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Abstract

Statistical anisotropy in the nanohertz-frequency gravitational wave background (GWB) is expected to be detected
by pulsar timing arrays (PTAs) in the near future. By developing a frequentist statistical framework that
intrinsically restricts the GWB power to be positive, we establish scaling relations for multipole-dependent
anisotropy decision thresholds that are a function of the noise properties, timing baselines, and cadences of the
pulsars in a PTA. We verify that (i) a larger number of pulsars, and (ii) factors that lead to lower uncertainty on
spatial cross-correlation measurements between pulsars, lead to a higher overall GWB signal-to-noise ratio, and
lower anisotropy decision thresholds with which to reject the null hypothesis of isotropy. Using conservative
simulations of realistic NANOGrav data sets, we predict that an anisotropic GWB with angular power
Cl=1> 0.3Cl=0 may be sufficient to produce tension with isotropy at the p= 3× 10−3 (∼3σ) level in near-future
NANOGrav data with a 20 yr baseline. We present ready-to-use scaling relationships that can map these thresholds
to any number of pulsars, configuration of pulsar noise properties, or sky coverage. We discuss how PTAs can
improve the detection prospects for anisotropy, as well as how our methods can be adapted for more versatile
searches.

Unified Astronomy Thesaurus concepts: Millisecond pulsars (1062); Gravitational wave astronomy (675);
Gravitational waves (678); Radio pulsars (1353)

1. Introduction

All of the long-baseline pulsar timing arrays (PTAs)—namely
the North American Nanohertz Observatory for Gravitational
Waves (NANOGrav; McLaughlin 2013), the European Pulsar
Timing Array (EPTA; Kramer & Champion 2013), and the
Parkes Pulsar Timing Array (PPTA; Hobbs 2013)—have now
reported evidence for the presence of a spectrally common
process in their latest data sets (Arzoumanian et al. 2020; Chen
et al. 2021; Goncharov et al. 2021). However, the evidence for
Hellings and Downs (HD) spatial cross-correlations (Hellings &
Downs 1983), which are considered the definitive signature
of a stochastic gravitational wave background (GWB), is not
significant in any of these data sets. A spectrally common
process was also reported by the International Pulsar Timing
Array (IPTA; Hobbs et al. 2010) consortium in their second data
release (Perera et al. 2019), which used older versions of data
sets from the aforementioned PTAs. However this data
set also lacked definitive evidence for the HD signature
(Antoniadis et al. 2022). The detection of such a spectrally
common process could be the first step toward the eventual
detection of a GWB (Romano et al. 2021). Based on
simulations of the NANOGrav 12.5 yr data set (Alam et al.
2021), and if the signal observed in the 12.5 yr data set is an
astrophysical GWB signal, NANOGrav is expected to have
sufficient evidence to report the detection of HD-consistent
spatial correlations within the next few years (Pol et al. 2021).
Throughout the rest of this article, unless explicitly stated

otherwise, we use the terms “correlations” and “cross-
correlations” to refer to spatial cross-correlations.
If this signal is confirmed to be a GWB signal in future PTA

data sets, the onus will be on characterizing the source of the
GWB. An important part of this analysis will be measuring the
spatial distribution of power in the GWB. For example, if the
source of the GWB is a population of inspiraling supermassive
black hole binaries (SMBHBs; Rajagopal & Romani 1995;
Jaffe & Backer 2003; Sesana et al. 2004; Burke-Spolaor et al.
2019), then their spatial distribution might track the local
matter distribution. In particular, nearby galaxy clusters that
host an overabundance of SMBHBs may show up as hotspots
of gravitational wave (GW) emission on the sky. For example,
the Virgo cluster (Sandage 1958) has an angular diameter of
∼10°, and could show up as a hotspot on the GW sky at a
multipole of lVirgo= 180°/θ≈ 18. On the other hand, a single
SMBHB that is louder than the GWB will show up as a point-
source anisotropy, with multiple such single sources producing
a pixel-level spatial distribution of GWB power. However, if
the GWB is produced by a cosmological source, such as
cosmic strings (e.g., Olmez et al. 2010) or primordial GWs
(e.g., Grishchuk 2005), then the GWB power distribution on
the sky may not display the same anisotropies as that from an
SMBHB-produced GWB. Thus, the anisotropy of the GWB, or
the lack of it, allows us to make inferences about the source of
the GWB.
Multiple techniques have been developed to probe the

anisotropy of a GWB with PTAs (e.g., Mingarelli et al. 2013;
Taylor & Gair 2013; Cornish & van Haasteren 2014; Taylor
et al. 2020). While these methods differ in their choice of basis
for modeling anisotropy, they all take the pulsar times of arrival
(TOAs) as their initial data, and employ Bayesian techniques to
constrain parameters that describe anisotropy-induced devia-
tions from the HD signature. Constraints on anisotropy were
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first presented by the EPTA as part of the analysis of their first
data release (Taylor et al. 2015), where they placed limits on
the strain amplitude in l> 0 spherical harmonic multipoles of
less than 40% of the monopole value (l= 0, i.e., isotropy).

As PTA data sets grow longer in timespan, add more pulsars,
and become denser with higher-cadence observations, the
analysis time for Bayesian methods based on TOAs is going to
increase dramatically. Additionally, Bayesian model selection
of anisotropy is predicated on having an appropriate hypothesis
of the anisotropy, for example, a power map built from galaxy
catalogs, statistically populated with inspiraling SMBHBs. In
other words, Bayesian model selection always requires two
models to compare: a null and a signal model. By contrast,
frequentist techniques allow one to reject a null hypothesis (in
this case, isotropy) if the data are in sufficient tension with it.
Importantly, rejecting a null hypothesis at a probability given
by some p-value is not the same as accepting a signal
hypothesis with a certainty of 1− p. However significant
tension with the assumption of isotropy is an important
indicator of beyond-HD signatures in the cross-correlation data.

To overcome these challenges, we develop a frequentist
framework that employs the cross-correlations between pulsar
timing residuals, defined as the difference between the
observed TOAs and those predicted by the timing model,
across a PTA as sufficient data with which to search for
anisotropy. These cross-correlations are measured as part of the
standard GWB detection pipelines (e.g., Arzoumanian et al.
2020; Chen et al. 2021; Goncharov et al. 2021), using
established optimal two-point correlation techniques (Allen &
Romano 1999; Anholm et al. 2009; Demorest et al. 2013;
Vigeland et al. 2018). Thus our framework can be easily
incorporated into ongoing analysis campaigns. The data
volume in our framework is also significantly lower than that
in analyses starting at the TOA data level, enabling rapid
estimation of anisotropy. Finally, as mentioned above, the
frequentist framework allows us to infer (although not
necessarily claim detection of) anisotropy via rejection of the
null hypothesis of isotropy, thereby simplifying the process of
constraining anisotropy.

Other frequentist techniques for searching for anisotropy with
PTAs have been proposed. These include the Fisher matrix
formalism developed in Ali-Haïmoud (2020, 2021), where
“principal maps,” the eigenmaps of the Fisher matrix, were
employed to search for anisotropy. Hotinli et al. (2019), on the
other hand, decomposed the timing residual power spectrum into
bipolar spherical harmonics to search for anisotropy using the
correlations between pulsars in a PTA. These frequentist
techniques also focus on the detection of anisotropy through
rejection of the null hypothesis of isotropy. However, these
methods are either based on TOAs as their data set, making them
susceptible to the problem of increasing data volume described
earlier, or they require a framework different from the current
detection pipelines. The use of cross-correlations between
detector baselines is also common when searching for anisotropic
GWBs in the LIGO (e.g., Thrane et al. 2009; Abbott et al. 2021)
and LISA bands (e.g., Banagiri et al. 2021).

We use our framework on simulations of idealized PTA and
near-future NANOGrav data, presenting, for the first time,
projections on the sensitivity of NANOGrav and other PTAs to
GWB anisotropy in the mid-to-late 2020s. The paper is
organized as follows: In Section 2, we describe the measure-
ment of cross-correlations and their uncertainties, along with

the maximum likelihood framework and detection statistics that
are used to constrain anisotropy, while Section 3 connects the
cross-correlation uncertainty to the noise properties, cadence,
and timing baseline of the PTA. Section 4 presents scaling
relations for anisotropy decision thresholds of an “ideal PTA”
as a function of cross-correlation uncertainty and number of
pulsars in the PTA, while Section 5 presents them for a realistic
PTA that is generated using the NANOGrav 12.5 yr data set.
Finally, we present a discussion of results and prospects for the
future in Section 6. In Appendices A and B we present
derivations for computing the cross-correlations in real PTA
data sets and scaling relations for the cross-correlation
uncertainty with respect to PTA specifications like timing
baseline, white noise, and observation cadence. The software
associated with the methods developed in this work is available
as a Python package on GitHub.3

2. Methods

2.1. The Optimal Cross-correlation Statistic and Overlap
Reduction Function

A GWB can be uniquely identified through the cross-
correlations it induces between the TOAs of pulsars in a PTA
(Hellings & Downs 1983; Tiburzi et al. 2016). The spatial
cross-correlations between pulsar pairs, ρab, and their uncer-
tainties, σab, can be written as (Demorest et al. 2013; Siemens
et al. 2013; Chamberlin et al. 2015; Vigeland et al. 2018)
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where δta is a vector of timing residuals for pulsar a,
d d= á ñP t ta a a

T is the measured autocovariance matrix of pulsar
a, and Ŝab is the template-scaled covariance matrix between
pulsar a and pulsar b. This scaled covariance matrix is a
template for the GWB spectral shape only, and is independent
of the GWB’s amplitude and the cross-correlation signature
that it induces. It is related to the full covariance matrix by

d d c= =⟨ ⟩ ˆS t t SAab a b
T

gwb
2

ab ab, where Agwb is the GWB ampl-
itude corresponding to a given strain spectrum template, and
χab is the GWB-induced cross-correlation value for this pair of
pulsars, e.g., the HD factor in the case of an isotropic GWB.
The cross-correlation statistic accounts for fitting and

marginalization over the timing ephemeris of each pulsar, as
well as its intrinsic white and red noise4 characteristics, where a
power-law spectrum is usually assumed for the intrinsic red
noise. Implementations of the statistic also usually assume a
power-law strain spectrum template for the GWB following
f−2/3 (Phinney 2001) filtering it across the pairwise-correlated
timing residuals in order to extract an optimal measurement of
the GWB amplitude (Chamberlin et al. 2015; Vigeland et al.
2018). However, we note that this statistic is flexible enough to
allow for different parameterized spectral templates. See
Appendix A for details on how this is implemented in real
PTA searches for the GWB, including how the noise weighting
for each pulsar is determined, how the GWB’s spectral

3 https://github.com/NihanPol/MAPS
4 Here, white and red noise refer to power spectral densities (PSDs) with
approximately equal power at all GW frequencies and higher power at lower
GW frequencies, respectively.
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template is set, and how the parameters of the pulsar timing
ephemeris are marginalized over. In this paper we simulate and
analyze data at the level of {ρab, σab}, then connect our results
later to the underlying geometry and noise characteristics of the
PTA (see Appendix B).

A PTA with Npsr pulsars has Ncc= Npsr(Npsr− 1)/2 distinct
cross-correlation values. The angular dependence of these
empirically measured cross-correlations can be modeled by the
detector overlap reduction function (ORF)5 (Flanagan 1993;
Mingarelli et al. 2013; Taylor & Gair 2013; Gair et al. 2014;
Taylor et al. 2020) such that, for an unpolarized GWB,
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where W( ˆ )P is the angular power of the GWB in direction Ŵ,
normalized such that ò W W =ˆ ( ˆ )d P 1
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2

2 , and W ( ˆ ˆ )p ,A is the
antenna response pattern of a pulsar in unit vector direction p̂a
to each GW polarization A
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where W( ˆ )eij
A denotes the polarization basis tensors, and (i, j)

are the spatial indices.
We can recast the sky integral in Equation (2) as a sum over

equal-area pixels (Gair et al. 2014; Taylor et al. 2020).
Assuming an unpolarized GWB, and ignoring random pulsar
term contributions to the cross-correlations, this can be written
as

åG µ ++ + ´ ´   [ ] ( )P , 4ab
k

k a k b k a k b k, , , ,

where k denotes the pixel indices. Or, in a general matrix form

G = ( )RP, 5

where Γ is an Ncc vector of ORF values for all distinct pulsar
pairs, P is an Npix vector of GWB power values at different
pixel locations, and R is an (Ncc×Npix) overlap response
matrix given by

= ++ + ´ ´   [ ] ( )R
N
3

2
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where the normalization is chosen so that the ORF matches the
HD values in the case of an isotropic GWB with Pk= 1 ∀k.

Combining the notation introduced in Equations (1) and (2),
the expected value of ρab is such that 〈ρab〉= A2Γab. However,
in the remainder of this paper we will deal with amplitude-
scaled cross-correlation values, ρab/A

2, where we assume that
in a real search an initial fit for A2 will be performed on {ρab}
under the assumption of isotropy. These amplitude-scaled
cross-correlation values can then be directly compared with the
ORF model, Γ, to probe anisotropy. We suppress the explicit
amplitude scaling in the remainder of our notation, such that
ρab henceforth implies amplitude-scaled cross-correlation
values.

Using the cross-correlations as our data, and assuming a
stationary Gaussian distribution for the cross-correlation
uncertainty, the likelihood function for the cross-correlations
can be written as

p
r
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where Σ is the diagonal covariance matrix of cross-correlation
uncertainties with shape Ncc×Ncc. We now discuss several
different bases on which to decompose the angular power
vector, P.

2.1.1. Pixel Basis

The GWB power can be parameterized using HEALPix sky
pixelization (Gorski et al. 2005), where each equal-area pixel is
independent of the pixels surrounding it:

å dW =
W¢

W W¢W¢( ˆ )
ˆ

( ˆ ˆ ) ( )ˆP P , . 82

The number of pixels is set by =N N12pix side
2 and Nside defines

the tessellation of the healpix sky (Gorski et al. 2005). The rule
of thumb for PTAs is to have Npix�Ncc (Cornish & van
Haasteren 2014; Romano & Cornish 2017). This basis is well
suited for detection of pixel-scale anisotropy, which can arise
from individual sources of GWs, and where an isotropic GWB
would be represented by equal power (within uncertainties) in
each pixel on the sky.

2.1.2. Spherical Harmonic Basis

Alternatively, the GWB power can be decomposed into the
spherical harmonic basis (e.g., Thrane et al. 2009), where the
lowest-order multipole (l= 0) defines an isotropic background,
while higher multipoles add anisotropy. The GWB power in
this basis can be written as

å åW = W
=

¥
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( ˆ ) ( ˆ ) ( )P c Y , 9
l m l

l

lm lm
0

where Ylm denotes the real-valued spherical harmonics and clm
denotes the spherical harmonic coefficients of W( ˆ )P . In this
basis, the ORF anisotropy coefficient for the l and m
components between pulsars a and b can be written as (Taylor
et al. 2020)

åkG = ++ + ´ ´   [ ] ( )( )( ) c Y , 10lm ab
k

lm lm k a k b k a k b k, , , , ,

where k represents the pixel index corresponding to Ŵ and the
constant κ accounts for the pixel area in the healpix sky
tessellation.
This basis representation, in contrast to the pixel basis, is

better suited for modeling large-scale anisotropies in the GWB.
Based on diffraction limit arguments, the highest-order mode,
lmax, that can be used for modeling the anisotropy depends on
the number of pulsars in the PTA, ~l Nmax psr (Boyle &
Pen 2012; Romano & Cornish 2017). However, Floden et al.
(2022) have shown that while the diffraction limit is attuned to
maximizing the significance of the detection of anisotropy,
values of >l lmax can be included in spherical harmonic

5 We note that the term ORF in ground- and space-based literature usually
involves a frequency dependence. However this frequency dependence factors
out in the PTA regime, such that we use the term ORF to denote only the
angular dependence of the pairwise cross-correlated data (Romano &
Cornish 2017).
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decompositions to improve the localization of any anisotropy
after its detection.

The results can be expressed in terms of Cl, which is the
squared angular power in each mode l:

å=
+ =-
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l

c
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2 1
. 11l

m l

l
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2

Physically, Cl represents the amplitude of statistical fluctua-
tions in the angular power of the GWB at scales corresponding
to θ= 180°/l. An isotropic background in this basis will
contain power only in the l= 0 multipole, thus filling the entire
sky, while an anisotropic background will have power in the
higher-l multipoles. On the other hand, the variance of the
angular power distribution can be written as (Jenkins 2022)
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The quantity l(l+ 1)Cl/2π thus represents the variance per
logarithmic multipole bin, and is what we use to present our
results in this work. As pointed out in Jenkins (2022), reporting
Cl is analogous to reporting the GWB strain PSD, with
Cl= constant representing a white angular power spectrum,
while reporting l(l+ 1)Cl/2π is analogous to reporting the
GWB energy density spectrum Ωgw( f ), with l(l+ 1)Cl/2π=
constant representing a scale-invariant angular power spectrum.

For these bases, since the problem is linear in the regression
coefficients, the maximum likelihood solution can be derived
analytically (Thrane et al. 2009; Romano & Cornish 2017;
Ivezić 2019

= -ˆ ( )P M X, 131

where M≡ TΣ−1 is the Fisher information matrix, with the
uncertainties on the clm coefficients given by the diagonal
elements of M−1, and X≡ RTΣ−1ρ is the “dirty map,” an
inverse-noise-weighted representation of the total power on the
sky as “seen” through the response of the pulsars in the array.

2.1.3. Square-root Spherical Harmonic Basis

A drawback of both the pixel and spherical harmonic bases
is that they allow the GWB power to assume negative values,
which is an unphysical realization of the GWB. While these
tendencies can be curbed through the use of regularization
techniques or rejection priors (Taylor & Gair 2013), this results
in the addition of a hyperparameter to the analysis that requires
further optimization or nonanalytic priors (Taylor & Gair 2013;
Taylor et al. 2020). A more elegant solution is to use a basis
that intrinsically conditions the GWB power to be positive over
the whole sky.

Such a basis can be generated by modeling the square root of
the GWB power, W( ˆ )P 1 2, rather than modeling the power
itself. This technique was introduced in a Bayesian context in
Payne et al. (2020) for LIGO, in Banagiri et al. (2021) for
LISA, and in Taylor et al. (2020) for PTAs. Decomposing the
square-root power into spherical harmonics, the GWB power
can be written as
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where YLM denotes the real-valued spherical harmonics and bLM
denotes the search coefficients. Banagiri et al. (2021) showed
that the search coefficients in this basis can be related to the
spherical harmonic coefficients via
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with ¢ ¢CLM L M
lm

, being the Clebsch–Gordan coefficients. Taylor
et al. (2020) showed that even though a full reconstruction of
clm requires an infinite sum over the bLM coefficients, restricting
the maximum mode to =L L lmax max is sufficient to
produce an accurate reconstruction of the GWB power.
Since the problem in this basis is nonlinear in the regression

coefficients, the likelihood in Equation (7) cannot be
maximized analytically. The maximum likelihood solution
thus has to be calculated through numerical optimization
techniques. In this work, we use the LMFIT (Newville et al.
2021) Python package, where we use the Levenberg–
Marquardt optimization algorithm (Levenberg 1944; Marquardt
1963) to determine the maximum likelihood solution. The
goodness of fit is assessed through the cdof

2 that is reported by
LMFIT.
Figure 1 shows an example of recovering an anisotropic

background using this basis. To produce the simulated cross-
correlation data, we inject a GW power map corresponding to
the synthesized population of SMBHBs from Taylor et al.
(2020) into an “ideal PTA” consisting of 100 pulsars, with a
constant cross-correlation measurement uncertainty of 0.01.
Note that this is an uncertainty on cross-correlations that can
assume any value between −0.2 and 0.5, and thus represents an
extremely accurate measurement of the cross-correlations
between pulsars in the PTA (see Section 4.1 for our definition
of an “ideal PTA”). We see that this basis is capable of
reproducing the injected angular power spectrum, which
translates into an accurate identification of the anisotropy in
the GWB.

2.2. Detection Statistics

In addition to estimating the values of the anisotropy search
coefficients (i.e., the pixels or spherical harmonic coefficients),
we also need to quantify the evidence for the presence of
anisotropy in the cross-correlation data. As described earlier,
when searching for anisotropy, we seek to reject the null
hypothesis of isotropy. In this section, we present two
frequentist detection statistics that can quantify the evidence
for anisotropy by measuring the (in)compatibility of the data
with the null hypothesis.

2.2.1. Signal-to-noise Ratio

Confidence in the detection of anisotropy can be quantified
through the signal-to-noise ratio (S/N), which is defined as the
ratio of the maxima of the likelihood functions between any
two models:

= L[ ] ( )S N 2 ln , 17ML
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where ΛML= p(ρ|PML,1)/p(ρ|PML,2) is the ratio of the maxima
of the likelihood functions for the two models that are under
consideration.

When searching for anisotropy, we can define three S/N
statistics that together provide a complete description of the
evidence for a GWB signal being present in the cross-
correlation data:

1. “Total S/N”: This is defined as the ratio of the maximum
likelihood value of an anisotropic model (i.e.,

r >( ∣ ( ))p lP 0ML max ) to that of a model with only
spatially uncorrelated noise (i.e., p(ρ|PML= 0)). The
total S/N quantifies the evidence for the presence of any
signal in the cross-correlations.

2. “Isotropic S/N”: This is defined as the ratio of the
maximum likelihood value of an isotropic model (i.e.,

r =( ∣ ( ))p lP 0ML max ) to that of a model with noise only
(i.e., p(ρ|PML = 0)). Note that the isotropic S/N is

equivalent to the optimal S/N statistic defined in
Chamberlin et al. (2015). The isotropic S/N quantifies
how well the cross-correlations are described by a purely
isotropic model.

3. “Anisotropic S/N”: This is defined as the ratio of the
maximum likelihood value of a model with anisotropy
(i.e., r >( ∣ ( ))p lP 0ML max ) to that of an isotropic model
(i.e., r =( ∣ ( ))p lP 0ML max ). The anisotropic S/N quanti-
fies evidence in favor of inclusion of modes l> 0.

2.2.2. Decision Threshold

Another method for determining the significance of possible
anisotropy is to assess the certainty with which the null
hypothesis of isotropy can be rejected. If we can quantify the
distribution of the angular power, Cl, under the null hypothesis,
then we can also quantify how (in)consistent the measured
angular power is with isotropy through a test statistic like the p-
value.
To calculate the null distribution of Cl under the null

hypothesis, we generate many realizations of cross-correlation
data, where we assume that the measurements are Gaussian-
distributed around the HD curve, with the spread of the
distribution given by the uncertainty on the cross-correlation
values. We define the decision threshold,Cl

th, as the value of Cl
corresponding to a p-value of 3× 10−3, where a measurement
of angular power greater than this threshold would indicate a
tension with the null hypothesis at the ∼3σ level.

3. Cross-correlation Uncertainties from PTA Design

The uncertainty on the cross-correlation measurements
introduced in Equation (1) depends on the pulsars that are
used to construct the PTA (Anholm et al. 2009; Siemens et al.
2013; Chamberlin et al. 2015). As shown in Siemens et al.
(2013), the trace in Equation (1) can be written as
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where T is the duration in which a pulsar is observed, i.e., the
timing baseline, A is the amplitude of the GWB, Pg( f ) is the
power spectrum of the timing residuals induced by the GWB,
Pa( f ) and Pb( f ) are the intrinsic power spectra of pulsars a and
b, and fl= 1/T and fh are the low- and high-frequency cutoffs
used in the GWB analysis.
Using the same analysis as presented in Siemens et al. (2013)

and Chamberlin et al. (2015), we can show that in the weak-
signal regime, where the intrinsic pulsar noise dominates the
GWB power (see Appendix B), the cross-correlation uncer-
tainty between a given pair of pulsars scales as

s µ
g-

( )w T
c

, 19
2

while in the strong-signal regime, where the GWB power
dominates the intrinsic pulsar noise,

s µ ( )A

cT
, 20

2

where w is the white noise rms, c= 1/Δt is the observing
cadence, γ= 3− 2α (Arzoumanian et al. 2020) is the slope of
the timing residual power spectrum induced by the GWB, and

Figure 1. Example recovery of an anisotropic GWB using the square-root
spherical harmonic basis described in Section 2. These simulations are based
on an ideal PTA consisting of 100 pulsars, with a cross-correlation uncertainty
of 0.01 across all pulsar pairs, while the anisotropy is based on a realistic
population of inspiraling SMBHBs (Taylor et al. 2020). Top: The true and
recovered angular power spectra, as well as the percent difference between
them, where both are normalized such that the power in the l = 0 mode is
C0 = 4π. Bottom: The sky map of the GWB power corresponding to the
recovered angular power spectrum. The contours represent the true distribution
of the GWB power on the sky for the anisotropic GWB, while the stars
represent the positions of the simulated pulsars on the sky.
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A is the amplitude of the GWB, whose characteristic strain
spectrum is given by = a( ) ( )h f A f fc yr , with α=−2/3 for an
SMBHB GWB.

These scaling relations imply that the uncertainty on the
cross-correlations can be reduced by observing pulsars for
longer duration (timing baselines), or with a higher cadence.
The effect of the timing baseline and cadence is strongest in the
weak-signal regime while it becomes weaker as we move into
the strong-signal regime. Similarly, in the weak-signal regime,
the cross-correlation uncertainty can be reduced by decreasing
the intrinsic white noise by, for example, increasing the
receiver bandwidth or increasing the integration time for the
pulsars. The white noise does not affect the cross-correlation
uncertainty in the strong-signal regime, where the GWB signal
dominates over the intrinsic noise in the pulsars at all
frequencies.

4. Simulations with an Ideal PTA

4.1. Defining an Ideal PTA

In the framework described above, the rejection of isotropy
in the GWB depends on three variables: the uncertainty on the
cross-correlation values, the number of pulsars in the PTA
(which defines the number of cross-correlation values that are
measured), and the distribution of pulsars on the sky. The first
two variables primarily dictate the strength of the rejection of
isotropy, while the third variable is important for the
characterization of the anisotropy. In this section, we examine
how the cross-correlation uncertainty and the number of pulsars
in the PTA affect an ideal PTA, which we define as a PTA that
has pulsars distributed uniformly on the sky and having
identical noise properties. The latter constraint implies that all
measured cross-correlations have the same uncertainty. This is
different from current, real PTAs, where each pulsar is unique
and thus the uncertainties on the cross-correlations between
each pulsar pair are different. We examine realistic PTAs in
Section 5.

4.2. Scaling Relations

For a given level of anisotropy, its detection significance will
depend on the number of pulsars in the array, as well as on the
accuracy with which the cross-correlations between different
pulsar pairs can be measured. Romano & Cornish (2017)
showed that the total S/N for linear anisotropy models can be
written as

S= -( ˆ [ ] ˆ) ( )R RP Ptotal S N , 21T T 1 1 2

where P̂ is the maximum likelihood estimate of the GWB
power. Since Σ is a diagonal matrix of the squared cross-
correlation uncertainties, the total S/N∝ σ−1. Similarly, the
total S/N is proportional to the square root of the number of
data points available for inference (assuming all cross-
correlation uncertainties are the same for all pairs), i.e.,

/ µ =
-( ) ( )N

N N
total S N

1

2
, 22cc

psr psr

where for sufficiently large Npsr, the total S/N will scale
linearly with the number of pulsars in the PTA.

We show that both of these scaling relations for the total S/
N are also satisfied when using the nonlinear maximum
likelihood approach described in Section 2.1.3. Figure 2 and

the left panel in Figure 3 show that the total S/N scales
inversely with the uncertainty on the cross-correlations, while
the right-hand panel of Figure 3 shows that the total S/N scales
proportionally to the number of pulsars in the PTA. Since the
injected signal here is an isotropic GWB, Figure 2 shows that
the total and isotropic S/N values are identically large, and
decrease as the uncertainty on the cross-correlations increases.
The anisotropic S/N shows little evolution across uncertainties,
though the better fit provided by the additional degrees of
freedom in an anisotropic model prevents it from being
consistent with zero for small cross-correlation uncertainties.
For large uncertainties, Figure 2 shows that we lose the ability
to detect and distinguish between isotropic and anisotropic
signals in the data.
We can similarly compute scaling relations for the decision

threshold as a function of the cross-correlation uncertainty and
the number of pulsars in the PTA. Since this is an empirically
constructed detection statistic, we do not have analytical
expressions for its scaling relations, though we can derive the
scaling expressions computationally, as shown in Figure 4. As
expected, as we increase the number of pulsars in the PTA, the
decision threshold decreases across all multipoles. Similarly,
as the uncertainty on the cross-correlation measurements
decreases, so do the multipole-dependent decision thresholds,
corresponding to an improved sensitivity to deviations from
isotropy.

4.3. Sensitivity Figure of Merit

Rather than treating the number of pulsars and the cross-
correlation uncertainty as separate variables, we can consider
a combination that is inspired by the weighted arithmetic
mean of cross-correlation measurements involved in, e.g., S/N

Figure 2. The evolution of the total, isotropic, and anisotropic S/N values over
104 noise realizations as a function of cross-correlation uncertainty for an ideal
PTA with 100 pulsars and an isotropic GWB injection. The points represent the
median, while the error bars represent the 95% confidence intervals on the
distribution of the S/N values. A black dashed line corresponding to the
scaling relation in Section 4.2 is shown for reference. For low cross-correlation
uncertainties, the total and isotropic S/N values have identically large values
relative to the anisotropic S/N, implying strong evidence for an isotropic GWB
in the data. These S/N values decrease as the cross-correlation uncertainty
increases, implying loss of confidence in the detection of a GWB as well as loss
of ability to distinguish isotropy from anisotropy. The anisotropic S/N shows
little evolution across uncertainties, though the better fit provided by the
additional degrees of freedom in an anisotropic model prevents this S/N from
being consistent with zero for small cross-correlation uncertainties.
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calculations. In such calculations, operations like så ( )ab ab
2

are proportional to s sµ ( )N Ncc
2

psr
2 in the limit of equal

cross-correlation measurement uncertainties, or where we can
characterize the distribution of uncertainties by its mean or
median over pairs. Therefore we define a sensitivity figure of
merit (FOM), Npsr/σ, and quantify the dependence of our
detection statistics with respect to this. This also allows us to
quantify the trade-off between the number of pulsars in the
PTA and the cross-correlation uncertainties, which, in turn, are
related to the noise characteristics of the pulsars.

The relation of the total S/N and decision threshold to the
sensitivity FOM is shown in Figure 5. We confirm that the total
S/N is proportional to the sensitivity FOM, Npsr/σ, in
logarithmic space. This implies that, as expected, fewer pulsars
or larger uncertainties on the cross-correlation measurements
result in a reduced total S/N, while larger numbers of pulsars
or smaller uncertainties result in an increase in the total S/N
value. Similarly, Figure 5 shows the dependence of the
decision threshold for each anisotropy multipole on Npsr/σ.
As with the total S/N, a PTA with fewer pulsars or larger
uncertainties on the cross-correlation measurements will be
able to reject the null hypothesis with lower significance than a
PTA with more pulsars and/or smaller uncertainties on the
cross-correlations.

5. Simulations with a Realistic PTA

The ideal PTA described in Section 4 is useful in discerning
scaling relationships that map between the PTA design and
detection statistics. However, unlike the ideal PTA in
Section 4, real PTAs do not (yet) consist of pulsars distributed
uniformly across the sky, nor are all the pulsars in the array
identical. The latter fact implies that the cross-correlation
uncertainties in a real PTA will be described by a distribution,
rather than a constant value as assumed in Section 4.

To simulate a realistic PTA, we use the methods developed
in Pol et al. (2021). We base our simulations on the
NANOGrav 12.5 yr data set (Alam et al. 2021), and extend
the data set to a 20 yr timing baseline to forecast the sensitivity
of NANOGrav to anisotropies in the GWB. The TOA
timestamps of the initial 12.5 yr portion are the same as those

in the real NANOGrav data set, while the radiometer
uncertainties and pulse-phase jitter noise that are injected are
obtained from the maximum likelihood pulsar noise analysis
performed as part of the NANOGrav 12.5 yr analysis
(Arzoumanian et al. 2020). The injection values for the
intrinsic per-pulsar red noise are taken from a global PTA
analysis that also models a common-spectrum process. This is
done to isolate the intrinsic red noise in each pulsar’s data set
so that it is not contaminated by the common process reported
in Arzoumanian et al. (2020).
Once the 45 simulated pulsars from the NANOGrav 12.5 yr

data set are generated using the above recipe, the data set is
then extended into the future by generating distributions for the
cadence and measurement uncertainties using the previous
year’s worth of data for each pulsar. We then draw TOAs using
these distributions until the data set has a maximum baseline of
20 yr. Finally, we inject 100 statistically random realizations of
an isotropic GWB with an amplitude of AGWB= 2× 10−15 and
spectral index α=−2/3, consistent with the common process
observed in Arzoumanian et al. (2020).
We then pass all 100 realizations of the data set through the

standard NANOGrav detection pipeline (Arzoumanian et al.
2018, 2020; Pol et al. 2021) to calculate the cross-correlations
and their uncertainties between all pairs in the 45-pulsar data
set (see also Appendix A). The evolution of these cross-
correlation uncertainties across the 100 realizations as a
function of the timing baseline is shown in Figure 6. As we
can see, the median cross-correlation uncertainty reduces from
∼5 at 13 yr (similar to the total baseline of the 12.5 yr data set)
to ∼1 at 20 yr, implying a scaling relation σ∝ T−7/2. This is
shallower than the spectral index predicted for the weak-signal
regime in Section 4.2, which might imply that the NANOGrav
PTA is in the intermediate-signal regime (Siemens et al. 2013),
also hinted at by the fact that the lowest frequencies of the PTA
are dominated by a common-spectrum process as shown in
Arzoumanian et al. (2020). Combining the median uncertainty
with the 45 pulsars in the PTA, we obtain values for our
sensitivity FOM Npsr/σ≈ 9 at 13 yr, and Npsr/σ≈ 45 at 20 yr.
We pass the cross-correlations measured from these 100

realizations through the statistical framework described in

Figure 3. The evolution of the total S/N values for an ideal PTA with 100 pulsars and an isotropic injected GWB. The points represent the median values across 104

noise realizations, while the errors represent 95% confidence intervals. Left: Evolution of the total S/N as a function of number of pulsars in the PTA for different
values of cross-correlation uncertainty. A black dashed line corresponding to the scaling relation in Section 4.2 is shown for reference. Right: Evolution of the total S/
N as a function of the cross-correlation uncertainty for different numbers of pulsars in the PTA. A black dashed line corresponding to the scaling relation in Section 4.2
is shown for reference. Together, these results show that the total S/N is higher for a PTA with small cross-correlation uncertainties and a large number of pulsars.
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Section 2 to search for the presence of anisotropy under
realistic PTA and data quality conditions. The evolution of the
three S/N statistics as a function of time is shown in Figure 7.
Since the injected GWB is isotropic, the total and isotropic S/N
increase with the timing baseline. This is consistent with the
reduction in uncertainties on the cross-correlations allowing for
a stronger detection of the isotropic background. By contrast,
the anisotropic S/N does not increase with time, and has
support at S/N= 0 for all baselines. Note that the total S/N
seen in these realistic simulations is consistent with the
prediction made in Figure 5 and Pol et al. (2021). Similarly,
Figure 8 shows the evolution of the decision threshold as a
function of the spherical harmonic multipole l and the timing
baseline. We find that the anisotropy decision threshold is such
that, in terms of the Cl values, GWB anisotropies at levels
Cl=1/Cl=0 0.3 (i.e., greater than 30% of the power in the
monopole) would be inconsistent with the null hypothesis of
isotropy at the p= 3× 10−3 level for the 20 yr baseline.

For comparison, in Figure 8 we also plot the Bayesian 95%
upper limits on GWB anisotropy using six pulsars from the
EPTA’s first data release (Taylor et al. 2015) for a model
extending to =l 4max . This data set has a maximum baseline of
17.7 yr, which is toward the upper end of the baselines that we
simulate for the NANOGrav data. However, the number of
pulsars (6) in the EPTA analysis is significantly lower than the
number of pulsars in our simulations (45). The longer EPTA
timing baseline allows the Bayesian EPTA upper limits and
NANOGrav anisotropy decision thresholds to be comparable at
low multipoles until NANOGrav’s timing baseline exceeds that
of the EPTA. However, the larger number of pulsars in
NANOGrav not only gives it higher spatial resolution (and thus
access to higher multipoles), but also improves the sensitivity
of NANOGrav at higher multipoles relative to the EPTA 2015
limit. As shown in Floden et al. (2022), access to these higher

Figure 4. The evolution of the decision threshold, Cl
th, for an ideal PTA with an

isotropic injected GWB. The points represent the median values while the
errors represent the 95% confidence interval values across 104 noise
realizations. Top: Evolution of the decision threshold per mode for different
numbers of pulsars in the PTA. Bottom: Evolution of the decision threshold for
different cross-correlation uncertainties. These values are generated for an ideal
PTA with 100 pulsars and a cross-correlation uncertainty of 0.1. These results
show that the decision threshold is lower for PTAs that have a larger number of
pulsars and smaller cross-correlation uncertainties.

Figure 5. The evolution of detection statistics with the sensitivity FOM, Npsr/
σ, defined in Section 4.3 for an ideal PTA with an isotropic injected GWB. The
points represent the medians, while the error bars represent the 95% confidence
intervals across 104 noise realizations. Top: Evolution of the total S/N as a
function of the sensitivity FOM. This scaling relation implies that PTAs with
either a large number of pulsars or small cross-correlation uncertainties (or
both) will return a larger total S/N value than a PTA with fewer pulsars and/or
larger cross-correlation uncertainty. Bottom: The evolution of the decision
threshold as a function of the sensitivity FOM. This implies that PTAs with
fewer pulsars or larger cross-correlation uncertainties will have higher decision
thresholds, while PTAs with more pulsars and smaller cross-correlation
uncertainties will have lower decision thresholds.
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multipoles can aid in the localization of GWB anisotropies
caused by individual GW sources, or due to finiteness in the
source population constituting the GWB. This highlights the
importance of including more pulsars in a PTA for spatial
resolution, even with the shorter timing baseline of such new
additions.

6. Discussion and Conclusion

We have explored the detection and characterization of
stochastic GWB anisotropy through pulsar cross-correlations in
a PTA. Using a frequentist maximum likelihood approach, we
can search for anisotropy by modeling GWB power in
individual sky pixels or through a weighted sum of spherical
harmonics. Anisotropy would then manifest in measured cross-
correlations between pulsar timing residuals through a power-
weighted overlap of pulsar GW antenna response functions. As
a refinement on previous approaches, we prevent the GWB
power from assuming unphysical negative values by adopting a
model that naturally restricts this; we have referred to this as
the square-root spherical harmonic basis throughout our
analysis. We have also defined two detection metrics: (a) the
S/N, defined as the ratio between the maximum likelihood
values of a signal and a noise model, and (b) the anisotropy
decision threshold, Cl

th, defined as the level at which the
measured angular power is inconsistent with isotropy at the
p= 3× 10−3 (∼3σ) level. The S/N comes in three flavors: (i)
the total S/N, which measures the strength of an anisotropic
GWB model against noise alone; (ii) the isotropic S/N, which
measures the strength of an isotropic GWB model against noise
alone (this directly corresponds to the usual optimal statistic S/
N used in PTA data analysis); and (iii) the anisotropic S/N,
which measures the statistical preference for anisotropy over
isotropy.

We examined the evolution of these detection statistics as a
function of the uncertainty on the measured cross-correlations,
as well as of the number of pulsars in the PTA. We showed that

the cross-correlation uncertainty and the number of pulsars in
the PTA can be combined into a single FOM for the PTA
sensitivity, Npsr/σ, which succinctly maps the PTA configura-
tion and noise specifications to the detectability of anisotropy.
Our scaling relations show that increasing the number of
pulsars in an array, while reducing the uncertainty on the cross-
correlation measurements, leads to higher total S/N and lower
anisotropy decision thresholds. As shown in Section 3, the
cross-correlation uncertainty scales inversely with both the
timing baseline and the cadence of observation for each pulsar,
with the power-law index dependent on the signal regime
occupied by the PTA. The pulsar timing baseline is set to
increase as PTAs continue operation into the future, and as
IPTA data combinations are utilized (e.g., Perera et al. 2019).
Improving observing cadence is more challenging due to
constraints on the available telescope time for each PTA,
though once again IPTA data combinations can help alleviate
this problem. In addition to IPTA data combinations, the
CHIME radio telescope (CHIME/Pulsar Collaboration et al.
2021) will offer near-daily cadence to the NANOGrav PTA
(McLaughlin 2013), which is an order-of-magnitude improve-
ment over the current near-monthly cadence employed by
NANOGrav.
Finally, we examined the evolution of the S/N and

anisotropy decision thresholds as a function of timing baseline
using realistic NANOGrav data. Since we injected an isotropic
GWB signal in these data, we found that the anisotropic S/N
remains consistent with zero at all times and across all signal
realizations. By contrast, the total and isotropic S/N increase
with time, as expected (Siemens et al. 2013). We found that
any anisotropic GWB power distribution with Cl=1 0.3Cl=0
would be in tension with an isotropic model at the
p= 3× 10−3 (∼3σ) level. We note that these simulations held
the number of pulsars in the array fixed to the 45 that were
included in the NANOGrav 12.5 yr data set. However, this
number will increase in future NANOGrav data sets. Based on
the results in Section 4.3, this will lead to larger total S/N
values and lower anisotropy decision thresholds, implying
improved sensitivity to any anisotropy that might be present in
the real GWB. IPTA data combinations will further increase the
timing baseline and number of pulsars in the array allowing
further improvements on the ability to detect anisotropy.
Furthermore, new instruments such as ultrawideband receivers,
and new telescopes such as MeerKAT (Bailes et al. 2020), the
Square Kilometre Array (Bailes et al. 2016), and DSA-2000
(Hallinan et al. 2019) will aid in the detection and
characterization of anisotropy with PTAs.
The techniques and scaling relations that we have developed

in this work are PTA-agnostic and can be projected onto any
PTA specification, allowing for immediate usage by the
broader PTA community. Yet we have made assumptions in
our framework that can be generalized in the future. For
example, while our techniques operate on PTA data at the level
of cross-correlations rather than TOAs, in order to get to that
stage we have implicitly assumed that the GWB characteristic
strain spectrum is well described by a power-law model. This
follows the same approach as Arzoumanian et al. (2020), where
an average power-law spectrum hc∝ f−2/3 is assumed for the
GWB. For a GWB produced by a population of inspiraling
SMBHBs, this power-law representation is an approximation to
the true spectrum (Phinney 2001), where there are different
SMBHBs contributing to the GWB at different frequencies

Figure 6. The evolution of the cross-correlation uncertainty across all pulsars
and 100 noise realizations of the realistic PTA data set simulations described in
Section 5. The evolution of the median cross-correlation uncertainty can be
approximately described by σ ∝ T−7/2, which is shallower than the scaling law
prediction of σ ∝ T−13/3 for the weak-signal regime in Section 4.2, but steeper
than the strong-signal regime prediction of σ ∝ T−1/2. This implies that the
NANOGrav PTA is in the intermediate-signal regime, which is corroborated by
the fact that the lowest frequencies of the PTA are now dominated by a
common-spectrum process (interpreted as the GWB) as shown in Arzoumanian
et al. (2020).
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(Kelley et al. 2017). Thus, a more appropriate way to
characterize anisotropy in the SMBHB GWB would be to
measure the cross-correlations of pulsar TOAs as a function of
GW frequency, rather than use our current approach of
computing cross-correlations that are filtered against a power-
law GWB spectral template (see Appendix A). We would then
have a more general data structure that includes pulsar cross-
correlations and uncertainties for each GW frequency, for
which the methods developed here can be applied at each of
those frequencies independently. We also note that the methods
developed here can be modified to search for multiple
backgrounds (Suresh et al. 2021), where an astrophysical
background (e.g., from SMBHBs; Sesana et al. 2004; Kelley
et al. 2017; Burke-Spolaor et al. 2019) would be expected to be
anisotropic, while a cosmological background (e.g., from
cosmic strings; Olmez et al. 2012) may be isotropic.

We plan to explore these improvements and generalizations
in future analyses in a bid to extract as much spatial and
angular information as possible from the exciting new PTA
data sets now under development. As mentioned, these
techniques will aid not only in the detection of GWB
anisotropy, but also in its characterization for the purposes of
isolating regions of excess power that may be indicative of
individually resolvable GW sources, and as leverage for the

separation of potentially multiple stochastic GW signals of
astrophysical and cosmological origin.
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Software: We use lmfit (Newville et al. 2021) for the

nonlinear least-squares minimization in the square-root sphe-
rical harmonic basis. We use libstempo (Vallisneri et al.
2021) to generate our realistic PTA data sets and to inject the
pulsar noise parameters and GWB signals in these data
sets. We use the software packages Enterprise (Ellis
et al. 2020) and enterprise_extensions (Taylor et al.
2021) for model construction, along with PTMCMCSampler

Figure 7. Evolution of the S/N values for the realistic simulations described in Section 5. The total, isotropic, and anisotropic S/N are shown by the blue, green, and
orange histograms, respectively. Since the injected GWB is isotropic, we see the total and isotropic S/N values increase as a function of the timing baseline, while the
anisotropic S/N stays consistent with zero for all baselines.
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(Ellis & van Haasteren 2017) as the Markov Chain Monte
Carlo sampler for our realistic PTA Bayesian analyses. We also
extensively use Matplotlib (Hunter 2007), NumPy (Harris et al.
2020), Python (Oliphant 2007; Millman & Aivazis 2011), and
SciPy (Virtanen et al. 2020).

Appendix A
Computing Cross-correlations in Realistic Pulsar Timing

Data Sets

Reiterating Equation (1), the cross-correlation value and its
uncertainty measured between pulsar a and pulsar b are
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where δta is a vector of timing residuals for pulsar a,
d d= ⟨ ⟩P t ta a a

T is the measured autocovariance matrix of pulsar
a, and Ŝab is the template-scaled covariance matrix between
pulsar a and pulsar b. This scaled covariance matrix is a
template for the spectral shape only, and is amplitude- and
ORF-independent. It is related to the full covariance matrix
by d d c= =⟨ ⟩ ˆS t t SAab a b

T 2
ab ab.

Covariance matrices in the PTA likelihood are modeled
using rank-reduced approximations, e.g., long-timescale sto-
chastic processes are modeled on a truncated Fourier basis with
a number of frequencies that is much smaller than the number
of TOAs. The induced timing delays of such stochastic
processes are modeled as r= Tb, where b is a vector of
amplitude coefficients for the basis design matrix T= [ M F],
which itself is a concatenation of the stabilized timing model
design matrix M and Fourier design matrix F. The former is a
matrix of partial derivatives of TOAs with respect to timing
model parameters, which is then column-normed or stabilized
by singular-value decomposition to reduce the dynamic range
of the entries. The latter is a matrix of sine and cosine basis
functions evaluated at all TOAs for each sampling frequency of
the time series. The autocovariance matrix of pulsars is then
modeled as = +P N T B Ta a a aa a

T, where Na is the white noise

covariance matrix of pulsar a, and

f
¥= ⎡⎣ ⎤⎦ ( )B 0
0 A2

is the covariance matrix of the b coefficients, B= 〈bbT〉, with
infinite variance in the timing model diagonal entries to
approximate an unbounded uniform prior, and f as the
variance of the Fourier coefficients that is related to the PSD
of the stochastic process. The interpulsar covariance matrix is
treated similarly, except that the timing model entries can be
completely ignored since they will be uncorrelated between
different pulsars. Hence, f=ˆ ˆS F Fab a b

T, where f̂ is the scaled
Fourier covariance matrix of the GWB (i.e., it is amplitude- and
ORF-independent).
We use the Woodbury matrix lemma to perform inversions,

such that
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Hence the numerator of Equation (1) can be written as
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and the denominator is written as
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Crucially, the X and Z matrices for each pulsar depend on
the measured noise characteristics (e.g., white noise and
intrinsic red noise) or fixed aspects of the modeling (e.g.,
timing model and Fourier design matrices). They can thus be
constructed and cached for follow-up analysis. The diagonal
matrix f̂ acts as a spectral template that we use in a procedure

Figure 8. Evolution of decision threshold for realistic simulations described in Section 5. Left: Evolution of the decision threshold as a function of timing baseline for
all spherical harmonic multipoles. The decision threshold decreases with an increase in the timing baseline, and higher spherical harmonic multipoles have a higher
decision threshold than lower multipoles. Right: Evolution of the decision threshold across spherical harmonic multipoles for different timing baselines. We also plot
the Bayesian 95% upper limits on anisotropy derived in Taylor et al. (2015) from EPTA Data Release 1. As these realistic simulations have 45 pulsars with different
noise properties resulting in different cross-correlation uncertainties per pulsar pair, we see the sensitivity of the PTA saturate at higher multipoles.
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akin to matched filtering, where we assess the S/N of cross-
correlated signals with, e.g., a power-law PSD that has a−13/3
exponent, matching expectations for a circular, GW-driven
population of SMBHBs forming a stochastic GWB.

Thus, in production-level PTA searches for the stochastic
GWB, the cross-correlations are computed as

f
f f

f f

r =

s = -

ˆ
[ ˆ ˆ ]

( [ ˆ ˆ ]) ( )

X X

Z Z

Z Z

tr
,

tr . A8

ab
a
T

b

a b

ab a b
1 2

Appendix B
Cross-correlation Measurement Uncertainty from PTA

Specifications

As shown in Section 3, the trace in Equation (1) can be
written as

ò=- -[ ˆ ˆ ]
( )

( ) ( )
( )P S P Str

2T
A

df
P f

P f P f
, B1a

1
ab b

1
ba 4 f

f g
2

a bl

h

where T is the timing baseline, A is the amplitude of the GWB,
Pg( f ) is the PSD of timing residuals induced by the GWB,
Pa( f ) and Pb( f ) are the intrinsic PSDs of timing residuals in
pulsars a and b, and fl= 1/T and fh are the low- and high-
frequency cutoffs used in the GWB analysis. For a GWB with a
characteristic strain spectrum

=
a⎛⎝⎜ ⎞⎠⎟( ) ( )h f A

f
f

, B2c
yr

and using the convention from Siemens et al. (2013), the GWB
spectrum can be written in the timing residual space as

p
= =

a
g- -⎜ ⎟⎛⎝ ⎞⎠( ) ( )P f

A f
f

f bf
12

, B3g

2

2
ref

2
3

where γ= 3− 2α, and fref is a reference frequency. Conse-
quently, the uncertainty on the cross-correlations can be written
as

òs =
-⎡⎣⎢ ⎤⎦⎥( )
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As described in Siemens et al. (2013), assuming no intrinsic
red noise in the pulsars, and that all pulsars are identical, the
intrinsic power can be written as the sum of the GWB power
and the white noise, w, in each pulsar, Pa( f )= Pb( f )=
Pg( f )+ 2w2Δt, where the cadence of pulsar observations is
given by c= 1/Δt. Substituting the intrinsic and GWB power
in Equation (B4), the cross-correlation uncertainty can be
written as

òs =
+ D
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The solution for the integral in Equation (B5) is nontrivial,
but as described in Siemens et al. (2013) and Chamberlin et al.
(2015), it can be solved using hypergeometric functions. We
can define three regimes in which PTAs can operate: (i) the
weak-signal regime, where the intrinsic pulsar white noise
dominates over the GWB power, i.e., 2w2Δt? bf−γ; (ii) the

strong-signal regime, where the GWB power dominates the
intrinsic white noise, i.e., 2w2Δt= bf−γ; and (iii) the
intermediate-signal regime, where only the lowest few
frequency bins in the PTA are dominated by the GWB, while
at higher frequencies, the white noise dominates the GWB
power. Given the recent results from the regional PTAs
(Arzoumanian et al. 2020; Chen et al. 2021; Goncharov et al.
2021) and the IPTA (Antoniadis et al. 2022), current PTAs are
in the intermediate-signal regime.
In the weak-signal regime, Siemens et al. (2013) showed that

Equation (B5) can be written as

s
g

»
D -
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w t
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2 2 2 1
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which reduces to
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c
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2

Similarly, in the strong-signal regime, the same integral
reduces to the equation of Siemens et al. (2013):

s » ( )A

cT

1
2

. B8ab

2

Note that the scaling expressions above include the GWB
amplitude, while in the rest of this paper, we use amplitude-
scaled cross-correlation values and uncertainties.
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