available in scikit-learn, a
free software machine learning library for the Python pro-
gramming language, to build random forest models
(Pedregosa et al., 2011; Van Rossum & Drake, 2009). The
incentive policies (Xewara and Xgaring) and overall cost
(Epnsurer) are used as the independent and dependent varia-
bles, respectively. In the parameter setting, the number of
trees in the forest is set to 100 and the maximum depth of
the tree is set to eight. We used 70 simulation runs as a
training set for the random forest regression, and used the
remaining 30 simulation runs to evaluate the goodness of
fit. We set the threshold of R* to 0.8 since a value of R’
larger than 0.7 is typically considered good (Moore &
Kirkland, 2007) We then set 6 = 0.1 in PBnB to identify a
set of top 10% solutions.

5. Experiment results
5.1. Base case

In the base case, we set vaccine efficacy to 60%, the basic
reproduction number is Ry = 1.6, and the weight of health
outcomes is w = $200. The base value of 60% for vaccine
efficacy is from CDC (2020c), and the basic reproduction
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Figure 4. Random forest regression surfaces and simulated outputs (red dots) for the base case: (a) total cost (b) vaccinated population size (c) treated population
size (d) hospitalized population size with respect to vaccination reward and coinsurance rate.

number Ry = 1.6 is from Chao et al. (2010). The weight
$200 is approximated by the hidden annual economic bur-
den divided by an estimated number of symptomatic illness
(CDC, 2017; Ozawa et al., 2016). Figure 4 presents the total
cost and numbers of vaccination, treatment, and hospitaliza-
tion cases as functions of vaccination reward and coinsur-
ance. The 100 dots indicate the observed values from the
agent-based simulation, and the surface is derived from the
random forest regression. Each simulation run takes about
30 minutes on a personal computer. No further division of
the policy space was necessary since the performance of
built random forest regression meet the performance thresh-
old, i.e, R* = 0.8.

From the total cost output for the base case illustrated in
Figure 4, it is observed that the effect of vaccination reward
dominates the effect of coinsurance, indicating that the pol-
icy makers should prioritize prevention over treatment.
However, the coinsurance rate has a significant influence on
the number of individuals vaccinated, treated, and hospital-
ized when the vaccine reward is low. A high coinsurance
rate may be seen as a penalty for infected insureds, so it will
encourage more vaccination behavior (see Figure 4(b)).
However, it also discourages treatment-seeking behavior due
to significant medical care cost (see Figure 4(c)), resulting in
high hospitalization rate (see Figure 4(d)).

Figure 5 presents the PBnB output using the random for-
est regression model for the base case. More than half of the
policy region is pruned by PBnB (pruned region is white),
indicating it is unnecessary to evaluate more points for good
policy exploration. The policies with too high and too low
vaccine rewards are pruned. This is because a low vaccin-
ation reward region will result in a high total cost from high
numbers of infected, hospitalized, and dead. Setting the
reward too high also causes a high total cost since almost all
the population is vaccinated and thus the marginal reduc-
tion of medical costs cannot catch up with an increasing
reward cost. The low total cost region (maintained region is
deep blue color/dark gray) appears in the medium vaccin-
ation reward and coinsurance rate region. To give more spe-
cific policy recommendations, the result of PBnB in Figure 5
approximates the best 10% incentive policies with the base
case setting. The coinsurance rate in the maintained region
is between 25% — 100% and the vaccination reward ranges
from $17-$21. This provides insight on the sensitivity of the
policy decision to the policy maker.

5.2. Comparison to a case without vaccination reward

To demonstrate how a vaccination reward and co-insurance
incentive can reduce the total cost and affect flu



transmission, we compare three good policies selected from
the maintained region of the base case (see Figure 5) with a
case that has no vaccination reward. In this case, there is no
vaccination reward offered and the vaccination decision is
replaced with a fixed vaccination probability of 30% for all
age and risk-type populations. The treatment-seeking deci-
sion is replaced with the treatment-receiving probability p‘}";

(as in Table Al). We use a standard coinsurance rate of
15% to calculate the medical cost. The other parameters are
set at the base case values (vaccine efficacy is 60%, the basic
reproduction number is Ry = 1.6, and the weight of health
outcomes is w = $200).

Table 2 shows the potential benefit of offering policy
interventions with a vaccination reward and adjusted co-
insurance rates. The total cost of the base case with no vac-
cination reward is approximately three times the cost of any
of the three intervention policies selected from the main-
tained region for the base case. Notice that less than one-
third of the population gets vaccinated in the base case with
no vaccination reward.

5.3. Sensitivity analysis on three parameters

In this section, we conduct three one-way sensitivity analy-
ses, varying vaccine efficacy, basic reproduction number Ry,
and weight of health outcomes w as in Table 3.

5.3.1. Vaccine efficacy

The first sensitivity analysis studies how different values of
vaccine efficacy affect the near-optimal incentives. Figures
A, 5, and A illustrate good policies in the maintained
regions for values of vaccine efficacy of 30%, 60%, 90%,
respectively, with fixed base values for Ry = 1.6 and weight
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Figure 5. PBnB output for the base case (vaccine efficacy = 60%, Ry = 1.6,
and w = $200).

Table 2. Comparison of the base case with no vaccination reward
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of health outcomes w=200. It is observed that the main-
tained region gradually shifts as vaccine efficacy improves.
The reason is that higher vaccine efficacy leads to lower
infection probability (P?“W)' The threshold value of x,eyar4

which makes Eg” > E};" for each individual agent is there-
fore lower.

It is also observed that Figures 5, A, & A demonstrate
the value of a set of near-optimal solutions, which provides
policy makers the flexibility to implement a healthcare pol-
icy even with uncertainty or limited information about vac-
cine efficacy. Comparing the overlapping maintained regions
between Figures 5, A, & A provides the sensitivity of near-
optimal incentive policies. If the vaccine efficacy is lower
than 60%, as in Figure A, the reward increases to encourage
uptake however the co-insurance also increases, whereas an
increase in vaccine efficacy, as in Figure A, can result in a
reduced reward with reduced co-insurance.

5.3.2. Reproduction number

In the second sensitivity analysis, we study the basic repro-
duction number for seasonal flu that captures how infectious
the flu is. A high R, indicates that a high number of new
cases occurred in the population during a specified period.
Tuning the value of Ry, we can simulate different numbers
of new infections from a single infected individual in a sus-
ceptible population. It is observed from Figures 5 and 6(c)
and (d) that more vaccination reward should be offered to
encourage vaccination behaviors as R, increases. It is also
observed in the base case and high R, cases, that the subre-
gions with low reward are pruned due to relatively high hos-
pitalization and death cost.

5.3.3. Weight of health outcomes

In the third sensitivity analysis, we vary the value of the
weight of health outcomes ($0, $200, and $400) to see the
effect of how a policy maker values the population health
outcome. Comparing a scenario with a high value for the
weight of health outcomes with a scenario with a low value,
the results in Figure 6(f) suggest that a health insurance
agency with a high weight of health outcomes would tend to
raise the vaccination reward to encourage vaccination behav-
ior and avoid outbreaks, whereas the scenario with a low
weight of health outcomes has a smaller range of

Table 3. Parameter setting in sensitivity analysis.

Low case Base case High case

Experiment 1 Vaccine efficacy 30% 60% 90%
Experiment 2 Basic reproduction number Ry 1.2 1.6 2.0
Experiment 3 Weight of health outcomes w 50 $200 $400

to three policy interventions selected from the maintained region for the base case (as in Figure 5).

Total cost # Vaccination # Treatment # Hospitalization
Base case with no vaccination reward $93,092,400 164,426 106,710 445
Xreward = 30, Xsharing = 15%
Xreward = 918, Xsharing = 25% $30,498,100 508,417 33,604 224
Xreward = $18, Xsparing = 50% $30,186,600 511,795 26,578 379
Xreward = 918, Xsharing = 75% $29,749,500 513,767 23,071 451
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Figure 6. Sensitivity analysis.

coinsurance in the maintained region. The reason is that the
total cost in Equation (5) is more sensitive to the changes in
the flu-infected population proportion due to the high
weight of health outcomes.

5.3.4. Population outcome comparison

To better understand how uncertainties of the three parame-
ters in our sensitivity analysis, i.e., vaccine efficacy, basic
reproduction number, and weight of health outcomes, affect
other population outcomes, we average the total cost, infec-
tion proportion and vaccination proportion for all simulated
polices (reward and coinsurance) in the maintained region
for the base case and six sensitivity scenarios.
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The average total cost, average infection proportion,
and average vaccination proportion in the base case is
18.5 million dollars, 9.93%, and 93.52%, respectively.
Figure 7 compares the three outputs from the base case
to the six sensitivity scenarios. As seen in Figure 7(a), low
vaccine efficacy, high basic reproduction number, and
high weight of health outcomes increase the total cost
from the base case. Vaccine efficacy has the most signifi-
cant impact on total cost, as well as on infection propor-
tion (Figure 7(b)).

It is also observed that, even though the vaccination pro-
portion decreases 10% in the low Ry case, the infection pro-
portion is still lower than its counterpart in the base case. In
the high Ry case, on the other hand, an additional 5%
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Figure 7. Comparison of six sensitivity analysis scenarios and the base case.

population gets vaccinated to keep the infection proportion
similar to its counterpart in the base case (only
1.06% higher).

Furthermore, a high weight of health outcomes results in
a high total cost because a large incentive is given to
improve vaccination behavior (results in sensitivity analysis
3). The vaccination proportion therefore increases 6.5%
compared to the base case (Figure 7(c)), reaching 100% to
reduce the infection proportion by 1% in Figure 7(b).

6. Conclusions

We considered a seasonal flu outbreak prevention problem
where a policy maker’s goal is to design insurance-based
healthcare incentives to alleviate the medical cost and dis-
ease burden. We proposed a mechanism design approach to
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determine two effective healthcare incentive policies, vaccin-
ation reward and cost-sharing for seeking treatment to pre-
vent the flu outbreak. We adopted a monetary reward for
the susceptible population to incentivize vaccination behav-
ior and selected a coinsurance rate to encourage appropriate
treatment-seeking behavior and avoid overuse of health
care services.

We made two modeling contributions to evaluate the
effect of healthcare incentive policies on infectious disease
outcomes. First, to represent a detailed model of the
dynamic interaction between the insurer and the insured
population, we embedded a Stackelberg vaccination game
with the insurer as the leader and the population as fol-
lowers, into an agent-based simulation. An advantage of this
approach is to provide a mathematical description of the flu
epidemic at the individual level while considering the inter-
action of multiple individuals. Second, we coupled random
forest regression with PBnB to reduce the number of runs
of the agent-based simulation while returning a set of statis-
tically valid near-optimal incentive policies. The main disad-
vantage of agent-based simulation is its high computational
cost, which may limit the number of reasonable runs and
extent of sensitivity analysis. The methodology we propose
in the paper conquers this computational limitation of
agent-based simulation while keeping its advantage in order
to provide health care policy makers more selection of
interventions.

We incorporated the proposed game-theoretic model into
the FIUTE model to simulate the propagation of influenza in
a Seattle population. We added two health states, hospital-
ization and death, and integrated the decision-making proc-
esses and corresponding population responses to FIuTE.
Moreover, we added medical care cost, loss of productivity,
hospitalization, and death probability for all age-specific and
risk groups as input parameters to the FIuTE model, and
generated overall medical care cost and population health
outcome as the final output. We found that: (1) both vaccin-
ation reward and coinsurance are effective policies to
encourage vaccination behavior and minimize the overall
cost; and (2) the policy in the proposed mechanism keeps
the infection rate low under different vaccine efficacy and
basic reproduction number while taking the medical cost
paid by the insurer and population health outcomes into
consideration. We also demonstrated that vaccine efficacy
has a strong influence on individuals’ vaccination and treat-
ment-seeking behaviors and, as a result, impacts long-term
population health outcomes.

There are several limitations to our study. First, this
paper assumes that both the insured and insureds are risk-
neutral (as is common in the game theory approach in the
literature), and make rational and fully-informed decisions.
In reality, they may not be risk-neutral and have incomplete
information. Adopting the concept of “bounded rationality”
would reflect a more realistic decision-making process; how-
ever, our model is limited. We assume the insurer has infor-
mation about the projected population outcomes (e.g., the
proportion of vaccinated insureds and infected insureds dur-
ing the season). And the insureds can fully observe all the
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probabilities, e.g., infection and hospitalization probabilities,
and costs, e.g., medical cost and loss of productivity, when
they make the expected cost comparison. We convert several
factors to a common cost unit to use in the expected cost
calculation. For example, the number of infected neighbors
may factor into an individual insured’s decision to vaccinate.
In the agent-based simulation, each insured is aware of the
status of its neighbors; however, to keep units consistent, we
convert this to dollars in the calculation of the expected cost
of an untreated insured. As a rational (risk-neutral) decision
maker, each insured will make a decision that improves
their expected cost.

Second, we assume that the entire population is covered
by a single health plan insurer, whereas in reality, a regional
population includes individuals covered by many different
insurers under many different plans, as well as a portion of
uninsured individuals. Our model is immediately relevant to
insurers that cover an entire population but also explains
the behavior of insurers that may only be responsible for
subsets of a defined population. Each insurer has the same
incentive options and therefore we may assume that individ-
ual insurers behave identically concerning the cost-sharing
arrangements they create. As a result, each individual with
similar risk faces the same incentives with regard to health-
seeking behavior. We also assume that individuals of similar
risk share the same degree of susceptibility to monet-
ary incentives.

Third, we assume that the insurer can set a co-insurance
rate that would apply specifically to outpatient medical treat-
ment of an infected individual. Traditional insurance models
often use uniform cost-sharing arrangements for categories
of services. For example, all outpatient visits, pharmacy fills,
and lab tests would have the same copayment or co-insur-
ance rates for each insurance product they offered. This
traditional model has given way to value-based insurance
products that routinely have different cost-sharing for other-
wise similar services based on a variety of circumstances
that include patient willingness to pursue specific thera-
peutic options. It is therefore increasingly likely that insur-
ance companies tailor cost-sharing to micro-incent or
disincent specific patient choices.

Fourth, we assume that the insurer is willing to finan-
cially reward individuals who choose to get vaccinated,
which implementing rewards at a large scale would repre-
sent a huge financial cost, or seem to favor certain groups
or interventions. Regarding to this feasibility issue, we
believe value-based insurance models routinely offer a var-
iety of incentives to encourage more efficient health-seeking
behavior. While insurers are prohibited from using measures
that might seem coercive, they often waive copayments or
provide lower co-insurance rates if patients agree to submit
biometric data or complete all of the recommended prevent-
ive services for their age and gender. Flu vaccines are a lead-
ing example of a preventive service for which insurers may
offer such incentives. More importantly, the COVID-19 pan-
demic in 2020 has significantly increased the urgency of
providing vaccination incentives to ensure sufficient cover-
age of the new COVID-19 vaccines due to the massive death

tolls in the U.S. Starting in the fall of 2020, there were active
discussions on providing direct financial payment to individ-
ual Americans as a measure to encourage COVID-19 vac-
cine uptakes in the hope of minimizing future loss-of-life
and economic loss (Johns Hopkins University &
Medicine, 2020).

There are also two exciting future research directions fol-
lowing this study. First, the current study is focused on the
demand-side of vaccination. Incorporating the supply-side
with the possibility of vaccine shortage and delay would
increase the realism of our study. Second, the knowledge
about vaccine effectiveness evolves during the flu season.
Modeling the value of information on the vaccine effective-
ness with population sampling, and how such knowledge
will improve decision making during the season needs add-
itional careful investigation.

In conclusion, we have proposed an incentive-based
insurance mechanism to prevent the spread of seasonal
influenza for a single health insurer and multiple insureds.
Our model captures four critical sources of uncertainty from
the insurer’s perspective, such as uncertainty in population
health status and behavior, the infectivity of flu, and vaccine
effectiveness. We combined a Stackelberg vaccination game
into an agent-based simulation and optimized the model to
provide systematic insight as to how a insurer would incen-
tivize self-interested insureds to uptake vaccine and seek
treatment during the flu season.
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Appendix A. Parameters used in the analysis of
agent-based simulation

Table A1. Model parameter values.

Base Case (Range)/Distribution

Variable Reference
Cost Medical cost Loss productivity

No medical attendance Cried U Crau Molinari et al. (2007)
All risk log normal (mean, std) Poisson (mean)

Age 0-4 (2, 3) 145

Age 5-17 2,3) 75

Age 18-49 (2,3) 75

Age 50-64 2,3) 75

Age 65+ (2, 3) 145

Treatment Croa T Molinari et al. (2007)
Normal log normal (mean, std)

Age 0-4 (167, 307) 145

Age 5-17 (95, 258) 145

Age 18-49 (125, 438) 145

Age 50-64 (150, 766) 290

Age 65+ (242, 1544) 435

High risk log normal (mean, std)

Age 0-4 (574, 1266) 870

Age 5-17 (649, 1492) 580

Age 18-49 (725, 1717) 290

Age 50-64 (733, 1307) 580

Age 65+ (476, 1131) 1015

Hospitalization e o 1 Molinari et al. (2007)
Normal log normal (mean, std) Poisson (mean)

Age 0-4 (10880, 36189) 1160

Age 5-17 (15014, 86804) 1305

Age 18-49 (19012, 44636) 1740

Age 50-64 (22304, 95727) 1885

Age 65+ (11451, 23128) 1885

High risk log normal (mean, std) Poisson (mean)

Age 0-4 (81596, 123626) 4495

Age 5-17 (41918, 50393) 3335

Age 18-49 (47722, 85644) 3045

Age 50-64 (41309, 74798) 3480

Age 65+ (16750, 32091) 2610

Death Cfr’:gd,o Molinari et al. (2007)
Normal log normal (mean, std)

Age 0-17 (28818, 24483)

Age 18-49 (76336, 91654)

Age 50-64 (118575, 333879)

Age 65+ (41948, 96467)

High risk log normal (mean, std)

Age 0-17 (267954, 221130)

Age 18-49 (75890, 65267)

Age 50-64 (118842, 345973)

Age 65+ (33011, 61904)

Note 1: Direct medical cost for the outpatient visit c‘;gm is the sum of outpatient and pharmaceutical claims, which
included office visits, laboratory tests, imaging tests, professional consult fees, out-patient procedures, and prescription
medications for each age and risk group. The antiviral treatment is included in the cost of an outpatient visit.

wean and ¢, o, are both calculated by summing of all

Note 2: Direct medical cost for hospitalized and death case, ¢/, 4
inpatient, outpatient, and pharmaceutical claim for each age and risk group.
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Table A1. Model parameter values (continued).

Variable Base Case (Range)/Distribution Reference
Indirect vaccination cost 90% population has (5, 20) uniform distribution assume’

Cind,v 10% population has 0 cost for voluntary vaccination assume
Coinsurance rate

fy 30% assume

fo 30% assume
Probability FIuTE (2010)
Pis intermediate parameter'

Py intermediate parameter'

pf,‘F Molinari et al. (2007)
All risk log normal (mean, std)

Age 0-4 (0.0141, 0.0047)

Age 5-17 (0.0006, 0.0002)

Age 18-49 (0.0042, 0.0014)

Age 50-64 (0.0193, 0.0064)

Age 65+ (0.0421, 0.014)

p"D‘F Molinari et al. (2007)
All risk log normal (mean, std)

Age 0-4 (0.00004, 0.00001)

Age 5-17 (0.00001, 0)

Age 18-49 (0.00009, 0.00003)

Age 50-64 (0.00134, 0.00045)

Age 65+ (0.0117, 0.0039)

p?é Molinari et al. (2007)
Normal log normal (mean, std)

Age 0-4 (0.455, 0.098)

Age 5-17 (0.318,0.061)

Age 18-49 (0.313, 0.014)

Age 50-64 (0.313, 0.014)

Age 65+ (0.62, 0.027)

High risk log normal (mean, std)

Age 0-4 (0.91, 0.25)

Age 5-17 (0.635, 0.167)

Age 18-49 (0.625, 0.118)

Age 50-64 (0.625, 0.118)

Age 65+ (0.82, 0.093)

Population N 563,441 FIUTE (2010)

Weight of health outcomes w

200 (0-400)"**

CDC (2017)
Ozawa et al. (2016)

The indirect vaccination cost Cina,v is based on the minimum wage in the USA of $7.25 per hour (U.S. Bureau of Labor Statistics, 2020)
and the median wage in 2019 of $19.33 per hour (Gould, 2019), and an assumption that it takes 0.5 hours to get a vaccine. This
results in a range of (5, 20) to represent the wage lost for 0.5 hours. We used a uniform distribution with support (5, 20).

"The intermediate parameters are updated daily based on the infection probability in family, neighborhood, workgroup, or school

transmissions in FIUTE, using 1 — [ (1 — infection probability in each group gfor insured with age a).

"The weight 200 is approximated by the hidden annual economic burden $5.8 billion divided by an estimated number of symptom-
atic illnesses, 29 million, in 2016-2017 flu season (CDC, 2017; Ozawa et al., 2016). The weights of the government-run health insurance
agency and the private insurance company are assumed as 400 and 0, respectively.

Note 3: The probability distribution estimates reported by Molinari et al. (2007) have been converted into the daily probability by using

the formula pg =1— (1 —

9, where pq is the daily probability we used in the agent-based simulation, p is the parameter in

Molinari et al. (2007), and d =6days, indicating that if a susceptible individual is infected, he/she will be infectious for six days

(FIuTE, 2010). During the six days, infected individuals have a risk of hospitalization or death on each day.
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