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Analysis of sloppiness in model simulations: Unveiling 
parameter uncertainty when mathematical models are 
fitted to data
Gloria M. Monsalve-Bravo1,2,3*, Brodie A. J. Lawson4,5,6,7, Christopher Drovandi4,5,6, 
Kevin Burrage5,6,7,8, Kevin S. Brown9,10, Christopher M. Baker11,12,13, Sarah A. Vollert4,5,6, 
Kerrie Mengersen4,5,6, Eve McDonald-Madden1,2†, Matthew P. Adams3,4,5,6†

This work introduces a comprehensive approach to assess the sensitivity of model outputs to changes in parameter 
values, constrained by the combination of prior beliefs and data. This approach identifies stiff parameter combi-
nations strongly affecting the quality of the model-data fit while simultaneously revealing which of these key 
parameter combinations are informed primarily by the data or are also substantively influenced by the priors. We 
focus on the very common context in complex systems where the amount and quality of data are low compared to 
the number of model parameters to be collectively estimated, and showcase the benefits of this technique for 
applications in biochemistry, ecology, and cardiac electrophysiology. We also show how stiff parameter combina-
tions, once identified, uncover controlling mechanisms underlying the system being modeled and inform which 
of the model parameters need to be prioritized in future experiments for improved parameter inference from 
collective model-data fitting.

INTRODUCTION
A single biological cell is itself a complex system, as is an organism 
made up of such cells, as is an ecosystem of those organisms inter-
acting with one another. Despite the diversity of systems composing 
our world, many of these share similar structural and functional 
features that can be unraveled through computer simulation (1–3). 
Consequently, modeling and simulation have become increasingly 
important to understand and predict the underlying behavior of 
systems across different scales (3–5), including molecules (6), cells 
(7, 8), engineered processes (9), and astrophysical phenomena (10). 
Continuous advances in model descriptions of reality together with 
the model fit to experimental data have improved the fidelity of 
computer experiments and made them much more predictive (1, 2). 
However, the cost of this fidelity is an increase in the number of 
model parameters (4), and a greater risk that these parameters cannot 
be uniquely identified (3, 11–13). For statistical models of familiar 
form, one may be able to formally determine how and to what 
extent parameters can possibly be identified. Lewbel (14) provides 

many such examples. When it comes to complex models defined, 
for example, in terms of the solution of a set of differential equations, 
however, a more practical approach will often be required for param-
eter estimation (3, 11). Expectedly, a substantial amount of uncer-
tainty in parameter values often remains after even a very successful 
fit of the model to data (15–17).

Sensitivity analysis and uncertainty quantification comprise a 
whole field dedicated to learning about how model behavior is con-
trolled by their parameters (18–20). These techniques can be used 
to assess the sensitivity of the model-data fit to changes in parameter 
values either in a local sense, around a single point (i.e., the set of 
best-fit parameter values), or in a global sense, across all plausible 
parameter values consistent with the available data (11, 15, 21). An 
alternative approach is Bayesian inference (22, 23), an increasingly 
used modeling technique that accounts for collective parameter 
uncertainty constrained by the combination of both data and prior 
beliefs (5, 7, 8, 17, 24, 25). However, regardless of the approach taken 
to characterize the effects of changes in parameter values on model 
outputs, critical model parameters are often considered as individ-
uals in terms of their impact on the model behavior (19). Sensitivity 
analysis typically considers the derivative of model outputs with 
respect to the parameters (15, 18, 21), while a Bayesian posterior is 
analyzed predominantly in terms of its marginal distributions (7, 17). 
When combinations of model parameters are considered, it is largely 
in terms of crude numerical scores (19–21). Unfortunately, model 
parameters that are not very constrained by the data are often as-
sumed not to have a strong influence on model predictions, although 
it is the case of many systems that certain combinations of seemingly 
unconstrained model parameters are more narrowly constrained by 
the data than any of the individual model parameters (11–13, 16).

Model parameters can act together or against each other, and 
often must be understood in terms of their combinations (13, 15). 
Parameter combinations that significantly influence model predic-
tions, called stiff eigenparameters, essentially act as emergent “control 
knobs” for the model: Predictions are possible without precise 
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knowledge of individual parameter values as it is these stiff eigen-
parameters that are tightly constrained by the data (16, 26). Con-
versely, the model-data fit may also be relatively insensitive to some 
other parameter combinations, called sloppy eigenparameters (12, 13), 
which hence are poorly constrained by the data (16, 27). Recently, 
efforts have been made to unravel these connections among parameters 
through the expanding literature on model sloppiness (12, 28–31). 
Methods to analyze model sloppiness seek to expose the sensitivities 
of the model-data fit to changes in sets of parameter values by char-
acterizing the topography of the surface describing how the model-
data fit depends on the model parameters in the vicinity of the 
best-fit parameter values (15, 16). However, thus far, such methods 
have primarily focused on the field of systems biology where there 
is little prior knowledge of parameter values (11, 26, 27), and so, the 
sensitivities of the model-data fit to changes in parameter values 
remain to be considered in the context where prior information 
is also available (e.g., from experts or previous studies) to inform 
parameter values (11, 32–34).

In this work, we propose a comprehensive approach to charac-
terize local and global sensitivities of the model-data fit to changes in 
parameter values. This is achieved by bringing a Bayesian inference 
perspective (22, 23) to the analysis of sloppiness that consequent-
ly leads to the robust identification of the stiff eigenparameters. In 
this way, analysis of sloppiness gains the ability to incorporate 
prior information and to look beyond the curvature at a single point 
(i.e., the set of best-fit parameter values) in an uncertainty-informed 
way. Meanwhile, Bayesian inference gains a tool to identify well-
constrained combinations of parameters that can be otherwise hidden 
when considering the uncertainty in individual model parameters, 
critical when the number of parameters to be estimated is large.

As part of our comprehensive approach, we extend the usage of 
two well-established Bayesian approaches to dimensionality reduc-
tion (35–38) to define the sensitivity matrix that underlies the analysis 
of model sloppiness, suitably calculated using the posterior samples 
generated by Bayesian inference. The first definition uses the cova-
riance of the posterior samples to inform parameter space curvature 
in a nonlocalized manner (12, 39), with ties to classical principal 
component analysis (PCA) (36). This approach has appeared in 
works analyzing model sloppiness but only in the context of un-
informative priors (12, 15, 40). Considering it here in the Bayesian 
context with informative priors, we identify the need for the second 
approach that uses the dimension reduction idea from Cui et al. (35) 
to conveniently separate the effect of any prior information from 
that of the data. Using this novel adaptation of Bayesian techniques 
for dimensionality reduction to analyze model sloppiness, we illus-
trate how to identify the combinations of parameters driving model 
behavior in applications beyond systems biology and in a manner 
that acknowledges separately the available information [e.g., via 
expert knowledge (33)].

We focus our attention on the fit of three deterministic models 
to data with closed-form likelihood functions, although models that 
do not satisfy this criterion may also be analyzed using some of 
the methods presented here (further details in Discussion). Thus, we 
first highlight the advantages of our approach using the well-known 
Michaelis-Menten model of enzyme kinetics (41). We then apply it 
to a well-studied ecosystem network from Australia (a relatively 
data-poor system) (42) and a model for the action potential (AP) of 
heart cells (characterized by complex dynamical behavior) (43). 
In these latter two applications, different aspects of the interaction 

between model and data are revealed by the analysis of sloppiness 
that are otherwise hidden by the individual techniques we bring to-
gether here. Last, we illustrate how stiff eigenparameters, once identi-
fied, can be used to design future experiments to improve parameter 
inference from collective model-data fittings and identify controlling 
mechanisms underlying the systems being modeled.

RESULTS
Our comprehensive analysis of sloppiness identifies the sensitivities 
of the model-data fit to changes in parameter values either in the 
region local to a point of interest in parameter space (standard ap-
proach; see Materials and Methods) or in the global sense, across all 
plausible parameter values consistent with available information 
(Bayesian approach; see Materials and Methods). Here, our results 
illustrate the benefits of using both standard and Bayesian approaches 
together to identify critical parameter combinations (stiff eigen-
parameters) that readily acknowledge the source of information 
(i.e., prior and/or data). To do so, we first analyze sloppiness in a 
biochemical model with three parameters (motivating example), 
known to suffer from poor parameter identifiability even when an 
excellent amount and quality of data are used to estimate model 
parameters (27, 44, 45). Then, we analyze sloppiness in an ecological 
four-species dynamic model with 20 parameters (case study 1), rep-
resenting a typical dilemma in ecology of having too many parameters 
to be practically estimated well using noisy time-series data (2, 17, 44). 
Last, we analyze sloppiness in a cardiac electrophysiology model 
with nine parameters (case study 2), representing complex systems 
with strong nonlinear dynamics (7, 8).

Motivating example: The Michaelis-Menten kinetics
Critical parameter combinations are readily identified by 
the analysis of sloppiness
The ubiquitous Michaelis-Menten model of biochemistry (41) is a 
perfect example to demonstrate the benefits of both understanding 
parameter dependence through the lens of model sloppiness and 
bringing a Bayesian approach to the topic (step i; see Materials 
and Methods). This model describes the dependence of an enzyme-
catalyzed reaction rate υ on substrate concentration [S] as (46)

	​ υ  = ​  ​k​ cat​​ [ ​E​ T​​ ] [S] ─ ​K​ M​​ + [S] ​   = ​   ​k​ cat​​ [ ​E​ T​​] ─ 1 + ​K​ M​​ / [S] ​​	 (1)

where parameters kcat and [ET] together dictate the maximum rate 
of reaction (υmax), while KM controls the substrate concentrations at 
which saturation effects become significant (45).

From the right-hand side of Eq. 1, it is already clear that there are 
two rate-limiting regimes, one in which the reaction rate simplifies 
to zero-order kinetics with respect to substrate at high [S], and the 
other one in which the reaction rate simplifies to first-order kinetics 
at low [S] (41, 46). To illustrate our methods, we thus consider two 
noisy synthetic datasets (step ii; see Materials and Methods) repre-
senting these two well-known rate-limiting regimes: The first dataset 
(A) consists of five measurements obtained beyond the saturation 
point, while the second dataset (B) consists of five measurements 
obtained before saturation has any apparent impact on the model 
behavior (Fig. 1). Both datasets fail to describe the full behavior rep-
resented by Eq. 1 and thus suitably highlight the well-known pa-
rameter identifiability issues in this model (27, 45).
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In dataset A, measurements only inform the reaction rate at sat-
uration, υ ≈ kcat[ET], and so, nothing can be learned about parameter 
KM. While this tendency could also be identified by traditional sen-
sitivity analysis (18) or by inspecting the posterior variance for this 
parameter obtained from Bayesian inference (45, 47), approaches 
for model sloppiness go a step further. By identifying key directions 
in the space of the log parameters, as encoded by the eigenvectors 
and eigenvalues of a sensitivity matrix, model sloppiness identifies 
that dataset A only informs the product of the remaining two pa-
rameters in Eq. 1, kcat[ET]. Regardless of whether a traditional defi-
nition (matrices H or L; see Materials and Methods) or any of the 
Bayesian definitions (matrices P and G; see Materials and Methods) 
of the sensitivity matrix is taken, a single eigenvalue dominates, with 
parameter combination denoted ​​​  ​​ 1​​ = ​ k​ cat​​ [​E​ T​​]​ being the corre-
sponding eigenparameter (Table 1, scenario 1). This is not, however, 
visible in the parameter marginals when Bayesian inference is used 
to fit the model to data, even in this simple problem (fig. S1).

Analogously, model sloppiness successfully identifies the param-
eter combination governing the rate of reaction in the nonsaturating 
regime (Fig. 1, dataset B). Given that this dataset is taken at low sub-
strate concentration ([S] ≪ KM), Eq. 1 reduces to a linear dependence 
υ ≈ (kcat[ET]/KM) [S], and coefficient kcat[ET]/KM is the dominant 
eigenparameter (Table 1, scenario 3), which uncovers the nature of 
the poor parameter identifiability in this model. However, in this 
scenario and in the second scenario for dataset A (Table 1), we 
choose informative priors that cause the Bayesian approaches to 
model sloppiness (matrices P and G) to lead to different dominant 
eigenparameters. We explore the information provided by these 
approaches that take into account both prior and data to inform 
model parameters in the following section.
A Bayesian perspective reveals whether stiff parameter 
combinations are informed by the data or are influenced 
by the prior
Often, values for model parameters are meaningfully constrained 
by known feasible ranges or by expert information (32–34), which 
can potentially change both the most plausible set of values for the 
parameters and the nature of the new information provided by the 

data. To demonstrate how the Bayesian approach to analyzing model 
sloppiness addresses this, we consider different scenarios where the 
reaction rate data (Fig. 1) are now coupled with prior information, 
and thus highlight how the stiff eigenparameters obtained using our 
two definitions of the sensitivity matrix (matrices P and G) together 
reveal whether parameter values are informed by the data or are 
influenced by the prior. We first fit Eq. 1 to dataset A (steps iii and 
iv; see Materials and Methods), considering a multivariate log-normal 
distribution for the model parameters that sets the value of one pa-
rameter (KM) far away from its reference value (fig. S2). As a result, 
the posterior correctly concentrates around the reference parameter 
values used to generate the data (Fig. 2A, first and second panels), 
except for the poorly specified parameter (KM) for which the prior 
renders it unable to (Fig. 2A, third panel). Here, prior and posterior 
distributions for parameter KM are approximately equivalent (over-
lapping), thus reflecting that the data collected at saturation are 
uninformative to this parameter value. However, by examining the 
curvature of the posterior via its inverse covariance matrix P (steps 
v and vi; see Materials and Methods), this parameter emerges as the 
stiffest eigenparameter (Table 1, scenario 2). Thus, as prior and pos-
terior distributions for parameter KM are overlapped (Fig. 2A, third 
panel), this method reveals that the information already contained 
in the prior is dominating that provided by the data.

To learn the data informativity on model parameters while si-
multaneously acknowledging any prior information, we use the 
likelihood-informed subspace (LIS) method. This approach works 
by transforming the effects of the prior on the curvature of parameter 
space (35, 48), leaving only the effects of the data via the likelihood 
(further details in Materials and Methods). By doing so, the LIS 
method produces a sensitivity matrix (G) that identifies the region 
in parameter space where the informativity of the data prevails over 
that of the prior information (35, 48). For example, by imposing an 
informative prior for parameter KM in this scenario, the method 
(matrix G) recognizes that no additional information is gained about 
this parameter from dataset A through the model-data fitting process, 
and so, it returns the same dominant eigenparameter ​​​  ​​ 1​​ = ​ k​ cat​​ [​E​ T​​]​ 
(Fig. 2A, fourth panel) as the methods (matrix H or L) that ignore 
the prior altogether (Table 1, scenario 2). A natural question is then 
what does the LIS method provide that is not already given by a 
standard analysis of sloppiness? The key benefit is that if prior in-
formation does change the most plausible (prior-informed) region 
of parameter space, and the model behaves differently in this 
region, the LIS method will identify the directions in parameter 
space where the data are most “informative” relative to the prior, as 
we discuss next.

In scenario 3 (Table 1), we fit Eq. 1 to dataset B (steps iii and iv; 
see Materials and Methods) considering a combination of uniform 
and log-normal prior distributions that strongly specify values of 
parameters [ET] and KM well and badly (fig. S3), respectively. Given 
that dataset B only constrains the value of combination of parame-
ters kcat[ET]/KM (Fig. 2B, fourth panel), the extreme values of the 
parameters selected by unconstrained maximum likelihood estima-
tion (MLE) highlight the importance of specifying plausible ranges 
for parameters via a Bayesian prior (Fig. 2B, MLE in the second and 
third panels). As for Bayesian inference, the posterior distribution 
simply fixes the value of the parameter kcat (Fig. 2B, first panel) to a 
value that constrains well eigenparameter kcat[ET]/KM (Fig. 2B, fourth 
panel). Similar to scenario 2, model sloppiness, as implied by the pos-
terior covariance method (matrix P), selects one of the parameters 

Fig. 1. Synthetic data generated using a measurement error of  = 25% versus 
noiseless model prediction based on Eq. 1 using reference parameter values 
kcat = 100 min−1, [ET] = 5 M, and KM = 146.7 M. Dataset A is obtained at a 
relatively high [S], and dataset B is obtained at a relatively low [S]. Neither data-
set can inform the full rate of reaction υ across the range of [S] (see also Figures’ 
Supplementary Legends). D
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strongly specified by the prior, KM (Fig. 2B, third panel), as the stiff-
est eigenparameter (Table 1). In this scenario, the LIS method (ma-
trix G) instead identifies that dataset B acts only to fix the value of 
parameter kcat and selects it as the dominant eigenparameter. That 
is, in contrast to the standard analysis of sloppiness only consider-
ing the likelihood surface, the LIS method uncovers new informa-
tion provided by the data when there is prior parameter knowledge. 
Thus, the Bayesian methods together clarify whether the model pa-
rameters (or eigenparameters) are informed by the data or are sig-
nificantly influenced by the prior beliefs.

Case study 1: Ecosystem network
A global perspective to analyzing sloppiness reveals true 
informativity of the data
Unlike the simple motivating example considering two well-
known rate-limiting regimes that readily unveiled the controlling 

eigenparameters (Fig. 2, fourth panels), with much larger models, 
inferring the parameter combinations that are more or less sensitive 
to the model-data fit can be difficult from a simple model inspec-
tion. To illustrate this, as a more complex case study from ecology, 
we use a well-known four-species ecosystem network model (42) 
that includes two threat species (foxes and rabbits), one threatened 
species (native mammals), and a basal species (pasture), as depicted 
in Fig. 3A. This ecosystem model consists of four discrete-time 
equations (based on ordinary differential equations) and eight con-
stitutive equations (table S1) whose 20-parameter point estimates 
(table S2) were inferred from several studies at two semi-arid loca-
tions in Australia (42). Here, we thus seek to illustrate key benefits 
of the Bayesian analysis of sloppiness for data-poor systems, charac-
terized by low quality and amount of observed data because of prac-
tical limitations (1, 2, 12, 17). To do so, we first fit the ecosystem 
network model (table S1) to noisy synthetic time-series data using 

Table 1. Comparison of the stiffest eigenparameter ​​​  ​​ 1​​​ (associated with the largest eigenvalue 1) for three different chosen parameter priors to fit the 
Michaelis-Menten model (Eq. 1) to data (Fig. 1). Each ​​​  ​​ 1​​​ is identified via Eq. 8 after obtaining eigenvalues (fig. S4) and eigenvectors of sensitivity matrices H 
(or L), P, and G. Sensitivity matrices return different stiffest eigenparameters ​​​  ​​ 1​​​ with change of the prior distributions and dataset used to fit the model. 

Synthetic data Scenario Prior distribution
Stiffest eigenparameter, ​​​  ​​ 1​​​

H (or L) P G

Dataset A
1 Uniform

kcat[ET]
kcat[ET] kcat[ET]

2 Multivariate log-normal KM

Dataset B 3 Uniform and 
log-normal kcat[ET]/KM KM kcat

A

B
Fig. 2. Prior and posterior distributions for the model parameters together with the stiffest eigenparameters from scenarios 2 and 3 (Table 1) compared to their 
associated sets of best-fit values (MLE) and reference values (see also insets). (A) Scenario 2 parameters kcat and [ET] together with stiffest eigenparameters ​​​  ​​ 1​​ = ​ K​ M​​​ 
(matrix P) and ​​​  ​​ 1​​ = ​ k​ cat​​ [ ​E​ T​​]​ (matrices H or L and G). (B) Scenario 3 parameter [ET] together with stiffest eigenparameters ​​​  ​​ 1​​ = ​ k​ cat​​​ (matrix G), ​​​  ​​ 1​​ = ​ K​ M​​​ (matrix P), and ​​​  ​​ 1​​  = ​
k​ cat​​ [ ​E​ T​​ ] / ​K​ M​​​ (matrices H or L). Parameter combinations kcat[ET] and kcat[ET]/KM are well constrained by the data in scenarios 2 and 3, respectively. Parameter KM is well con-
strained by the prior (posterior and prior overlapping) in both scenarios, and parameter kcat is well constrained by the data relative to the prior in scenario 3. The best-fit 
values for parameter KM lie far away from its reference values in both scenarios. As parameter combination kcat[ET]/KM is well constrained by the data in (B), the posterior 
distribution for parameter kcat is left-shifted from the reference to compensate for parameter [ET] that is right-shifted from the reference in fig. S3A (see also Figures’ 
Supplementary Legends).
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both MLE and Bayesian inference (steps i to iv; see Materials and 
Methods), considering a multivariate log-normal prior distribution 
for the model parameters (fig. S5).

After fitting the model to data, model predictions (Fig. 3B) based 
on a model ensemble (shaded regions), considering all plausible pa-
rameter values (fig. S5), enclose both the simulated noisy data (□ 
symbols) and true ecosystem dynamic behavior (dashed profiles). 
They also enclose predictions based on two sets of best-fit parameter 
values (dotted profiles) obtained from starting the MLE algorithm 
at two different initial parameter values (step iii; see Materials and 
Methods). Furthermore, parameter marginals (fig. S5) enclose these 
two separate point estimates and also show that most of the model 
parameters are poorly constrained by the data.

In addition to quantifying parameter uncertainty, a global per-
spective to the problem of fitting models to data can benefit the in-
ference of critical parameter combinations that control the quality 
of the model-data fit. For example, while local changes in the topog-
raphy of the surface described by the likelihood function in the vi-
cinity of the two sets of best-fit parameter values (fig. S5) mislead 
inference of stiff eigenparameters through the standard analysis of 
sloppiness (cf. ​​​  ​​ i​​, i  =  1, 2, 3​ in Table 2 from matrices H or L, evalu-
ated at the different sets of best-fit values ​​​1​ ⋆​​ and ​​​2​ ⋆​​), the Bayesian 
methods (matrices P and G) fully characterize the structure of this 
surface by considering all plausible parameter values (steps v and vi; 
see Materials and Methods), informed by the combination of both 
data and prior beliefs. In this way, differences between dominant 
eigenparameters from Bayesian sensitivity matrices P and G (Table 2) 
also demonstrate that the prior is influencing the most plausible 
region of parameter space, which thus implies that the surface de-
scribed by the posterior distribution (Eq. 9) and the likelihood func-
tion (Eq. 15) are different locally and globally.
Analysis of sloppiness brings new insights to Bayesian 
parameter inference
Combining model sloppiness together with Bayesian inference re-
veals critical parameter combinations that can be otherwise lost 

when only considering the uncertainty in individual model parameters 
through Bayesian inference. After the fit of the ecological model to 
data, for example, parameter marginals (fig. S5) illustrate that only 
a few of the model parameters (R, V0, DIII, and ) are well constrained 
by the data, which suggests that these parameters have a strong in-
fluence on the quality of model-data fit. Instead, the Bayesian analysis 
of sloppiness (matrices P and G) identifies that it is combinations of 
parameters cN, aN, cM, aM, cP, and aP that are the most constrained by 
the available data (Fig. 4). The prior distribution appears to be weakly 
informing the three stiffest eigenparameters ​​​  ​​ 1​​​, ​​​  ​​ 2​​​, and ​​​  ​​ 3​​​ (Table 2) 
since the first eigenparameter ​​​  ​​ 1​​​ from the posterior covariance method 
(matrix P) also corresponds to the third eigenparameter ​​​  ​​ 3​​​ from the 
LIS method (matrix G), while the quotient (​​​  ​​ 3​​ / ​​  ​​ 2​​​) and product (​​​  ​​ 2​​ ​​  ​​ 3​​​) 
of the second and third eigenparameters ​​​  ​​ 2​​​ and ​​​  ​​ 3​​​ from the posterior 
covariance method (matrix P) approximate the first and second eigen-
parameters ​​​  ​​ 1​​​ and ​​​  ​​ 2​​​ from the LIS method (matrix G), respectively.

For this system, the identified stiff eigenparameters (Fig. 4) do not 
appear together in single terms within the model (table S1). However, 
parameter ratios cX/aX (or aX/cX) with X = N, M, P arise as part of 
the dominant eigenparameters (Table 2) as they appear in separate 
terms with opposite sign in this model (table S1). As a result, there 
is a compensation effect between values of parameters aX and cX that 
has two key implications for the model predictions. First, the model-
data fit is highly informative for characterizing growth dynamics 
(rN, rM, rP) of rabbits (aN/cN), threatened mammals (aM/cM), and foxes 
(aP/cP), which is likely to significantly affect animal species abun-
dances (N, M, and P). Second, analysis of sloppiness reveals that by 
measuring either the maximum rate of decrease (aM) or increase 
(cM) of the threatened mammal density (also applies for rabbits and 
foxes), collective model-data fit will inform values of the other pa-
rameter to a similar extent, as we discuss in the next section.
Bayesian analysis of sloppiness readily informs future 
experimental design
Bayesian analysis of sloppiness unveils hidden parameter inter-
dependencies that can help design future experiments for improved 

A B
Fig. 3. Ecosystem interaction network, consisting of pasture (V), rabbits (N), foxes (P), and threatened species (M). (A) Ecosystem network in which arrows indicate 
the direction of the energy transfer associated with the species interaction. (B) Synthetic time-series data for ecological abundance with measurement error of  = 25% 
together with noiseless model prediction using reference parameter values (table S2), model predictions using two sets of best-fit parameter values (MLEs), and model 
ensemble predictions using all plausible parameter values (fig. S5). The ecosystem network model fits the synthetic time-series data, with the model ensemble propagating 
parameter uncertainty into species abundance predictions (see also Figures’ Supplementary Legends).
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parameter inference. For example, given that the posterior covari-
ance method (matrix P) reveals that the ratio of parameters ​​a​P​ 0.9​ / ​c​ P​​​ 
is the stiffest eigenparameter (Table 2), this ratio also indicates that 
parameters aP and cP are approximately linearly related, ​​a​P​ 0.9​  ∝ ​ c​ P​​​ 
(Fig. 5A). Here, an analogous tendency is seen for the stiffest eigen-
parameter from the LIS method (matrix G), (cM/aM)(aN/cN)0.9 
(Table 2), with parameter cM and combination of parameters (1/aM)
(aN/cN)0.9 being instead inversely related, cM ∝ [(1/aM)(aN/cN)0.9]−1 
(Fig. 5B). In addition, many samples from the posterior distributions 
are seen to lead to the same value of the log-likelihood function (no 
apparent color change across posterior distribution samples in Fig. 5), 
with the two sets of best-fit parameter values (× symbols) and refer-
ence (true) values (+ symbols) falling within the corresponding 

posterior distribution sample. This tendency indicates that every 
value for the model parameter (or combination of parameters) on 
one side of the relation (e.g., ​​a​P​ 0.9​​ and cM) has a corresponding con-
strained estimate for the parameter (or combination of parameters) 
on the other side of the relation [e.g., cP and (1/aM)(aN/cN)0.9]. Sim-
ilar tendencies are seen for the remaining eigenparameters (fig. S7).

In addition to identifying compensation effects between subsets 
of parameters (Fig. 5 and fig. S7) that lead to similar model outputs 
(Fig. 3B), analysis of sloppiness also reveals that prioritizing im-
provement of the estimates of any of the parameters (or parameter 
combinations) on one side of the proportionality relationship will 
immediately improve estimation of parameters (or parameter com-
binations) on the other side. As an example of this, we considered a 

Table 2. Comparison of the stiffest eigenparameters ​​​  ​​ 1​​​, ​​​  ​​ 2​​​, and ​​​  ​​ 3​​​ (associated with the largest eigenvalues 1, 2, and 3) considering a multivariate 
log-normal prior distribution for the parameters to fit the ecosystem model (table S1) to data (Fig. 3B). Each ​​​  ​​ 1​​​, ​​​  ​​ 2​​​, and ​​​  ​​ 3​​​ is identified via Eq. 8 after 
obtaining eigenvalues (fig. S6) and eigenvectors from matrices H (or L), P, and G. Stiff eigenparameters from matrix H (or L) are obtained at two sets of best-fit 
parameter values ​​​1​ ⋆​​ and ​​​2​ ⋆​​ (fig. S5). Matrix H (or L) returns different stiff eigenparameters when evaluated at two distinct sets of best-fit parameter values, while 
matrices P and G return different stiff eigenparameters because the prior influences the model-data fit. 

Eigenparameter ​​​  ​​ i​​​

Sensitivity matrices

H or L evaluated at P G

​​​1​ ⋆ ​​ ​​​2​ ⋆ ​​

1 (cN/aN)(aM/cM)0.4 (cM/aM)(aN/cN)0.9 ​​a​P​ 0.9​ / ​c​ P​​​ (cM/aM)(aN/cN)0.9

2 (cM/aM)(cN/aN)0.4 (cN/aN)(cM/aM)0.9 cN/aN (cN/aN)(cM/aM)0.9

3 ​​c​ P​​ / (​a​P​ 0.9​ ​d​N​ 0.4​)​ ​​c​ P​​ / ​a​P​ 0.9​​ cM/aM ​​c​ P​​ / ​a​P​ 0.9​​

Fig. 4. Prior and posterior distributions for eigenparameters ​​​  ​​ 1​​​, ​​​  ​​ 2​​​, and ​​​  ​​ 3​​​ (Table 2) compared to their reference values and associated sets of best-fit values 
(MLEs) (see also insets). Posterior distributions for all eigenparameters and their associated MLEs closely match the true values (see also Figures’ Supplementary Legends).
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multivariate log-normal prior distribution (fig. S8), which is very 
informative for parameters aN, aM, and aP, to fit the ecosystem net-
work model to data. These prior conditions act as improved estimates 
for parameters aN, aM, and aP, obtained from either expert elicita-
tion or parameter-specific experiments [e.g., spotlight counts (42)]. 
After the model-data fit (fig. S9), parameters on the other side of the 
relations (cN, cM, and cP) are also found to be more narrowly con-
strained. The percentage coefficients of variation (CV) for the 
posterior distributions of parameters cN, cM, and cP range between 7 
and 8% when a more informative prior distribution is specified for 
parameters aN, aM, and aP, which are much lower than those obtained 
(ranging between 30 and 50%) when a vague multivariate log-normal 
prior distribution is instead specified (fig. S5). Thus, combining 
Bayesian inference together with the analysis of sloppiness reveals 
parameter interdependencies that can be strategically exploited to 
efficiently improve individual parameter inference using less addi-
tional data than might be otherwise expected.

Case study 2: Cardiac electrophysiology
Key controlling mechanisms for complex systems are 
uncovered by analysis of sloppiness
The previous section considered an ecological model as an example 
of a system characterized by a moderately large number of parameters 
and poor access to data. A separate class of systems is that for which 
data are more readily available, but the dynamics that produce the 
data manifest in complex sensitivities to their controlling parameters. 
For these systems, the challenge is often how to summarize these 
nonlinear dynamics in a meaningful, actionable way, and so, stiff 
eigenparameters identified by analyzing model sloppiness have a 
recognizable potential. However, so far, model sloppiness has pri-
marily been considered for models characterized by large numbers 
of fundamental interactions, such as the Michaelis-Menten kinetics 
that describe the cell signaling network analyzed in the foundational 
work of Brown et al. (12, 13). Here, we seek to demonstrate the use-
fulness and purpose of stiff eigenparameters in systems where the 
constituent dynamics themselves, and not only their interactions, 
are complex and unwieldy.

As an example of such a system, we consider the Beeler-Reuter 
(BR) model (43), which describes the AP of a cardiac ventricular 
myocyte, the pattern of highly regulated ion flow that creates the 
depolarization and subsequent repolarization governing the heart-
beat. This cardiac cell model consists of eight nonlinear ordinary 
differential equations, six constitutive equations (table S3), and nine 
parameters (table S4). Although an older model, the BR model cap-
tures many of the most important electrophysiological features of the 
ventricular AP (49), and interest remains regarding its sensitivity to 
changes in its parameters (8, 25). Cardiac AP models are critical for 
mechanistically understanding arrhythmia (50), and the issue of pa-
rameter variability is fundamental to understanding the differential 
effects of antiarrhythmic treatments within a population (51) or the 
cardiotoxicity of other pharmacological agents (52).

The AP is summarized by the time course of a cell’s transmem-
brane potential in response to stimulation and can be recorded by 
an electronic measurement device at good temporal resolution and 
without much noise (e.g., synthetic data in Fig. 6A). The complexity 
in these models rests with the way multiple ion channels—each with 
its own set of time-adaptive, nonlinear voltage-gated dynamics—
combine additively to determine the total ion flow that produces 
the AP (table S3). The most commonly varied parameters are the 
relative levels of expression for these different ion channels (53), 
and so, rather than describing fundamental quantities such as rates 
of production or destruction, model parameters in this context de-
scribe the extent to which a variety of complex and strongly nonlinear 
dynamics contribute to the system behavior.

For this system, Bayesian model-data fitting (steps iii and iv; see 
Materials and Methods) produces an ensemble of plausible values 
for model parameters that recapture the data extremely well (Fig. 6A). 
Most of the individual parameters are well constrained by the AP 
data (as seen from their marginal distributions; fig. S10), although 
none emerges as substantially more important than all others. Ana-
lyzing model sloppiness to consider parameters in terms of their 
combinations (steps v and vi; see Materials and Methods), however, 
reveals that the combination of parameters ​​A​​K​ 1​​​ 

0.9​ ​A​​x​ 1​​​ 0.4​ / ​g​ s​​​ is the primary 
driver of the AP dynamics. This eigenparameter’s corresponding 

A B
Fig. 5. Bivariate scatterplots of the prior and posterior distributions (shaded regions) for the first stiffest eigenparameter obtained from the Bayesian methods 
(Table 2) compared to their reference parameter values and sets of best-fit values (MLEs). (A) ​​​  ​​ 1​​​ and ​​​  ​​ 3​​​ from matrices P and G, respectively, and (B) ​​​  ​​ 1​​​ from matrix 
G. Many samples of the posterior distribution yield similar values of the log-likelihood function (see also Figures’ Supplementary Legends). D
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eigenvalue eclipses the value of the others (fig. S11), and accordingly, 
its value is extremely well specified by the population of plausible 
parameter values (Fig. 6B). This eigenparameter and its relative im-
portance are identified by both the standard and Bayesian approaches 
for model sloppiness, owing to the use of a relatively uninformative 
prior and the fact that the data are highly informative about the 
model parameters. Unlike the Michaelis-Menten kinetics or the 
ecosystem network model examples, here, all approaches for model 
sloppiness are similarly suitable because of the strong informative-
ness of the data relative to the prior.

The key eigenparameter has a natural electrophysiological inter-
pretation. Parameters AK1 and gs describe the relative strengths of the 
primary outward and inward (i.e., counteracting) currents active 
during the plateau and repolarization phases that compose the bulk 
of the AP (Fig. 6A), and so, they appear in the eigenparameter as a 
ratio. Here, the third parameter Ax1 contributes to the eigenparameter 
to a lesser extent and appears as a product with parameter AK1, owing 
to their shared role in describing strengths of the outward potassium 
currents that drive repolarization. The three currents IK1, Ix1, and Is 
(table S3), associated with these three model parameters (AK1, Ax1, 
and gs, respectively), exhibit nonlinear dynamics (fig. S12). Thus, it 
is unexpected how well the primary actions of these three currents 
(IK1, Ix1, and Is) can be summarized by a simple product of parameters 
with exponents (​​A​​K​ 1​​​ 

0.9​ ​A​​x​ 1​​​ 0.4​ ​g​s​ 
−1​​), whose value strongly dictates whether 

the model output reproduces the data (Fig. 7).
Analysis of model sloppiness naturally uncovers this result, by 

revealing the precise way in which the three currents IK1, Ix1, and Is 
(table S3) act together and thus highlighting the importance of their 
balance by assigning a much higher eigenvalue to their eigenparameter 
than any other. Without considering the curvature of the log pa-
rameters, however, this relationship is not easily observed. The pre-
cise relationship between AK1, Ax1, and gs remains hidden from view 
in standard Bayesian bivariate analysis (8, 25), and even when di-
rectly plotting the values of posterior samples for these three pa-
rameters against one another (fig. S13). Such a relationship is also 
not obvious from the model definition, where none of the three pa-
rameters AK1, Ax1, and gs appear as products or quotients with one 

another, nor do the coefficients of their addition correspond to the 
exponents found in the governing eigenparameter.
Analysis of sloppiness uncovers knowledge limitations 
in mathematical models fitted to data
As also observed in the ecological application (Fig. 5), the existence 
of a strong eigenparameter(s) introduces a pronounced structure to 
the space of plausible parameter sets (Fig. 8). The nature of the eigen-
parameter implies a strong linear interdependency between combina-
tion of parameters ​​A​​K​ 1​​​ 

0.9​ ​A​​x​ 1​​​ 0.4​​ and parameter gs, as seen in the posterior 
samples found by the Bayesian inference (Fig. 8). Identifying these 
critical structures introduced by the model-data fitting process is 
key to understanding the information provided by the data on the 
model parameters. Cardiac electrophysiology is a particularly im-
portant example as parameter identifiability is a well-established 
issue for AP models (5, 8). Thus, owing to sloppiness in parameter 
estimation such as that found and quantified here, even perfect AP 
data (Fig. 6A) can imply multiple different parameter estimations 
(Fig. 7B and fig. S14), with consequences that then emerge under 
pathological conditions or in response to drug treatments (54).

As in many other disciplines, in cardiac electrophysiology, it can 
be difficult to design further experiments and/or to target experiments 
to learn specific parameter values. To this end, our comprehensive 
approach to model sloppiness does uncover the deficiencies in the 
available information through the identification of the critical eigen-
parameters. For example, once these critical eigenparameters are 
identified, the model can be used to simulate scenarios considering 
extreme system conditions (fig. S14) that are theoretically still plau-
sible given current data (Fig. 7B). This concept might be even more 
applicable where a model’s computational runtime limits the feasi-
bility of Bayesian inference. Even when a posterior of plausible 
parameter value sets cannot be realistically generated, standard 
analysis of sloppiness can still quickly identify directions in param-
eter space of poor information. In this way, simulations can be car-
ried out along directions of poor knowledge (e.g., perpendicular to 
the linear relationship depicted in Fig. 8) to further justify the con-
clusions of simulation studies against the uncertainty that remains 
in the parameters after the model-data fit.

A B

Fig. 6. BR model fit to synthetic time-series data together with the identified stiffest eigenparameter. (A) Synthetic AP data with measurement error of  = 2 mV 
and time resolution of 1 ms (1 kHz) together with noiseless model prediction using reference parameter values (table S4), model predictions using the set of best-fit 
parameter values (MLE), and model ensemble predictions using all plausible parameter values. (B) Prior and posterior distributions for the stiffest eigenparameter ​​​  ​​ 1​​  = ​
A​​K​ 1​​​ 

0.9​ ​A​​x​ 1​​​ 0.4​ / ​g​ s​​​ obtained from all matrices compared to their associated set of best-fit values and reference values (see also inset). Both MLE-based and Bayesian inference–
based model predictions overlap the true AP dynamics and synthetic data. All methods lead to the same stiffest eigenparameter. The posterior distribution for the stiffest 
eigenparameter and their associated best-fit value (MLE) closely match the true eigenparameter value (see also Figures’ Supplementary Legends). D
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Ever-present knowledge limitations about parameter values in 
cardiac electrophysiology have motivated studies in which virtual 
populations consisting of many models with varying parameter values 
are used to explore how populations as a whole, characterized by 
variable data, respond to different treatments or conditions (51, 52). 
This has included a Bayesian methodology for calibrating such pop-
ulations (7). The Bayesian framework of model sloppiness, which 
provides a more global sense of parameter space curvature in the 
plausible region defined by the given data (Fig. 8), could be applied 
to the “posteriors” of such population-calibration processes, and 
thus provide a unique way to identify the combinations of parameters 
that are constrained (or not constrained) by the process of fitting 
these models to data exhibiting variability.

DISCUSSION
Recognizing the influence of prior information on the quality 
of model-data fit
The use of informative priors has been shown to help constrain 
model parameters when mathematical models are fitted to data in 
many Bayesian inference applications (7, 25, 32, 33, 55). Despite 
this advantage, the usage of uninformative priors has predominated 
in the context of analyzing model sloppiness (12, 13, 15). In such a 
context, vague uniform priors, spanning several orders of magnitude, 
have been used to prevent potential optimization algorithm failures 
(11, 12, 16), rather than reflecting their true purpose: accounting for 
preexisting knowledge about the parameter values (33, 34). Here, 
we introduced how to account for informative priors when analyzing 
model sloppiness, with our example results illustrating how this 
approach identifies the relative effect of informative priors on the 
quality of the model-data fit. Specifically, the LIS method (matrix G) 
was shown to reveal directions in parameter space where the poste-
rior differs most strongly from the prior (Fig. 2B), while the poste-
rior covariance method (matrix P) was shown to reveal directions 
in parameter space that are strongly informed by the combination 
of both data and priors (Figs. 2A and 4). In addition, the Bayesian 
analysis of sloppiness (matrices P and G) was shown to provide 
equivalent results to those based on earlier approaches (matrices H 
and L) when uninformative (vague) priors are used in the imple-
mentation of Bayesian inference (Table 1) and when the data are 
very informative for the model parameters (Fig. 6 and fig. S11). 
Consequently, we have demonstrated that the Bayesian approach to 
analyzing sloppiness complements earlier approaches (12, 13) in 
that the effects of prior beliefs on the quality of the model-data fit 
can be segregated when all methods are used together. This then 
clarifies which of the model parameters (or parameter combinations) 
are predominantly informed by the data or the prior.

In the motivating Michaelis-Menten kinetics example and the 
cardiac electrophysiological application, we specifically showed that 
if stiff eigenparameters obtained from all methods (matrices H or L, 
P, and G) are similar, priors are weakly informative, and so, stiff 
eigenparameters are largely constrained by the data (Table 1, sce-
nario 1, and fig. S11). We also showed in the motivating example that 
if stiff eigenparameters obtained from the LIS method (matrix G) 

A B

Fig. 7. Effect of varying parameter values that are part of the stiffest eigenparameter ​​​  ​​ 1​​  = ​ A​​K​ 1​​​ 
0.9​ ​A​​x​ 1​​​ 0.4​ / ​g ​ s​​​ on the BR model prediction. (A) Predictions obtained with 

four sets of parameter values that change the value of ​​​  ​​ 1​​​ (sets A1 to A4; fig. S14). (B) Predictions obtained with four sets of parameter values that keep approximately 
constant the value of ​​​  ​​ 1​​​ (sets B1 to B4; fig. S14). Similar predictions are obtained with change in the parameter values when the value of ​​​  ​​ 1​​​ is kept approximately constant, 
while in the opposite case predictions strongly differ from those obtained with the initial parameter set (fig. S10) (see also Figures’ Supplementary Legends).

Fig. 8. Bivariate scatterplot for the prior and posterior distributions (shaded 
regions) for combination of parameters ​​A​​K​ 1​​​ 

0.9​ ​A​​x​ 1​​​ 0.4​​ and gs compared to sets of 
reference parameter values and best-fit values (MLE). Many samples of the poste-
rior distribution yield similar values of the log-likelihood function with ​​A​​K​ 1​​​ 

0.9​ ​A​​x​ 1​​​ 0.4​ ∝ ​ g​ s​​​ 
(see also Figures’ Supplementary Legends).
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are similar to those obtained from the standard method (matrices H 
or L) but different from those obtained from the posterior covariance 
method (matrix P), then critical parameter combinations associated 
with the posterior covariance method (matrix P) are significantly 
influenced by the priors (Table 1, scenario 2). Last, we showed in 
the same motivating example that if stiff eigenparameters obtained 
from the standard method (matrices H or L) differ from those ob-
tained from the Bayesian methods (matrices P and G), then priors 
may also be influencing the quality of the model-data fit. Under such 
conditions, stiff eigenparameters obtained from the LIS method 
(matrix G) are informed by the data relative to the prior, and those 
from the posterior covariance (matrix P) are mostly constrained by 
the prior (Table 1, scenario 3) (a topographical interpretation of 
these findings is also provided in the next section). In this way, we 
also demonstrated that our methods are well suited not only for 
applications where there is little prior knowledge about the param-
eter values (12, 13, 15, 27) but also for those where prior beliefs can 
be confidently included as part of the model-data fitting process 
(5, 7, 32, 33, 55).

In our implementation of Bayesian inference, we specifically 
considered combinations of vague and informative uniform and/or 
log-normal prior distributions (figs. S1A to S3A, S5, S8, and S10), as 
these types of priors are traditionally used in ensemble modeling 
applications in biochemistry (11, 12, 40, 47), ecology (17, 34, 55), 
and biology (7, 8, 25). While implementation of Bayesian inference 
with application-specific prior distributions is beyond the scope of 
this work, the Bayesian methods (matrices P and G) to analyzing 
model sloppiness may not be limited to the types of priors discussed 
here. We note, however, that for applications using heavy-tailed 
and/or sparsity-promoting priors in the implementation of Bayesian 
inference, we anticipate that more and/or better quality data would 
be required to obtain critical parameter combinations. Under this 
condition, the posterior covariance method (matrix P) is expected 
to reveal data-informed stiff parameter combinations at least when 
the data are considerably more informative than the prior, such as 
in the Michaelis-Menten kinetics example (Table 1, scenario 1). 
However, for implementation of the LIS method (matrix G), careful 
estimation of the prior covariance matrix for the logarithms of pa-
rameters  (Eq. 12) would be required for the successful inference 
of stiff parameter combinations. Here, an interesting direction for 
future work would be to apply the prior normalization technique 
recently introduced by Cui et al. (56) in the context of Bayesian inverse 
problems to transform heavy-tailed priors into standard Gaussian 
distributions, to then implement the LIS method with these prior 
transformations in the context of analyzing model sloppiness.

Last, we note that the sensitivity matrices P and G (Eqs. 11 and 
12, respectively) are logarithmically based on this work, since stan-
dard methods for analyzing model sloppiness have been usually 
applied with the doubly logarithmic Hessian (Eq. 5) owing to their 
history in analyzing complex systems describing physical processes 
(11, 15, 29). This is a transformation not typically used in the classi-
cal implementation of PCA (36, 38); however, it is not uncommon 
to the implementation of the LIS method for Bayesian dimensionality 
reduction applications (35, 48). While such a conveniently chosen 
transformation implies the use of single-sign prior distributions (i.e., 
either positive or negative for each parameter) in the implementa-
tion of Bayesian inference, it also conveys three key advantages for 
the Bayesian analysis of model sloppiness: (i) It reflects the positivity 
constraints on model parameters (true of the majority of parameters 

characterizing physical systems), (ii) it prevents inconsistencies in 
scaling between parameters (due to different orders of magnitude) 
from affecting the analysis of sloppiness (11), and (iii) it provides a 
basis to identify stiff eigenparameters as products and/or quotients 
(combinations) of bare model parameters with different power in-
dices whose magnitude informs the relative parameter importance 
in the combination (Eq. 8) (13). If, despite these advantages, prior 
distributions spanning negative to positive values are required for a 
given application, nonlogarithmic versions of sensitivity matrices P 
and G may be used as part of the analysis of model sloppiness. Under 
this condition, eigendecomposition on such matrices will instead 
reveal stiff eigenparameters as linear combinations (summations and 
subtractions) of bare model parameters premultiplied by different 
coefficients whose magnitude represents the relative parameter 
importance in the combination. However, large differences in the 
magnitude of model parameters may mask the true stiff eigenpa-
rameters from these nonlogarithmic-based sensitivity matrices, so 
great care must be taken to use them for the analysis of sloppiness.

Characterizing the topography of the surface described by 
the model-data fit
Our work significantly adds to the literature on sensitivity analysis 
(18, 21), which, in the context of models fitted to data, largely focuses 
on “locally” investigating the curvature of the surface described by 
the likelihood function (11, 12, 15, 16, 27), around the best-fit pa-
rameter values (MLE). Thus, a key contribution of the Bayesian ap-
proach to analyzing sloppiness is that it accounts for changes in the 
curvature of this surface “globally” upon considering potentially 
plausible model parameter sets at a finite distance away from the 
best-fit parameter values (7, 22, 25). In addition, our implementa-
tion of Bayesian inference advances upon earlier such implementa-
tions for analyzing model sloppiness (12, 13). In these earlier works, 
a type of Markov chain Monte Carlo (MCMC) algorithm, with un-
informative priors and started at the set of best-fit parameter values 
(MLE), was used to characterize the likelihood surface in the vicinity 
of the preidentified MLE (11, 15). However, we have shown here that 
different MLEs can lead to completely different locations on the 
surface describing the likelihood function (Fig. 5 and fig. S7), which 
can mislead inference of stiff eigenparameters (Table 2). More so, 
for systems in which the topography of the model-data fit function 
is very rugged, local optima can misguide the optimization algorithm 
(13, 15, 16), for example, as illustrated by Fernández Slezak et al. (57) 
in fitting a model of avascular tumor growth to noisy data using differ-
ent optimization algorithms. Hence, convergence issues become the 
bottleneck for the identification of stiff eigenparameters via standard 
approaches to analyzing sloppiness. Instead, Bayesian inference as 
implemented here does not rely upon a single set of best-fit param-
eter values to characterize the surface describing the quality of the 
model-data fit (see Materials and Methods). Rather, all posterior 
samples contribute to the description of the surface topology. This 
stochastic exploration of the posterior distribution can reduce the 
risk of convergence to a local optimum (24, 58), with the added 
value that the Bayesian sensitivity matrices also acknowledge any 
effect of prior beliefs on the most plausible region in parameter 
space (Figs. 2, 4, and 6B).

In our example results, we specifically illustrated that compari-
son of stiff eigenparameters obtained from both the standard (ma-
trices H or L) and Bayesian (matrices P or G) methods can reveal 
whether the topography of the surface described by the likelihood 
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function is globally and locally similar as well as whether such a 
surface is similar to that described by the posterior distribution. For 
example, if stiff eigenparameters obtained from all methods (matrices 
H or L, P, and G) are similar, the shape of the surface described 
by the likelihood function and posterior distribution is locally and 
globally similar (Table 1, scenario 1, and Fig. 6B). Instead, if stiff 
eigenparameters obtained from the standard methods (matrices H 
or L) are similar to those obtained from the LIS method (matrix G) 
but differ from those obtained from the posterior covariance method 
(matrix P), the shape of the surface described by the likelihood 
function is locally and globally similar but different from that de-
scribed by the posterior distribution (Table 1, scenario 2, and 
Table 2, with matrix H or L evaluated at ​​​2​ ⋆​​). Alternatively, if stiff 
eigenparameters obtained from all methods (matrices H or L, P, and 
G) are different, the shape of the surface described by the likelihood 
function is not only locally and globally different but also different 
from the surface described by the posterior distribution (Table 1, 
scenario 3, and Table 2, with matrix H or L evaluated at ​​​1​ ⋆​​). We 
note, however, that while differences between the shape of surfaces 
describing the posterior distribution and likelihood function are as-
sociated with the effects of priors on the quality of the model-data 
fit, identifying whether the likelihood is locally and globally similar 
is crucial when multiple (but also very different) parameter sets lead 
to similar values of the likelihood function (Fig. 5). This is a situa-
tion that is likely to occur when there are limited data to inform 
model parameters (15, 59), for which the Bayesian sensitivity matrices 
are thoroughly informed by the data and the prior.

We also note that analysis of model sloppiness, including our 
new Bayesian perspective on the topic, describes the topography of 
the likelihood surface using the eigenvectors of the sensitivity ma-
trix. Analogous to the use of PCA for dimension reduction (36), this 
can be viewed in a sense as a linearized description of the topography. 
However, extending beyond this linearized view would require tech-
niques that produce eigenvectors expressed in terms of the original 
parameters [as opposed to, say, in a reproducing kernel Hilbert 
space (60)]. Rather, owing to the connections between the different 
sensitivity matrices and inverse covariance matrices, methods for 
improved covariance matrix estimation appear to be a promising 
direction for extending the way model sloppiness describes topog-
raphy. For example, the graphical LASSO algorithm estimates sparse 
inverse covariance matrices that enforce conditional independence 
between some parameters. This might assist in the identification of 
stiff eigenparameters similar to how it can assist problems such as 
classification (61).

Improving parameter identifiability by designing 
experiments based on identified parameter interdependencies
Careful experimental design can improve ambiguous parameter in-
ferences or even biased model predictions (15, 27, 40). In the con-
text of analyzing model sloppiness, much effort has been devoted to 
studying effects on parameter identifiability by increasing the qual-
ity and quantity of the data used to fit the model (29, 30, 59, 62). For 
example, Apgar et al. (30) carefully designed complementary exper-
iments that constrained parameter values in the model of Brown et al. 
(12, 13). To achieve this, they modified some of the model inputs to 
create different synthetic datasets that were more informative for 
some of the model parameters than others, but when used together, 
all model parameters could be constrained within 10% of their true 
values. However, these computational experiments still required 

considerably more data than those typically obtained in practice 
(15, 27). Instead, we have shown here that the identification of critical 
parameter interdependencies may more efficiently improve parameter 
inference when prior knowledge about related (interdependent) 
model parameters is strategically improved through expert elicita-
tion or new experiments (fig. S8).

We also showed in the cardiac electrophysiological application 
that if experiments are designed to modify parameter values as well 
as the values of the stiff eigenparameters, these new experiments are 
likely to provide new information about the system (Fig. 7A). How-
ever, if experiments are designed to change parameter values and 
instead keep the values of the stiff eigenparameters approximately 
constant, these new experiments are unlikely to provide new in-
formation about the system (Fig. 7B). We note that if the design of 
parameter-specific experiments is not practically possible (29, 30, 59), 
the posterior covariance matrix (inverse of matrix P) can still be 
used to measure the increase in parameter identifiability obtained 
by increasing the quantity and quality of data. Furthermore, this 
technique has been recently used in optimal Bayesian experimental 
design (63).

Identifying critical parameter combinations 
in stochastic settings
In our example results, we identified critical parameter combinations 
through the analysis of sloppiness for three different deterministic 
models (Eq. 1 and tables S1 and S3) fitted to data, in which we also 
treated the error structure as having been correctly specified by the 
modeler (Eq. 15). However, implementing such an approach for 
stochastic models could be a potential area for future research. In 
stochastic models, randomness often manifests beyond just noise of 
known structure being added to a deterministic output (64). More 
so, incorporation of a stochastic component can be used to include 
effects of random fluctuations into otherwise deterministic models, 
for example, to represent temporal variations in gene expression in 
cardiac electrophysiology models (65), similar to the one considered 
in this work (case study 2). However, such models present a chal-
lenge for understanding model sloppiness. Although methods suit-
able for stochastic models [such as minimum distance estimation 
(66)] can be used to statistically estimate the values of their param-
eters, with no closed-form version of the likelihood function avail-
able, nor any guarantee of its smoothness, one cannot reasonably 
evaluate and analyze the Hessian at this point as per the standard 
approach. Here, the Bayesian perspective on model sloppiness may 
provide a remedy for these issues. By adopting a likelihood-free 
method (67, 68), posterior samples may still be generated, at which 
point the posterior covariance method (matrix P) can be used to 
identify stiff eigenparameters in the context of both data and prior, 
as we have demonstrated (Tables 1 and 2).

In contrast to the posterior covariance method (matrix P), the 
LIS-based approach presented here (matrix G), separating the anal-
ysis of model sloppiness from the effects of the prior, does rely upon 
large numbers of point-wise evaluations of the Hessian matrix 
(Eq. 12). To rectify this for stochastic models, one may formulate 
approximations to the matrix G that avoid calculation of the Hes-
sian by instead attempting to directly remove the effects of the prior 
from matrix P. For example, the sensitivity matrices formed by sub-
tracting the posterior inverse covariance Σ−1 from the prior inverse 
covariance −1 (69) or by premultiplying the posterior covariance 
Σ by the inverse prior covariance −1 (70) have been used in the 

D
ow

nloaded from
 https://w

w
w

.science.org at O
regon State U

niversity on O
ctober 04, 2022



Monsalve-Bravo et al., Sci. Adv. 8, eabm5952 (2022)     21 September 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

12 of 19

context of Bayesian inference to understand the posterior in con-
nection with the prior. Although these alternative approaches solve 
related eigenproblems, we put forward here the sensitivity matrix G, 
formed by premultiplication and postmultiplication of the Hessian 
matrix by the Cholesky factors (Eq. 12) of the prior covariance ma-
trix . This matrix factorization leads directly to the eigendirections 
(parameter combinations) where the data are most informative 
relative to the prior (further discussion in Materials and Methods).

Recognizing knowledge limitations in mathematical models 
fitted to data
Regardless of how good a mathematical model is, its predictions are 
only as useful as its known limitations (2, 55, 71). Here, by recognizing 
knowledge limitations in mathematical models fitted to data, our 
work also adds to the literature of model development and simula-
tion (2, 3, 9). For example, the identified stiff parameter combina-
tions in the cardiac electrophysiological application uncovered a 
hidden controlling mechanism of the system (Fig. 6B) that dictated 
the success or failure of the model output accurately reproducing 
the experimental data (Fig. 7). In practical applications, identifying 
this type of model behavior would inform which of the model pa-
rameters are important for model reduction (26) or need to be 
prioritized in future experimental designs (29, 30, 40). Furthermore, 
the implementation of Bayesian inference to fit the model to data 
brings the added benefit of quantifying the uncertainty in both pa-
rameter values (figs. S1A to S3A, S5, S8, and S10) and model predic-
tions (Figs. 3B and 6A and figs. S1B to S3B and S9). Hence, this 
work constitutes an example of how this advanced model-data fitting 
technique can be exploited to reveal the hidden geometry of parameter 
uncertainty and its effects on model predictions—a topic of grow-
ing interest within many fields of science (2–4, 18) that has thus far 
been hindered due to concerns about system complexity and limited 
data accessibility (2, 55, 71).

MATERIALS AND METHODS
To assist with the subsequent mathematical description, we first 
summarize how sloppiness of a model is analyzed in its standard, 
non-Bayesian, form. Then, we describe how it can be analyzed via a 
Bayesian framework. Last, we describe the procedure followed in 
Results to identify the stiff eigenparameters according to both stan-
dard and Bayesian approaches to analyzing model sloppiness.

Standard (non-Bayesian) approach to analyzing sloppiness
The standard approach to analyzing sloppiness involves three key 
steps (12, 13): (i) obtaining the best-fit parameter values ⋆ by fit-
ting the model to data, (ii) calculating the sensitivity matrix S eval-
uated at the best-fit parameter values ⋆, and (iii) identifying the 
eigenparameters that are more or less sensitive to the model-data fit 
through eigendecomposition of the sensitivity matrix S. We detail 
these three steps for analyzing sloppiness using the standard approach 
as follows.
Step 1. Obtaining values of the model parameters by fitting 
the model to data
Let us assume that a deterministic model ymodel = f(x, ), with known 
structure f, a known vector of input conditions x ∈ ℝNx of dimen-
sion Nx (e.g., representing the spatial and/or temporal location at 
which the model is evaluated, and/or the external conditions that 
alter the model output), and parameterized by a vector  ∈ ℝN of 

dimension N, has been proposed to explain a dataset yobs that con-
sists of Nobs independent observations yobs = (yobs,1, yobs,2, ⋯, yobs, Nobs), 
where yobs,k represents the kth observation in this dataset, k ∈ 
{1,2, ⋯, Nobs}. Here, the problem of uniquely estimating values of 
parameter set  given data yobs depends on whether the deterministic 
model ymodel = f(x, ) is structurally and, ultimately, practically identi-
fiable, discussed in detail elsewhere (39, 44). However, regardless of 
the source of parameter unidentifiabilities, the standard approach 
to model sloppiness considers identifiability of parameters in the 
context of their best-fit values (11, 13). Typically, a likelihood-based 
approach is taken, in which the modeler specifies an error structure 
that then formalizes this notion of best fit (26, 31). For example, a 
common choice is to assume that errors are independent and with 
Gaussian distribution, each having mean zero and a specified standard 
deviation (SD) that could be observation specific, k (12, 15, 27, 30). 
Under these conditions, the likelihood takes the form (26, 40)

	​​ ℒ(​y​ obs​​∣ ) = ​ ∏ 
k=1

​ 
​N​ obs​​

​​ ​  1 ─ 
​√ 
_

 2 ​ ​​ k​​
 ​ exp ​[​​ − ​ 1 ─ 2 ​ ​​(​​ ​ 

​y​ obs,k​​ − ​y​ model,k​​(x, )
  ─────────── ​​ k​​ ​​ )​​​​ 

2

​​]​​​​	 (2)

where ymodel, k(x, ) is the model’s prediction of an equivalent noise-
less observation for yk given parameters  and input conditions x. 
The advantage of this likelihood-based approach is the ability to 
specify a given error structure that produces a tractable likelihood 
function, for example, incorporating heteroscedasticity in the data 
by varying k with each observation (17, 55) as in Eq. 2, or even 
choosing appropriate error distributions for more specific model-data 
fitting problems. While appropriate specification of the error struc-
ture could potentially depend on domain knowledge, Eq. 2 serves as 
a broadly applicable choice (8, 11, 17, 29, 62).

The values of the model parameter vector  that maximize the 
likelihood function ℒ(yobs∣) are altogether called the MLE, here 
denoted as ​​​​ ⋆​  ≡ ​ ​MLE​ ⋆ ​   = ​ argmax​ ​​ ℒ(​y​ obs​​∣)​ (29). We note, how-
ever, that a standard least-squares regression may be cast as maxi-
mizing a Gaussian likelihood by enforcing homoscedastic errors 
k =  and introducing (12, 15)

​C( ) = − log ℒ(​y​ obs​​∣ ) =  
 
 ​ 1 ─ 2 ​ ​N​ obs​​ log (2 ) + ​ 1 ─ 2 ​ ​N​ obs​​ log ​​​ 2​ + ​ 1 ─ 2 ​ ​ ∑ 

k=1
​ 

​N​ obs​​
​​ ​​(​​ ​ 

​y​ obs,k​​ − ​y​ model,k​​(x, )
  ───────────   ​​)​​​​ 

2

​​	(3)

where C() is the cost function. The first two terms in Eq. 3 are indepen-
dent of the parameter values, so ​C( ) ∝ ​∑ k=1​ ​N​ obs​​ ​​ ​(​y​ obs,k​​ − ​y​ model,k​​(x,  ) )​​ 2​ + 
constant​. Thus, minimizing the cost function C() in Eq. 3 to find 
the best-fit parameter values is equivalent to maximizing the Gaussian 
likelihood function in Eq. 2 to find the MLE. Furthermore, as a MLE 
under these conditions, the ordinary least-squares solution is an 
estimator in the large sample limit, achieving the minimal variance 
specified by the Cramér-Rao lower bound (72).
Step 2. Calculating the sensitivity matrix
The standard approach to analyzing sloppiness obtains the sensi-
tivity matrix S by investigating how the cost function C() in Eq. 3 
varies with respect to the parameter vector  in the vicinity of the 
MLE ​​​​ ⋆​ = ​​MLE​ ⋆ ​​ . To do so, this matrix is obtained by a Taylor expan-
sion of C() around the best-fit parameter values while differentiat-
ing with respect to the logarithm of the parameters (log ), which 
yields (13, 15, 30)
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 	​​
C(θ ) ≈  C(​θ​​ ⋆​ ) + ∇ C(​θ​​ ⋆​ ) · (logθ − log ​θ​​ ⋆​ ) +

​   
​ 1 ─ 2 ​ ​(logθ − log ​θ​​ ⋆​)​​ ⊤​ H(logθ − log ​θ​​ ⋆​)

 ​​	  (4)

where the gradient ∇C(⋆) of the cost function is zero at the best-fit 
parameter values by definition so that the sensitivity of the model fit 
to changes in parameter values is characterized by the Hessian ma-
trix H defined in Eq. 4, whose elements are given by (12, 13)

	​​ H​ ij​​  =  −  ​​ 
​∂​​ 2​ log ℒ(​y​ obs​​∣)

  ───────────  ∂ log ​​ i​​  ∂ log ​​ j​​
 ​ ∣​ 

=​​​ ⋆​

​​​	 (5)

with i and j both taking integer values ranging from 1 to N. Thus, 
the Hessian matrix describes the quadratic behavior of the cost func-
tion C() infinitesimally close to the point ⋆, and thus, it is consid-
ered here as one of the matrices that could be used as the sensitivity 
matrix S for analyzing model sloppiness (12, 15, 30). However, since 
evaluating second-order derivatives can be computationally ex-
pensive, the sensitivity matrix can also be approximated by the 
Levenberg-Marquardt Hessian L at a much lower computational cost, 
following (11, 12, 15)

	​​ L​ ij​​  = ​  ∑ 
k=1

​ 
​N​ obs​​

​​ ​​  ∂ ​r​ k​​ ─ ∂ log ​​ i​​
 ​ ​  ∂ ​r​ k​​ ─ ∂ log ​​ j​​

 ​∣​ 
​​​ ⋆​=​​MLE​ ⋆ ​

​​​	 (6)

where the residual error rk for the kth observation is calculated via 
rk = [yobs, k − ymodel,k(x, )]/k, and the first derivatives in Eq. 6 can 
be evaluated by first-order finite differences or by integrating sensitiv-
ity equations for ordinary differential equation models (11, 29). The 
Levenberg-Marquardt Hessian L corresponds to the Gauss-Newton 
approximation of the Hessian H in Eq. 5, guaranteed to be positive 
semidefinite (39). Matrix L is also equal to the observation informa-
tion matrix evaluated at the MLE, which itself is a sample-based ver-
sion of the Fisher information matrix (26), whose connections with 
information theory have been well considered elsewhere (3, 15, 26). 
The Levenberg-Marquardt Hessian L thus is a more computationally 
convenient sensitivity matrix S for analyzing sloppiness, although as 
with the Hessian matrix H it only considers the curvature of the 
likelihood surface infinitesimally close to the MLE.
Step 3. Identifying the eigenparameters that are more or less 
sensitive to the model-data fit
To identify the stiff eigenparameters, eigenvalues n and eigenvectors 
vn are obtained via eigendecomposition of the sensitivity matrix S 
or via singular value decomposition if numerical stability is an issue 
(12). Each of the n = 1,2, …, N eigenvectors vn is mutually orthogonal 
so that eigenparameters can be conveniently expressed as linear com-
binations of natural logarithms of model parameters, following (13)

	​​ ​ n​​  = ​  ∑ 
j=1

​ 
​N​ ​​

 ​​ ​(​v​ n​​)​ j​​ log ​​ j​​​	 (7)

where (vn)j is the jth element of the nth eigenvector vn of the sensi-
tivity matrix. Thus, each eigenparameter ​​​  ​​ n​​​ can be simply repre-
sented as the product and/or quotient of bare model parameters 
raised to an index given by the elements of eigenvector vn, by rewrit-
ing Eq. 7 as (13)
	​​​   ​​ n​​  ≔  exp (​​ n​​ ) = ​∏ 

j=1
​ 

​N​ ​​
 ​​ ​​j​ ​(​v​ n​​)​ j​​​​	 (8)

with stiff eigenparameters ​​​  ​​ n​​​ associated with the largest eigenvalues 
n and sloppy (soft) eigenparameters associated with the smallest 
eigenvalues. The magnitude of each element (vn)j, j = 1, …, N of the 
eigenvector vn in Eq. 8 therefore indicates the relative contribution 
of bare parameter j to eigenparameter ​​​  ​​ n​​​. If eigenvectors are nor-
malized, each (vn)j takes values between −1 and 1 inclusive so that 
all ​​​  ​​ n​​​ are products of bare parameters having exponents with mag-
nitudes that do not exceed unity. Any factors ​​​j​ ​(​v​ n​​)​ j​​​​ in Eq. 8 having 
relatively low magnitudes for (vn)j [e.g., ∣(vn)j∣ ≤ 0.2] contribute 
little to the eigenparameter’s value; thus, these small factors ​​​j​ ​(​v​ n​​)​ j​​​​ 
can be practically excluded from the product (12). Hence, each of 
the n = 1,2, …, N eigenparameters ​​​  ​​ n​​​ may depend strongly on only 
a few bare parameters that may be importantly related to each other.

Bayesian approach to analyzing sloppiness
In the context of fitting models to data, Bayesian inference provides 
a coherent statistical framework to estimate probability distributions 
for model parameters, constrained by the combination of data and 
prior beliefs (22, 33). Thus, if the model-data fitting problem is 
recast as a Bayesian inference problem, the final estimates for the 
probability distribution of parameters , based on all of the data yobs, 
are called the posterior distribution (∣yobs). To apply Bayesian in-
ference, we require definition of both a likelihood function ℒ(yobs∣) 
and a prior distribution p(). An example of the former of these was 
defined in Eq. 2 (i.e., Gaussian likelihood), while the latter of these 
represents the initial beliefs about the parameter values, which are 
often based on earlier studies, or in their absence, they are based on 
expert knowledge (33, 73). Once both likelihood function and prior 
distribution are defined, Bayes’ theorem is then used to obtain the 
posterior distribution, following (23)

	​ (∣​y​ obs​​ )  =  ​ 
ℒ(​y​ obs​​∣ ) p()

  ────────────  
​∫ 


​ ​​ ℒ(​y​ obs​​∣ ) p() d
 ​​	 (9)

Here, the denominator is a multidimensional integral over the 
parameter space, , that serves as a normalizing constant but is, how-
ever, difficult to calculate directly or often intractable (22, 23, 58). 
Therefore, several methods that avoid calculation of this constant 
have been developed to sample from the posterior distribution, in-
cluding MCMC sampling (74), sequential Monte Carlo (SMC) sam-
pling (58), approximate Bayesian computation (ABC) (67), variational 
Bayesian inference (75), Laplace approximation (76), and many 
others. For the purposes of this section, we simply assume that the 
posterior has been successfully sampled, and thus, we hereafter dis-
cuss practical aspects of computing the sensitivity matrix within a 
Bayesian framework. Thus, analogous to the standard approach to 
analyzing sloppiness, the Bayesian approach consists of three steps: 
(i) obtaining an estimate of the posterior distribution (∣yobs) 
by fitting the model to data, (ii) calculating a Bayesian-based sensi-
tivity matrix S from the posterior distribution (∣yobs), and (iii) 
identifying the eigenparameters that are more or less sensitive to the 
model-data fit through eigendecomposition of the Bayesian-based 
sensitivity matrix S.

Exact details of the first step above depend on the posterior-
computation method chosen, while the third step is the same as the 
third step of the standard approach. Thus, we focus here on the sec-
ond step, for which we adapt two Bayesian methods for dimension-
ality reduction to obtain sensitivity matrices for analyzing model 
sloppiness. These are described as follows.
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Posterior covariance method
The posterior covariance method is based on the application of PCA 
(36). This technique uses eigendecomposition of a sensitivity matrix 
(a covariance matrix) to reduce the dimensionality of large datasets, 
which thus identifies the dataset components that account for the 
largest amount of variance (38). In our context, the dataset of interest 
is a Bayesian ensemble of plausible parameter values, which we 
obtain from the posterior distribution for the parameters. Thus, if 
PCA is applied on this specific dataset, eigenvectors and eigenvalues 
of the posterior covariance matrix inform the variability of the 
model-data fit to changes in parameter values. However, given that 
we seek to identify the eigenparameters that are well constrained by 
the available data (i.e., those that have less variability), we instead 
calculate the sensitivity matrix S as the PCA Hessian matrix P that 
is based on the inverse of the posterior covariance matrix Σ (12)

	​ P  = ​ Σ​​ −1​​	 (10)

where the matrix Σ is calculated in terms of the natural logarithms 
of model parameters log , with this transformation required in Eq. 8 
to characterize stiff/sloppy eigenparameters as products or quotients 
of the bare model parameters. This is a key advantage of the posterior 
covariance method over more sophisticated dimensional reduction 
techniques [e.g., kernel PCA (60) and/or ISOMAP (77)], in which 
mappings back to original parameter space are not typically sought, 
and thus, the associated eigenparameters describing the lower di-
mensional parameter space are not readily interpretable. Hence, 
eigendecomposition of the PCA Hessian matrix P identifies which 
eigenparameters are more or less constrained by the combination of 
both data and prior beliefs. Specifically, eigenvectors of matrix P with 
large eigenvalues indicate stiff eigenparameters, while eigenvectors 
with small eigenvalues indicate sloppy eigenparameters.

We note that if Monte Carlo methods such as MCMC sampling 
(74), SMC sampling (58), or ABC (67) are used to approximate the 
posterior as a set of M equally weighted samples ​​{​​ m​​}​m=1​ M  ​​, the re-
quired posterior covariance matrix Σ, calculated with respect to the 
natural logarithms of parameters log , can be estimated using the 
sample covariance matrix ​​̂  Σ​​

	​ Σ  ≈ ​   Σ​  = ​   1 ─ M − 1 ​ ​ ∑ 
m=1

​ 
M

  ​​(log ​​ m​​ − log ​
_

 ​ ) ​(log ​​ m​​ − log ​
_

 ​)​​ ⊤​​	 (11)

where ​log ​  ̄​  = ​  1 _ M​ ​∑ m=1​ M  ​​ log ​​ m​​​ is the estimated posterior mean for 
the natural logarithm of parameters. If Monte Carlo methods are 
overly computationally expensive, fast approximate methods such 
as variational Bayesian inference or Laplace approximation (76) can 
be used as an alternative to provide a rapid estimate of the posterior 
covariance matrix. However, these fast approximate methods provide 
a rapid, albeit possibly biased, estimate of the posterior covariance 
matrix (76).
LIS method
The LIS method proposed here has its origins in the Bayesian pa-
rameter reduction literature, specifically from the work of Cui et al. 
(35) who developed a method for Bayesian inverse problems that 
identifies the directions in parameter space where the data are most 
informative relative to the prior. The motivation for Cui et al. (35) 
was to develop an approximate but accelerated MCMC algorithm 
that samples over a lower-dimensional subspace, called the LIS, to 
avoid sampling from directions of prior variability that the likelihood 

does not inform (48). The LIS is constructed on the idea that the 
Hessian of the log-likelihood can be compared to the prior covari-
ance to then identify directions in parameter space along which the 
posterior distribution differs strongly from the prior, i.e., directions 
that are likelihood informed (78). Thus, we adapt here the approach 
used by Cui et al. (35) to construct the LIS to define a sensitivity 
matrix in our context.

Our goal is to make the sensitivity matrix dependent primarily 
on the data and eliminate effects of the prior distribution. To achieve 
this, we first assume that the covariance matrix  of the prior distri-
bution for the logarithms of parameters is known and that this matrix 
can be Cholesky factored to a lower triangular matrix Lp such that 
​​L​ p​​ ​L​p​ ⊤ ​  =  ​. Then, by following Cui et al. (35), we define the prior-
preconditioned Hessian matrix () as

	​ ( ) = ​L​p​ ⊤ ​ H( ) ​L​ p​​​	 (12)

for parameter vector , with elements of H() given by Eq. 5. We 
note that Cui et al. (35) used a multivariate Gaussian prior to define 
the prior-preconditioned Hessian matrix () in Eq. 12, which is 
needed in that context to approximate the posterior distribution as 
the product of a lower-dimensional posterior defined on the LIS and 
the prior distribution marginalized onto a complementary subspace 
(48, 78). However, given that our purpose is to identify the directions 
that are data informed, and not to approximate a posterior distribu-
tion, the LIS definition is not restricted to multivariate Gaussian 
priors in our application. Thus, we obtain an expression for the LIS, 
used here to define the LIS-based sensitivity matrix G, by integrating 
over the prior-preconditioned Hessian matrix with respect to the 
posterior (35), which yields

	​ G  = ​ ∫ 

​ ​​ () (∣​y​ obs​​) d​	 (13)

Given that Eq. 13 involves an integral over N-dimensional space, 
then if the posterior is approximated by a Monte Carlo method 
(e.g., MCMC, SMC, or ABC) as a set of M equally weighted samples 
​​{​​ m​​}​m=1​ M  ​​, the LIS-based sensitivity matrix G can instead be estimated as

	​ G  ≈ ​  1 ─ M ​ ​ ∑ 
m=1

​ 
M

  ​​(​​ m​​)​	 (14)

where each (m) is calculated via Eq. 12 with the Hessian matrix 
H(m) of the negative log-likelihood function evaluated at each poste-
rior sample m via Eq. 5 or approximated by the Levenberg-Marquardt 
Hessian L(m) via Eq. 6 to reduce computational cost in the calcula-
tion of matrix G (35). Furthermore, we note that these M matrices 
H(m) are all left-multiplied by ​​L​p​ ⊤ ​​ and right-multiplied by Lp, with 
the M resulting (m) matrices averaged to obtain the sensitivity 
matrix G. As a result, eigendecomposition of this prior-informed 
sensitivity matrix G can reveal which eigenparameters are strongly 
informed by the data relative to the prior, i.e., directions in param-
eter logspace where the posterior differs most strongly from the 
prior (78).

Demonstrating how to analyze model sloppiness using 
examples of models fitted to synthetic data
In this section, we describe the six-step procedure used to analyze 
model sloppiness in the examples discussed in Results. This six-step 
procedure incorporates both approaches discussed above, i.e., the 
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local sensitivity analysis around the best-fit parameter values (stan-
dard approach) and the global sensitivity analysis considering all 
plausible parameter values consistent with the available data (Bayesian 
approach). Each step of the procedure describes specific details of 
the examples considered in Results.
Step i. Defining the model form
We consider deterministic models of the form ymodel(x, ), where x 
∈ ℝNx is a vector of input conditions,  ∈ ℝN is a vector of model 
parameters, and ymodel ∈ ℝNy is a vector of model outputs (see step 1, 
standard approach). Here, Nx and Ny are the number of model in-
puts and outputs, respectively.
Step ii. Generating synthetic data to fit the model
We generate measurement data for the motivating example and 
ecological application by adding heteroscedastic noise with variance 
proportional to the observation, which follows a truncated normal dis-
tribution yobs, j(xi) ∼ 𝒩(yj(xi), yj(xi)) with mean yj(xi) = ymodel, j(xi, R), 
SD yj(xi) = ymodel, j(xi, R), and lower truncation bound of zero on 
each of the synthetic observations yobs, j(xi) (17). Here, R is the vec-
tor containing the reference (true) values for the model parameters, 
 is a user-defined measurement error ranging between 0 and 100%, 
and noise is added to the jth model output associated with the ith set 
of input conditions. Alternatively, we generate measurement data for 
the cardiac electrophysiological application by adding homoscedastic 
noise, which follows a normal distribution yobs, j(xi) ∼ 𝒩(yj(xi), yj(xi)) 
with mean yj(xi) = ymodel, j(xi, R) and constant SD yj(xi) =  (8). In 
each case, measurement error and sampling frequency (number of 
measurements) are chosen according to typical experimental con-
ditions. As later discussed in detail in step iv, the choice of error 
structure used for synthetic data generation is also used to define 
the form of the likelihood function for each case. That is, the error 
structure is treated as having been correctly specified by the modeler.
Step iii. Defining the vector of unknown model parameters 
and their prior distributions
We define the vector of unknown model parameters  consisting of 
(i) the model parameters, (ii) model initial conditions (only consid-
ered in the ecological model), and (iii) measurement error  or SD 
 following the type of noise added to the synthetic data. Then, we 
specify prior distributions for the parameters p() using either pos-
itive uniform or multivariate log-normal probability distributions 
(8, 25, 34, 47, 55), as follows.

In the Michaelis-Menten kinetic example, three different joint 
prior distributions p() ≡ p(kcat, [ET], KM, ) are used for the three 
parameters kcat, [ET], and KM of the model and measurement error . 
The first joint prior consists of a uniform prior for each parameter; 
the second joint prior consists of multivariate log-normal priors for 
all parameters, with the prior of parameter KM being badly speci-
fied; and the third joint prior consists of a uniform prior for kcat, 
a badly specified log-normal prior for [ET], and a well-specified 
log-normal prior for KM and . All joint priors assume indepen-
dence between the model parameters and measurement error, so 
p() ≡ p(kcat)p([ET])p(KM)p(). In this work, a badly specified prior 
for the nth parameter n means that this parameter’s true value R, n 
has little support under the prior distribution (i.e., it lies in the tails 
of the prior). This is a condition referred to as a prior-data conflict 
that occurs when informative prior beliefs are inconsistent with the 
information revealed by the data (79), although the model is cor-
rectly specified as is assumed here [see (80) for discussion of appro-
priateness of Bayesian inference when the model is misspecified]. 
Alternatively, a well-specified prior in this work means that the true 

parameter value R, n is well supported by the prior distribution, i.e., 
it lies within the bulk of the prior distribution so that prior beliefs 
are consistent with the information given by the data.

In the ecological application, two different joint prior distribu-
tions are used for the 20 parameters of the ecosystem network model 
(table S2) and measurement error . The first joint prior distribu-
tion is chosen to be a product of vague log-normal distributions for 
each parameter so that this joint prior has zero covariance. Alterna-
tively, the second joint prior distribution is chosen to be a product 
of well-specified log-normal distributions for parameters aM, aN, 
and aP and vague log-normal distributions for each of the remain-
ing parameters, including the measurement error . As discussed in 
Results, well-specified priors for parameters aM, aN, and aP are chosen 
on the basis of the stiff eigenparameters, identified from the analysis 
of sloppiness for the case considering vague log-normal distribu-
tions for each parameter.

In the cardiac electrophysiological application, a well-specified 
multivariate log-normal prior distribution is used for the nine pa-
rameters of the BR model (table S4) and the SD . This joint prior 
distribution is centered at the reference parameter values and assumes 
zero covariance between the nine parameters and the SD . Stimu-
lation conditions As, ton, and tdur; membrane capacitance Cm; and 
initial conditions Vm(0), [Ca]i(0), x1(0), m(0), h(0), j(0), d(0), and 
f(0) are set to their reference values (table S4) and are not estimated 
via our model-data fitting techniques.
Step iv. Fitting the model to data
We use two approaches to fit each example model to data, with the 
first being MLE and the second being Bayesian inference. To imple-
ment these two approaches, we conveniently rewrite the Gaussian 
likelihood function defined in Eq. 2 as

​​ℒ(​y​ obs​​∣ ) = ​∏ 
j=1

​ 
​N​ y​​

 ​​​∏ 
i=1

​ 
​N​ x​​

 ​​ ​  1 ─ 
​√ 
_

 2 ​ ​​ ​y​ j​​​​(​x​ i​​)
 ​ exp ​[​​ − ​ 1 ─ 2 ​ ​​(​​ ​ 

​y​ obs,j​​(​x​ i​​ ) − ​y​ model,j​​(​x​ i​​, )
  ─────────────  ​​ ​y​ j​​​​(​x​ i​​)

 ​​ )​​​​ 
2

​​]​​​​

(15)

where yj(xi) = ymodel, j(xi, ) when heteroscedastic noise is used to 
generate the synthetic data and yj(xi) =  when homoscedastic noise 
is instead used. Then, we use this Gaussian likelihood function and 
specified prior distributions (step iii) to approximate the joint pos-
terior distribution (∣yobs) via Bayes’ theorem (Eq. 9) by imple-
menting the SMC sampling algorithm adapted from Adams et al. 
(17, 55). In our implementation of this posterior sampling algorithm, 
we use a sample size of M = 10,000, Metropolis-Hastings acceptance 
fraction of C = 0.95, and effective sample size reduction target of 
 = 0.001. These settings were sufficient for reproducible sampler 
performance: Results did not vary in independent runs of the sam-
pling algorithm using a smaller sample size of M = 5000 and larger 
effective sample size reduction target of  = 0.005 (figs. S15 to S21).

Once the joint posterior probability distributions (∣yobs) are 
obtained for each example, we estimate the best-fit parameter values 
⋆ (MLE) by minimizing the cost function C() = − log ℒ(yobs∣) 
with ℒ(yobs∣) given by Eq. 15 while using the posterior mean as the 
initial guess to start the optimization. Here, the sets of best-fit 
parameter values ⋆, ​​​1​ ⋆​​, and ​​​2​ ⋆​​ are only used to calculate the sensi-
tivity matrices (H or L) via the standard approach, while the already 
obtained prior and posterior distributions are used to calculate the 
sensitivity matrices (P and G) based on the Bayesian approach.
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Step v. Calculating the sensitivity matrix
Equations 5, 6, 10, and 14 are used to calculate the Hessian H, the 
Levenberg-Marquardt Hessian L, the PCA Hessian P, and the LIS 
G, respectively. Each of these matrices acts as a sensitivity matrix for 
the purpose of analyzing sloppiness. In the absence of analytical de-
rivatives, we use central finite differences (81) to approximate first- 
and second-order derivatives of the log-likelihood function with 
respect to the logarithm of parameters, with a step size i =  × i, 
i = 1, …, N, where  is a small scalar between 10−4 and 10−2. Finite 
differencing is the most widely used technique for numerical differ-
entiation in physical applications (81), including approximations of 
the sensitivity matrix (H or L) in standard analysis of model sloppiness 
(13, 15, 30). However, for more complex models than those consid-
ered here, this technique can become computationally expensive, as 
it requires multiple model evaluations for approximating derivatives. 
As an alternative, more sophisticated methods such as automatic 
differentiation (82) may also be used (where appropriate) in con-
junction with the analysis of model sloppiness (11, 28).

Rows and columns of each sensitivity matrix characterizing the 
sensitivity of the model-data fit with respect to the measurement 
error (represented by  or  in Eq. 15) are not calculated, thus pre-
venting the measurement error from appearing in the parameter 
combinations that are identified through the analysis of model slop-
piness. Here, the measurement error is effectively treated as a 
nuisance parameter, that is, it is involved with the model-data 
fitting procedure but does not provide information to identify rele-
vant parameter combinations. In addition, for likelihood functions 
of the form given by Eq. 15, small changes to the measurement error 
are expected to affect only the degree of overall curvature of the 
model-data fit surface but not the directions of high or low curva-
ture. As a result, the dimension of the square symmetric sensitivity 
matrices H, L, P, and G obtained here is equal to the number of 
model parameters, excluding the measurement error ( or  in Eq. 15), 
i.e., we obtain 3 × 3 sensitivity matrices in the Michaelis-Menten 
kinetic example, 20 × 20 in the ecological application, and 9 × 9 in 
the cardiac electrophysiological application.
Step vi. Identifying stiff eigenparameters
Eigenvalues and eigenvectors of the sensitivity matrices H, L, P, and 
G are calculated via singular value decomposition (12). Then, eigen-
parameters ​​  ​​ are obtained via Eq. 8, in which we consider the con-
tribution of parameter j to eigenparameter ​​​  ​​ n​​​ only when element j of 
the normalized nth eigenvector (vn)j satisfies ∣(vn)j∣ ≥ 0.2 (see step 3, 
standard approach). We also rescale exponents (vn)j of the bare param-
eters j associated with each eigenparameter ​​​  ​​ n​​​ so that the magnitude 
of the largest/smallest index (vn)j for every eigenvector vn is 1. Here, 
eigenvalues are ordered from largest to smallest so that the corre-
sponding eigenparameters are also ordered from stiffest to sloppiest.

Trade-offs of locally and globally analyzing model sloppiness
To summarize these methods, we have proposed a unified framework 
to obtain locally and globally the key quantity for analyzing model 
sloppiness—the sensitivity matrix S (e.g., H, L, P, and G). This 
approach accurately estimates uncertainty in parameter values, con-
strained by the combination of prior information and data, with the 
key benefit of robustly identifying the relative effect of this prior infor-
mation in the inference of critical parameter combinations that 
control the quality of the model-data fit. This is a key achievement 
of this work as it extends the application of the analysis of sloppiness 
beyond systems where there is little prior knowledge about the 

model parameter values (11, 12) to those where prior information is 
more readily available (32, 34, 45, 55), and thus can be confidently 
incorporated as part of the Bayesian model-data fitting process to 
constrain parameter values (7, 8, 17, 25).

In the implementation of this framework, the local (standard) 
methods to analyzing sloppiness (matrices H or L) were found to be 
computationally inexpensive in comparison to the Bayesian methods 
(matrices P and G). Thus, standard methods can be very useful in 
model-data fitting applications where computationally expensive 
models make implementation of Bayesian inference impractical. 
Nevertheless, since local analysis of sloppiness considers a single 
point estimation in parameter space (i.e., the best-fit parameter 
values), this local approach can only accurately quantify the model 
sensitivity to parameter changes when the likelihood function max-
imum (or cost function minimum) is well defined (11, 59). Unfor-
tunately, if the likelihood surface is relatively complicated (e.g., with 
ridges), this method can mislead inference of stiff eigenparameters 
(see, for example, Table 2) (15, 57). Careful selection of the optimiza-
tion algorithm is thus needed to avoid convergence to local optima 
(12, 16, 57). In addition to this limitation, both standard methods to 
analyzing sloppiness require a closed-form likelihood function to 
calculate sensitivity matrices H and L, such as the Gaussian likelihood 
functions (e.g., Eqs. 2 and 15) considered here.

Alternatively, the global (Bayesian) analysis of sloppiness looks 
beyond the curvature of the likelihood function surface at a single 
point while fully exploring the topography of this surface by using 
an ensemble of plausible parameter values to characterize the sensi-
tivities of the model-data fit to changes in parameter values. As part 
of this global approach, we exploited PCA (36) to implement the 
posterior covariance method (matrix P) that assesses the data infor-
mativity about the critical parameter combinations while accounting 
for (including) any prior information about parameter values. This 
method does not require approximating gradients of the log likelihood 
(Eq. 10), and so, calculating sensitivity matrix P is computationally 
inexpensive after the posterior distribution is obtained via Bayesian 
inference. However, since the posterior covariance method (matrix P) 
assumes that the posterior structure is well captured by a covariance 
matrix Σ of the logarithm of parameters log , it is also restricted to 
applications where the posterior distribution for log  is approximately 
multivariate normally distributed. Despite this limitation, the pos-
terior covariance method has the added benefit of being readily appli-
cable to all kinds of statistical models, even to those with intractable 
likelihood functions where “likelihood-free” Bayesian methods, such 
as ABC (67) and Bayesian synthetic likelihood (68), are prevalent.

As part of the global approach, we also implemented the LIS 
method for Bayesian dimensionality reduction (35, 37) to analyze 
model sloppiness. Following its origins, the LIS method (matrix G) 
adapted here assesses the data informativity about the critical pa-
rameter combinations while also acknowledging and excluding any 
prior information. As with the standard methods (matrices H or L), 
the LIS method requires a closed-form likelihood function (e.g., 
Gaussian likelihood functions in Eqs. 2 and 15) to obtain the sensi-
tivity matrix G (Eq. 14). More so, given that the LIS method also 
involves calculation of the Hessian matrix at a posterior sample (Eq. 12), 
approximating second-order derivatives for all posterior samples can 
become computationally expensive via finite differencing for models 
with time-consuming solutions. Despite these limitations, as the LIS 
method does not assume a given shape for the posterior distribution, 
it has the added benefit of being readily applicable to systems with 
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non-Gaussian posterior distributions. On the other hand, where the 
posterior distribution is close to a Gaussian, one may replace the 
LIS’s average over Hessians (Eq. 14) with the posterior covariance

	​ K  ≈ ​ L​p​ ⊤ ​ ​Σ​​ −1​ ​L​ p​​     or     ​K​​ −1​  ≈ ​ L​p​ −1​ Σ ​L​p​ −⊤​​	 (16)

with ​​L​ p​​ ​L​p​ ⊤ ​  =  ​ (see LIS method), hence formulating a likelihood-
free approximation to matrix G. This makes the LIS applicable for 
stochastic models with intractable likelihoods and greatly reduces 
the extra computational cost of Hessian calculation at all posterior 
samples. This idea is similar to other approaches comparing prior 
and posterior covariance matrices to understand the posterior in 
the context of the prior (69, 70), arising from the generalized eigen-
problem Hv ≈ Σ−1v = −1v upon approximating the Hessian with 
the inverse covariance matrix Σ−1 for Gaussian settings (37). Matrix 
K can also be obtained by transforming this generalized eigenproblem 
into a standard eigenproblem, for which the eigenvectors are then 
readily interpretable for analyzing model sloppiness. As the eigen-
vectors of matrix Σ in Eq. 11 are equivalent to those of matrix H in 
Eq. 12 for a Gaussian posterior distribution, matrix G in Eq. 14 and 
matrix K (or K−1) in Eq. 16 share the same eigenvectors [see (37) for 
discussion of eigenproperties of matrices H and Σ under Gaussian 
settings].

Beyond the Bayesian methods discussed here, for applications in 
which sampling the posterior distribution is infeasible or simply 
impractical, forward sensitivity analysis methods such as the active 
subspace (AS) (83) could potentially be used as an alternative to 
assess sensitivities of the model-data fit function to changes in pa-
rameter values. The AS method has the advantage of evaluating a 
similar sensitivity matrix at a prior sample [referred to as matrix C 
by Constantine et al. (83)], which makes its implementation less com-
putationally expensive than that of the LIS method since a posterior 
sample is not needed. Similar to the LIS, the AS identifies a set of 
important (stiff) directions in the space of all parameters (83, 84). 
However, the method has also been recently shown to be not com-
pletely analogous to the LIS method for both Gaussian and non-
Gaussian settings in the context of Bayesian dimensionality reduction 
(85). Consequently, for analyzing model sloppiness, eigenparameters 
obtained from the AS method are expected to have a different inter-
pretation than that of eigenparameters obtained from matrices P and 
G in relation to acknowledging the source of information (i.e., prior 
and/or data). Thus, exploring how the AS method compares to the 
Bayesian methods discussed here could be an interesting direction 
for future work.

Hence, given the great flexibility of the techniques discussed here 
to unveil sensitivities of the model-data fit to changes in parameter 
values, our comprehensive approach to analyzing model sloppiness 
does comprise a suitable set of tools to aid in understanding many 
of nature’s systems, ranging from a single cell in the human body 
(7, 8) and the myriad of microorganisms found almost everywhere 
(3–5) to large ecosystem networks (2, 17) and beyond (9, 10), through 
the simultaneous usage of experimental data, mathematical models, 
and computer simulation.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abm5952

View/request a protocol for this paper from Bio-protocol.
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