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Abstract

Magneto-optical (MO) effects, viz. magnetically induced changes in light intensity or
polarization upon reflection from or transmission through a magnetic sample, were discovered
over a century and a half ago. Initially they played a crucially relevant role in unveiling the
fundamentals of electromagnetism and quantum mechanics. A more broad-based relevance and
wide-spread use of MO methods, however, remained quite limited until the 1960s due to a lack
of suitable, reliable and easy-to-operate light sources. The advent of Laser technology and the
availability of other novel light sources led to an enormous expansion of MO measurement
techniques and applications that continues to this day (see section 1). The here-assembled
roadmap article is intended to provide a meaningful survey over many of the most relevant
recent developments, advances, and emerging research directions in a rather condensed form, so
that readers can easily access a significant overview about this very dynamic research field.
While light source technology and other experimental developments were crucial in the
establishment of today’s magneto-optics, progress also relies on an ever-increasing theoretical
understanding of MO effects from a quantum mechanical perspective (see section 2), as well as
using electromagnetic theory and modelling approaches (see section 3) to enable quantitatively
reliable predictions for ever more complex materials, metamaterials, and device geometries. The
latest advances in established MO methodologies and especially the utilization of the MO Kerr
effect (MOKE) are presented in sections 4 (MOKE spectroscopy), 5 (higher order MOKE
effects), 6 (MOKE microscopy), 8 (high sensitivity MOKE), 9 (generalized MO ellipsometry),
and 20 (Cotton—Mouton effect in two-dimensional materials). In addition, MO effects are now
being investigated and utilized in spectral ranges, to which they originally seemed completely
foreign, as those of synchrotron radiation x-rays (see section 14 on three-dimensional magnetic
characterization and section 16 on light beams carrying orbital angular momentum) and, very
recently, the terahertz (THz) regime (see section 18 on THz MOKE and section 19 on THz
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ellipsometry for electron paramagnetic resonance detection). Magneto-optics also demonstrates
its strength in a unique way when combined with femtosecond laser pulses (see section 10 on
ultrafast MOKE and section 15 on magneto-optics using x-ray free electron lasers), facilitating
the very active field of time-resolved MO spectroscopy that enables investigations of phenomena
like spin relaxation of non-equilibrium photoexcited carriers, transient modifications of
ferromagnetic order, and photo-induced dynamic phase transitions, to name a few. Recent
progress in nanoscience and nanotechnology, which is intimately linked to the achieved
impressive ability to reliably fabricate materials and functional structures at the nanoscale, now
enables the exploitation of strongly enhanced MO effects induced by light—matter interaction at
the nanoscale (see section 12 on magnetoplasmonics and section 13 on MO metasurfaces). MO
effects are also at the very heart of powerful magnetic characterization techniques like Brillouin
light scattering and time-resolved pump-probe measurements for the study of spin waves (see
section 7), their interactions with acoustic waves (see section 11), and ultra-sensitive magnetic
field sensing applications based on nitrogen-vacancy centres in diamond (see section 17).
Despite our best attempt to represent the field of magneto-optics accurately and do justice to all
its novel developments and its diversity, the research area is so extensive and active that there
remains great latitude in deciding what to include in an article of this sort, which in turn means
that some areas might not be adequately represented here. However, we feel that the 20 sections
that form this 2022 magneto-optics roadmap article, each written by experts in the field and
addressing a specific subject on only two pages, provide an accurate snapshot of where this
research field stands today. Correspondingly, it should act as a valuable reference point and
guideline for emerging research directions in modern magneto-optics, as well as illustrate the
directions this research field might take in the foreseeable future.

Keywords: magneto-optics, magnetic characterization methods, magneto-optical effects,
magnetic materials, modern experimental methods, theoretical description and modelling,
magnetic microscopy
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1. Introduction: perspective on recent advances in
magneto-optics

Alexey V Kimel' and Anatoly K Zvezdin®

!Institute for Molecules and Materials, Radboud University,
Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands

2 Prokhorov General Physics Institute of the Russian Academy
of Sciences, Moscow 119991, Russia

Status

The discovery of M Faraday, who showed that linearly polar-
ized light experiences polarization rotation upon propagation
through a magnetized medium, prompted J C Maxwell to sug-
gest electromagnetic origin of light and inspired P Zeeman to
discover the splitting of spectral lines in an applied magnetic
field. Hence in the 19th century, magneto-optics played a key
role in both the development of electrodynamics and founda-
tions of quantum mechanics.

The Faraday rotation emerges due to a difference in
velocity of right and left-handed circularly polarized light
propagating through a medium in the direction of its magnetiz-
ation. This inequality implies different refraction coefficients
for the light waves of opposite helicities and, according to the
Kramers—Kronig relations, different absorptions of the waves
known as magnetic circular dichroism (MCD). In quantum
mechanics, the difference emerges due to the Zeeman split-
ting of quantum states of charged particles in external mag-
netic field. The splitting is proportional to the ratio g/m, where
q is the charge and m is the mass of the particle. Hence, the
magneto-optical (MO) effects are the most pronounced in the
spectral ranges where light interacts with electrons, but much
weaker if the optical properties are dominated by interaction
of light with the lattice.

The development of experimental magneto-optics in the
20th century was inextricably linked with the development
of light sources (see figure 1). The invention of laser played
in this development the decisive role. For instance, laser
sources allowed to boost the sensitivity of MO measure-
ments (see section 8), explore MO phenomena beyond the
approximation of linear optics and obtain conceptually new
techniques to explore otherwise optically inaccessible mag-
netism at buried interfaces, antiferromagnetism and muti-
ferroicity [1]. Synchrotrons are another important develop-
ment that allow sufficiently intense and polarized x-ray radi-
ation to perform MO measurements in the range of elec-
tronic transitions from 2p to 3d-shell (L-edge) and from 3d
to 4f-shell (M-edges). As the shells are nearly not affected
by crystal fields, x-ray MCD (XMCD) practically facilitates
a probe of magnetism with elemental specificity, which is
especially powerful in application to complex alloys and het-
erostructures [2]. Short wavelengths are another advantage of
x-ray radiation that pave a direct path to MO imaging at the
nanoscale.

Current and future challenges

As the conventional theory of magneto-optics is based on the
interaction of light with electronic resonances, MO properties
of media are often assumed to be fully defined by their chem-
ical composition. The recent development of patterning and
nanofabrication changed this paradigm and revealed a possib-
ility of many-fold enhancement of MO phenomena in photonic
crystals and plasmonic structures which host photonic res-
onances [3, 4] (see sections 12 and 13). Aiming to achieve
the largest possible enhancement of the MO phenomena stim-
ulates the search for ways to increase the quality factor
and decrease the losses of the artificially created photonic
resonances.

The development of sources of terahertz (THz) light
stimulated MO measurements in the range of low energy
excitations in Dirac materials [5] and multiferroics (see
sections 18 and 19). In magnetic semiconductors and metals,
THz magneto-optics is a contactless and ultrafast probe of
their magneto-transport properties [6].

State-of-the-art lasers can produce light flashes with dura-
tion well below 100 fs and an ultrashort laser pulse is prac-
tically the shortest stimulus in magnetism. Such pulses and
pump-probe technique opens up the poorly understood field of
ultrafast magnetism (see sections 10 and 11). The interest to
the field is continuously fuelled by its potential to impact mag-
netic recording, spintronics and magnonics technologies as
well as by counter-intuitive experimental observations. Mag-
netism is essentially a quantum mechanical phenomenon, but
with the help of the so-called macrospin approximation mag-
nets can be modelled as classical objects, which obey the laws
of classical mechanics and thermodynamics. In strongly non-
equilibrium states this approximation fails and description of
magnetic phenomena becomes challenging (see section 2).
Consequently, the development of the field of ultrafast non-
equilibrium spin dynamics heavily depends on progress in
experimental research. However, interpretation of MO tran-
sients in the strongly non-equilibrium state is a subject of hot
debates [7].

Although one of the unique functionalities of lasers is to
provide coherent radiation, this fact has been rarely employed
in MO measurements. For instance, using coherence of light
from a laser source and its diffraction on domain patterns in
iron garnets, it is possible to observe domain wall displace-
ments on distances much shorter than the wavelength of light
[8]. Coherent nature of light from lasers is employed to gen-
erate beams with optical orbital angular momentum (OAM),
which allow to observe such novel MO effects as magnetic
helicoidal dichroism (section 16). Very recent breakthroughs
in the development of intense sources of coherent polarized
light in the extreme ultraviolet (XUV) and x-ray ranges has ini-
tiated the development of novel experimental techniques (see
section 15). For instance, lensless imaging of magnetic nano-
structures by x-ray spectro-holography has recently allowed
observing picosecond nucleation of topologically protected
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Figure 1. Roadmap of the key developments in magneto-optics in the past.

non-collinear spin textures [9]. Apart from large-scale facil-
ities, recent progress on high-harmonic generation (HHG) in
noble gases promises to provide sources of sub-fs coherent and
tunable soft x-ray (SX) pulses for table-top MO measurements
with unprecedented time and space resolution.

Further developments of microscopy technique, such as
those based on the MO Kerr effects (MOKEs) (section 6), Bril-
louin light scattering (BLS) (section 7) and magnetic suscept-
ibility of nitrogen vacancies (section 17), towards combina-
tion of the best possible spatial and temporal resolutions can
eventually lead to ever faster and denser magnetic memory.
Time-resolved ultrafast MO nanoscopes, such as the scan-
ning near-field optical microscopes, operating at the length
and time-scale of the exchange interaction, will inevitably
enable a breakthrough in fundamental understanding of ultra-
fast magnetism.

Advances in science and technology to meet
challenges

In the past a lot of attention was paid to the problem of
enhancement of light-spin coupling with the help of magneto-
photonic and/or magneto-plasmonic structures, which prac-
tically play the role of optical cavity. Increasing the quality
factor and decreasing the losses in these photonic and plas-
monic structures has long been a task at the forefront of MO
research. Recently, a conceptually new approach was pro-
posed to enhance the coupling using all-dielectric magnetic
metasurfaces, which exhibits much higher transparency (30%
in resonance and 70% out of resonance) than plasmonic struc-
tures and superior quality-factor (section 13). Alternatively,
the recently emerged field of cavitronics aims at the enhance-
ment with the help of mechanical resonators [10]. It is believed
that the efficient means of light-spin coupling will be benefi-
cial for quantum technologies. Regarding the fact that the size

of the resonator is defined by the wavelength of light, it is
anticipated that the first breakthroughs in single spin—single
photon coupling are the easiest to achieve in the THz spectral
range.

Further development of MO techniques in THz, XUV and
x-ray spectral ranges will allow to improve the sensitivity of
the measurements. In this way, THz, visible, XUV and x-
ray magneto-optics will provide four complementary views
on the same ultrafast phenomenon. It is expected that obtain-
ing the complete experimental information will stimulate fur-
ther close collaboration of theory and experiment aimed at the
development of new approximations and conceptually novel
theoretical approaches to describe ultrafast magnetism. Inter-
pretation of ultrafast MO transients can also benefit from the
on-going rapid developments of theoretical and computational
methods for multiscale modelling of non-equilibrium dynam-
ics of essentially quantum systems.

Concluding remarks

MO effect demonstrated by M Faraday in 1845, even today
remains one of the simplest and, at the same time, the most
powerful tool for characterization of magnetic materials. The
MO techniques are an appealing solution not only for read-
out, but also for control of spins in data storage, spintronics,
magnonics and quantum computing. While first discovered in
the visible spectral range, over the course of time magneto-
optics has been expanded to THz and x-ray spectral range
and allowed to obtain new information about magnetic media,
which is not accessible otherwise. Although in thermodynamic
equilibrium magneto-optics of magnets seem to be well under-
stood, experiments with ultrashort pulses especially in XUV
and x-ray spectral range pose new challenges for theory and
urges us to develop new frameworks beyond the conventional
approximations.
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2. Magneto-optics: quantum mechanical
description and predictions

Sangeeta Sharma and Samuel Shallcross

Max-Born-Institut fiir Nichtlineare Optik und Kurzzeitspek-
troskopie, 12489 Berlin, German

Status

Magneto-optics have long been employed as a probe of the
magnetic ground state of materials (see section 4), however
it is with the advent of ultrafast laser induced spin dynam-
ics that this technique has assumed the prominence it cur-
rently holds. Transient MO response functions represent the
only route to investigate magnetic order at the attosecond to
picosecond time scales of ultrafast spin dynamics (the exper-
imental situation is reviewed in section 11, with dedicated
sections on free electron lasers (FELs) and time resolved THz
spectroscopy presented in sections 14 and 17, respectively).
This field, in turn, offers a paradigm shift from charge to spin
based technologies that, given the pressing demands placed
on memory and computer power by modern society, is likely
to underpin the electronic technologies of the future. That it
is possible to efficiently manipulate spins at ultrafast speeds
was first demonstrated in [11] in which the elemental mag-
net Ni was shown to suffer a loss of moment upon laser
excitation at sub-picosecond timescales. Several theoretical
explanations were provided for this remarkable finding; spin—
orbit coupling (SOC) [12, 13], transfer of spin moment to
orbital degrees of freedom [14], and super-diffusive currents
[15]. Several of these were experimentally contested [15-17],
however the lack of quantitative comparison between experi-
ment and theory has held back progress in identifying funda-
mental mechanisms. Such quantitative comparison, the bed-
rock of progress in the physical sciences, had to wait until
the first ab-initio simulations of ultrafast phenomena [13].
These works appeared to confirm the dominance of SOC at
early times, setting a material intrinsic limit of 10 s of femto-
seconds on ultrafast spin manipulation, a paradigm that was
dramatically upended by the discovery of the optically induced
inter site spin transfer (OISTR) [18], revealing local spin
manipulation to be limited in time only by the laser pulse
duration.

Collaborative progress between experiment and theory
relies on a common set of observables, however while
MO experiments are founded on the measurement of
response functions the natural variables of quantum simu-
lation are time dependent magnetization and current dens-
ities. Recent advances have brought experiment and the-
ory closer together both through the direct simulation of
transient response functions [19], aiding the interpretation
of complex spectral information for magnetic alloys, and
the simulation of angle-resolved photoemission spectro-
scopy (ARPES), yielding information of quasi-particle band
shifts [20].

Time taken for Period of electron orbit | |Period of electromagnetic

light to cross in hydrogen (150 as) radiation at gamma-ray/
1 mm (3 ps) | X-ray boundary (17 zs)
I Time step in I

Time step in
electronic dynamics
simulations (~1 as)

Switching of
world's fastest
transistor (1.2 ps)

molecular dynamics
simulations (~1 fs)

Picosecond Femtosecond | Attosecond Zeptosecond
fas 10 rss 10:85 il
t 1 |

Shortest laser pulse
as of 2017 (43 as)

Time for light to cross
3 hydrogen atoms (1 as)

Period of optical
phonon in Si (64 fs)

Figure 2. Time scales of various processes involved in ultrafast spin
dynamics. Fundamental physical processes are indicated by the
colour bars, with characteristic times given by the text boxes.

Current and future challenges

Despite tremendous progress in the simulation of spin dynam-
ics and magneto-optics, present state-of-the-art theory is
restricted in key aspects that require several future develop-
ments (see figure 2) to bring first principles simulations closer
to experiments:

(a) Phenomena at large time and length scales: A pleth-
ora of interesting physical effects occur on spatial and
time scales that cannot currently be addressed by time-
dependent density functional theory (TD-DFT); (1) the
coupling (and control) of spin dynamics by lattice excita-
tions e.g. prepared phonons, (2) radiative effects, (3) meso-
scopic spin structures such as skyrmions, domain walls
(section 6 presents the experimental situation of charac-
terizing complex magnetic structures via spatiotemporal
Kerr imaging), long wavelength magnons and spin waves
(SWs) (see section 7 for a review of BLS, a key tool to
characterize complex SW textures), and (4) spin deco-
herence. All of these require fundamental methodological
extension of the ab-initio approach, as described below.

(b) Many-body effects: Reduced screening in two dimensional
materials implies a profound role for excitonic effects in
the early time dynamics. Present ab-initio theory, how-
ever, treats excitonic effects only in the static limit for
weak pulses. To capture spin and charge dynamics in
two-dimensional (2D) materials exciton dynamics must be
treated on the same footing as the dynamics of free car-
riers. For periodic solids this will involve solving Max-
well’s equation together with the TD-DFT electronic sys-
tem. At the same time, excitonic effects play a significant
role in shaping MO response functions, and the systematic
inclusion of excitonic effects remains an outstanding chal-
lenge in their simulation.
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(c) Emergent phenomena: Emergent variables such as the
exchange interaction and temperature form a natural
description for later time (picosecond scale) phenomena
such as all optical switching (AOS) in e.g. GdFeCo. On the
other hand, few femtosecond timescale dynamics reveals a
different physical regime characterized by profound spin-
charge coupling such as exhibited by the OISTR effect.
A key unresolved question is thus how and at what time
scales do emergent spin variables and their interactions
(such as can be described by the Landau-Lifshitz—Gilbert
type approaches) emerge from the underlying dynam-
ical electronic structure. Bridging these two time regimes
and their distinct theoretical methodologies can be expec-
ted to offer new insights into the origins of remarkable
effects such as AOS. Such hybrid approaches may also
provide a promising route for the exploration of funda-
mental early time physics in novel devices involving trans-
port (section 9 reviews the situation for the measurement
of spin and charge currents via the MOKE), such as the so-
called OGMR effect (OISTR induced giant magnetic res-
istance) in which the OISTR effect [18] would switch the
magnetic order of a multilayer from ferromagnetic (FM)
to antiferromagnet (AFM), thereby enacting a transient
spin-filter.

Advances in science and technology to meet
challenges

(a) Long time scales: Currently TD-DFT can describe light—
matter interaction only of the electronic system, which
in solids limits the useful simulation time to approxim-
ately the first 100 fs. Extension to longer times requires
coupling spin dynamics to additional degrees of freedom:
(1) the nuclei degrees of freedom [21] and (2) Maxwell’s
equations to include radiative effects [22].

(b) Long length scales: Modern computer power limits the
spatial scales accessible to simulation to system sizes of
the order of 100 s of atoms [23]. Treating phenomena
of longer length scales ab-initio will require a dynam-
ical extension of the recently proposed ‘long-range ansatz’
[24], in turn necessitating a density function theory for the
long-range dipole—dipole interaction term.

(c) Experimental magneto-optics for anti-ferromagnets: as
magneto-optic techniques measure total moment, these
techniques cannot be used to probe the spin dynamics of
AFM. Linear dichroism or the Voigt effect can in principle
be used to study such systems and a future in-depth ana-
lysis of such transient response functions in the context of
AFM spin dynamics is highly desirable [25].

Concluding remarks

After more than two decades of being led by experiment, the
extension of state-of-the-art quantum simulations to the field
of ultrafast spin dynamics has resulted in a fruitful partner-
ship between theory and experiment. This has already yielded
profound progress: the prediction and experimental confirm-
ation of new ultrafast phenomena [18], the ability to decode
complex transient spectral information, and the beginnings
of an understanding of the impact of laser light on quasi-
particle band properties [20]. Ab-initio understanding of the
light-matter interaction and ultrafast spin and charge dynam-
ics remains, however, limited to very early times and short
(unit cell scale) lengths. Complex magnetic structures and
their dynamics, whose experimental measurement is currently
the subject of intense activity as reviewed in sections 6 and 7,
thus represent a key unsolved challenge for ab-initio theory,
and the extension of the domain of simulation to the time and
length scales at which such textures exist would enable a rich
future collaboration between theory and experiment.
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3. Magneto-optics: electromagnetic theory
and modelling
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Status

Theoretical modelling of electromagnetic fields (EFs) in nano-
scale optical systems is inherently a challenge that has been
subject to a continuous effort leading to a variety of tools and
techniques. This complexity is, of course, increased for res-
onant systems, as the details of the EF in the vicinity and the
interior of the nanostructure completely determines its optical
response. In absence of MO activity, the tensor can, in most
cases, be fully regarded as a scalar € (r) [26]. In presence of

MO activity, the dielectric tensor € (r) needs to be considered
in full:

Ex(r) ex(r) ex(r)
EW =| en(r) en(r) &y(r)
ex(r) Ezy (r) ex(r)

The appearance of off-diagonal elements give rise to the
first (linear) manifestation of the MO activity whereas higher-
order effects influence all (off-diagonal and diagonal alike).
In the most common case of linear response we would have
(exx (r) = €y, (r) = ;) and ¢j; (r) = —¢;; (r) for i # j [26].

The nature of MO, sharing magnetism and photonics alike,
makes its modelling somehow dependent on the final goal.
One can use the optical response either to bring forth mag-
netic properties, as is traditionally happening in MO ellipso-
metry (see section 9) or to enhance the MO signal itself (see
section 12). On the other hand, the non-diagonal elements in

E?S reflect that the MO activity permits an external modific-
ation of the optical behaviour. This has been used to develop
modulators and isolators since long ago but now, with resonant
optical elements in the nanoscale, a new dimension has been
reached. Therefore, the modelling needs to describe the geo-
metry of the MO material and the region where the optical EF
is localized.

Multilayered (thin) fims. In this case, the material is disposed
in layers where variations of the material and/or the localiza-
tion of the EF occur only in one direction, and the propagation
direction of the optical wave has a non-zero component along
it. Here Transfer matrix techniques are enough to obtain accur-
ate results [27]. Inclusions of MO material in a non-active
one (or vice-versa) can be treated using an effective medium
before performing the transfer matrix formalism, to obtain
the required homogeneous in-layer material. This is valid as

long as the inclusions are non-interacting and/or the spacing is
not commensurate with the optical wavelength (e.g. photonic
crystals).

Multilayered periodic nanostructures. In this case, the dis-
tance between the elements is a key factor and thus it must
be properly considered. For that reason, an expansion in a
basis formed by plane waves is considered by many the best
approach. This lies at the core of scattering matrix and rigorous
coupled-wave or scattering matrix methodologies that needed

to be adapted to cope with the requirements imposed by & (r
(e.g. fast Fourier factorization techniques to keep reasonable
computational time and memory resources) [28-30].

Isolated (non-periodic) structures. For this case the most
used methodologies are based on space-time discretization
to solve Maxwell’s equations using finite element methods
(FEMs) [31], finite difference time domain (FDTD) [32], dis-
crete (or coupled) dipole approximation (DDA/CDA) or T-
matrix methods [33, 34]. In all cases, the system, after discret-
ization, turns into a complex system of equations whose solu-
tion is tackled by a different mathematical approach depending
on its size. Each method poses its advantages and shortcom-
ings. FEM can tackle proficiently any kind of geometry, and

virtually with any € (r,w), but the discretization scheme itself
(tetrahedral) lead to undesired anisotropies. FDTD can solve
the whole frequency spectrum, as it involves the time evolution

of a given pulse, based on a parameter fitting of € (r,w; to be
able to efficiently cope with the temporal evolution. This turns
into a weakness when diagonal and off-diagonal elements are
very different, as the error in the parametric fitting can be of
the order of the MO elements themselves. DDA/CDA and T-
matrix are very similar and consider that each discretization
volume behaves as a point multipole (in many cases, keeping
only the lowest dipole is already enough). This has advantages
over FEM and FDTD since the background medium needs no
discretization at all [34]. However, it has shown difficulties to
cope with geometries with large anisotropies (e.g. very elong-
ated needles or very flat disks or flakes).

Current and future challenges

The unprecedented development of experimental techniques,
particularly in the nanoscale, brings with it structures and
devices with a great deal of complexity, both in the geometry
and in the composition of the system. These will be the corner-
stone of future technologies, and modelling MO capabilities
with enough accuracy to be predictive is paramount. It should
not be forgotten that this field feeds from state-of-the-art mag-
netic technologies and optical elements, where multi-scale
approaches are normally a must. These include the very chal-
lenging topics of interactions between spintronics and optics,
the interplay of optical and acoustic resonances mediated by
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the MO effect, THz MO or topological effects (see sections 10,
11, 16, 18 and 20).

The coexistence of different aspects that might lead to
anisotropies, e.g. simultaneously MO and chiral, ‘magneto-
chiral’, structures, are currently experiencing lots of atten-
tion. For such cases there is a competition between the purely
optical (geometrical) dichroism and the MO one, therefore the
theoretical tools to be used must be well suited to address the
ultimate source of a given effect. Good examples of these kinds
of systems are topologically protected chiral systems or parity-
time broken symmetric systems under MO effects.

A 2D materials and metasurfaces are special cases. A 2D
materials are challenging for the phenomena developing in-
plane and out-of-plane take place in very different length
scales. The methods described above require a large number of
discretization elements to rigorously tackle numerical compu-
tation of the MO (even only optical) response. In metasurfaces,
the order is a key factor to understand the physical phenomena.
Systems exhibiting order in the short-range but not in the long-
range (e.g. hyperuniform systems [35, 36]) cannot, in certain
situations, be treated neither imposing periodicity nor ignoring
interactions via conventional effective medium approaches.

The actual challenge in MO modelling lies thus in effi-
cient treatment of the multiscale nature of the systems that
are nowadays of interest. Different regions with rapidly vary-
ing = require efficient discretization approaches or clever
definitions on the tensorial polarizability ‘& of the interacting
elements. Quantum as well as non-locality effects have been
subject of intense consideration in the framework of optical
devices. In the MO case, these effects have not been extens-
ively considered so far, but it is foreseen that modelling of
future MO devices must consider them.

Advances in science and technology to meet
challenges

Advances should consider the development of strategies able
to cope with multi spatial (geometry and wavelength) and
multi-temporal scales in the same framework. Additionally,
cross-linking the different approaches would make it possible
to diminish the inconveniences present in each of them indi-
vidually. Solvers able to deal with extreme cases such as gaps
100 times smaller than the wavelength or aspect ratios equally

dissimilar must be common in the near future. One way is
improving the efficiency of the mathematical solvers (brute
force) for millions of unknowns. Another relies on combin-
ation of strategies, such as using FEM or FDTD for para-
metric modelling of a single complex structure and the T-
matrix to account for interactions when the structure is the
building block of a colloid. That approach has the advant-
age of the accurate solutions for isolated entities provided
by the FEM/FDTD while discretization-free signal propaga-
tion of the T-matrix properly accounts for the interactions.
FEM needs avoiding unrealistic anisotropies arising from the
meshing strategy, easy to detect when the system has a well-
defined symmetry, but able to jeopardize the whole structure
when not. FDTD requires parametrization schemes to be able
to obtain fitting errors much smaller than the MO-elements.
DDA and T-matrix do not require meshing or discretizing
the free-space, but need formalisms using very anisotropic
point dipoles, inhomogeneous discretization and of weak
non-localities.

Efficient methods for calculating the interaction of a large
number of entities for complex systems in a multidimensional
space will be necessary. Future efforts for ad-hoc MO mod-
els should allow for the development of methods that incor-
porate quantum mechanics effects into a precise calculation of
the material properties and anisotropies in ‘€. These include
non-localities for multi-material systems and suitable ways
to translate quantum mechanical effects in the magnetic part
to . Ideally, comprehensive methodologies encompassing
advanced micromagnetic calculations together with a reli-
able modelling of the optical response, with efficient com-
puting at its core, would pave the way towards real device
simulations.

Concluding remarks

MO modelling should evolve tightly linked to multiscale
methodologies. Optics and magnetism should evolve simil-
arly to avoid over- or under-description of one of the fields.
The main focus must be on devices, but not forgetting fun-
damental aspects when developing new codes or theoretical
approaches. The future is linked to multiphysical descriptions,
together with highly efficient numerical codes. In that way,
modelling will possess actual predictive capabilities.
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4. Spectroscopic magneto-optical (MO)
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This section focuses on MO spectroscopic characterization
methods operating from the near-infrared (NIR) to the ultra-
violet spectral range, that allows for the assessment of the
electronic transitions involving valence states. MO character-
ization methods in the THz and x-rays spectral range are dis-
cussed in the sections 19 and 14, respectively.

The Faraday rotation, MCD, and the MOKE are non-
reciprocal effects that can be caused when the time-reversal
symmetry is broken in magnetized media. The magnetization
can either be induced by a magnetic field in the case of dia-
magnets, paramagnets, or magnetically ordered materials, or
can arise spontaneously in the latter. A review of the micro-
scopical mechanisms of the MO activity of various inorganic
materials can be found, for example, in the section 1 or in
the book of Zvezdin and Kotov [37]. The microscopic origin
of MCD occurring in molecular materials is discussed thor-
oughly, e.g. for diamagnetic and paramagnetic porphyrinoid
molecular systems in [38].

The spectroscopic methods based on MO effects measured
in transmission geometry (Faraday rotation, MCD) profit from
their higher magnitude compared to those observed in reflec-
tion geometry (MOKE). MCD spectroscopy became widely
used for the assessment of the electronic structure of molecular
systems (including diamagnetic and paramagnetic molecules)
at room temperature (RT) and at moderate magnetic fields
(below 1 T) in the chemistry community, the fact that boos-
ted the development of commercially available spectrometers.
The transmission measurements are, however, limited to trans-
parent samples such as molecules dissolved in solutions or
solid matrices, or organic as well as inorganic films on trans-
parent substrates.

On the other hand, the application of MOKE spectro-
scopy in reflection geometry is usually associated with opaque
samples. The reported Kerr rotation and Kerr ellipticity spectra
are mostly acquired using home-built setups with a detection
sensitivity down to 0.001°. Achieving such a high sensitivity
with conventional white light sources requires the modulation
of the light polarization (either before or after the reflection on
the sample) that is realised mostly using photoelastic modu-
lators, similar to the MCD spectrometers. Thanks to the excel-
lent sensitivity of the current MOKE spectrometers the char-
acterization of ultra-thin FM layers with thicknesses in the
sub-nanometre range (e.g. [39]), thin paramagnetic and dia-
magnetic molecular layers (e.g. [40]), organic/FM heterostruc-
tures (e.g. [41], see figure 3), or superparamagnetic clusters in
organic matrices (e.g. [42]) or other complex heterostructures
became possible.
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Figure 3. MOKE spectra of a Co film (top) and of

thin films of the single molecule magnet TbPc, on Co/SiO,/Si
recorded at RT in the paramagnetic state. The TbPc, film thickness
is given in the legend of each graph. The continuous lines (blue) and
dotted lines (red) represent the spectra of the Kerr rotation and
ellipticity, respectively. (Bottom) Sketch of the samples.
Reproduced from [41] with permission of The Royal Society of
Chemistry.

Current and future challenges

When MOKE spectroscopy is performed on complex systems
such as multilayers on opaque substrates, the MO signal is not
a simple superposition of the MO activity of the individual lay-
ers. Multiple reflections occurring at interfaces lead to inter-
ference effects (sometimes described as optical artefacts) that
can dramatically influence the spectral lineshape. In order to
assess the contribution of individual materials to the total MO
signal, i.e. the material specific MO activity (described by the
Voigt constant or the off-diagonal component of the dielec-
tric tensor), the application of optical multilayer models and
the knowledge of the energy dispersion of the optical con-
stants (or diagonal components of the dielectric tensor) as
well as of the layer thicknesses is necessary. Chemical inter-
actions at interfaces that modify the electronic structure of
the materials might complicate the numerical modelling (see
[41]). Furthermore, higher-order effects might also bring a
spectral contribution, as discussed in section 5. There have also
been experimental attempts to disentangle the individual con-
tribution in complex systems, for example by using magnetic
field-dependent MOKE spectroscopy [43] or by exploiting
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the representation of the Kerr effect in the complex rotation-
ellipticity plane [44].

While MCD spectroscopy monitoring of time-dependent
processes, such as molecular reactions, became available
in commercial setups, real-time monitoring using MOKE
spectroscopy on opaque samples is still rarely applied. As
already mentioned, the MO activity in reflection is lower
than in transmission and the spectral measurements are still
too slow for real-time process monitoring. This is caused by
the need of compromising between struggling for sensitivity
using the combination of photoelastic modulation and single
wavelength detection using photomultipliers. A further imped-
iment might be the difficulty in the implementation of variable
magnetic field sources in vacuum systems where processes
such as film growth or thermal annealing of inorganic layers
take place.

Another major challenge in the MOKE spectroscopic char-
acterization resides in the lateral resolution of the state-of-
the-art home-built spectrometers, that is in the range of milli-
metres. While MOKE microscopy performed either with white
light or monochromatic sources is widely employed for mag-
netic domain imaging (see section 6), the possibility of per-
forming MOKE spectroscopy with sub-micrometre lateral res-
olution would open new avenues in the characterization of, for
example, magnetism in 2D materials and of inhomogeneous or
micro-structured samples.

Advances in science and technology to meet
challenges

Thanks to the development of the numerical methods for
optical multilayer models driven by the spectroscopic ellip-
sometry community alongside with the progress in the com-
puting power, numerical simulations of the MOKE spectra
or fitting of the experimental spectra will become more and
more common. This will broaden the applicability range of
the MOKE spectroscopy allowing, for example, to assess at
the same time the intrinsic electronic and magnetic properties
of individual components of multilayer structures as such or
upon various processing methods such as thermally induced
crystallization or upon application of strain or other external
stimuli.

The development of compact in situ electromagnets for use
in ultrahigh vacuum environments might offer a tool for real-
time magneto-optic Kerr effect monitoring during growth pro-
cesses (see e.g. [45]). The monitoring is still limited to single

photon energies, but spectroscopic measurements might be
recorded while interrupting the growth.

A solution for the signal enhancement from samples with
low MO activity might be provided by exploiting the inter-
ference effects occurring when dielectric layers with vanish-
ingly low MO activity are combined with MO active lay-
ers. This method has already been exploited in MO storage
media. A similar approach, based on embedding the MO act-
ive layer between two dielectric layers (called extreme anti-
reflection enhanced MOKE), was recently demonstrated by
MOKE spectroscopy and microscopy [46]. Another promising
approach for the MO response enhancement relies on plas-
monic resonances in Au films or nanostructures (see e.g. [47]
and references therein or section 12).

Regarding the spectral MO measurements with
(sub-)micrometre resolution, methods from other optical spec-
troscopies might also boost progress in magneto-optics if
implementing magnetic field sources. For example, reflec-
tion difference spectroscopy at micrometre scale has already
been performed with the sensitivity required for MOKE [48].
On the other hand, the newest imaging ellipsometers can be
equipped for the measurement of the Miiller matrix compon-
ents containing information on the MO activity (see section 9
for more details on the ellipsometry relation to magneto-
optics). A possible drawback related to the lower sensitivity
of the current imaging ellipsometers compared with MOKE
spectrometers could be overcome by using one of the MO
signal enhancement approaches discussed above.

Concluding remarks

MO spectroscopies in the NIR to ultraviolet spectral range
offer access to the joint density of states involving valence
states in various diamagnetic, paramagnetic, and magnetically
ordered systems. The extraction of the individual MO response
of materials and/or nanostructures in complex systems is chal-
lenging, but accessible via experimental and/or numerical sim-
ulation or fitting approaches. This response can be exploited
for a better understanding of modifications induced by external
stimuli (such as heat, light, strain, etc) to the electronic struc-
ture as well as to the structural, and magnetic properties of the
individual components in complex heterostructures. Experi-
mental developments that will allow performing MO spectro-
scopies with a (sub-)micrometre spatial resolution will pave
new ways for the characterization of microstructured samples
as well as of the novel aspects of magnetism in 2D materials.
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The relation between the measured MO effect and magnetiza-
tion direction can be separated into two subsequent steps. (a)
The first step is a relation between magnetization direction and
elements of the permittivity tensor £;, which phenomenolo-
gically describes optical properties of the FM material. (b) The
second step is a relation between the permittivity tensor €;; and
the resulting MO effects. In the simplest approximation, both
steps provide linear relations, resulting in a linear dependence
between MO effect and the magnetization direction. However,
both steps may contain also higher order (quadratic) terms,
providing that relation between measured MO effect and mag-
netization is in general not linear anymore.

The magnetization direction can be understood as a small
perturbation to optical properties of the FM material, described
by the permittivity tensor £; Hence, its dependence on the
relative magnetization components My, M; can be written in
Taylor series as a sum of permittivity contributions [49, 50]

€= 5ij(0) —+ KijkMk + GijkleMlv

where i, j, k, [ = {x, y, z}, and 5,7(0), Kijx and Gy are second,
third and fourth order MO tensor describing permittivity con-
tributions independent on, linear to and quadratic to magnetiz-
ation direction, respectively. The second order MO effects are
proportional to the quadratic form of the magnetization, ori-
ginating from permittivity contributions 5,7(2) = Gy My M;.
Where ;% is the second-order contribution to the permittiv-
ity tensor. When diagonal permittivity, £;® depends on the
magnetization direction, the corresponding MO effect can be
detected by magnetic linear dichroism (MLD). When the off-
diagonal permittivity term (g%, i # j) depends on the magnet-
ization direction, the MO effect can be detected by quadratic
MOKE (QMOKE).

The quadratic MO effects are present not only in FMs, but
also in AFMs. The ability of the second order MO effects to
be sensitive to the spin-ordering of AFM (so called Néel vec-
tor) makes this effect one of the few techniques to detect spin-
ordering in AFM. The general form of Gy, tensor depends on
crystal symmetry. For example, in the case of FM cubic mater-
ial possessing point symmetry (and considering that the length
of magnetization vector is constant), only two independent
parameters remain, called G, and 2G44 [51]. Determination of
their spectra extends usual linear spectral magnetooptics (see
section 4). The spectra of G, and 2G44 were determined for bec
Fe [51, 52] and Heusler compound Co,MnSi [53] (figure 4). In
both cases, the G-spectra were about 10 x smaller compared to
their linear-in-magnetization counterparts. Also, in both cases,
there was a reasonable agreement between experimental spec-
tra and those determined by ab-initio calculations based on
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Figure 4. Imaginary part of permittivity spectra of Heusler
compound Co,MnSi prepared at different annealing temperatures,
corresponding to different amount of L2, ordering (a) &4
(permittivity of zeroth order in M), (b) linear MO parameter K,

(c) quadratic MO parameter Gy, and (d) quadratic MO parameter
2G44. Coloured full lines are the experimental spectra, black dashed
lines are ab initio spectra. Reprinted from [53], with the permission
of AIP Publishing.

Kubo formula, demonstrating validity of the linear response
theory to describe MO effects quadratic in magnetization.
Furthermore, the G-spectra on Co,MnSi demonstrated nearly
linear scaling of strength of G-elements with the amount of
L2, crystallographic ordering, suggesting that QMOKE spec-
troscopy can be used to optically determine crystallographic
ordering.

The relation between outgoing MOKE &, and ®,, for incid-
ent s and p light polarization, respectively, and off-diagonal
permittivity elements £;; can be written as [54]

Ay (yx — €y:€2x/€d) + Bse oy

D,
Q, = —A, (Exy — Ex:Ery/€d) + Bpexs

p

where €4 is the diagonal permittivity and Ay, and By, are
scaling optical factors between @/, and permittivity elements,
where Ay, express scaling for polar geometry, i.e. part of
MOKE even in the incidence angle ¢, Ay, (@) = Agyp(—¢), and
By, for longitudinal geometry (i.e. part of MOKE odd in the
incidence angle, By,(¢) = — By, (—)). Although one usually
assumes, that relation between ®, and off-diagonal permit-
tivity elements is linear, ®, also contains product of two off-
diagonal elements, ¢,; €., and €y €., respectively. In the case
both elements in the product are linear in magnetization, then
this term provides quadratic-in-magnetization response, mim-
icking QMOKE originating from the second-order MO tensor
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Figure 5. Magnetization loops of MOKE on vicinal structure
Co/Au(322) at different sample orientations with in-plane applied
field. The measured MOKE consists of vicinal MOKE, originating
from a higher order term €y.¢;,. The vicinal MOKE is linear in
magnetization, however remarkably changes sign when sample is
rotated by 180°. Reprinted (figure) with permission from [55],
Copyright (2003) by the American Physical Society.

gy = Gyt My M;. Hence, care is required to correctly inter-
pret those contributions [51].

Another demonstration of higher order term ¢y, €., is the
vicinal MOKE (figure 5), originating from the vicinal interface
of FM layer, where one off-diagonal permittivity term is linear
in magnetization, whereas the other one is of structural origin
due to low symmetry of the vicinal interface [55].

Current and future challenges

In general, both the linear and quadratic MO effects can be
employed either as a tool to study direction of magnetic order-
ing, or as a spectroscopy tool to provide insight into the elec-
tronic structure (see section 9). From the spectroscopic point
of view, quadratic G-spectra of only two materials have been
determined so far, both being cubic materials. In general, the
measured MOKE may consist of several linear or quadratic
contributions. Hence, several spectra must be measured at dif-
ferent magnetization and sample orientations, in order to sep-
arate different MO permittivity elements Kj; and Gjy. How-
ever, such a separation procedure depends on crystallographic
symmetry and surface orientations of FM material [56], which
further complicates routine employment of QMOKE spec-
troscopy. Also, the symmetry analysis of cubic FM material
without point symmetry (i.e. without inversion) predict a new
quadratic term ATI", which would allow to detect absence of
the point symmetry in FM materials by using optical methods
[56], but has not been experimentally demonstrated yet.

Another challenge is to develop QMOKE spectroscopy for
other classes of materials, establishing it as a standard spec-
troscopy tool. MO spectroscopy on AFM materials is limited
now, mainly due to the inherent difficulty to manipulate spin-
ordering direction in AFM materials, achieved for example
by varying the temperature below and above Neel temper-
ature [57, 58]. Furthermore, as new types of AFM ordering
emerge (e.g. non-collinear spin ordering in Mn3Sn), the details
of quadratic MO effects and their spectra in those systems are
still to be understood [59].

Finally, one can employ inverse quadratic MO effect to
manipulate Néel vector of AFM by pump-probe technique

[60] (see section 10), maybe even to induce selective mag-
netic precession of different elements. Also, one can envisage
pump-probe system used to measure QMOKE spectroscopy in
AFM. Here, the pump pulse will induce precession of atomic
magnetic moments, which subsequently will be read by probe
pulse, which photon energy will be varied, and hence reading
QMOKE spectra.

Advances in science and technology to meet
challenges

Nowadays spectral ellipsometry is routinely used in both aca-
demia and industry to characterize quality of multilayer struc-
tures, with lateral resolution down to 100 pm and with pos-
sibility to measure and process spectra within few seconds.
The MOKE spectroscopy can be established as a standard
tool to quickly and cheaply characterize crystal quality of pre-
pared FM films, having advantage of implicit sensitivity to
FM material. The sensitivity to structural details of FM layer
can be further enhanced by employing also QMOKE spectro-
scopy, as demonstrated in the case of Co,MnSi [53] (figure 4).
However, MOKE spectroscopy is currently not established as
a routine tool to check crystal quality of FM layer.

To be able to measure QMOKE spectra in AFM mater-
ials, one needs to establish control of Néel vector, either
statically or dynamically (precession). Control of Néel vec-
tor is clearly interesting also in other branches of physics,
such as AFM spintronics or AFM spin dynamics [60]. Well-
established inverse quadratic MOKE can contribute to achieve
such a control.

Although it has been demonstrated that linear response the-
ory (Kubo formula) well describes spectra of quadratic MO
effects, their detailed origin and understanding within elec-
tronic band structure is elusive nowadays, as it is already com-
plicated to detail the origin of linear MOKE in simple FM
material [61]. Itis a challenge to establish understanding of the
origin of higher-order MO effects within electronic structure,
key prerequisite to tune, optimize and finally better employ the
effect (see section 2).

Another challenge is a detection (and eventually spectro-
scopy) of the third-order MO effects, which have been demon-
strated to exist in bee Fe [62] and fce Ni [63], however any
spectroscopy or ab-initio description of those MO effects is
missing.

Concluding remarks

MO effects have been used for a very long time to read
and manipulate magnetization state as well as to investigate
electronic structure of magnetic materials. Employing higher-
order MO effects increases potential of those approaches,
such as reading and writing of spin-order in antiferromagnetic
materials or gaining higher sensitivity to selected quality of the
crystallographic structure, such as crystallographic ordering or
absence of point symmetry of the crystal.
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6. Kerr microscopy
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Status

Kerr microscopy is a method for the imaging of magnetic
domains, which is strongly connected to other MO imaging
methods like Faraday and Voigt effect microscopy [64, 65].
The physical origin of the Kerr effect (see section 4) is
identical to the Faraday effect but is exhibited in reflection
from a magnetized surface and thereby suitable for the ana-
lysis of metallic specimen. Kerr microscopy is a traditional
technique [66] used by specialists in the field. Yet, during the
last decade it has become a standard laboratory technique for
the investigation of magnetic domain behaviour.

MOKE microscopy is based on the use of modified
optical polarization microscopes or related setups using reg-
ular objective lenses, enabling flexible wide-field imaging
from a centimetre to the micrometre scale (figures 6(a)—(c)).
Consequently, wavelengths within the visible spectrum are
normally applied, which restrict the attainable spatial res-
olution down to the 100 nm regime. Magneto-optics offer
the chance to probe lateral dynamic magnetization response
from the quasi-static down to the femtosecond timescale
(figures 6(d)—(f)) using light emitting diodes [67, 68] and
pulsed laser illumination sources [64, 69, 70]. In terms of tem-
poral resolution, Kerr microscopy is at least comparable to cur-
rent x-ray microscopy techniques.

In Kerr imaging the exact illumination conditions are of
high importance as the three fundamental Kerr geometries,
polar, longitudinal, and transverse MOKESs, must be adjusted
carefully under microscopic conditions. They may contribute
concurrently to the magnetic contrast, which impedes mag-
netic image interpretation. Likewise, higher order MO effects
(see section 5) and the MO Gradient effect add to the magnetic
image formation. The challenge has been partly overcome
by advanced illumination schemes with simultaneous [64,
67] or sequentially alternating illumination schemes [68, 69],
enabling the separation of the different Kerr effects for the MO
image formation and the realization of quantitative Kerr effect
micrographs [64, 67-69, 71]. With the increase of dynamic
range and signal-to-noise ratio in current complementary
metal-oxide semiconductor (CMOS) camera technology, ima-
ging of the purely transverse Kerr effect with sensitivity only to
the in-plane magnetization has become achievable [72]. This
progress is supported by the revival of anti-reflection schemes
[66] for achieving huge MO contrasts for even nanometre thick
films [46]. This helps enabling analyser free domain imaging
modes [46, 72].

By this, Kerr and MO microscopy offers unique benefits for
the investigation of a large variety of spin systems, including
also non-collinear AFMs [73] on a laboratory level.
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Figure 6. Exemplary Kerr microscopy images on different length
and time scales. (a) Large view domain image from a mixed low
anisotropy NigiFej9 (40 nm) single film. (b) Variations from Landau
domain structures in Nig; Fej9 (50 nm) square elements.

(c) Magnetic onion state in a 300 nm width CogoFe1g

(0.8 nm)/Nig; Feg (28 nm) ring structure. Reproduced from [64].

© IOP Publishing Ltd. CC BY 3.0. (d) Quasi-static domain image
of skyrmion bubble formation in a CospFesoB2o (1.4 nm)/MgO thin
film. (e) Single-shot dynamic domain evolution in a micrometre
thick garnet layer (single shot imaging with 20 ns pulse width, MO
Faraday contrast imaging). (f) Quantitative dynamic domain
imaging of SWs in a Co4oFes0B2o (120 nm) film (excitation
frequency of 3 GHz, time resolution of 7 ps). Reprinted from [69],
Copyright (2017), with permission from Elsevier.

Current and future challenges

Several challenges must be met to further enhance imaging for
foreseen investigations in magnetism research, ranging from
improving temporal and spatial resolution and alternative ima-
ging modes for low MO contrast retrieval. Imaging of three-
dimensional magnetic structures, integrating depth-selectivity,
and material specificity known from MO magnetometry [44]
would bring Kerr microscopy to the next level. Hereinafter, the
most relevant challenges are specified.

Temporal resolution to image up to fast magnetization
dynamics by stroboscopic imaging methods is standard for
Kerr microscopy. Working merely for repetitive magnetic
events, extending the imaging modes to fast single-shot ima-
ging (figure 6(e)) of nonrepetitive events is nearly unexplored
for time scales below the microsecond regime. Providing
single-shot imaging for the regime of magnetization dynamics
beyond that range would open a new field for the investigation
of magnetization behaviour in magnetic materials and devices.

The spatial resolution in standard Kerr microscopy is
mainly restricted by the optical diffraction limit, which scales
with the wavelength and the numerical aperture of illumination
and observation in the microscopic setup. The modes of illu-
mination and observation are conversely fundamental to the
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applied MO effects, while limiting the options for improving
spatial resolution. Notwithstanding the demonstrated attain-
ability of identifying isolated magnetic structures [74] below
the fundamental resolution limit and determining magnetic
domain wall positions with nanometre precession [75], ima-
ging of details inside sub-micrometre structures is barely feas-
ible. Related obstacles for the imaging of small magnetic struc-
tures are due to polarization effects occurring at the borders
of structures. Correspondingly, Kerr microscopy and the set-
ting of the MO effects work best for planar mirrorlike mag-
netic objects. Topography in three-dimensional (3D) magnetic
structures (see section 14), e.g. to study novel magnetochiral
effects [76], obscures the MO signals. This, together with the
limited depth of focus in high-resolution optical microscopy
and the abovementioned edge effects, leads to limitations for
the application of Kerr microscopy for imaging of small 3D
objects. The limits are enhanced by possible drift effects with
the application of the traditional background subtraction tech-
nique [64, 66].

Similar arguments as laid out above are true for Faraday
and Voigt microscopy, the latter also applicable for the ima-
ging of domains in collinear AFMs that should not be mistaken
with the regular birefringence imaging in magnetostrictive
AFMs [77].

Advances in science and technology to meet
challenges

Spatiotemporal Kerr imaging beyond current state-of-the-art
will involve adjustments on the overall mechanics, image
detection, and the illumination source. Envisioned changes are
laid out next.

The temporal resolution in Kerr microscopy can be immin-
ently enhanced by the incorporation of improved pulsed
laser systems, including pulse compression technologies, with
sub-femtosecond resolution in laboratory experiments. Non-
stroboscopic dynamic imaging modes to capture stochastic
and chaotic processes would need to rely on the incorporation
of high-power high-brilliance lasers with highly sensitive cam-
era systems. Single-shot imaging of non-repetitive magnetiza-
tion events in the below magnetic resonance regime, a so-far a
blank spot in the imaging of magnetization dynamics, could be
addressed with flexible diode lasers. All these incorporations
may imply turning away from standard microscope setups

and an adaption of reflective microscope objective lenses. The
latter would assist to advance into UV wavelength regimes,
by which spatial resolutions well below a 100 nm appear
achievable.

A general change in magnetic imaging schemes, like using
full aperture illumination and by this dealing with all MO
effects concurrently, could further improve the spatial resol-
ution. Combining this with modes, where traditional sequen-
tial background imaging subtraction is not required, would
be a major step forward to address the challenges pointed
out above. The elimination of standard background subtrac-
tion would also be beneficial for single-shot dynamic imaging
modes. This would further open the path to sophisticated ima-
ging schemes like combining multiple levels of foci for the
image construction of 3D magnetic structures.

Implementing novel imaging modes might lead to further
improvements, which are not easily foreseen. Notwithstand-
ing, combining it with other techniques or completely turn-
ing away from standard Kerr microscopy schemes involving
near-field optical imaging techniques, relying on detection
layers with magneto-optically active point defect spins (see
section 17), or on completely new ways of using the regular
MO effects might be the future of MO microscopy.

Concluding remarks

With the still advancing developments, Kerr microscopy will
remain one of the most important techniques for magnetic
domain imaging. Based on optics it offers a straightforward
access to investigations of ultrafast magnetic processes. Most
challenging and reaching a fundamental limit is the restric-
tion in spatial resolution, an obstacle that will be demanding
to overcome. Despite this, with the latest improvements on
illumination and detection side, applied Kerr microscopy has
evolved during the last decade and will continue to make most
valuable contributions to magnetism research.

With the on-going advances, the limitations of Kerr micro-
scopy have not been reached so far. With future improvements
regarding illumination and detection, MO imaging will con-
tinue to remain of pivotal importance for the investigation of
magnetic phenomena on various time and length scales. With
advanced and dynamic imaging modes, magnetism research in
the laboratory will continue to benefit from Kerr microscopy,
also in combination with and supporting other methods.
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Status

As discussed in sections 6 and 11, time-resolved MOKE (TR-
MOKE) can be exploited to investigate the dynamical prop-
erties of magnetic materials, including magnons that are the
quantum-mechanical counterpart of spin waves. In an altern-
ative approach, BLS can be used to probe SWs and map out
their spectrum directly in the frequency domain [78]. In fact,
in a BLS experiment a beam of monochromatic laser light is
focused on the sample and the scattered light is frequency ana-
lysed by a high-resolution spectrometer. The scattering mech-
anism relies on the coupling, via MO coefficients, between the
electric field of the incoming light and the periodic variation of
the dielectric constant of the medium induced by the SWs [79].
BLS was applied in the field of magnetism already in the early
70s, when the advent of the tandem Fabry—Pérot interfero-
meter (TFPI), developed by Sandercock, enabled the observa-
tion of light scattering from SW in opaque magnetic materials
[80]. However, it has become the most powerful technique to
investigate SWs in layered and patterned structures, only after
the turn of the millennium, with the rising interest towards
films, multilayers and magnetic nanostructures. Among the
most recent and hot topics where BLS is providing funda-
mental contributions, it is worth mentioning here chiral mater-
ials with Dzyaloshinskii—-Moriya interaction (DMI) [81, 82]
as well as magnonic crystals and magnon waveguides where
SW propagation can be controlled by a proper design of the
sample geometry and composition [83—85]. BLS has several
advantages over other techniques for the investigation of SWs:
it is characterized by a high sensitivity down to the monolayer
scale; it uses a compact experimental apparatus which can
be also coupled with ultra-high vacuum chambers allowing
in-situ characterization of ultrathin films; it operates directly
in the frequency domain allowing the simultaneous detec-
tion of SWs between about 1 and 500 GHz; conventional
BLS (figure 7(a)) offers the possibility to perform wave-vector
resolved detection of thermal SWs, naturally present in the
medium under investigation, and to measure the SWs disper-
sion relation, while micro-focused BLS (figure 7(b)) enables to
operate as a scanning-probe technique with a spatial resolution
of about 250 nm and the possibility for both phase- and time-
resolved mapping of the SWs coherently excited by external
transduction [86]. Thanks to the above characteristics, BLS is
nowadays an indispensable and effective tool for research in
nano-magnetism and in particular in emergent research topics

Figure 7. (a) Scattering geometry of the conventional BLS
experiment in the so-called back-scattering configuration. The wave
vector of the incident, reflected and scattered light is indicated,
together with the in-plane direction of the applied magnetic field.
The illuminated area of the sample has a typical diameter of

30-40 pm. (b) Schematic drawing of the micro-BLS apparatus,
where BLS is operated as a scanning-probe technique. The
illuminated area of the sample has a typical diameter of

0.25-0.30 pm.

such as magnon-spintronics [84, 85], chiral magnetism and
topological spin structures [81, 82], Bose—Einstein condens-
ation [87].

Current and future challenges

As described in the previous paragraph, during the last two
decades BLS has been adopted by several research groups all
around the world, stimulated by the perspective of developing
innovative devices for information and communication tech-
nology, where SWs are exploited as data carriers. With this
technology, it is nowadays possible to conceive both analogic
and digital devices operating up to several tens of GHz, with
lateral dimensions of a few microns.
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Figure 8. (a) Possible routes to achieve an enhancement of the BLS cross section from nanometric objects using plasmonic effects:
realization of nanostructures made of low-damping plasmonic FM material (e.g. Ni) with the proper lateral dimensions, use of plasmonic
gold nano-antennas to amplify the EF in the gap, tip-enhanced scattering using a gold tip. (b) Schematic picture of the integrated micro-BLS
and micro-Raman setup consisting of a confocal microscope (CM-1), a TFPI (TFP-2 HC), and a Raman monochromator (RM). The sample
is mounted onto a three-axes piezotranslation stage (SH) for mapping measurements. A polarizing beam splitter (BS) transmits the
depolarized backscattered light through to the spectrometers. Immediately after, a short-pass tunable edge filter (TEF) transmits the
quasielastic scattered light to the TFP-2 HC and reflects the deeply inelastic scattered light into the RM. Reproduced from [91]. CC BY 4.0.

Among the main challenges in the realization of such
advanced magnonic devices one should include the scaling
down, reaching high level of miniaturization and increasing
the working frequencies [84-86]. Therefore, it will be cru-
cial to efficiently observe the propagation of short-wavelength
SWs with a proper spatial resolution, so that it is of utmost
importance to further develop micro-focused BLS achieving
a deeper lateral resolution and providing a sufficiently easy-
to-use apparatus, also in terms of controlling software and
automated sample positioning. These advances would also
be beneficial to further application of BLS in the emerging
field of chiral magnetism, where it has been established as
the most powerful technique to quantify the interfacial DMI
in magnetic films and multilayers [81, 82]. In this respect, a
reduction of the acquisition time would represent a signific-
ant advance since ultrathin films have usually low signal and

one should limit the light power focused on the sample sur-
face to avoid overheating. Also, it is expected that BLS will
be able to give access to the dynamic eigenmodes of topolo-
gical structures such as skyrmions, whose diameter is typic-
ally in the range 20-100 nm, provided that one may advance
towards a further reduction of the lateral resolution of micro-
BLS beyond the diffraction limit of light. Finally, driven by
the perspective of lifting the operating frequencies of com-
puting and communication devices beyond the GHz range, a
remarkable current interest is towards short wavelength SW in,
for instance, hybrid ferro- or ferri-magnetic/antiferromagnetic
materials, where the THz regime can be achieved, as
also discussed in section 11. SWs in such a frequency
region have nanometric wavelengths, offering also good per-
spectives for the technological needs in terms of devices
miniaturization.
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Advances in science and technology to meet
challenges

In relation to the challenges outlined in the previous section,
there are currently intense efforts to assist the adoption on
BLS by more and more groups, achieving a fully automated
operation of both conventional (i.e. wavevector-resolved) and
micro-focused (i.e. spatial-resolved) BLS, as well as a better
lateral resolution for the latter. To this respect, the recently
established THATec-Innovation company [88], a spin-off of
the University of Kaiserslautern, has developed useful soft-
ware and hardware packages that are of great help in the
conduction of BLS experiments, including the possibility of
achieving phase and temporal resolution. The BLS lateral res-
olution is restricted by diffraction limit to about a half of the
used wavelength, so that in the last years different groups
have replaced the traditional green lasers with wavelength
514.5 or 532 nm by blue lasers with wavelength as low as
470 nm, achieving a better resolution and a higher scattering
efficiency. This can be done at the price of optimizing optical
coatings inside the interferometer to operate with a different
wavelength. A further step to attain nano resolution would
be to go beyond the diffraction limit in focusing the incom-
ing light. A first attempt was made by Jersch et al [89] using
a near-field optics, where the laser light was focused onto a
tip of an atomic force microscope having a nanometre aper-
ture and placed just few nanometres above the surface sample,
achieving a spatial resolution of about 55 nm. However, this
remained an isolated attempt, because of the extremely low
signal strength. An alternative approach to consider in the near
future could be the exploitation of plasmonic effects, as sug-
gested in figure 8(a), using FM materials with low plasmonic
damping (such as Ni), or the assistance of integrated plasmonic

(gold) nano-antennas or plasmonic tip [90] to produce an
enhancement of the BLS signal from a selected nanostructure
(see section 12).

Finally, in view of extending the operation frequencies to
the THz regime, it could be useful to integrate the conven-
tional BLS apparatus, based on the TFPI with a grating spec-
trometer usually exploited in Raman spectroscopy. Such an
integration of micro-BLS and Raman apparatuses has been
already exploited in bio-physics research, showing that this
multimodal method enables the access to a wide spectral
range, ranging from fractions of GHz to hundreds of THz
(figure 8(b) [91]), and its extension to the research field of
magnetism should be straightforward.

Concluding remarks

In summary, during the last two decades BLS has become
more and more popular for the analysis of the dynamical prop-
erties in nanomagnetic systems, given its unsurpassed capab-
ility in revealing SWs that is crucial for the emerging fields
of magnonics and chiral magnetism. The considerable tech-
nical advances of the BLS experimental apparatus, including
the possibility of micro-focusing and achieving phase and tem-
poral resolution, with a high level of automation, have con-
tributed to the widespread adoption of this technique. Further
technical improvements, as overcoming the diffraction limit
and reaching nanometric resolution are under development to
keep pace with the miniaturization of nanomagnetic systems
and devices. Moreover, extension to the THz range of frequen-
cies would be desirable to assist the rise of operational fre-
quencies of the next generation of devices for information and
communication technology.
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Status

Electric fields enable the generation and manipulation of spin
and orbital magnetic moments in nonmagnetic conductors by
means of SOC and orbital-selective processes. These effects
are of great interest for both classical and quantum spin-based
information processing in semiconductors as well as for the
functioning of spintronic devices based on stacked magnetic
and nonmagnetic materials, such as magnetic tunnel junctions,
spin torque oscillators, and THz emitters. Owing to SOC, the
orbital motion of electrons induced by an electric field can
couple to the spin through two different mechanisms: spin-
momentum locking of the conduction states, as in the Rashba
and Dresselhaus effects, and spin-dependent scattering, as in
the spin Hall effect. Whereas the former generates a uniform
spin polarization or leads to coherent spin precession, the lat-
ter induces a spin current orthogonal to the direction of the
primary charge current. Additional modulation of the elec-
tronic potential by strain, gate voltage, and stacking of differ-
ent materials can be used to manipulate the spin orientation.
Due to the interplay of spin diffusion and relaxation, both the
Rashba and spin Hall effects induce a non-equilibrium accu-
mulation of spins at the edges of a conductor, which can be
probed directly through the MOKE [92-94] (figure 9(a) and
sections 4, 6) or indirectly by spin torque and magnetoresist-
ive effects [95].

Charge-to-spin interconversion processes have been
extensively studied by MOKE in semiconductors with a direct
band-gap and spin—orbit-split valence band states, such as the
III-V and II-VI compounds [92, 93, 96]. Recently, MOKE
investigations have been extended to nonmagnetic metals to
probe the spin accumulation induced by the spin Hall effect
[94, 97] and Rashba effect at a metal/oxide interface [98].
One can differentiate three regimes of Kerr rotation measure-
ments: (quasi-) static, pump-probe, and noise spectroscopy.
In the quasi-static case, the non-equilibrium spin polariza-
tion is observed as a function of a slowly varying magnetic
field or electrical current. Transport of spins by drift or diffu-
sion can be measured directly by spatially scanning a tightly
focused probe beam with respect to a position where spin
polarization is generated either electrically [99] or by optical
orientation from a pump beam [96, 100], see figures 9(b) and
(c). Using short laser pulses enables a time-resolved detec-
tion of spin transport that provides fundamental insight into
spin decay mechanisms, g-factors, spin—orbit interaction, and
hyperfine interaction with nuclear fields. Noise spectroscopy

20

Figure 9. (a) Schematic of the spin Hall effect induced by electric
field and optical detection of the spin accumulation. The shaded
areas represent the spin accumulation profile. (b) Schematic of the
spin accumulation induced by an optical pump and spin diffusion
with momentum selected by relative position of pump and probe
spots. Measurements of spin drift (¢) and spin diffusion (d) in GaAs
quantum wells where the spin—orbit interaction leads to a coherent
precession of spin polarization resulting in oscillations of the
out-of-plane spin component s;. (c) and (d) Reproduced from [96],
with permission from Springer Nature. Reprinted (figure) with
permission from [100], Copyright (2016) by the American Physical
Society.

performed by measuring at a high bandwidth the Kerr rotation
of a continuous laser probe [101] also provides information
on g-factors and spin dephasing times.

In addition to spins, MOKE is also a powerful tool to
probe the electrically-induced orbital polarization due to the
valley Hall effect and Berry curvature in 2D materials [102]
and the orbital Hall effect in metals [103]. In the following,
we discuss opportunities to further advance the use of MO
techniques to probe charge-spin and charge-orbital intercon-
version processes and magnetic moment dynamics in nonmag-
netic systems.

Current and future challenges

Spin-momentum locking occurs at edges of 2D and 3D topo-
logical insulators and similarly in quasi-1D electron systems
in the presence of spin—orbit interaction and magnetic field. In
combination with proximitized superconductivity these mater-
ial systems are also of interest for realizing Majorana zero
modes. The direct observation of spin currents in such mater-
ials is an important scientific goal that will open new aven-
ues for the generation and manipulation of spin polarization
in topological systems. Further improvement of the sensitiv-
ity and spatial resolution in optical spin detection are needed
to explore such effects. Polar MOKE (P-MOKE) is sensitive
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Figure 10. Kerr rotation 6k due to the spin Hall effect in Pt.

(a) Line scan of 0k across a 20 um-wide, 15 nm-thick Pt wire at a
current density j = 1.5 x 10" A m~2 and (b) 6 as a function of j.
The data points represent line scan averages; statistical error bars
from averaging multiple line scans are indicated. The solid lines are
linear fits to the data. Points left of the origin were measured with

the reversed optical path, (ﬁ (c) Depth profile of the calculated spin
accumulation (shaded) in a 30 nm-thick wire for A; = 10 nm. The
dashed line represents the depth-dependent sensitivity of the
MOKE. (d) 0k vs Pt thickness forj =1 x 10" Am™".

The solid curve is a fit using a drift-diffusion model with

0= 1880 Q' cm™! and A\, = 11.4 nm as free parameters.
Reprinted (figure) with permission from [94], Copyright (2017) by
the American Physical Society.

to the out-of-plane component of the spin polarization, but
in some geometries also the in-plane spin component is of
interest. For metals with spin polarization at the surface, this
can be sensed with longitudinal MOKE (L-MOKE), but in
semiconductors where polarized spins usually reside below the
surface, the refraction of the beam along the sample normal
suppresses the sensitivity to in-plane components. The devel-
opment of methods to measure orthogonal spin components
are therefore required. Furthermore, advances in combining
high-bandwidth modulation of electric fields with synchron-
ized detection of optical probe pulses will shed more light on
the dynamics of spin current generation, also at the interface
between nonmagnetic materials and FM metals.

In nonmagnetic metals, the spin and orbital accumula-
tion generated by electric fields is usually detected indirectly
through measurements of spin—orbit torques or magnetores-
istance on an adjacent magnetic layer [95]. However, prox-
imity effects, spin scattering, and interfacial SOC strongly
influence the generation and relaxation of spins in magnetic
heterostructures, preventing a precise determination of the
spin and orbital conversion mechanisms and diffusion para-
meters in bare nonmagnetic metals. MOKE can overcome this
problem, but investigations of metal systems remain challen-
ging (see figure 10). The spin accumulation due to an applied
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electric field E scales as s = ;3-0,E/e, with spin Hall con-
ductivity oy, ~ 10° (1) @ 'm~!, spin diffusion length A ~
1 —10nm (1 — 10 ym), and spin relaxation time 7, ~ 0.1 —
1 ps (1 — 10 ns) in 5d metals (ITI-V semiconductors) [92-94].
For typical E=10*Vm™!, s is in the range of 10° (10%)
spins um~3 distributed over a distance ~)\, from the edge
of the sample. This drastically limits the possibility of using
P-MOKE to detect edge spins in metal systems. L-MOKE
can be used to probe the surface spin accumulation, but with
a lower sensitivity with respect to P-MOKE. In metals the
probing depth is typically tens of nm, which complicates the
measurement of the spin accumulation profile [94]. Additional
complications arise from the large current density ~10'0 —
10'' Am~—2 required to generate a sizable spin accumulation in
metallic conductors, which causes Joule heating accompanied
by thermoreflectance and mechanical drift.

Advances in science and technology to meet
challenges

The sensitivity of the Kerr rotation signal can be enhanced by
engineering the interference of reflections from different lay-
ers or by embedding the spin-polarized region in an optical
cavity [104]. The signal from spin noise measurements scales
favourably with small spot sizes and by measuring noise cor-
relations between two spatially separated detection spots also
spin currents could be addressed [105]. Typically, in-plane
spin components in semiconductors are made visible by let-
ting spins precess in a transverse magnetic field. Alternat-
ively, experiments with pump and probe beams on orthogonal
surfaces (e.g. cleaved-edges of semiconductors) can access
spins along different directions. Hexagonal 2D materials with
broken inversion symmetry provide additional flexibility to
generate spin and orbital magnetic moments by optical pump-
ing and current injection. In such systems, the interplay of
spin, orbital, and valley degrees of freedom can be tuned
to an unprecedented extent by SOC, electrical gating, strain,
and proximity effects, resulting in both edge and spatially
uniform magnetization with relaxation time varying from ns
to us [102]. Another interesting application of MOKE would
be to investigate the spin currents injected from quantum point
contacts that exhibit a quantized spin-polarized conductance
in a magnetic field. This requires optimization of the dopant
profiles in semiconductor heterostructures during growth in
order to obtain the target carrier densities under illumination.
Cleaved-edge overgrowth of two quantum structures provide
some of the cleanest quantum wires for such studies.

To detect electric field-induced spins and orbital moments
in metals, different combinations of electrical and optical
modulation schemes [94, 97] as well as MO ellipsometry
(see section 9) can be used to improve the sensitivity of the
measurements and reject spurious signals of thermal origin.
Moreover, similar to semiconductors, the Hanle-effect can
be employed to probe an in-plane spin polarization using P-
MOKE by letting the spins precess about a magnetic field col-
linear to the current and develop a steady-state out-of-plane
spin component [92, 93]. Distinguishing the Hanle effect from
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magnetic-field induced artefacts, however, requires the Lar-
mor frequency to be continuously varied up to 7,~' and bey-
ond, which in turns requires magnetic fields of several Tesla
and/or cryogenic temperatures to increase 7. Finally, quantit-
ative measurements of the spin and orbital Hall conductivity
also require precise calculation of the MO constants to separ-
ately extract the spin and orbital magnetization from the Kerr
rotation [106].

Concluding remarks

Taken together, steady-state and TR-MOKE measurements
can greatly enhance the understanding of spin and orbital
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currents generated by electric fields in quantum materials,
topological systems, and spintronic devices. Pump-probe
experiments performed with tunable photon energy and polar-
ization further make it possible to selectively excite spin or
orbital polarized carriers via optical selection rules in bulk
as well as single-layer semiconductors, and follow their tem-
poral evolution in response to electric and magnetic fields. Fur-
ther improvements in sensitivity and spatial resolution would
allow for extending MOKE investigations to a broader variety
of phenomena, such as spin currents in quantum wires, edge
states in topological insulators, orbital currents in metals and
van der Waals heterostructures, and the chiral anomaly in Weyl
semimetals.
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Status

While both, conventional optical ellipsometry as well as
ultrasensitive MOKE measurements had already been well-
developed in the 1980s, it was the original study by Berger and
Pufall [107] that demonstrated the viability of GME to exper-
imentally determine the full plane-wave reflection matrix R in
a single experiment while achieving very precise results for
its small MO components. The capabilities of this methodo-
logy were subsequently utilized by different groups to enable
simultaneous optical and MO spectroscopy [108, 109] (see
section 4), as well as MO vector magnetometry [109, 110].

Over the years, two dedicated experimental GME set-up
types have been utilized and exhaustively tested, namely the
original GME configuration using two nearly crossed polar-
izers, whose angle alignment is changed throughout the exper-
iment (figure 11(a)) and the more recently developed T-MOKE
ellipsometer design (figure 11(b)), in which the incoming arm
polarizer is fixed and only the alignment of the elements
along the reflected beam are being changed during the exper-
imental measurement sequence [111]. Both designs have cer-
tain advantages and their respective performances have been
tested in detail. However, other designs are certainly possible
and ought to be tested to explore their achievable performance
levels, in particular methodologies that utilize high frequency
polarization modulation schemes, which should, at least in
principle, have the potential to significantly reduce measure-
ment times. In addition, integration of the GME methodology
into commercial ellipsometers has been demonstrated [109].

Due to its very precise quantitative results, the GME
method has been applied recently to investigate the effects
of MO anisotropy [112], the impact of Quantum well states
[113], and especially the magnetism of buried interface lay-
ers, which produce only rather small changes in MO signal
levels but can nonetheless be very robustly detected [114].
Hereby, it is especially the GME enabled access to the full
complex nature of the reflection matrix elements, which turns
out to be of crucial importance [114]. Another strength of the
GME methodology is its ability to separate true MO from false
signals, given that the detected signal patterns exhibit specific
symmetries, if they are indeed MO in nature [115]. This spe-
cific signal symmetry is also the reason, why different mag-
netization components can be so robustly separated from each
other and make GME vector magnetometry so accurate, a fact
that is apparent from the data shown in figure 12.

Certain aspects of the GME methodology have not been
utilized so far and thus promise most significant advances in
the future. One such example is its combination with ultra-
fast experimental techniques, for which it promises to unam-
biguously disentangle optical from MO and thus magnetic
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phenomena (see section 10). Another aspect that has not yet
been utilized is the combined analysis of multiple data sets
corresponding to different magnetic states. Such an approach
should enable depth dependent materials analysis and mag-
netometry, which would be an extremely valuable tool, and
would be reminiscent of the role conventional spectroscopic
ellipsometry plays in determining the precise depth structure
of multilayers. Such a capability would also be invaluable for
spintronics, in particular transport-induced spin accumulation
effects, which are very difficult to detect experimentally [94]
and are normally only inferred from device performance data
(see section 8). Thus, there is a wide bandwidth of scientific
issues that would very much benefit from an extensive use and
further development of GME.

Current and future challenges

One of the two main challenges that have afflicted GME since
its inception, and which have only marginally improved so
far, is the issue of measurement time. In all dedicated experi-
mental GME configurations, measurements are done as a func-
tion of applied field for a given optical element alignment,
which is subsequently changed step-by-step. This leads to typ-
ical measurement times of about 30 min or more, which then
corresponds to a full field-resolved sequence of GME-maps,
of which some examples are shown in figure 12. While this
measurement sequence and time is sensible for magnetiza-
tion reversal studies, it is overly time consuming for other
applications, in which only one magnetic state is explored.
This problem is further compounded by the fact that not all
optical element settings are equally useful for the GME data
analysis, because the most relevant measurement points are a
priori not known, given that the signal pattern itself depends on
the sample properties, including its magnetic state. Only one
serious attempt has been made so far to address this specific
challenge, which led to the innovation of utilizing a diagonal
GME-grid that contains more high-value data points [116],
as illustrated in figure 12. However, this improvement, while
meaningful was only modest in nature. Thus, novel pathways
need to be explored to improve data acquisition and reduce
measurement times by one or two orders of magnitude, which
would allow for a far broader compatibility of this method
with other measurements schemes, such as for instance time-
resolved measurements, where complete measurements for a
multitude of delay line settings are needed to achieve mean-
ingful results (see section 10).

The other core challenge of the GME methodology is the
complexity of its data analysis. While reflection matrix extrac-
tion is fundamentally straightforward, given that GME and
T-MOKE ellipsometry approaches both have led to closed-
form mathematical formulas [107, 111], which can be fitted
by conventional software packages, implementations require
some experience, because a multi-parameter phase space is
being explored. So, corresponding expertise and skills have
to be obtained, before GME data sets can be fully utilized.
This data analysis complexity is even more relevant, when
quantitative optical models need to be developed to analyse
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Figure 11. Schematic arrangements of experimental GME setups that have been utilized, namely (a) the conventional GME setup and

(b) the more recently explored T-MOKE ellipsometry configuration; both detection schemes utilize a light source, which is a laser in most
realizations, a linear polarizer P; in the incoming beam, a second linear polarizer P, in the reflected beam and a photodetector. The
T-MOKE ellipsometry system in (b) furthermore contains a quarter wave plate QWP. In both approaches, a magnetic field sequence is
applied to the sample to produce inverted magnetization states, whose signal difference at the photodetector is recorded for a sequence of
optical element alignments. In (a), a series of polarization angle pair settings (6, 6») for P, and P, is explored, while the methodology in

(b) relies on a series of angle pair settings ($2, 6>) for QWP and P;.
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Figure 12. Experimental GME-data maps (a)—(c), measured for the
same anisotropic sample at different applied field strengths, in
comparison to their theoretical fit results (d)—(f), which are being
employed to determine the complete reflection matrix R of a sample
and all the information contained in it. Figures (a) and (d) show
results in which the longitudinal magnetization is largest, whereas
the transverse magnetization behaviour is dominant in (c) and (f),
visualizing the ability to separate magnetization components and
conduct MO vector magnetometry with a single experimental setup.
The legend on top applies to all sub-figures. (b) Indicates different
data acquisition windows that are frequently used, namely square
(black solid line) and diagonal (blue dashed line) shapes. Reprinted
(figure) with permission from [112], Copyright (2015) by the
American Physical Society.

reflection matrix data, which typically requires additional soft-
ware implementations of such optical models, based on avail-
able matrix method approaches [117-120].

Other challenges, such as the integration of magnets into
experimental ellipsometer set-ups and the further extension of
the wavelength range that can be utilized for GME, are com-
mon challenges that affect basically all MO measurement tech-
niques and thus, are not unique issues to be addressed by future
GME developments alone.
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Advances in science and technology to meet
challenges

Related to the challenge of reducing data acquisition times,
there are presently three different pathways envisioned to
achieve relevant improvements. The first and easiest to imple-
ment is the use of field modulation techniques, which have
already been considered in some approaches [108, 111]. By
using proper signal filtering and processing, improved sens-
itivities and reduced measurement times were demonstrated,
which however did not constitute a complete breakthrough.

Very significant measurement time reductions should be
achievable, if one were able to select the most sensit-
ive experimental configurations only, which are however,
dependent on the sample and thus the measurement res-
ults themselves. Thus, it will be necessary to develop data
acquisition schemes that predict the most useful measure-
ment configurations, based upon already acquired data in
real time, using fast adaptive algorithms or artificial intelli-
gence. Given the massive overdetermination of today’s typ-
ical measurement sequences using about 400-500 optical ele-
ment settings to determine the full reflection matrix, which
itself contains only up to eight real-valued parameters, an
improvement by an order of magnitude should in principle be
achievable.

A completely different approach to significantly reduce
measurement times would be the use of high frequency polar-
ization modulation techniques, so that a very large number
of detection conditions can be explored very fast. To receive
the full benefit of the inherent advantages of GME, it will
be necessary to facilitate a 2D scan of optical conditions, so
that this approach will require 2 independent but synchron-
ized modulation elements, as well as real-time signal sequence
detection and processing. In principle, all optical components
for such an approach exist, but have not been tested in a dedic-
ated set-up to facilitate GME measurements, so that possible
technical difficulties and resulting sensitivities are unknown
to date.

A simplification of the GME data analysis is not really a
scientific or technological challenge, but more related to the
ability of the scientific community to develop broadly applic-
able and easy to use software modules that can address a wide
variety of scientific topics in a reliable fashion.
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Concluding remarks

GME is an experimental technique that has wide-ranging cap-
abilities, which have been only partially realized in the past
two decades, leaving very substantial space for future instru-
mentation developments and even more so, for its application
towards relevant scientific questions, including time-resolved
phenomena. The most obvious ones are hereby the application
of GME in ultrafast magneto-optics as well as for the detection
and analysis of spin accumulation effects in spintronics. Fur-
ther methodological advances will be very relevant as well,
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not only to improve acquisition times, but also to break new
ground in so far inaccessible areas, such as depth dependent
magnetometry. A truly wide-spread usage of GME is quite
possible, given that its equipment costs are very modest com-
pared to other experimental techniques and its setups gen-
erally compatible with any kind of environmental condition.
However, a future simplification of data analysis schemes or
the development of a standard software package might be
needed to achieve a broad acceptance by the relevant scientific
community.
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Status

Ultrafast magneto-optics started only 25 years ago with the
discovery of ultrafast magnetization dynamics entering the
sub-picosecond region by Beaurepaire et al [11]. The con-
ceptually new tool were ultrafast lasers delivering intensive
optical pulses lasting less than 50 fs [121]. This short flashes
of light with durations competing the characteristic timescale
of lattice dynamics allow to launch far from equilibrium excit-
ations of a solids’ spin system and permitted the development
of concepts for probing the dynamics of both the electronic
and the magnetic response of the system.

First experimental studies using this new tools observed
surprisingly fast light-induced demagnetization events in bulk
nickel. Fuelled by a number of follow up studies particu-
lar interest arose around the evolution of suspected transient
states of the spintronic configuration. The experiments mark
the onset of lively and opinionated debate reflecting the full
complexity of the interplay between light, charges and spin in
solids. One example is the controversy around the microscopic
origin of the observations.

Might the observations be only due to transient modifica-
tions of the magneto optical constants or is ‘real’ spin phys-
ics on femtosecond timescales the underlying effect [122]?
The debate was resolved and the observed effects identi-
fied to be indeed due to the latter over the last two decades
[123]. This exemplifies the complexity of MO experiments
with their non-trivial depth and polarization sensitivity as fur-
ther detailed in sections 4 and 9 of this roadmap. But also
reveals the broad range of possibilities offered by magneto-
optics not only to detect but also to manipulate spins: ultra-
fast magneto-optics is more than an ultrafast magnetometer. It
turned out to be a versatile tool for detection and manipulation
of transient magnetic states on previously inaccessible times-
cales down to 1 fs (10~15 s) region. The impact of the laser
pulse on the spin system depends on the exact excitation path-
ways, which offers many choices as exemplified in sections 1
and 2 of this roadmap and including probabilistic Joule heat-
ing as driver of ultrafast spin fluctuations and phase trans-
itions [123] up to spin current excitations on nanometre length
scales [124].

Additional control knobs are the excitation light-waves’
time-varying properties (amplitude, polarization, instantan-
eous frequency) that can induce transient spin polarization
effects in oxides [125] and metals [126, 127] (figure 13(b)).
And the light field can create spin current and spin fluctuations
via optical transitions that are creating hot electrons. These
out-of-equilibrium electronic occupations in the correlated
FM state decay into spin currents and, via Stoner excitations,
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Figure 13. (a) Ultrafast and—strong optical waveforms can act on
electronic degrees of freedom with their field transients in
sub-femtosecond time intervals. The resulting non-equilibrium state
can decay into a multitude of excitations of the spin system, from
single spin excitation (Stoner excitations) to SW textures, from
heating (FM phase transition) to the formation of complex spin
structures. (b) In the presence of the laser field, a polarization
induced magnetization can be found, consisting of spin and orbital
moments [126]. (c) In ultrafast MO experiments, signatures of
coherent coupling between the light field and the magnetic response
haven been observed [127].

into spin-wave excitations that have their inherent spatial
and temporal dependencies in the nanometre—femtosecond
time-space frame—and launch multi-time-and-lengths-scale
dynamics linking the quasi-instantaneous response of indi-
vidual carriers to orders of magnitude slower, macroscopic
charge and spin transport processes. Observation of the entire
transient phenomenology thus calls for MO methods that offer
sufficient spatial (cf sections 6 and 14) and temporal resolution
spanning a challenging dynamic range.

Current and future challenges

A versatile and element specific approach to track the mag-
netic moment relies on M and L-edge core transitions [14].
Femtosecond slicing at synchrotron sources, laboratory based
high harmonic generation (HHG) and the upcoming experi-
ments at FELs (see section 15 of this roadmap) are generat-
ing an enormous amount of knowledge about the interplay of
light, matter and the (transient) properties of the spin system on
timescales competing with the period of even the fastest vibra-
tional lattice excitations. This temporal resolution is linked
to the duration of the light or x-ray pulses of such sources
ranging from 25 femtoseconds to picoseconds and allows
taking steps towards disentangling the influence of charge-
relocations and lattice motion on the instantaneous magnetic
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Figure 14. Circularly polarized attosecond XUV pulses addressing
M-edge transitions in magnetic materials allow time tracking the
early-time evolution of a samples’ magnetic moment after an
external optical stimulus (here a laser excitation pulse).
Light-induced carrier separation in a layered material can result in
charge and spin transport across an interface and cause a change in
the magnetic moment of the individual layers as fast as the
electronic excitation acts out. This allows for the fastest control of
macroscopic magnetic moments observed to date.

moment. Most recently, experiments combining ultrafast laser
sources and optimized HHG for attosecond pulse synthesis
can granulate time into even finer increments and track and
control the evolution of magnetic and electronic properties
at the few-femtosecond timescale on which electron dynam-
ics act out and before the lattice re-configures noticeably
(figure 14) [128].

The required laser systems providing intense light fields
lasting less than two cycles of the carrier wave at visible-
infrared (VIR) and NIR wavelength are now commercially
available and allow actual control of a samples electronic con-
figuration via the oscillating electric field (i.e. 1-2 fs transi-
ent time) rather than through the much longer pulse duration
defined by the intensity envelope. Such ultrafast optical wave-
forms can control electrons in spin-correlated systems within
a single optical half-period (i.e. at hundreds of THz frequen-
cies) and act on the electronic distribution before electronic
correlations and dissipation destroy the initial coherence. This
advance fuels the hope for the next generation of light-based
spintronic applications that can be coherently controlled by
a light wave (viz. switching between states without dissipa-
tion) and realize magneto-optic control at hundreds of THz to
Petahertz clock rates. On the other side of the electromagnetic
spectrum, in the (near) infrared region towards the THz gap
(1-10 THz), new tools based on semiconductor quantum well
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heterostructures, shift currents and spintronic THz emitters,
studies are emerging where spin currents at the Fermi level
are driven or selective phonon- spin and magnon excitations
using few cycle and unipolar THz light pulses [129, 130].

Advances in science and technology to meet
challenges

The new experimental capacities in laboratories and at FEL
and synchrotron sources propel the development of novel the-
oretical frameworks (see section 2) with the hope to trace
back the rich phenomenology of magnetism to more univer-
sal microscopic concepts. Currently, even though there is a
fairly good understanding of what goes on if we excite a fer-
romagnet with ultrafast laser pulses, the complexity of the
multiscale challenge still sparks controversial discussions. A
central aspect is the complexity of the correlated electronic
state that couples to the spin states and the modification of
this many-body state by the presence of EFs, heat and crys-
tal strain. Further, since the exchange interaction between
two configurations can be understood as a combination of
Coulomb interaction and Pauli exclusion principle applied
to the multi-electron state, it appears that transient out-of-
equilibrium states can re-route the interaction pathways in the
multi-spin state. This is the multi-dimensional analogy to the
single electron Stoner excitations which are the prototype of
a local spin excitation. As a corollary, more complex excita-
tions or delocalized spin-waves can be regarded as a decay into
Stoner superpositions.

SOC between magnetic and orbital moment poses addi-
tional challenges in understanding quickly evolving spin
dynamics kicked off by an external stimulus. The coupling res-
ults in spin-mixing (Elliot-Yafet) of the two spin states with
regard to the quantization axis, it is the origin of magnetic
torque, spin-flips, spin-to charge conversion, coupling of the
spin to lattice degrees of freedom and can result in complex
spin-structure (symmetry-breaking interlayer DMI) with topo-
logical features.

To add complexity, spin-momentum can not only be trans-
ported via spin-excitation but also by charge transport. Charge
currents can be spin-polarized due to a spin selective excita-
tion mechanism or a spin selective interfacial filtering effect as
additional source of spin-momentum transport which, owing
to its different microscopic dependencies can be even more
efficient in transferring momentum.

The above epitome symbolizes how the challenge in under-
standing a dynamical magnetic phenomenon lies in the most
appropriate identification of the stimulus—and experiments
with sufficient temporal resolution. What is excited?—What
are the details of the process chain from photon absorption to
the non-equilibrium electronic states in the system correlated
to multi electron states and finally the conversion to inform-
ation and heat? Generally, that corresponds to following the
process from a non-thermal excited state still carrying the
memory of coherence of the excitation field to the thermalized
non-coherent stochastic and highly dynamic spin ensemble.
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Exploiting this multi-scale wealth of couplings is a bul-
ging reservoir of research challenges revolving around phase
coherence and spin momentum control, spin-currents and spin
torques, spin Hall effects, spatial spin topologies, phase trans-
itions, vortex and topology control and spin caloritronic pro-
cesses on the nanoscale, to name a few [131, 132]. With
ultrashort and intense light fields, we anticipate novel ways
to manipulate complex system correlations and the renais-
sance of a number of low-frequency spintronic functionalit-
ies at optical clock-rates. The switching of topological proper-
ties of transient light—matter states might become accessible
in strong-field dressed systems as a new platform for spin-
based information technology. And recent advances in light-
wave electronics call for the integration of spin degrees of
freedom in opto-electronic circuitry that is driven by ultrafast
light-transients.
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Concluding remarks

Based on the profound understanding that decades of in-depth
investigations of static and transient magnetic phenomena
propelled by ever shorter light bursts have yielded, the ultrafast
magnetism community now sets out to explore the new realm
of coherent spintronics. Ultrafast light fields creating dynamic
light-matter states as a new coordinate for system manipula-
tion and the creation of function will allow exploring transient
MO effects the manipulation of functional spin systems and
correlated electrons. This novel regime of light-dressed mater-
ial properties holds promise for novel functionality, more effi-
cient and faster signal manipulation in spintronic applications,
ultrafast and dissipation free state control and exciting new
phenomena that to a large extend might be still beyond our
current imagination.
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Status

Whereas the majority of ultrafast time-resolved all-optical
pump-probe experiments in magnetic materials probe the
THz-frequency MO spectra (see section 18), the dynamics
of ultrafast demagnetization (see section 10) and/or spatially
homogeneous precession of magnetization vector (FM reson-
ance, FMR), here we review some works on optically triggered
excitation of SWs. SWs at nanometre wavelengths are dom-
inated by exchange interactions and are called exchange
magnons. Ultrafast optics is needed to (a) excite exchange
magnons and (b) probe their dynamics using conventional TR-
MOKE measurements [133—-137], see figure 15.

A variety of time- and space-dependent excitation stim-
uli has been used to excite exchange magnons, all of them
taking an advantage of the non-zero spatial overlap of their
eigenmode functions with a spatially inhomogeneous excit-
ation stimulus acting on the time scale that is shorter than
the magnon oscillation period. The direct optical excitation
(within ~10 nm optical skin depth) [133, 134], injection
of ultrashort pulses of spin-polarized electrons (within the
spin diffusion length ~1 nm) [135], combined action of
laser-excited thermal and coherent acoustic phonons [136] or
ultrashort acoustic pulses injected in the FM thin film (on
‘acoustic’ length scales) [137]. Whereas the majority of afore-
mentioned experiments resulted in excitation of ~10 GHz fre-
quency magnons, only technically sophisticated experiments
with ultrashort spin current pulses [135] in metal-ferromagnet
multilayer structures have been shown to break the ultimate
THz frequency limit. Generation of exchange magnons in
the THz spectral range with different experimental metrolo-
gies would allow not only for establishing technologically rel-
evant frequency and efficiency limits of ultrafast magnonic
logics but also to investigate fundamental mechanisms in ultra-
fast magnetization dynamics [138—140] and reveal possible
contributions of magnon excitation to ultrafast non-thermal
magneto-elastic magnetization switching [141]. Moreover,
investigations of exchange magnons provide a useful platform
for quantitative spectroscopy of complex magnetic materials
in terms of magnetic anisotropies, exchange stiffness and Gil-
bert damping parameter « [134].

Optical detection of exchange magnons relies on vari-
ous TR-MOKE configurations: different vector compon-
ents of exchange magnons can be extracted from the
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dynamics of time-resolved Kerr rotation or ellipticity sig-
nals (P-MOKE/L-MOKE) or intensity modulation (transverse
MOKE). TR-MOKE signals average the spatially inhomogen-
eous magnon mode over the skin depth of probe radiation
[134, 135]. Therefore, the detection efficiency of standing
magnon modes with shorter-than-skin depth wavelengths rap-
idly decreases with the magnon order n rendering their detec-
tion extremely difficult [135].

Current and future challenges

Leaving apart the technical issue with detection efficien-
cies, here we propose to improve the excitation efficiency
of exchange magnons through understanding their generation
mechanisms. Among all aforementioned excitation mechan-
isms of exchange magnons the ultrafast magneto-elastics with
coherent acoustic phonons deserves special attention since (a)
it does not rely on thermal effects and is energy-efficient for
this reason, (b) could profit from independent optimization
of acoustic and magnetic degrees of freedom and (c) allows
for elegant analytical treatment of phonon-magnon inter-
actions. A general theoretical analysis of Landau-Lifshitz—
Gilbert equations accounting for exchange interactions sug-
gests that excitation of exchange magnons is described by an
equation of an externally driven damped harmonic oscillator:

dsgn)
dr

L
+wﬁs§") =An/5zz (z,t) cos(k,z)dz,
0

where the time-dependent external driving force is determined
by an arbitrary longitudinal strain pulse e, (z,f) propagating
inside the magnetic layer, magnon modes are described by
cosine functions, and the prefactor A, depends on the details
of the experimental geometry, notably the magnitude and the
direction of an external magnetic field, and material properties
(magnetostriction coefficient) [142]. Being a simple analytical
tool for experimental physicists, this equation highlights the
importance of quantitative characterization of acoustic pulses
injected in a FM layer. Whereas elastic boundary conditions
need to be taken into account in order to quantify transmission
and reflection coefficients at interfaces between the FM thin
film and adjacent media, the precise determination of time-
dependent acoustic transients inside the FM layer represents
a technically solvable task. Given the intrinsic complexity of
magneto-elastic interactions, which is often being reduced to
the attempt to satisfy phase-matching conditions for phonon
and magnon dispersion curves, one would need to identify the
dominant property of acoustic pulses which would enable effi-
cient generation of THz frequency exchange magnons.

The results of a simple simulation for the magneto-elastic
generation of exchange magnons in a 30 nm nickel thin film by
ultrashort unipolar acoustic pulses of different durations of 1,
2 and 3 ps (figure 16) answer this question. The magnetization
dynamics (figure 16(a)) and their Fourier spectra (figure 16(b))
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Figure 15. (a) Standing SW resonances n = 0 (FMR), n = 1, 2, etc in FM thin films can be excited by various ultrafast excitation stimuli,
including those propagating inside the material (acoustic pulses), and probed with ultrafast MO Kerr spectroscopy within the optical
penetration (skin) depth of probe pulses. The resulting ‘local’ magnetization dynamics m(t) = my + s(t) represents a superposition of FMR
and high-order magnon precessions around the stationary magnetization direction mg. The schematic illustrates a typical geometry with
non-collinear magnetic field and magnetization vectors in FM thin films. (b) The amplitude and/or direction of an external magnetic field
can be used to lift up the parabolic dispersion curves of exchange magnons, but also control their intersection (phase-matching) points with
acoustic dispersion. Reprinted from [142], Copyright (2020), with permission from Elsevier.

strongly depend on the duration of acoustic pulses, presum-
ably because of the difference in their spectral bandwidth. The
first conclusion from these simulations is that only exchange
magnons with frequencies within the acoustic bandwidth can
be efficiently generated. Therefore, the first challenge of for
THz magnonics would be to inject THz-frequency acoustic
pulses in FM thin films. The second observation is that amp-
litudes of low-order magnon modes (vertical axis is truncated)
are still much higher. The solution to this problem would be to
generate sharp acoustic resonances at frequencies coinciding
with those of the desired magnon modes. Therefore, from the
perspective of ultrafast magneto-acoustics, the key (technical)
parameter to boost the excitation of high-frequency exchange
magnons is related to the spectrum of acoustic pulses injected
in FM thin film.

The previous discussion assumes that magnon spectra in the
THz spectral range are well-known. This assumption has been
questioned recently by the incorporation of inertial effects
in the magnetization dynamics [138, 139], leading to dra-
matically different magnon dispersions [140]. Figure 16(c)
shows the anticipated theoretical dispersion relations for
magnons with two distinct branches: precessional magnons
(lower branch, discussed previously) and nutation magnons
(upper branch), emerging as a consequence of magnetic iner-
tia [140]. Simulations were performed for Gd-doped Py thin
films, where the strong dependence of magnetic parameters
(including exchange stiffness and Gilbert damping)on Gd-
concentration was extracted from all-optical experiments with
~10 GHz-frequency exchange magnons [134]. The scientific
challenge of THz-frequency magneto-acoustic spectroscopy
would target identifying unknown dispersion relations and
Gilbert damping of magnetic excitations in complex magnetic
materials in the THz-frequency range.

30

Advances in science and technology to meet
challenges

A promising way to tailor the efficiency of magneto-acoustic
excitations is to design samples with desired acoustic prop-
erties. Previous efforts have shown that the use of freestand-
ing nickel membranes, acting as an acoustic cavity, allowed
for the resonant enhancement of the excitation amplitude of
FMR-precession at GHz frequencies [143]. However, no fin-
gerprints of magnon excitation with n > 0 have been reported
in these experiments, presumably because of a large (300 nm)
thickness of a freestanding nickel film resulting in spectrally
overlapping and thus indistinguishable magnon modes. Fol-
lowing this research line, experiments with thinner freestand-
ing FM membranes and/or multilayers would provide better
chances to isolate or individually tune frequencies of magnon
and phonon resonances.

An alternative approach would be to design hybrid struc-
tures with integrated semiconductor superlattices, acting as
acoustic transducers, which are capable of generating well-
defined sharp acoustic transients in the THz frequency range
[144]. Long-lived coherent longitudinal acoustic phonons at
THz frequencies, observed in these experiments, could be
injected in thin layers of magneto-strictive materials to res-
onantly excite individual spin-wave resonances.

Excitation of large amplitude magnon pulses repres-
ents another big challenge in the context of nonlinear
magnetization dynamics and magnetization switching in FM
nanostructures [139]. Whereas playing with shapes of FM
nanostructures is definitely important, another engineering
parameter is the strength of magneto-elastic coupling that
can be increased in complex rare-earth based magnetic com-
pounds such as Terfenol-D. Since doping generally changes
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Figure 16. (a) Ultrafast magnetization dynamics driven by a single acoustic pulse traversing through a 30 nm thin layer of FM nickel shows
that (b) nearly all exchange magnon modes within the acoustic bandwidth can be excited. Dashed coloured areas in (a) and (b) show
temporal profiles and Fourier spectra of three distinct acoustic pulses with 1, 2, and 3 ps time duration, respectively. Reprinted from [142],
Copyright (2020), with permission from Elsevier. (c) When experimentally accessible, THz-frequency magneto-elastic interaction
spectroscopy could be used to quantify the phenomenon of the inertial magnetization dynamics [138, 139], which should manifest itself in
the appearance of an upper (THz-)frequency band of nutation magnons [140]. Simulation performed for Gd-doped Permalloy thin films

Gd, Py, _., characterized through ~10 GHz-frequency time-domain exchange magnon spectroscopy [134]. The inset shows an exemplary
flower-like magnetization trajectory consisting of two magnon modes from different branches, which are precessing in opposite directions.
Reprinted (figure) with permission from [140], Copyright (2021) by the American Physical Society.

not only the magneto-elastic but also magnetic properties
[134], the design on an efficient magneto-elastic structure for
high-frequency magneto-elastics becomes a multiparameter
optimization problem.

An exciting perspective in high-frequency magneto-
acoustics with quasi-monochromatic acoustic waves is
provided through the potential application of transient grat-
ing (TG) geometry [145, 146] in the sub 100 nm range of
periodicities using ultrahort x-ray free electron laser (XFEL)
sources (see section 15). In an XFEL TG-pump—MO probe
experiment on FM thin films one would expect ~100 GHz fre-
quency exchange magnons to be driven not only by Rayleigh
surface acoustic waves but also with rather exotic Sezawa and
pseudo-Sezawa modes [145].

Concluding remarks

In conclusion, we have discussed a simple experimental con-
figuration for generation and detection of high-frequency
exchange magnons in FM thin films by different fs-laser-
triggered optical stimuli. We focused on the magneto-acoustic
excitation mechanism using ultrashort acoustic pulses, which

31

is not accompanied by unwanted thermal effects. The pos-
sibility to excite high-frequency exchange magnons appears
to be limited by the spectral bandwidth of acoustic pulses
injected in FM thin films. Possible strategies to tailor
acoustic spectra rely on using free-standing FM mem-
branes or hybrid multilayer structures incorporating semicon-
ductor superlattices acting as THz-frequency opto-acoustic
transducers.

The capability to tune magnetic resonances through acous-
tic resonances by applying external magnetic fields with
experimentally feasible magnitudes of the order of 1 Tesla,
as discussed in figure 16, provides a unique opportunity to
quantify amplitudes and lifetimes of THz-frequency exchange
magnons in complex magnetic materials. As an example, the
impact of inertial effects on magnon dispersions could be iden-
tified in this kind of measurements.

Further theoretical analysis in high-frequency magneto-
acoustics should help identifying the role of phase-matching
conditions, magnetic and acoustic boundary conditions [137]
in generating large-amplitude magnon precession in magneto-
strictive materials. It is expected to facilitate the experimental
studies targeting the magnon-assisted parametric [146] and
nonlinear magnetoacoustic dynamics [147].
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Status

As discussed in sections 1 and 3, the MO effects manifest
in a magnetic-field-modulation of the polarization and intens-
ity of reflected and transmitted light. Therefore, the integra-
tion of MO-active materials in nanophotonics is particularly
appealing since light states are utilized as information carri-
ers in a plethora of applications ranging from optical commu-
nications and sensing, to imaging and quantum technology.
Indeed, MO nanomaterials are very promising as they would
enable a reliable, active, and fast manipulation of light prop-
erties at the nanoscale for future nanophotonic applications
(active photonic devices, GHz and even THz optical nano-
modulators, MO memories based on magnetoplasmonic archi-
tectures, etc). In addition, MO effects break the symmetry of
time inversion (Lorentz reciprocity). Therefore, yet another
and most direct application to nanophotonics would be the
implementation of nanoscale optical isolation in nonreciprocal
nanoscale devices.

Unfortunately, ordinary magnetic materials with suffi-
ciently strong MO effects in the frequency range of interest
(VIR and NIR/mid-infrared (MIR)) do not exist and this has
been the roadblock in both the miniaturization of optical isol-
ators and the development of magnetically controlled nan-
ophotonic devices. The lack of strong MO materials has
unleashed extensive research on exploiting the peculiarities
of optics at the nanoscale to enhance MO effects. Nano-
scale optical effects have been exploited to slow down light
to increase interaction time with the MO materials and to
increase the electrodynamics that results in the optical and
MO effects. A variety of structures have been scrutinized,
such as FM [148] and hybrid FM/noble metal nanoreson-
ators [31], plasmonic and photonic crystals [149, 150], and
more recently hyperbolic and epsilon-near-zero metamaterials
[151], which are promising in optical circuitry, especially for
buffering, switching, and time-domain processing of optical
signals. This intense search triggered and has been nursed by
the dramatic and parallel advances in the sensitivity and spatio-
temporal resolution of characterization methods and tools. For
instance, the development of advanced ultrafast spectroscopy
techniques to unveil the temporal dynamics of charges and
spins in MO nanomaterials, will open a plethora of opportun-
ities in a variety of research areas based on magneto-photonic
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processes and their coherent control (see also sections 10, 11
and 18).

Current and future challenges

One of the most investigated paths to boost the weak MO-
induced modulation of light is to exploit the strongly enhanced
electrodynamics produced by the excitation of localized plas-
mon resonances (LPRs), i.e. the collective oscillations of the
quasi-free electrons to amplify the MO response in metal-
lic nano-antennas. However, the generation of a large MO
response comes at the price of a parallel enhancement of radi-
ated light with the original polarization. This seemed an unsur-
mountable limit for the maximum achievable amplification of
magnetic-field activated change in polarization and intensity
of reflected and transmitted light.

There is an on-going search of materials that could allow
reducing the losses (both radiative and ohmic) and increasing
the MO activity. Challenges here come from the fact that in
the VIS-NIR range it seems that there is not a better option
than the metals conventionally utilized [152]. In the NIR-—
MIR range, insulating ferrimagnets (see section 13) and con-
ductive oxides have been proposed as a better alternative to
metals [153]. This lack of materials has also pushed the search
for metamaterials, such as hyperbolic and epsilon-near-zero
metamaterials. These systems are extremely versatile since
they display hyperbolic (or indefinite) dispersion and show
conductive or insulating properties depending on the spatial
direction considered. They also look extremely promising for a
plethora of applications, such as light-driven ultrafast inform-
ation processing [154] and might become a key platform for
ultrafast coherent MO recording. Finally, extensive efforts are
currently devoted to broadening experimental and theoretical
studies to the temporal domain (see sections 10 and 18), in
particular on the sub-ps time range where non-thermal effects
occurs, e.g. carrier—carrier scattering, the main mechanism
involved in the charge-spin interaction below 100 fs (see upper
panel in figure 17). In this framework, particularly interest-
ing would be the study of plasmon dephasing (happening on
the time scale of few tens of fs) on the spin dynamics in MO-
active nanomaterials (see lower panel in figure 17). Only very
recently people have started to explore ultrafast dynamics in
nanoscale MO systems [155, 156].

Advances in science and technology to meet
challenges

A promising path recently proposed to circumvent the limit-
ation posed by the parallel amplification of the light with the
original polarization that is needed to produce the enhance-
ment of MO activity in magnetoplasmonic nanoantennas, is to
exploit hybridization of the dipolar mode induced by the incid-
ent light with dark modes in specially designed dimeric nano-
structures. The underlying concept is illustrated in figure 18
for the magnetoplasmonic nanocavity reported in the literat-
ure [31]. The drawback of the proposed nanocavity structure
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Figure 18. General concept of MO amplification exploiting dark
modes illustrated for the case reported in the literature of a
non-concentric nanocavity made of a MO-active disk inside a noble
metal ring resonator, shown schematically in panel (a) [31]. The
nanocavity supports the excitation of a hybrid multipolar mode in a
specific wavelength range, shown by the normalized surface charge,
o, map in panel (b). Panel (c) displays the multimodal analysis of
the hybrid mode, which shows that the excitation of this hybrid
mode results in an enhanced optical dipole in the MO active material
that generates a highly enhanced MO dipole. Whilst the MO dipole
in the disk (PDMO) is fully radiant, the radiation from the optical

is its large footprint that reduces considerably the surface cov-

erage of the MO-active material. Future research should focus  field [158]. Notably, magnetic switching of plasmonic lasers
on designs to increase the sharpness and strength of the res- using this type of multi-layered magnetoplasmonic nanostruc-
onances and allow for a substantially reduced footprint of the tures has been recently reported [159]. Similar approaches
nanocavity. The sharpness of a resonance is determined by the  can be used also for multi-layered metal-dielectric hyperbolic
damping of the plasmon due to radiative losses and dissipative ~ metamaterials, which recently have been shown to display
effects. The exploitation of surface lattice resonances, namely tuneable MO activity even if their building blocks are non-
the diffractive coupling in periodic arrays, is worth exploring magnetic [151].

since they are known to lead to a dramatic reduction of radiat- Finally, we foresee that exploring non-thermal pathways
ive losses [157]. A partial reduction of the dissipative losses [160], where the intrinsic losses due to heating can be
can be achieved by using either magnetic garnets or noble overcome by exploiting the dynamics of the electrons on
metal/FM multi-layered nanostructures (e.g. Au/Co, Au/Fe, sub-100 fs timescales, can open excellent perspectives in both
and Pt/Co), which bring the additional advantage of a quite the fundamental and applied aspect of ultrafast magnetoplas-
high MO activity and a perpendicular magnetic anisotropy monics. By exploiting the non-thermal dynamics of electron
that allows their magnetic manipulation using a low magnetic  gas, we expect that novel plasmon-driven phenomena can
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be discovered and controlled for the duration of the laser
pulse (sub-10 fs), where the microscopic degrees of freedom,
such as the spin, can be strongly coupled to the amplitude,
frequency, and polarization of the plasmonic field (see also
section 10). This direction is still unexplored in magnetoplas-
monics and nanoscale magneto-optics and can become a rising
research line in the upcoming years.

Concluding remarks

We have briefly reviewed the current trends in magnetoplas-
monics, highlighting recent advances in the field where MO
enhancement can be achieved going beyond the exploitation
of currently known LPRs. We have shown how plasmonic
dark modes or hyperbolic dispersion of the materials used can
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open future and exciting directions towards the development
of novel nonreciprocal MO nanodevices. We have also given
an overview of possible future directions to improve the per-
formances of these architectures and provided a brief vision
on the exciting opportunities arising from studying the fun-
damental properties of magnetoplasmonic systems at ultra-
fast timescales. For instance, non-thermal electronic dynamics
and sub-10 fs spin dynamics affected by plasmon dephasing
are interesting directions to be explored by using state-of-the
art pump-probe spectroscopy techniques. They might unveil
novel pathways to control spin dynamics in the non-thermal
regime also with metallic nanostructures, thus overcoming the
intrinsic limitations placed by ohmic and other losses, opening
excellent opportunities towards plasmon-driven coherent MO
activity.
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Status

All-dielectric nanostructures with magnetic constituents
attract much research interest since, on the one hand, they have
low optical losses and, on the other hand, provide advanced
MO functionalities. Usually, the thickness of the nanostruc-
ture, as well as the lateral scales of their single elements, are
subwavelength so it can be treated as a kind of metasurface
whose overall optical response is determined mainly by its
elements, ‘meta-atoms’. The meta-atoms provide localized
optical resonances and their periodic array enriches the struc-
ture with the guided ones. Magnetization of the ADMOMSs
modifies optical modes: either changes their field distribu-
tion or shifts their dispersion. As a result, the MO response
of ADMOMS becomes significantly different from a smooth
magnetic film: the MO effects get boosted and, moreover,
some new MO effects might appear. It makes ADMOMS an
interesting subject for basic research and quite promising for
sensing and telecommunication applications.

Initially, ADMOMSs were proposed theoretically [161,
162] and were recently demonstrated on the basis of magnetic
dielectrics arranged in periodic arrays of trenches or nanod-
isks [163-170]. Several unusual effects were shown to arise
in ADMOMS. It is well-known that usually the MO effects
associated with the in-plane magnetization component, such
as transverse or longitudinal Kerr effects, are weak, especially
in the transparent materials. One of the ways to overcome
this is to use the specially-designed plasmonic nanostructures
(see section 12) that introduce losses by their nature. The
other approach demonstrated recently is based on the special
properties of the optical eigenmodes excited in all-dielectric
metasurfaces. The magnetization-induced shift of the trans-
verse magnetic (TM) mode dispersion provides three orders
of magnitude enhancement of the transverse MOKE up to
2% [163] in the material transparency region where the con-
ventional effect is below 0.01%. Excitation of guided modes
propagating at various angles to the light incidence plane and
medium magnetization originates a novel MO intensity effect
observed both in p- and s-polarizations whereas a smooth film
produces no such effect for s-polarization [164] (figure 19(a)).
Similar effect is observed if excitation of localized resonances
provides an efficient gyromagnetic response [170]. Under the
simultaneous excitation of the TM and transverse electric (TE)
modes, longitudinal magnetic field mediates their coupling
leading to significant growth of the longitudinal Kerr effect (up
to 1°) even for small angles of incidence of less than 1° [165,
170] (figure 19(b)). The unique sensitivity of the ADMOMS
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Figure 19. Unusual MO response of ADMOMSs. (a) Transverse
magnetophotonic intensity effect observed in s-polarized light in 2D
metasurface. This effect equals to zero for an unstructured smooth
magnetic film. Reproduced from [164]. CC BY 4.0. (b) Significant
enhancement of longitudinal MO effect at 0.4° angle of incidence.
[Reprinted/Adapted] with permission from [165] © The Optical
Society. This effect is several orders lower for a same smooth
magnetic film.

to the in-plane magnetization component is a key feature for
novel studies of the in-plane materials.

A notable enhancement of the Faraday effect in observed
both in the cases of metasurfaces with guided [166] and local-
ized [167] modes, that is important for various applications
[174] including MO microscopy (see section 6), magneto-
metry [168], etc.

Moreover, the results of the first studies of the optic-
ally launched spin dynamics in ADMOMS are promising in
the sense of optical excitation and probing of the quantized
exchange SWs due to very high confinement and non-uniform
distribution of the optical field within the magnetic structure
[169]. Due to the local and non-uniform spin dynamics excit-
ation, ADMOMSs open new horizons for the ultrafast opto-
magnetism (see section 10).

Current and future challenges

For practical applications, the MO devices working with
high efficiency, i.e. providing 100% MO light modulation or
45° MO polarization rotation are highly desired. Although
ADMOMS provided significant, several orders of magnitude
enhancement of the MO effects [163-170], their absolute
values are still rather small. The highest MO modulation
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efficiency demonstrated in transmission [171] was higher than
10%, and in reflection was 20% [170, 171]. The highest MO
polarization rotation observed in ADMOMS was 1° [165,
171]. Further optimization of the ADMOMS design is neces-
sary to improve these values.

It is important not only to increase the MO effects but
also to preserve a rather high level of basic signal. Although
ADMOMS is nearly free of optical losses, the presence of
the optical resonances usually reveals itself as the dips in the
transmittance spectra. An interesting approach to overcome
the decrease of the transmittance by using the phenomenon of
electromagnetically induced transparency was proposed the-
oretically in [172].

Apart from that, ADMOMS were theoretically predicted to
support bound states in the continuum (i.g. [32]). Such states
provide infinite Q-factors in ideal structures that is interesting
for a wide range of practical applications, including sensing
and all-optical magnetization control. However, bound states
in the continuum could be destroyed due to the presence of
absorption and fabrication inaccuracies so that the techniques
and materials of magnetic ADMOMS require further improve-
ment to observe this interesting phenomenon.

Excitation of the localized modes associated with indi-
vidual nanoresonators (figure 20(a)) was shown to increase the
MO effects in ADMOMS [167, 170, 173]. Although recently
2D arrays of such resonators forming a metasurface were stud-
ied, this approach is interesting for the potential miniaturiz-
ation of MO devices and going down to the level of single
meta-atom magneto-optics. The studies considering a single
magnetic meta-atom interaction with photons were not per-
formed yet, but represent an efficient approach to reduce the
lateral size of the addressed MO structure down to the sub-
wavelength scale. Magnetic meta-atoms are also of prime
importance for the opto-magnetic effects and might be cru-
cial as highly localized sources of optically excited magnons.
Studies in this direction have just started (figure 20(b)) [169].

Advances in science and technology to meet
challenges

ADMOMS require nanostructured magnetic dielectric mater-
ials with a high MO figure of merit which is the ratio of
the MO activity to the absorption coefficient. Several types
of ADMOMS were recently fabricated, and in each case a
trade-off between the MO activity of the material, its absorp-
tion, and fabrication capabilities was achieved. For example,
iron garnets are the most efficient materials combining high
MO activity and low absorption. However, the technology
of iron-garnet nanopatterning is rather complicated, so that
fabrication of such structures is challenging [163, 164, 167].
On the other hand, ADMOMS could be fabricated using a
composite material of magnetic nanoparticles embedded in
a glass matrix, instead, as reported in [165, 166, 171]. This
approach is easy and convenient for implementation, although
such nanocomposite itself has rather low MO activity com-
pared to the iron garnet. Significant restrictions are imposed
on the spatial resolution of such structure. On the other hand,
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Figure 20. ADMOMS challenges and perspectives. (a) Localization
of light in a single magnetic ‘meta-atom’ under excitation of
magnetic dipole resonance of a nanodisk. [170] John Wiley & Sons.
[Copyright © 2022 WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim]. Grey arrows show intensity and direction of the electric
field components. Intensity of magnetic field components is shown
by colour. (b) Optical generation of multiple spin-wave resonances
due to a localized action of a laser pulse. Reprinted with permission
from [169]. Copyright (2020) American Chemical Society. Right
figure shows that spin-wave spectra of ADMOMS has several
resonances corresponding to the 3 lowest quantized spin-wave
modes. At the same time the spin-wave spectra of the homogeneous
film exhibits only one resonance corresponding to the uniform spin
precession.

the technologies of Si deposition and nanopatterning are well
developed nowadays, and recent works show that it can be
applied to fabricate a nanostructure on the top of a smooth
magnetic oxide film [170].

The other challenge is the requirement of precise nanostruc-
turing. ADMOMS, in contrast to their plasmonic counterparts,
are extremely sensitive to the geometrical parameters of the
structure. High Q values, especially for the guided-wave-based
and bound-states-in-the-continuum-based ADMOMSs having
several nanometres-width optical resonances sensitive to even
a few nanometres shift of the resonance position due to the
inaccuracy. Fabrication inaccuracies may not only result in
the additional scattering and metasurface operation efficiency
decrease but also may be responsible for the complete destruc-
tion of the desired resonances.

Up to now, only ADMOMS with a periodical arrangement
of a large number of ‘meta-atoms’ were studied. Intriguing
possibilities open if one goes down to a single ‘meta-atom’
level, i.e. focus on the study of the MO or opto-magnetic
response of a single nano-object. Such an approach requires
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advances in the light focusing and precise positioning, and
novel experimental approaches to the measurements of the
MO effects at the nanoscale.

Concluding remarks

All-dielectric magnetic metasurfaces attract the attention of
the scientific community due to their ability to control the light
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via an external magnetic field and to combine high transpar-
ency with enhanced MO response. ADMOMS demonstrate
unusual MO properties that could not be found in smooth
materials. Observed enormous enhancement of the MO effects
in them is very promising for the device miniaturization and
enriching their capabilities for sensing, magnetometry, light
modulation, etc. Low optical losses and thermal heating, and
a variety of optical modes with peculiar properties make
ADMOMS important for potential opto-magnonic studies.
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Status

The recent advance of magnetic nanostructures to the third
dimension promises an abundance of new physics, as well
as a multitude of possibilities for applications [175]. In 3D
space, the higher degrees of freedom allow for the formation
of new spin textures, which range from singularity-containing
domain walls [176] to higher order topological structures
[177]. In addition, the patterning of 3D geometries, made pos-
sible by recent advances in 3D nanofabrication techniques
[178, 179], offers new routes to tailoring the magnetic prop-
erties. The integration of curvature can induce effective aniso-
tropy and chiral energy terms as well as automotive effects
[180], while the patterning of chiral geometries allows for
the direct imprinting of chiral spin textures [181]. In terms of
applications, the move to 3D promises key increases in device
density [182], as well as increased functionality, with pro-
spects for green electronics.

One of the largest challenges facing the realization of the
promises of 3D nanomagnetism has been the development of
appropriate characterization techniques with which to visu-
alise the 3D magnetization [183—185]. Indeed, most avail-
able imaging methods—including magneto-optics, which this
Roadmap focuses on—are either planar or surface sensitive,
and have been used in combination with micromagnetic sim-
ulations to gain an understanding of the 3D magnetization.
Direct access to the magnetic configuration via slicing of the
sample is prevented by the dependence of the magnetization
on the geometry itself. Instead, a non-destructive, tomographic
technique is required.

Tomography, as in the computed tomography (CT) scan in
a hospital, is achieved by measuring transmission projections
of a sample from many different orientations. For this, x-rays
are used as they offer higher penetration depths than photons
in the visible range. The combination of all the recorded pro-
jections using computer algorithms leads to the reconstruc-
tion of the scalar 3D structure of the sample. In the frame-
work of 3D magnetic imaging, however, we map the magnet-
ization vector field. For this, we make use of magneto-optics
in the x-ray regime—in particular, we can obtain element-
specific sensitivity to the magnetization by exploiting XMCD.
By measuring in transmission, one therefore obtains a pro-
jection of the magnetization component parallel to the beam
direction integrated through the sample. However, for vector
tomography there is an additional complication: to probe all
three components of the magnetization, a single tomographic
rotation axis is not enough. Such an experiment requires at
least two complementary tomographic datasets [183, 184], or
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an alternative geometry such as laminography [185]. Finally,
the internal magnetic configuration is recovered using a vector
reconstruction algorithm (see figure 21).

A key advantage of the technique is that there is no need
for prior knowledge of the sample, meaning that direct access
to complex magnetization configurations is possible. In this
way, first direct observations of textures within the bulk have
been achieved, including Bloch point singularities [183, 184],
skyrmion tubes [186], and magnetic vortex rings [187], as well
as novel domain wall textures in patterned 3D structures [188]
(figure 22).

Current and future challenges

These demonstrations of 3D magnetic imaging have revealed
the power of the technique to provide direct access to the 3D
magnetization configurations, becoming an experimental win-
dow to new physics and sparking new directions of research.
However, with each new direction, comes new challenges.

One such direction concerns the visualization of topolo-
gical magnetic textures, such as skyrmions and vortices, as
well as Bloch point singularities. The observation of the details
of these features requires high spatial resolutions on the order
of the exchange length. Indeed, the first observation of the
presence of Bloch point singularities only had a spatial resolu-
tion of 100 nm [183]—meaning that although the texture sur-
rounding the singularity could be resolved, the structure near
the centre of the Bloch point remains elusive. As a result, ima-
ging at shorter lengthscales is key.

In addition to their static configuration, their dynamic beha-
viour is crucial to painting the complete picture of these exotic
spin textures. For example, in 3D nanowires, domain walls are
predicted to propagate at ultra-fast velocities [176], reaching
regimes in which SWs can be spontaneously emitted. Ima-
ging of the in operando behaviour in three-dimensions, under
the application of different excitations is therefore crucial to
developing our understanding for fundamentals, and applied
technologies.

There is also key interest in the 3D structure of alternative
materials—both magnetic, and beyond. Following the recent
demonstration of electric control of antiferromagnetic order
[189], there is a growing need for enhanced knowledge of
the static—and dynamic—behaviour of these elusive systems.
Exploiting linear dichroic effects could lead to 3D imaging
of antiferromagnetic systems, while combination with Bragg
techniques could open the door to the visualization of ferro-
electric domains.

Advances in science and technology to meet
challenges

One of the most promising upcoming technical advances
involves the development of the next generation of synchro-
tron radiation sources, which promises to provide orders of
magnitude higher coherent flux. This will allow to probe the
weaker signals of alternative materials such as AFMs, but
most importantly, it will strongly impact coherent diffractive
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Figure 21. A 3D x-ray magnetic imaging requires the measurement of XMCD projections for a number of different orientations of the
sample. These projections are then combined using a reconstruction algorithm to obtain a map of the magnetization vector field.
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Figure 22. X-ray magnetic tomography and laminography have led to the mapping of 3D magnetic textures such as Bloch point
singularities, skyrmion textures, and magnetic vortex rings within larger systems, while in patterned nanostructures new types of coupled
domain walls have been observed. Reproduced from [183], with permission from Springer Nature. Reproduced from [184]. CC BY 4.0.
Reproduced from [186], with permission from Springer Nature. Reproduced from [187], with permission from Springer Nature.
Reproduced from [188]. CC BY 4.0. Reprinted with permission from [191]. Copyright (2020) American Chemical Society.

imaging techniques, where the spatial resolution is currently by developing new reconstruction algorithms based on both
flux limited [183]. This increase in coherent flux will make it XMCD and alternative contrast mechanisms such as x-ray
possible to reach key magnetic length scales. In this frame- magnetic linear dichroism (XMLD), the structure of divergent
work, we encounter new challenges: a fundamental limita- textures such as singularities, as well as topological antiferro-
tion of XMCD is that it prevents the imaging of divergent magnetic textures, could be resolved.

magnetization structures [190], while different contrast mech- The increase in flux will also allow for experiments to be
anisms for imaging AFMs are required. We envisage that faster, allowing for the advance to in operando measurements.
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Typically, an experiment providing a mapping of coherent
rotation modes and domain wall dynamics with pump-probe
magnetic laminography requires over one week of beamtime
[185]. As these experiments become faster, in situ imaging
of dynamic behaviour as well as quasi static imaging under
the application of a wider variety of excitations such as fields
or currents will become possible. Technical advances in the
sample environment will open the door to a wide variety of
in situ measurements. For example, moving to pump-probe
scanning transmission x-ray microscopy (STXM) opens the
door to a wide range of excitation frequencies, while with
the development of faster detectors and x-ray FELs (XFELs),
stroboscopic imaging of ultrafast responses (see sections 10
and 15) could become feasible. These capabilities for four-
dimensional imaging could also be extended to spectroscopic
measurements. Indeed, by performing spectroscopic magnetic
tomography, sum rule analysis could be used to resolve the
orbital and spin moments in three dimensions, giving insight
into SOC at the nanoscale.

Finally, four-dimensional imaging will bring very large
datasets. Here, the move to advanced analysis will be cru-
cial to the efficient interpretation of the magnetic beha-
viour, with recent implementation of analysis based on the
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topology offering easy identification of relevant topological
textures [ 184, 187]. With such Big Data(sets), we envisage that
advanced tools based on machine learning will play a key role
in exploiting the full potential of these techniques.

Concluding remarks

With the advance to 3D magnetic imaging, we have a two-
fold change of paradigm. First, the access to the third dimen-
sion represents a significant advance from 2D to 3D, bring-
ing new configurations and textures that are not possible in
planar systems, allowing for the full exploration and exploit-
ation of the magnetization vector field. Secondly, this dir-
ect access to the 3D magnetization represents a new exper-
imental approach in magnetism. Here, we experimentally
access the magnetization in 3D directly with nanometre
and picosecond spatial and temporal resolutions, with no
prior assumptions. In time, we envisage that higher dimen-
sional magnetic imaging will provide a new era of exper-
imental micromagnetism, and that this type of measure-
ment will direct our understanding of these complex material
systems.
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An XFEL is the linear accelerator-based light source that
generates an ultrahigh brilliant x-ray with ultrashort pulse-
width, spatial coherence, and tunable photon energy. After the
designs and the pilot examinations from 1970s, today XFEL
facilities are opened for users at various sites over the world
[192—-194]. At the XFEL beamlines, researchers carry out the
state-of-the-art x-ray experiments of scattering, spectroscopy,
imaging, and diffraction. The application ranges various aca-
demic fields of physics, chemistry, biology, and medical sci-
ence. Nowadays, the XFEL beam has also become a significant
probe to examine technical innovations in industry.

Photon energy of XFEL covers the wide range from
vacuum ultraviolet to x-rays. An x-ray has been categorized in
two regions: the hard x-ray (wavelength of 0.1 nm or shorter)
and SX region (0.1 nm or longer). Typically, a beam of the hard
x-ray is used for determining (atomic) structure of a mater-
ial, while that of the SX is for examining the electronic states.
In this article, I focus on magnetic spectroscopy, mainly in a
region of SX that corresponds to the wavelength range around
10 nm and covers a region of the vacuum ultraviolet ray. The
SX MO effects have allowed us to directly probe spin states
that are responsible for magnetic or spintronic properties of
a material [195-197]. Researchers have conducted measure-
ments of the x-ray MO Kerr or Faraday effect (XMCD) when
an XFEL beam is linearly (circularly) polarized.

Current and future challenges

Interactions between light and magnetic materials make vari-
ous MO responses, such as the MOKE and the Faraday effect,
that are useful for experimental physics (see sections 4, 8, 9,
and 11). Photon energy of the SX covers absorption edges
of various elements and, thus, the MO measurement can be
element-selective [198, 199]. Furthermore, optical perform-
ance of the XFEL beam allows us to make time- or spatially
resolved experiments.

Figure 23 shows an example of such a (core-level res-
onant) MOKE experiment on the Co/Pt heterostructure at
the SACLA soft XFEL beamline (SXFEL BL-1) [198]. The
absorption spectrum shows features of the Co M-edge (absorp-
tion peak) and the Pt N-edge (Fano resonance) at v = 60 eV
and hv = 72 eV, respectively. The material shows the photo-
induced ultrafast demagnetization (see section 10) and the
time-resolved measurement successfully traces that a mag-
netic variation in the Co layer is much faster than that in Pt.
The results demonstrate that the XFEL beam is a powerful tool
to reveal nature of femtomagnetisms. Besides SXFEL, HHG
of infrared-ray have also become a light source for element-
specific MO experiments [199, 200]. Both the SXFEL and
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Figure 23. (a) The Co/Pt multi-layer sample (b) x-ray absorption
spectra with indications of the Co M-edge and Pt N-edge regions,
(c) element-selective MO Kerr responses with various delay time,
taken at hiv = 60 eV (Co M-edge) and hv = 72 eV (Pt N-edge)
[198].
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HHG sources cover the photon energy range of SX but
individually have distinctive optical parameters. SXFEL has
unique characters, such as ultrahigh brilliance, that exceed per-
formance of the HHG radiation but the beamtime is severely
allocated for users. Depending on the experimental condi-
tions, varieties of the SX MO measurements can be carried
out selectively at the SXFEL or HHG beamline.

In developing nanodevices, spatially resolved measure-
ments of MO spectroscopy are significant to examine the mag-
netic (spin) states in a local region that determine the func-
tionalities. There are two technical approaches with SXFEL.
The one approach is held by scanning the SXFEL nanobeam,
focused by a mirror, and the other approach is coherent dif-
fraction imaging [194, 201]. Since an XFEL beam has a full
spatial coherence, SX MO phenomena are expected to be com-
bined with advanced imaging techniques, such as holography,
ptychography, or tomography, in future. By detecting the local
MO responses, these measurements with SXFEL allow us to
acquire magnetic images in nanometre scale with element-
selectivity and/or ultrafast temporal resolutions.

Today, XFEL MO experiments of magnetic dynamics and
imaging are stably performed at the various facilities. The
researchers have nowadays moved onto the operando meas-
urements that trace evolutions of the local magnetic (spin)
states in actual devices in real time. The novel approaches
require precise controls of the sample environment, i.e. current
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Figure 24. A photograph of the soft XFEL (SACLA BL-1) and future prospects of the usage.

injection, external EF, or local temperature. Furthermore, it
is also necessary to measure the additional responses of the
sample, such as (magneto)resistance, during the measure-
ments with XFEL. Consequently, a large dataset in multi-
dimensions is acquired after the XFEL beamtime and the big
data should be examined with informatics to make systematic
characterizations of a material and to discover hidden proper-
ties that may become useful in future.

Advances in science and technology to meet
challenges

In coming years, users will be able to choose two operation
modes of XFEL, one mode with ultrahigh brilliance and a
repetition rate of several 10 Hz (the conventional-type) or
the other mode with the moderate brilliance and the MHz-
frequency. The followings are my future prospects of MO
research with these XFEL modes.

The ultrahigh brilliant XFEL beams opened research of
the non-linear optical effect. In 2018, two independent groups
observed the second harmonic generation (SHG), which is
optical frequency conversion of producing a double field
frequency, in SX region [202, 203]. The phenomena occur
in a medium of broken inversion symmetry or at an inter-
face. These SHG signals were enhanced when photon energy
matched with the absorption edge of a material (the core-level
resonance). The findings indicated that the x-ray SHG lies in
the obtention of elemental or chemical information of a sample
in the non-linear signals. The novel approach has already made
progresses in material science today [204]. Thus, in the future
this method should be extended to the magnetization-induced
SHG (MSHQG). It is expected that MSHG with SX selectively
probes magnetization at an interface with element selectivity.
Combing with the ultrashort pulse of XFEL, one should also
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be able to trace the ultrafast spin dynamics across the inter-
face that determine functionalities, such as spin torque, of spin
devices.

To deal with light-matter interaction in the vacuum
ultraviolet—to—x-ray region, it is significant to recall the pho-
toelectric effect and photoemission spectroscopy that directly
probes electronic states in materials. The XFEL with a high
repetition rate (1 MHz) has provided performance of experi-
ments of time- and ARPES (TARPES) that can trace temporal
evolutions of electronic states during dynamic events, such as
photo-induced transitions. Today, researchers can make spin-
resolved ARPES, or SARPES, in the laboratory or at synchro-
tron radiation facilities and determine the spin-polarized band
structure of a sample [205]. By introducing the SARPES tech-
nique in the XFEL facilities, it is expected that one can per-
form experiments of spin- and TARPES (STARPES) [206].
The novel method would directly trace evolutions of electrons
in magnetic or spintronic dynamics with information on spin
orientations, carrier velocities, and scatterings.

Concluding remarks

In magneto-optics, a polarization state of the probing light
links with magnetic properties of a sample. With XFEL,
the information can be element-selective and it can also
be combined with nanometre-scale spatial and femtoseconds
time-resolutions. In the future, non-linear MO effects will
be examined and extended to the spectroscopy method to
probe ultrafast spin dynamics across the selected interface.
A measurement of STARPES can be made with XFEL to
trace temporal evolution of the spin-polarized electronic states
in a material. It continues being highly useful to perform
advanced MO experiments at XFEL facilities for material sci-
ence (figure 24).
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Status

Building on the discovery of the Faraday effect in 1846, the
interplay of light with magnetic materials has ever since been
strongly focused on polarization-dependent interactions (see
section 1) especially uneven interactions with left and right cir-
cularly polarized beams (LCP and RCP). At the mesoscopic
scale, suitable to Maxwell equations in optics, these effects
appear as different values of the complex optical index for
LCP and RCP, leading to polarization changes and differen-
tial absorption upon transmission through, or reflection off,
the magnetic sample. In the paraxial approximation, i.e. when
light beams are loosely focused so that their electric and mag-
netic fields remain transverse, LCP and RCP correspond to
photons of opposite spin angular momentum (SAM). Indeed,
the projection of the angular momentum (AM) of a light beam
with a plane wavefront along its propagation axis z, reads
S, = oh per photon, where ¢ = +1 for LCP and RCP, and
o = 0 for linear polarization. Light can also carry an OAM, as
in the case of Laguerre—-Gaussian modes that are indexed with
two integers, (¢,p) € (Z,N), and show / intertwined spiralling
wavefronts (figure 25). More precisely, along the azimuth 6,
the phase of the beam varies like /0 and the projection of the
AM, along the z-propagation axis, reads L, = ¢} per photon. In
the paraxial approximation, the two kinds of AM simply add
up, and the projection of the total momentum of the light beam
isJ, = (o 4+ £) R [207]. For tightly focused beams, interconver-
sion between SAM and OAM has been observed, opening the
field of spin—orbit interaction of light [207].

The strong analogy between SAM and OAM of light
inspired the development of mirror applications in their own
fields [208, 209], such as data multiplexing and transmis-
sion, entanglement, spectroscopy, matter manipulation includ-
ing Bose-Einstein condensates and imaging. The rapidly
evolving interest in OAM beams had a sparse overlap with
magneto-optics, which remains strongly associated to SAM.
However, this situation may evolve very quickly in view of
recent theoretical and experimental work. In analogy with
the results obtained for the electric-quadrupole interactions
of OAM beams with atoms and molecules, it was predicted
that the interaction of OAM beams with magnetic samples
should depend on the value of ¢ [210]. Indeed, it was exper-
imentally demonstrated that the interaction vanishes in the
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Figure 25. (Top line) 3D representation of the electric field
amplitude for Laguerre Gaussian beams with £ = 1, / =2 and

¢ = 3, showing one, two and three intertwined spirals, respectively.
(Bottom, from left to right) Projection on a transverse plane

of the electric field amplitude, phase and intensity for a
Laguerre-Gaussian beam carrying a topological charge £ = 1. As
time passes, the field rotates about the centre.

electric-dipole approximation [211]. In a further study, van
Veenendaal and Mc Nulty theoretically identified signatures
of the absolute value of the OAM in the incoherent diffraction
pattern from a magnetic vortex [212]. Neither prediction [210,
212] though, has been verified yet. Over the last two years,
there has been a surge in publications that promote the use
of OAM beams outside the visible range. Sirenko et al [213,
214] reported OAM-dependent transmission at THz frequen-
cies in FM and antiferromagnetic oxides featuring collective
magnetic excitations (figure 26), and attributed it to the coup-
ling between the ¢-dependent longitudinal magnetic field of
light and the sample magnetization (see also section 18). Vor-
tex beam dichroism related to the total AM of THz radiation
was further reported in [214]. Woods et al [215] showed that
the reflection of an ¢ = 0 x-ray beam off an artificial spin-
ice with a topological defect changes the OAM content of
the outgoing beam. Finally, Fanciulli et al showed theoretic-
ally [216] and experimentally [217] that helicoidal dichroism,
i.e. an effect dependent on the OAM value and sign, appears
when light beams are reflected off non-homogeneous magnetic
structures.

Current and future challenges

This brief summary of the state-of-the-art shows that magneto-
optics with OAM is just rising today, with only a few the-
oretical predictions and proof-of-principle experiments. It is
interesting to note that three approaches are proposed, har-
nessing different features of such beams: (a) direct interaction
through electric-quadrupole terms [210], (b) indirect coupling
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Figure 26. Examples of magnetic helicoidal dichroism expressed as
asymmetry ratio [[({ = +1) — Il = —-DJ/[I{ =4+1)+ I({ = —1)],
where [ is the spectrally/spatially resolved intensity for left/right
panels. Left: experimental THz transmission in Ni3TeOg at the
antiferromagnetic resonance (courtesy of A Sirenko) [214]. Right:
calculated reflectivity from a permalloy magnetic vortex

(A = 23.5 nm, Fe-3p resonance) [217].

between the light magnetic fields and the sample magnetiz-
ation [213, 214], and (c) global interactions at the size of a
magnetic structure, i.e. nanometres to microns [215-217].

OAM-sensitive  magnetic  spectroscopy. (see  also
section 4) A first objective of theoretical and experimental
efforts should be to validate the predictions of [210], provid-
ing a smart access to electric-quadrupole transitions, free from
the often dominating electric-dipole ones. This seminal work
was focused on the K-edges of several materials, and a gener-
alization to the L and M-edges would be highly desirable for
applications. Also, it requires a strong focusing of the beam,
down to a few nanometres, which remains a challenge today.
The second spectroscopic approach [213, 214] exploits the
longitudinal component of the light-induced magnetic field to
alter the spectroscopic lines in the THz region (A = 0.1-1 mm).
Here the challenge is to extend this approach to other spec-
troscopic regions (visible, UV, XUV), and decouple as much
as possible SAM and OAM effects. This will also require the-
oretical efforts in order to gain in-depth understanding of the
interactions. A development with high potential for applica-
tions is to master the analogue to the inverse Faraday effect, by
which the sample magnetization may be manipulated by shin-
ing light beams of selected OAM values. It is worth stressing
that the, in principle unlimited, OAM value of ¢/ per photon
introduces a new parameter in the currently available toolbox
for all-optical control of the magnetization, which may be
combined with SAM and photon energy to provide extended
capabilities in this domain.

Spin-textures interactions with OAM beams. In recent proof-
of-principle works [215-217], it has been established that the
OAM content of a light beam after reflection off a magnet-
ically inhomogeneous structure strongly depends on its spin
texture (figure 26). These works are just scratching the sur-
face of a new kind of diagnostic for probing global spin tex-
tures, including antiferromagnetic ones [215]. However, the
full microscopic modelling of the coupling between light and
spins remains elusive. Also, the full balance of AM has not
been established, the capability of altering the magnetization
texture with OAM beams was not demonstrated, and a global
approach for all kinds of magnetic textures, in reflection or
transmission, is still missing. Overall, more theoretical work
is clearly required.

These are the major challenges towards the full develop-
ment of magneto-optics with OAM as a diagnostic tool, but
also as a shaping tool for light and/or magnetic structures. The
development of such tools being based on light pulses, it is
naturally fit for applications in time-resolved experiments to
study ultra-fast phenomena at the femtosecond time scale, as
discussed in sections 10 and 15 of this Roadmap.

Advances in science and technology to meet
challenges

Addressing new challenges requires a continuing effort to
develop and control reliable, stable and broadband tuneable
sources of OAM beams. The above-mentioned breakthroughs
relied on very specific sources, in the THz (A = 0.1-1 mm
[213, 214]) XUV (A = 20-25 nm [217]) and X (A = 1-2 nm
[215]) spectral ranges. Light sources covering the extreme
ultraviolet to SXs range with selectable values of both OAM
and SAM will be essential for envisaging new spectroscopic
applications, notably those involving transition-metals and
rare-earths based magnetic materials. Several topics need to
be developed, such as the broadening of initially narrow spec-
tra through non-linear effects, the optical parametric amplific-
ation with OAM, the design of broadband spiral phase plates
or Fresnel zone plates, the protocols for producing OAM x-ray
beams using high harmonic generation [218] and FELs [219].
All these objectives are within reach but require further exper-
imental efforts.

The second advance is to develop, in these difficult spec-
tral regions, efficient OAM mode sorters. This is a kind of a
chicken-and-egg problem, as any controlled MO effect with
OAM could serve this purpose. However, other approaches,
mainly demonstrated in the VIR spectral regions are available
and should be extended to the spectral ranges of interest for
spectroscopies of magnetic materials.

Finally, theoretical advances are of the utmost importance
to describe the OAM-matter interaction on firmer bases and
to guide experimental work. In particular, a full description of
the possible interactions at different size scales of homogen-
eous and structured magnetic material is highly desirable to
clear the picture, especially at the microscopic level. It raises
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fundamental questions about the treatment of OAM in light
matter interaction, in parallel or concomitantly with SAM. In
particular, non-paraxial beams, notoriously difficult to treat
numerically, naturally lift the separation between OAM and
SAM and introduce transverse angular momenta. Their coup-
ling with magnetic materials has not been elucidated thus far.

Concluding remarks

Magneto-optics with OAM light beams is an almost blank
page, on which only a very few first proof-of-principle ideas
were written. It is highly promising from both applied and fun-
damental perspectives. It carries the prospect of designing new
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MO devices, sensitive to the OAM of light, as well as easing
the creation and/or diagnostics of beams with OAM. Endless
applications can be envisioned, from data encoding and pro-
cessing to spectroscopy and magnetization control. It is also
a testing ground for fundamental properties of structured light
beams that may now be shaped within an optical cycle. These
capabilities required the introduction of such notions as heli-
city, transverse angular momenta, SOC of light fields or super-
chiral fields. The interaction of such structured light beams
with magnetic structures, due to their variety, could become
a natural and precise test of these new fundamental concepts
and advantageously serve the development of structured light
spectroscopy.
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Operation of conventional magneto-optic techniques mainly
relies on the interaction between polarized light and mag-
netization, thus, the ultimate spatial resolution is set by the
optical diffraction limit, which typically lies in the range of a
few hundred nanometres (see sections 6 and 8). In addition,
the field sensitivity of the conventional MO sensing tools is
compromised by interference effects, unable to reach quantum
regime to detect magnetic fields with significantly reduced
magnitudes. Over the past decade, NV centres [220], optically
active spin defects in diamond, have emerged as a new mul-
timodal sensing platform with improved spatial resolution and
field sensitivity to investigate the forefront research of mag-
netism, spintronics, and more broadly speaking the condensed
matter physics. Many of the advantages of NV centres derive
from their quantum-mechanical nature endowed with excel-
lent coherence, controllable entanglement, and high fidelity
of operations, enabling opportunities for outperforming the
classical counterparts [220]. An NV centre is formed by a
nitrogen atom adjacent to a carbon atom vacancy in one of
the nearest neighbouring sites of a diamond crystal lattice,
as shown in figure 27. The negatively charged NV state has
an S = 1 electron spin and naturally serves as a three-level
quantum spin qubit system. To date, NV centres have been
demonstrated to be a transformative sensing tool for exploring
electrical, magnetic, and thermal features arising from a vari-
ety of material systems. Examples include nanoscale imaging
of non-collinear spin textures [220, 221], optical detection of
resonant SW modes [222, 223], non-invasive measurement
of spin transport properties of proximate (anti)ferromagnets
[223, 224], and many others [225]. A range of NV-based
quantum sensing and imaging techniques such as NV con-
focal microscopy, NV relaxometry [222, 223], NV wide-field
[225] and scanning magnetometry [221, 226, 227] have been
developed and successfully applied to explore the intriguing
science at the frontier of modern condensed matter phys-
ics. A unique advantage of NV-based quantum sensing tech-
niques results from their capability to detect noncoherent fluc-
tuating magnetic fields that are challenging to be accessed
by the conventional magnetometry techniques. On another
front, being single-spin qubits, NV centres offer an attract-
ive platform to be compatible with other functional solid-state
media to develop hybrid architectures for applications in emer-
ging quantum information sciences and technologies. To date,
NV-based quantum computing platform has been theoretically
proposed and actively explored in this context [228-230].
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Figure 27. NV centres used for probing magnetic textures, spin
dynamics, spin transport, and developing hybrid quantum devices.

Current and future challenges

Despite these remarkable progresses, technical challenges
remain to be addressed in order to push the performance of the
current NV-based quantum technologies to the next level. The
first one concerns spatial resolution which is mostly relevant
to the practical applications. In the current state-of-the-art, NV
centres are typically contained in single crystalline diamond
substrates [225] in the form of NV ensembles for wide-field
imaging measurements or in patterned diamond nanostruc-
tures [223] for single-spin addressment, as shown in figure 28.
For NV ensembles, the spatial resolution is determined by the
optical diffraction limit (see section 6) [225], while for scan-
ning NV microscopy using patterned diamond cantilevers with
individually addressable spin sensors [226], the spatial sensit-
ivity is primarily set by N'V-to-sample distance, which could
ultimately reach the regime of tens of nanometres [221, 226].
To accommodate the ever-increasing requirements of modern
scientifical research, it is highly desirable to push the spa-
tial resolution limit of NV quantum sensing techniques to the
atomic length scale to reveal the microscopic features in a
more detailed way.

The second challenge concerns the adaptability of NV
centres to different experimental conditions. At present tech-
nological level, NV sensing and imaging measurements are
mainly performed in a relatively low magnetic field range.
Because the applied external magnetic field is coupled with
NV electron spin resonance frequency, a major difficulty
results from the significant energy loss with the increasing
microwave frequency, which prevents the application of a
large magnetic field in most existing NV measurements. Also,
when temperature is below 100 K, the optical contrast of NV
centres usually quickly degrades, which also restricts a broad
application of N'V-based sensing techniques.

The third challenge concerns the scalability of NV centres
for implementing high-density, energy-efficient quantum
processors [228, 230]. To date, the role of NV centres in
quantum-computing remains peripheral. The major bottleneck
results from the difficulty to access individual NV spin qubits
in a scalable way and to identify appropriate interconnects to
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from [223]. Reprinted with permission from AAAS.

establish strong coupling between NV centres while maintain-
ing their individual functionality [228, 230].

Advances in science and technology to meet
challenges

Scanning NV microscopy [221, 226, 227] represents the most
advanced NV-based sensing/imaging technique in the cur-
rent state-of-the-art. Further improvement of its spatial resol-
ution relies on advances in diamond fabrication skills to create
shallowly implanted NV centres in patterned diamond can-
tilevers to establish sub-nanometre scale proximity between
NV single-spin sensors and materials studied. Meanwhile,
it is worth mentioning that spin defects contained in other
solid-state media such as silicon carbide and hexagonal boron
nitride [229, 231, 232] also host the promise to achieve atomic
scale quantum sensing and imaging. Over the past few years,
tremendous research efforts have been devoted along this
research direction [220, 229]. For instance, quantum sensing
and wide-field imaging of local spin textures of proximate low-
dimensional magnets in hexagonal boron nitride-based van
der Waals heterostructures have been recently demonstrated
[231, 232]. The spin-sensor-to-sample distance in the presen-
ted device structures could ultimately reach the atomic length
scale, offering a new platform for implementing ultrasensitive
quantum sensing of spin, charge, and thermal signals at the
nanoscale.

In order to expand the magnetic field range of NV-
based quantum sensing techniques, microwave engineering is
required to develop high-frequency, low-loss microwave cir-
cuits for NV operation. The recent development of (sub)THz
frequency microwave technologies promises to push the
operational magnetic field range of NV sensing to the tens
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of tesla regime. Meanwhile, the usage of [111] oriented dia-
mond containing out-of-plane oriented NV centres could also
partially address this issue especially for studying magnetic
materials with spontaneous perpendicular anisotropy. To date,
longitudinal NV spin relaxation time 7| has been investigated
with the application of an external magnetic field up to 8 Tesla
along the [111] axis of the diamond sample [233].

In current NV measurements, spin states of individual
NV centres are mainly controlled by spatially dispersive
microwave Oersted fields generated by electric currents in
a proximate stripline or waveguide and optically detected
by measuring the NV fluorescence [223, 225]. The elec-
tromagnetic crosstalk and Joule heat associated with this
approach will inevitably lead to decoherence of NV spin
qubits, imposing an inherent challenge to develop a high-
density, scalable NV-based quantum operation platform. To
address these issues, it is highly desirable to explore altern-
ative strategies such as utilizing microwave magnetic fields
generated by resonant nanomagnets [223, 230] and mechan-
ical resonators [234] to achieve efficient control and readout
of NV spin qubits. Coherent magnetic oscillations of the func-
tional nanomagnets could be electrically excited by the spin-
transfer torque, spin—orbit torque, or voltage-controlled mag-
netic anisotropy [223, 230]. We note that the magnetic stray
fields generated by nanomagnets spatially decay in a much
more rapid way due to the dipole interaction in comparison
with the Oersted fields, significantly improving the scalabil-
ity of NV spin qubits for implementing high-density quantum
devices. To improve the adaptability of the NV centres to
device integration, solid-state-based transducers [229, 230],
e.g. SWs [223, 230], photons [229], and other interconnects
have been actively explored to establish long-range NV-NV
interaction beyond the conventional dipole—dipole coupling
[228] regime, offering a new NV-based quantum operational
platform for next-generation quantum information science and
technological applications.

Concluding remarks

In summary, NV centres with nanoscale spatial resolution and
high field sensitivity hold significant potential for spintronics
study and development of state-of-the-art quantum informa-
tion sciences. As the rapid development of modern scientific
research in material synthesis technologies, device fabrica-
tions, microwave engineering etc, we share the optimism that
NV centres will be applied to a broad range of experimental
conditions to detect multiple degrees of freedom of emergent
condensed matter systems, adding valuable functionalities to
the tool box of the existing magneto optic techniques. The
dipole coupling between solid-state materials/devices and NV
centres will also provide ample opportunities for developing
functional quantum architectures, contributing to the advance-
ment of novel information computing technologies.
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18. Time-resolved THz polarimetry of quantum
materials

N Peter Armitage

Department of Physics and Astronomy, The Johns Hopkins
University, Baltimore, MD 21210

Status

The linear response of a condensed matter system to electro-
magnetic waves can be characterized by its frequency depend-
ent complex conductivity and/or its complex magnetic sus-
ceptibility. Although the THz is a natural frequency scale for
many condensed matter systems, until recently many mater-
ials’ [235] electromagnetic responses were unexplored in
the THz range as these frequencies lie above what can be
measured with conventional AC electronics and below that
accessible with optics (photonics). However, in recent years,
techniques such as time-domain THz have been developed
that span this gap, creating scientific opportunities that were
not widely available previously. Even more recently it has
become clear that pairing time-domain THz spectroscopy
(TDTS) with dc magnetic fields uniquely leverages the cap-
ability of TDTS as the capacity to measure a material’s com-
plex response function as a function of frequency, magnetic
field, and polarization gives a very detailed look into its low
energy phenomenon. These experiments and capabilities have
some resemblance to those performed in THz ellipsometry
(see section 19), but here the sensitivity to complex response
functions is performed by directly measuring the phase rela-
tionships of two orthogonal E fields and not via measuring
how elliptical polarization changes upon oblique reflection or
transmission.

The reason these new experiments are so powerful are
multifold. First is the simple matching of energy scales. The
energy of excitation can be increased by putting systems in
magnetic field and pushed into the THz range. The rough
energy scale of excitations is eBh/m, which for magnetic phe-
nomena sets the energy scale for spin flip excitations (where
m is the bare electronic mass). For electronic excitations, this
energy is that of cyclotron motion where m is the particle mass.
For a 10 T field, this corresponds to approximately 0.14 THz,
although in many systems the actual excitations will be at
larger frequencies due to magnetic anisotropy and larger g-
factors (for magnetic excitations), and smaller masses (for
many topological systems). Therefore with laboratory mag-
nets, the relevant excitations are in the THz range. Second, an
exceedingly important innovation has come in being able to
discriminate the polarized THz response, such that the con-
ductivity of the system or the magnetic response can be given
in terms of right (R) and left (L) polarized light [235-238].
These are the ‘polarization eigenstates’ for many materials in
magnetic field; a material’s response is much more simply
understood in terms of them. However, these responses are
only accessible if one can measure the complex transmissions
and polarization rotations for x and y polarized light (which
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Figure 29. Comparing the optical conductivity of thin films of
Cd3As; in 0 kG and 8 kG. The response of the material to L and R
hand polarized THz light is given in terms of negative and positive
frequencies. Reprinted with permission from [238]. Copyright
(2020) American Chemical Society.

is then transformed to the R/L basis). Polarization resolved
experiments using older phase insensitive Fourier transform
infrared style experiments cannot resolve this information.

Current and future challenges

A number of examples of the usefulness of these methods can
be given. In figure 29, I show the THz spectra of a thin film
of a Dirac semimetal Cd;As, [238]. At zero magnetic field,
the data show a prominent zero frequency Drude peak from
the free carriers, and two smaller sharp phonon derived peaks
at 0.67 and —0.67 THz. We have plotted the response of the
system to L and R polarized THz light as negative and positive
frequencies (this follows as R/L light can be seen to have e’
time dependence). With applied field, the peak shifts to negat-
ive frequencies, which is consistent with electron-like charge
carriers. More notably at finite field, the phonons becomes cir-
cularly polarized, as shown by a notable splitting in response to
R- and. L-hand polarized light. This splitting can be expressed
as an effective phonon magnetic moment that is approximately
2.7 times the Bohr magneton, which is almost four orders of
magnitude larger than ab initio calculations predict for phonon
magnetic moments in nonmagnetic insulators. This exceed-
ingly large value is due to the coupling of the phonons to the
cyclotron motion and is controlled directly by the electron—
phonon coupling. Although large in absolute scale, it is still
a small effect in the THz spectra and would be unresolv-
able if the separate L and R complex responses could not be
discriminated.

A particularly important advance is access to very large
magnetic fields with polarization discrimination [239, 240].
As shown in figure 30, advances in TDTS technology based
on systems with electronically-controlled optical sampling
(ECOPS) allows a full THz spectrum to be taken on ms time
scales and hence coupled to pulsed magnets. ECOPS works
by using two ultrafast optical pulse trains that are electron-
ically modulated at frequencies up to 1600 Hz instead of a
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Figure 30. (a) Experimental schematic. A small pulsed magnet is incorporated with an ECOPS-based TDTS system. Broadband THz
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profile of a 31 T magnet pulse (blue, left axis) is plotted along with the simultaneously measured THz electric field (right axis).

(c) and (d) Experimentally measured optical conductivity from LSCO up to 31 T at 45 K. A clear cyclotron shift is observed, along with and
broadening consistent with increasing scattering rate. Dashed lines show fits using a cyclotron model. Reprinted (figure) with permission

from [241], Copyright (2021) by the American Physical Society.

mechanical delay. When synchronized to a pulsed magnetic
field, the THz waveform can be recorded at multiple field
values during a single pulse. Experiments were recently per-
formed on the cuprate superconductor La;_,Sr,CuO4 (LSCO)
up to 31 T [241]. As seen in figure 30, the low frequency
Drude peak shifts slightly, but systematically to the positive
frequency side, showing the existence of hole like carriers. The
peak shift is linear in magnetic field revealing a hole mass of
4.9 m.. Because the shift is small, again, such information can
only be gained by the ability to discriminate the response to R
and L polarized light.

Advances in science and technology to meet
challenges

Going forward, it is essential to increase both the accessible
maximum magnetic fields and the accessible low temperat-
ures that are compatible with pulsed magnetic fields and these
TDTS spectrometers. Current pulsed field setups coupled to
ECOPS go to ~35 Tesla, but it is likely that fields up to 60 T
are possible. Fields this high would be useful for cuprate super-
conductors [241] (to quench magnetic field at even lower tem-
peratures), and quantum magnets [242, 243]. Lower temper-
ature are also important as current cryostat designs for pulsed
field systems keep the sample in vacuum and hence are lim-
ited to temperatures of ~10 K. The use of these systems for
many quantum magnets is limited therefore, because many
systems have exchange constants on this order of energy. One
would like to perform experiments in a superfluid helium
bath, in which temperatures of 1.2 K are easily obtainable.
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Experiments on quantum magnets to such temperatures at
high fields are important because other magnetic spectroscopic
measurements such as inelastic neutron scattering are cur-
rently limited to less than 14 T. This puts such high field
THz spectroscopy in a unique position. It is also important
to further increase the precision of measurements of Faraday
rotation. Preliminary work indicates that fibre coupled TDTS
systems with two detection channels for measuring two ortho-
gonal THz polarizations simultaneously can resolve Faraday
rotations of approximately 1 millidegree or less [244]. This
is an approximately two orders of magnitude advantage over
previous schemes that used a fast rotating or manually rotated
polarizers [236]. It opens up the possibility to perform pre-
cision experiments of the extremely small polarization rota-
tions that have been resolved in the MIR range in materials
like ruthenates and cuprates and have been interpreted to be a
sign of spontaneous time-reversal symmetry breaking in those
systems [245, 246].

Concluding remarks

Time-domain THz experiments in magnetic field give vast
opportunities The ability to measure the polarized response
with real and imaginary components as a function of fre-
quency and field gives a tremendous amount of information
that can be applied to superconductors, topological materi-
als, and quantum magnets. With future advances, time-domain
spectroscopic experiments should soon be possible to fields of
60 T or more opening up a new spectroscopic window into
magneto-optics phenomena.
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19. THz electron paramagnetic resonance (EPR)
magneto-optical (MO) generalized spectroscopic
ellipsometry (GSE) for spin characterization in
materials

Mathias Schubert'> and Vanya Darakchieva>>
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versity of Nebraska-Lincoln, Lincoln 68588, NE, United
States of America

2Department of Physics, Chemistry and Biology (IFM),
Link&ping University, Linkdping SE-581 83, Sweden

3 NanoLund, Lund University, SE-221 00 Lund, Sweden

Status

We propose the exploration and exploitation of free-space
propagation polarized plane wave MO measurement tech-
niques (MO GSE) for detection of EPR in samples with
plane parallel interfaces consisting of, for example, wide-
band gap (WBG) semiconductors, at ultrahigh frequencies and
high magnetic fields, and thereby to establish MO THz-EPR-
GSE. In this new approach, multiple significant and potentially
paradigm shifting advantages over existing EPR methods
emerge which can provide new and significant insight into the
fundamental physics of magnetic resonance for WBG semi-
conductors and many other materials. A significant enhance-
ment in sensitivity of many orders of magnitude towards the
detectability and the characterization of spin densities is anti-
cipated by this new approach over traditional (X-band absorb-
ance based) EPR due to the high field conditions and due
to the generalized ellipsometry (phase sensitive) EPR tech-
nique. Therefore, defect related spin properties in thin lay-
ers, and interfaces in thin film heterostructures may be access-
ible to EPR investigations. Further, the implementation of the
concept of MO GSE dispenses with the need of a fixed reson-
ant cavity, while tunable cavities when augmented may further
increase the sensitivity to small spin densities. In addition to
the g-tensor, the gyromagnetic frequency dependent permittiv-
ity tensor of simple and complex spin systems can be recon-
structed from the Mueller matrix element information meas-
ured in the MO GSE experiment. This information permits to
identify directional properties of a spin within its surrounding
lattice, for example. We report on MO THz-EPR-GSE instru-
mentation capable of measuring Mueller matrix EPR data at
high magnetic fields (—8 ... +8 Tesla) and show field and
frequency dependent spin resonance of the nitrogen vacancy
defect in hexagonal silicon carbide single crystals as example.
We propose MO THz-EPR-GSE to improving our understand-
ing of defects and their crystallographic relationships within
WBG semiconductors.

Current and future challenges

Traditional EPR methods exist in multiple variants and
establish perhaps one of the most ubiquitous measurement

50

techniques in science [247]. It is also perhaps the most rewar-
ded scientific field with numerous Nobel prizes based on either
experimental and/or theoretical advances related to magnetic
resonance and quantum mechanics principles of the electron
and the nucleus, for example. Gaining access to electron spin
dynamics at THz frequencies is of interest for understanding
dynamic nuclear polarization methods and single-molecule
magnets for quantum computation and has only recently seen
broader interest [248]. The increase in frequency is ultimately
tied to the need of increased magnetic fields. Furthermore,
EPR methods are widely based on measurement of absorb-
ance, while reflectance-based measurements are rare, as are
measurements which determine the full polarization response,
i.e. the polarization dependence of the absorbance or reflect-
ance properties. The latter is fully described by a measure-
ment of the Mueller matrix [249], which relates the most
general description of light in terms of Stokes vector ele-
ments. Sixteen real-valued elements are contained within the
Mueller matrix for a given measurement configuration, and
can inform about handedness, character (electric, magnetic,
magnetoelectric, etc), spatial and temporal dispersion includ-
ing anisotropy [250], while such appear to be unknown for
most EPR experiments. Measurement of Mueller matrix ele-
ments, or Jones matrix elements derived therefrom, with a
sample immersed into an external magnetic field has tradi-
tionally been termed MO generalized ellipsometry (Berger
and Pufall [107], Schubert er al [251], Ino et al [252], and
others).

At THz frequencies, MO phenomena gain access to spin
transitions. Frequency and time-domain absorbance-based
EPR were demonstrated recently, see, e.g. [254-256]. The
advantage of high-field EPR are manifold. The increase in
spin susceptibility towards its maximum value at 7 = 0 can
be maintained even towards RT in large magnetic fields (e.g.
[256]). The increased field means improved energy resolu-
tion of the EPR signatures. Deconvolution of subtle reson-
ance lineshapes due to spin entanglements, e.g. with nuclear
site magnetization, or electron cloud magnetization coupling
permits more accurate assignment and quantification. The use
of THz versus traditional, e.g. X band frequencies, permits
dramatic improvement in sensitivity to spin volume densities,
which we estimate to increase, for example, between 10 GHz
and 0.225 THz by approximately 10 000 ([256], appendix
F.3.3). The need for a fixed cavity and thus having only a single
frequency available to measurement is dispensed with, and fre-
quency scanning EPR is possible. This permits to unambigu-
ously identify, for example, whether a given spin signature is
affected by hyper fine structure splitting, anisotropy, and/or
zero-field splitting since transitions shift in characteristic ways
with changing field and frequency. The interaction of the THz
wave with the sample can be described with conventional crys-
tal optics and thereby permits access to the electromagnetic
polarization characteristics of a given spin as well as its spa-
tial orientation relative to the external magnetic field direc-
tion. Hence, the principle of ellipsometry can be implemented
for EPR detection, permitting to characterize the polarization
properties of a spin transition.
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Figure 32. THz-EPR-E field scans of reflection Mueller matrix element data M»3 at various frequencies of the nitrogen defect in SiC
revealing the two (h and k site) hyperfine-structure-split triplet spin transitions at 10 K. The model calculated data are obtained from an
ad-hoc solution of the spin dynamics assuming Landau-Level-like transitions in the magnetic susceptibility. The inset depicts the
experimental configuration with the orientation of the magnetic field. The varying amplitudes with frequency are due to Fabry—Perot
oscillations within the SiC substrate. Note the sign inversion of all signatures with sign inversion of B. Reprinted from [259], with the

permission of AIP Publishing.

Advances in science and technology to meet
challenges

A recent review over status and perspectives of high-
frequency EPR is given in [255]. The challenges for detecting
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polarization resolved THz-EPR require superconducting
magnets (fields larger than 4 Tesla) and an apparatus suit-
able for determining the Mueller matrix elements of a given
sample placed within a magnetic field, at varying frequen-
cies in the THz spectral range. Such apparatuses have been
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described by our teams recently [257, 258], in part reproduced
here in figure 31. The instruments employ free electron
oscillator sources with extremely narrow bandwidth (~2.5 ...
25 kHz depending on instrument configuration) and access-
ible spectral region of ~100 GHz to ~1.5 THz. We repro-
duce here results observed recently for the nitrogen defect in
4H-SiC [259], a spin system well investigated using tradi-
tional (X-band) as well as extended (Q-band) EPR techniques
[260]. Mueller matrix element data M,3, which correspond
to the amount of polarization rotation upon reflection of the
THz wave from the silicon carbide substrate, are shown in
figure 32 exemplarily for field scans at various frequencies
and positive and negative magnetic fields. The model cal-
culated ellipsometry data are obtained by sets of magnetic
field and frequency dependent Lorentzian oscillator lineshape
functions representing triplet spin transitions at hexagonal and
cubic coordinated nitrogen sites (see [259] for further details).
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Concluding remarks

A new and rich set of polarization information on spin prop-
erties will become available at THz frequencies measured in
high magnetic fields, and which has not been explored thus far.
In addition to such high energy information, the full polariz-
ation response of spins can be explored by THz MO gener-
alized spectroscopic ellipsometry. The authors foresee a large
field of applications for this emerging instrumental approach,
for example, in materials with antiferromagnetic order, or
semiconductors with defect induced spin systems for quantum
technology applications. We also suggest exploring detection
of low-density spin systems such as defects in heteroepitaxial
structures induced, e.g. by lattice mismatch and differences
in thermal expansion coefficients of individual constituents.
Such information is highly relevant for improvement of elec-
tronic device architectures, for example.
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20. Giant magneto-optical (MO) Cotton—Mouton
(CM) effect in 2D materials
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Status

The MO effect has received extensive attention from both sci-
entists and technicians, due to its ability for both material
characterization and light manipulation in a contactless and
non-destructive way. According to the interaction between
incident light and functional materials under a magnetic field,
the MO interplay is categorized into four main groups, includ-
ing Zeeman effect, Faraday effect, MOKE, and magneto-
birefringence CM effect [261]. Among them, the CM effect,
discovered in 1907 by Aimé Cotton and Henri Mouton, can
serve as a promising tool to modulate polarization, intensity,
and spectrum of incident light via magnetic control in a trans-
mitted manner. When a linearly polarized light propagates
through the magneto-birefringent media with the propagation
direction perpendicular to the magnetic field, a phase retard-
ation between two orthogonal vector components of the light
can generate birefringence, which make them transport at dif-
ferent speeds.

Quantitatively, the CM effect can be described by the
expression of An = CA\B?, given that the birefringence An is
proportional to the square of magnetic field B, where C and A
are CM coefficient and wavelength of light, respectively. The
CM coefficient reflects the sensitivity of functional materials
in response to the external magnetic stimulus, and is determ-
ined by intrinsic parameters of materials, including their mag-
netic susceptibility anisotropy, optical anisotropy, and phase-
transition concentration, as schematically shown in figure 33
[262].

Despite the CM effect has been studied for more than a
century, the CM coefficient, key parameter to evaluate the
sensitivity of the effect, is quite low for transparent birefrin-
gent media. The practical application of using CM effect to
manipulate light requires accurate control of birefringence via
external magnetic stimuli in an energy-efficient way. In this
regard, the CM coefficient is expected to be as large as pos-
sible. It means that the given birefringence of a medium should
be induced by a low magnetic field, which can be readily sup-
plied by a permanent magnet and support the portability or
even energy-free operation. In principle, all transparent media
have CM effect, including gas, water, organic solvent, bio-
logical fluid, and liquid crystals (LCs). Unfortunately, most
of them have trivial CM effect, i.e. ultralow CM coefficient.
Among them, LCs possess relative high CM coefficient and
enter the range of 1-10 T=2 m~! due to their large optical
anisotropy, enabling the control of the magneto-birefringence
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based on the use of an electromagnet to drive LCs [263]. Other
media, however, limited by their very small CM coefficient,
must be operated in high magnetic field of several or even tens
of tesla supplied by high-power and low-temperature super-
conducting magnets. Such coefficient is not preferred as it
cannot meet the condition for real application. It is the relat-
ive low coefficient that makes the development of light modu-
lator based on MO CM effect far behind the counterpart based
on electro-optic Kerr effect which has been widely used in
many optical fields, such as display, smart windows, spatial
light modulator, and sensors with an annual global market of
>100 billion USS$.

Almost parallelly, tremendous efforts have been devoted
to investigating 2D materials since the isolation of graphene
in 2004. There are several unique features of 2D materials
[264]. Most fundamentally, when making a stable dispersion,
2D materials possessing the largest possible structural aniso-
tropy and resulting anisotropies in optical, magnetic, and elec-
tronic properties, among matters in all dimensions. In addition,
the big family of 2D materials provide rich chemical and phys-
ical properties, and the existence of abundant natural layered
minerals facilitate industrial level production of 2D materials
at low costs [265-268]. The above features make 2D materials
intriguing candidates for practical MO CM applications.

Current and future challenges

To realize the application of CM-effect based light modulat-
ing, large CM coefficient, high saturation birefringence, low
optical absorption, and high spatial uniformity are four pre-
requisites that must be met simultaneously [262]. Accord-
ing to Onsager’s theory in LC physics, magnetism and mag-
netic anisotropy of the functional material in a birefringent
medium are two key factors that determine the CM coefficient.
Strong magnetism and high magnetic anisotropy of functional
materials favour their alignment in a small magnetic field,
and give rise to a high CM coefficient. Consequently, some
functional materials with the intrinsic ferromagnetism, para-
magnetism or superparamagnetism have been explored pre-
viously. For instance, sphere-, rod- or disc-like nanoparticles
(iron-oxide, iron oxyhydroxide, barium ferrite) with modified
surface have been dispersed in solvent and used as functional
units in birefringent media [269, 270]. Despite the remarkable
improvement in the magnetic sensitivity of these materials,
low optical anisotropy, and concentration of iron-oxide nan-
oparticles in suspension restrict them to meet the condition of
high saturation birefringence.

To overcome the limitation, a composite material system
consisting of both 2D magnetic nanoparticles and organic LCs
is developed and termed as ferronematic LCs [271]. In the
presence of a low external magnetic field, these FM 2D nano-
particles, such as barium hexaferrite, can be easily aligned and
serve as the micro-motor to drive the adjacent LC molecules to
direct parallel to them. Meantime, thanks to their large optical
anisotropy and high concentration, the aligned LC molecules
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Figure 33. Scheme of MO CM effect of 2D materials. In the presence of magnetic field, magnetic 2D materials are aligned parallel or
perpendicular to the magnetic flux, giving rise to birefringence of the suspension. The incident linearly polarized light can be decomposed to
two polarized components (parallel and perpendicular to magnetic field). After transporting through the suspension, two polarized

components have established an in-between phase retardation § =

2w And
A

, where An the magneto-birefringence, d the optical path distance,

A the wavelength. When passing through the analyser, optical interference between two components dominates the final intensity of light

with wavelength of . Reproduced from [262]. CC BY 4.0.

demonstrate high macroscopic saturation birefringence. In this
regard, the large saturation birefringence of LCs and high
magnetic sensitivity of superparamagnetic/FM materials are
effectively combined in the developed composite system. It is
worthy to note that in addition to the high magnetic sensitivity
and saturation birefringence, the see-though CM based light
modulator also requires the high transparency and superior
spatial uniformity of the birefringent media. The use of the
above materials with strong magnetism usually introduces
strong light absorption or scattering, leading to low transpar-
ency and depolarization effect, in addition to the problem that
their aggregation in the magnetic field make the magneto-
birefringence spatially un-uniform. Therefore, it is still chal-
lenging to find proper media that can simultaneously satisfy
all the four demands.

Advances in science and technology to meet
challenges

Considering the largest structural, magnetic, and optical aniso-
tropies of 2D materials in suspension as well as their surface
charges which can enhance dispersion stability [272-274],
breakthroughs in the development of CM effect have been
made recently in a paramagnetic 2D material with wide
band gaps, named 2D cobalt-doped titanium oxide (2D CTO,
figures 34(a) and (b)) [262]. A 2D CTO has a wide bandgap of
>3.5 eV, and the doping of magnetic element Co increases its
magnetism by more than 100 times with negligible decrease of

54

transparency. The CM coefficient of CTO LC is measured to
be 1400 T2 m~! (figure 34(c)), which is three orders of mag-
nitude larger than other known transparent birefringent media
and even comparable with that of opaque suspension con-
sisting of superparamagnetic nanoparticles. Moreover, the 2D
CTO nanosheets are sorted in terms of their lateral sizes by a
centrifugation method [272]. MO measurements on the mono-
layer CTO suspension reveal a quadratic dependence of the
CM coefficient with lateral size (figure 34(d)) [272]. By intro-
ducing the collective behaviour into CTO colloidal system, the
CM coefficient is further doubled and reaches a record-high
value of 2700 T~2 m~! (figure 34(e)) [274]. High transpar-
ency, uniform dispersion, large optical anisotropy, and giant
CM effect of CTO dispersion together permit the fabrication
of light modulators which work at zero-energy-consumption
manner due to the use of permanent magnets. This achieve-
ment suggests clear potential of the CM effect toward prac-
tical applications in light modulation and other fields. There
are many exciting scientific and technological opportunities
in this field, including further increase of CM coefficient and
device performance, exploitation of other RT FM 2D materi-
als [275], extension of the spectral coverage of the transpar-
ent light modulator to the deep/extreme UV or long infrared
regimes, device operation at cryogenic or high temperature,
etc. For example, a recent work shows that layered minerals
like vermiculite has been exfoliated into 2D sheets and pos-
sessing sensitive MO CM effect, featuring advantages of low-
cost, green production, and fully recyclable in terms of mater-
ials and devices [265].
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Society.

Concluding remarks

The development of MO CM effect and the use of 2D materi-
als towards giant CM effect have been discussed. The practical
applications of CM effect in light manipulation have been long
term hindered by the following reasons, including small CM
coefficient induced weak CM effect, small saturation birefrin-
gence, low transparency, and/or poor medium uniformity.
Several promising strategies and material systems especially
2D materials may overcome these limitations. With continu-
ous developments, the CM effect may hold great promise to
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provide an energy-efficient and contactless way for both mag-
netic material characterization and light manipulation, and fur-
ther for vast emerging applications, such as interference colour
marker, visible chemical/magnetic sensor, continuous phase
retarder, flexible magneto-electro-optical device, among many
others, just as its counterpart phenomenon, the electro-optical
Kerr effect does.

Data availability statement
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