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This work introduces a comprehensive approach to assess the sensitivity of model outputs to changes in parameter
values, constrained by the combination of prior beliefs and data. This approach identifies stiff parameter combi-
nations strongly affecting the quality of the model-data fit while simultaneously revealing which of these key
parameter combinations are informed primarily by the data or are also substantively influenced by the priors. We
focus on the very common context in complex systems where the amount and quality of data are low compared to
the number of model parameters to be collectively estimated, and showcase the benefits of this technique for
applications in biochemistry, ecology, and cardiac electrophysiology. We also show how stiff parameter combina-
tions, once identified, uncover controlling mechanisms underlying the system being modeled and inform which
of the model parameters need to be prioritized in future experiments for improved parameter inference from

collective model-data fitting.

INTRODUCTION

A single biological cell is itself a complex system, as is an organism
made up of such cells, as is an ecosystem of those organisms inter-
acting with one another. Despite the diversity of systems composing
our world, many of these share similar structural and functional
features that can be unraveled through computer simulation (1-3).
Consequently, modeling and simulation have become increasingly
important to understand and predict the underlying behavior of
systems across different scales (3-5), including molecules (6), cells
(7, 8), engineered processes (9), and astrophysical phenomena (10).
Continuous advances in model descriptions of reality together with
the model fit to experimental data have improved the fidelity of
computer experiments and made them much more predictive (1, 2).
However, the cost of this fidelity is an increase in the number of
model parameters (4), and a greater risk that these parameters cannot
be uniquely identified (3, 11-13). For statistical models of familiar
form, one may be able to formally determine how and to what
extent parameters can possibly be identified. Lewbel (14) provides
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many such examples. When it comes to complex models defined,
for example, in terms of the solution of a set of differential equations,
however, a more practical approach will often be required for param-
eter estimation (3, 11). Expectedly, a substantial amount of uncer-
tainty in parameter values often remains after even a very successful
fit of the model to data (15-17).

Sensitivity analysis and uncertainty quantification comprise a
whole field dedicated to learning about how model behavior is con-
trolled by their parameters (18-20). These techniques can be used
to assess the sensitivity of the model-data fit to changes in parameter
values either in a local sense, around a single point (i.e., the set of
best-fit parameter values), or in a global sense, across all plausible
parameter values consistent with the available data (11, 15, 21). An
alternative approach is Bayesian inference (22, 23), an increasingly
used modeling technique that accounts for collective parameter
uncertainty constrained by the combination of both data and prior
beliefs (5, 7, 8, 17, 24, 25). However, regardless of the approach taken
to characterize the effects of changes in parameter values on model
outputs, critical model parameters are often considered as individ-
uals in terms of their impact on the model behavior (19). Sensitivity
analysis typically considers the derivative of model outputs with
respect to the parameters (15, 18, 21), while a Bayesian posterior is
analyzed predominantly in terms of its marginal distributions (7, 17).
When combinations of model parameters are considered, it is largely
in terms of crude numerical scores (19-21). Unfortunately, model
parameters that are not very constrained by the data are often as-
sumed not to have a strong influence on model predictions, although
it is the case of many systems that certain combinations of seemingly
unconstrained model parameters are more narrowly constrained by
the data than any of the individual model parameters (11-13, 16).

Model parameters can act together or against each other, and
often must be understood in terms of their combinations (13, 15).
Parameter combinations that significantly influence model predic-
tions, called stiff eigenparameters, essentially act as emergent “control
knobs” for the model: Predictions are possible without precise
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knowledge of individual parameter values as it is these stiff eigen-
parameters that are tightly constrained by the data (16, 26). Con-
versely, the model-data fit may also be relatively insensitive to some
other parameter combinations, called sloppy eigenparameters (12, 13),
which hence are poorly constrained by the data (16, 27). Recently,
efforts have been made to unravel these connections among parameters
through the expanding literature on model sloppiness (12, 28-31).
Methods to analyze model sloppiness seek to expose the sensitivities
of the model-data fit to changes in sets of parameter values by char-
acterizing the topography of the surface describing how the model-
data fit depends on the model parameters in the vicinity of the
best-fit parameter values (15, 16). However, thus far, such methods
have primarily focused on the field of systems biology where there
is little prior knowledge of parameter values (11, 26, 27), and so, the
sensitivities of the model-data fit to changes in parameter values
remain to be considered in the context where prior information
is also available (e.g., from experts or previous studies) to inform
parameter values (11, 32-34).

In this work, we propose a comprehensive approach to charac-
terize local and global sensitivities of the model-data fit to changes in
parameter values. This is achieved by bringing a Bayesian inference
perspective (22, 23) to the analysis of sloppiness that consequent-
ly leads to the robust identification of the stiff eigenparameters. In
this way, analysis of sloppiness gains the ability to incorporate
prior information and to look beyond the curvature at a single point
(i.e., the set of best-fit parameter values) in an uncertainty-informed
way. Meanwhile, Bayesian inference gains a tool to identify well-
constrained combinations of parameters that can be otherwise hidden
when considering the uncertainty in individual model parameters,
critical when the number of parameters to be estimated is large.

As part of our comprehensive approach, we extend the usage of
two well-established Bayesian approaches to dimensionality reduc-
tion (35-38) to define the sensitivity matrix that underlies the analysis
of model sloppiness, suitably calculated using the posterior samples
generated by Bayesian inference. The first definition uses the cova-
riance of the posterior samples to inform parameter space curvature
in a nonlocalized manner (12, 39), with ties to classical principal
component analysis (PCA) (36). This approach has appeared in
works analyzing model sloppiness but only in the context of un-
informative priors (12, 15, 40). Considering it here in the Bayesian
context with informative priors, we identify the need for the second
approach that uses the dimension reduction idea from Cui ef al. (35)
to conveniently separate the effect of any prior information from
that of the data. Using this novel adaptation of Bayesian techniques
for dimensionality reduction to analyze model sloppiness, we illus-
trate how to identify the combinations of parameters driving model
behavior in applications beyond systems biology and in a manner
that acknowledges separately the available information [e.g., via
expert knowledge (33)].

We focus our attention on the fit of three deterministic models
to data with closed-form likelihood functions, although models that
do not satisfy this criterion may also be analyzed using some of
the methods presented here (further details in Discussion). Thus, we
first highlight the advantages of our approach using the well-known
Michaelis-Menten model of enzyme kinetics (41). We then apply it
to a well-studied ecosystem network from Australia (a relatively
data-poor system) (42) and a model for the action potential (AP) of
heart cells (characterized by complex dynamical behavior) (43).
In these latter two applications, different aspects of the interaction
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between model and data are revealed by the analysis of sloppiness
that are otherwise hidden by the individual techniques we bring to-
gether here. Last, we illustrate how stiff eigenparameters, once identi-
fied, can be used to design future experiments to improve parameter
inference from collective model-data fittings and identify controlling
mechanisms underlying the systems being modeled.

RESULTS

Our comprehensive analysis of sloppiness identifies the sensitivities
of the model-data fit to changes in parameter values either in the
region local to a point of interest in parameter space (standard ap-
proach; see Materials and Methods) or in the global sense, across all
plausible parameter values consistent with available information
(Bayesian approach; see Materials and Methods). Here, our results
illustrate the benefits of using both standard and Bayesian approaches
together to identify critical parameter combinations (stiff eigen-
parameters) that readily acknowledge the source of information
(i.e., prior and/or data). To do so, we first analyze sloppiness in a
biochemical model with three parameters (motivating example),
known to suffer from poor parameter identifiability even when an
excellent amount and quality of data are used to estimate model
parameters (27, 44, 45). Then, we analyze sloppiness in an ecological
four-species dynamic model with 20 parameters (case study 1), rep-
resenting a typical dilemma in ecology of having too many parameters
to be practically estimated well using noisy time-series data (2, 17, 44).
Last, we analyze sloppiness in a cardiac electrophysiology model
with nine parameters (case study 2), representing complex systems
with strong nonlinear dynamics (7, 8).

Motivating example: The Michaelis-Menten kinetics

Critical parameter combinations are readily identified by

the analysis of sloppiness

The ubiquitous Michaelis-Menten model of biochemistry (41) is a
perfect example to demonstrate the benefits of both understanding
parameter dependence through the lens of model sloppiness and
bringing a Bayesian approach to the topic (step i; see Materials
and Methods). This model describes the dependence of an enzyme-
catalyzed reaction rate v on substrate concentration [S] as (46)

_ kca [ET] [S] _ kca [ET]
= Ryt 8] " T+ Ku/lS] M

where parameters ks and [E7] together dictate the maximum rate
of reaction (0ay), while Ky controls the substrate concentrations at
which saturation effects become significant (45).

From the right-hand side of Eq. 1, it is already clear that there are
two rate-limiting regimes, one in which the reaction rate simplifies
to zero-order kinetics with respect to substrate at high [S], and the
other one in which the reaction rate simplifies to first-order kinetics
at low [S] (41, 46). To illustrate our methods, we thus consider two
noisy synthetic datasets (step ii; see Materials and Methods) repre-
senting these two well-known rate-limiting regimes: The first dataset
(A) consists of five measurements obtained beyond the saturation
point, while the second dataset (B) consists of five measurements
obtained before saturation has any apparent impact on the model
behavior (Fig. 1). Both datasets fail to describe the full behavior rep-
resented by Eq. 1 and thus suitably highlight the well-known pa-
rameter identifiability issues in this model (27, 45).

20f19

20T $0 1990100 U0 AJISISATU) 9))S U0SaIQ) J& S10°90UI0S MMM//:SANY WoIf papeo[umo(



SCIENCE ADVANCES | RESEARCH ARTICLE

Py 700+ O  Synthetic dataset A
g A Synthetic dataset B
g — = =Reference
> 960
= o
2 R a
o ° 420 + - - o
o g s
g2 ‘
5= ’ 220
g o280 A
3 1
& ;
© : 110 I
2 uof 1 Pt
K A -
< (K AT A
=" 4 0L~
0 FLTE 0 25 50
0 600 1200 1800 2400 3000

Substrate concentration [S] (nM)

Fig. 1. Synthetic data generated using a measurement error of £ = 25% versus
noiseless model prediction based on Eq. 1 using reference parameter values
Keat = 100 min~", [Ef] = 5uM, and Ky = 146.7 pM. Dataset A is obtained at a
relatively high [S], and dataset B is obtained at a relatively low [S]. Neither data-
set can inform the full rate of reaction v across the range of [S] (see also Figures’
Supplementary Legends).

In dataset A, measurements only inform the reaction rate at sat-
uration, v = ke[ E7], and so, nothing can be learned about parameter
K. While this tendency could also be identified by traditional sen-
sitivity analysis (18) or by inspecting the posterior variance for this
parameter obtained from Bayesian inference (45, 47), approaches
for model sloppiness go a step further. By identifying key directions
in the space of the log parameters, as encoded by the eigenvectors
and eigenvalues of a sensitivity matrix, model sloppiness identifies
that dataset A only informs the product of the remaining two pa-
rameters in Eq. 1, ket[E7]. Regardless of whether a traditional defi-
nition (matrices H or L; see Materials and Methods) or any of the
Bayesian definitions (matrices P and G; see Materials and Methods)
of the sensitivity matrix is taken, a single eigenvalue dominates, with
parameter combination denoted @1 = keat[ET] being the corre-
sponding eigenparameter (Table 1, scenario 1). This is not, however,
visible in the parameter marginals when Bayesian inference is used
to fit the model to data, even in this simple problem (fig. SI1).

Analogously, model sloppiness successfully identifies the param-
eter combination governing the rate of reaction in the nonsaturating
regime (Fig. 1, dataset B). Given that this dataset is taken at low sub-
strate concentration ([S] < Kyy), Eq. 1 reduces to a linear dependence
0 = (keat|ET]/KMm) [S], and coefficient kea[ET]/Kys is the dominant
eigenparameter (Table 1, scenario 3), which uncovers the nature of
the poor parameter identifiability in this model. However, in this
scenario and in the second scenario for dataset A (Table 1), we
choose informative priors that cause the Bayesian approaches to
model sloppiness (matrices P and G) to lead to different dominant
eigenparameters. We explore the information provided by these
approaches that take into account both prior and data to inform
model parameters in the following section.

A Bayesian perspective reveals whether stiff parameter
combinations are informed by the data or are influenced

by the prior

Often, values for model parameters are meaningfully constrained
by known feasible ranges or by expert information (32-34), which
can potentially change both the most plausible set of values for the
parameters and the nature of the new information provided by the
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data. To demonstrate how the Bayesian approach to analyzing model
sloppiness addresses this, we consider different scenarios where the
reaction rate data (Fig. 1) are now coupled with prior information,
and thus highlight how the stiff eigenparameters obtained using our
two definitions of the sensitivity matrix (matrices P and G) together
reveal whether parameter values are informed by the data or are
influenced by the prior. We first fit Eq. 1 to dataset A (steps iii and
iv; see Materials and Methods), considering a multivariate log-normal
distribution for the model parameters that sets the value of one pa-
rameter (Kyp) far away from its reference value (fig. S2). As a result,
the posterior correctly concentrates around the reference parameter
values used to generate the data (Fig. 2A, first and second panels),
except for the poorly specified parameter (Ky;) for which the prior
renders it unable to (Fig. 2A, third panel). Here, prior and posterior
distributions for parameter Ky are approximately equivalent (over-
lapping), thus reflecting that the data collected at saturation are
uninformative to this parameter value. However, by examining the
curvature of the posterior via its inverse covariance matrix P (steps
v and vi; see Materials and Methods), this parameter emerges as the
stiffest eigenparameter (Table 1, scenario 2). Thus, as prior and pos-
terior distributions for parameter Ky are overlapped (Fig. 2A, third
panel), this method reveals that the information already contained
in the prior is dominating that provided by the data.

To learn the data informativity on model parameters while si-
multaneously acknowledging any prior information, we use the
likelihood-informed subspace (LIS) method. This approach works
by transforming the effects of the prior on the curvature of parameter
space (35, 48), leaving only the effects of the data via the likelihood
(further details in Materials and Methods). By doing so, the LIS
method produces a sensitivity matrix (G) that identifies the region
in parameter space where the informativity of the data prevails over
that of the prior information (35, 48). For example, by imposing an
informative prior for parameter Ky in this scenario, the method
(matrix G) recognizes that no additional information is gained about
this parameter from dataset A through the model-data fitting process,
and so, it returns the same dominant eigenparameter 01 = keat [E7]
(Fig. 2A, fourth panel) as the methods (matrix H or L) that ignore
the prior altogether (Table 1, scenario 2). A natural question is then
what does the LIS method provide that is not already given by a
standard analysis of sloppiness? The key benefit is that if prior in-
formation does change the most plausible (prior-informed) region
of parameter space, and the model behaves differently in this
region, the LIS method will identify the directions in parameter
space where the data are most “informative” relative to the prior, as
we discuss next.

In scenario 3 (Table 1), we fit Eq. 1 to dataset B (steps iii and iv;
see Materials and Methods) considering a combination of uniform
and log-normal prior distributions that strongly specify values of
parameters [Er] and Ky well and badly (fig. S3), respectively. Given
that dataset B only constrains the value of combination of parame-
ters ke[ ET]/Kym (Fig. 2B, fourth panel), the extreme values of the
parameters selected by unconstrained maximum likelihood estima-
tion (MLE) highlight the importance of specifying plausible ranges
for parameters via a Bayesian prior (Fig. 2B, MLE in the second and
third panels). As for Bayesian inference, the posterior distribution
simply fixes the value of the parameter k, (Fig. 2B, first panel) to a
value that constrains well eigenparameter ke[ E]/Ky (Fig. 2B, fourth
panel). Similar to scenario 2, model sloppiness, as implied by the pos-
terior covariance method (matrix P), selects one of the parameters
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Table 1. Comparison of the stiffest eigenparameter 0, (associated with the largest eigenvalue ,) for three different chosen parameter priors to fit the

Michaelis-Menten model (Eq. 1) to data (Fig. 1). Each 8, is identified via Eq. 8 after obtaining eigenvalues (fig. $4) and eigenvectors of sensitivity matrices H
(or L), P, and G. Sensitivity matrices return different stiffest eigenparameters 8; with change of the prior distributions and dataset used to fit the model.
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Fig. 2. Prior and posterior distributions for the model parameters together with the stiffest eigenparameters from scenarios 2 and 3 (Table 1) compared to their
associated sets of best-fit values (MLE) and reference values (see also insets). (A) Scenario 2 parameters k.,; and [E7] together with stiffest eigenparameters @1 =Ku
(matrix P) and @1 = keat[E7] (matrices H or L and G). (B) Scenario 3 parameter [E7] together with stiffest eigenparameters 61 = kcat (Matrix G), @1 = Ky (matrix P), and @1 =
keat[ET]/Km (matrices H or L). Parameter combinations keat[E7] and keat[E7l/Kw are well constrained by the data in scenarios 2 and 3, respectively. Parameter Ky, is well con-
strained by the prior (posterior and prior overlapping) in both scenarios, and parameter k¢ is well constrained by the data relative to the prior in scenario 3. The best-fit
values for parameter Ky lie far away from its reference values in both scenarios. As parameter combination kcat[E7l/Kw is well constrained by the data in (B), the posterior

distribution for parameter k. is left-shifted from the reference to compensate for parameter [E7] that is right-shifted from the reference in fig. S3A (see also Figures’

Supplementary Legends).

strongly specified by the prior, Ky (Fig. 2B, third panel), as the stiff-
est eigenparameter (Table 1). In this scenario, the LIS method (ma-
trix G) instead identifies that dataset B acts only to fix the value of
parameter kg, and selects it as the dominant eigenparameter. That
is, in contrast to the standard analysis of sloppiness only consider-
ing the likelihood surface, the LIS method uncovers new informa-
tion provided by the data when there is prior parameter knowledge.
Thus, the Bayesian methods together clarify whether the model pa-
rameters (or eigenparameters) are informed by the data or are sig-
nificantly influenced by the prior beliefs.

Case study 1: Ecosystem network

A global perspective to analyzing sloppiness reveals true
informativity of the data

Unlike the simple motivating example considering two well-
known rate-limiting regimes that readily unveiled the controlling
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eigenparameters (Fig. 2, fourth panels), with much larger models,
inferring the parameter combinations that are more or less sensitive
to the model-data fit can be difficult from a simple model inspec-
tion. To illustrate this, as a more complex case study from ecology,
we use a well-known four-species ecosystem network model (42)
that includes two threat species (foxes and rabbits), one threatened
species (native mammals), and a basal species (pasture), as depicted
in Fig. 3A. This ecosystem model consists of four discrete-time
equations (based on ordinary differential equations) and eight con-
stitutive equations (table S1) whose 20-parameter point estimates
(table S2) were inferred from several studies at two semi-arid loca-
tions in Australia (42). Here, we thus seek to illustrate key benefits
of the Bayesian analysis of sloppiness for data-poor systems, charac-
terized by low quality and amount of observed data because of prac-
tical limitations (I, 2, 12, 17). To do so, we first fit the ecosystem
network model (table S1) to noisy synthetic time-series data using
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Fig. 3. Ecosystem interaction network, consisting of pasture (V), rabbits (N), foxes (P), and threatened species (M). (A) Ecosystem network in which arrows indicate
the direction of the energy transfer associated with the species interaction. (B) Synthetic time-series data for ecological abundance with measurement error of € = 25%
together with noiseless model prediction using reference parameter values (table S2), model predictions using two sets of best-fit parameter values (MLEs), and model
ensemble predictions using all plausible parameter values (fig. S5). The ecosystem network model fits the synthetic time-series data, with the model ensemble propagating
parameter uncertainty into species abundance predictions (see also Figures’ Supplementary Legends).

both MLE and Bayesian inference (steps i to iv; see Materials and
Methods), considering a multivariate log-normal prior distribution
for the model parameters (fig. S5).

After fitting the model to data, model predictions (Fig. 3B) based
on a model ensemble (shaded regions), considering all plausible pa-
rameter values (fig. S5), enclose both the simulated noisy data ([]
symbols) and true ecosystem dynamic behavior (dashed profiles).
They also enclose predictions based on two sets of best-fit parameter
values (dotted profiles) obtained from starting the MLE algorithm
at two different initial parameter values (step iii; see Materials and
Methods). Furthermore, parameter marginals (fig. S5) enclose these
two separate point estimates and also show that most of the model
parameters are poorly constrained by the data.

In addition to quantifying parameter uncertainty, a global per-
spective to the problem of fitting models to data can benefit the in-
ference of critical parameter combinations that control the quality
of the model-data fit. For example, while local changes in the topog-
raphy of the surface described by the likelihood function in the vi-
cinity of the two sets of best-fit parameter values (fig. S5) mislead
inference of stiff eigenparameters through the standard analysis of
sloppiness (cf. 8;,i = 1,2,3 in Table 2 from matrices H or L, evalu-
ated at the different sets of best-fit values 8] and 65), the Bayesian
methods (matrices P and G) fully characterize the structure of this
surface by considering all plausible parameter values (steps v and vi;
see Materials and Methods), informed by the combination of both
data and prior beliefs. In this way, differences between dominant
eigenparameters from Bayesian sensitivity matrices P and G (Table 2)
also demonstrate that the prior is influencing the most plausible
region of parameter space, which thus implies that the surface de-
scribed by the posterior distribution (Eq. 9) and the likelihood func-
tion (Eq. 15) are different locally and globally.

Analysis of sloppiness brings new insights to Bayesian
parameter inference

Combining model sloppiness together with Bayesian inference re-
veals critical parameter combinations that can be otherwise lost
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when only considering the uncertainty in individual model parameters
through Bayesian inference. After the fit of the ecological model to
data, for example, parameter marginals (fig. S5) illustrate that only
a few of the model parameters (R, Vo, Dy, and €) are well constrained
by the data, which suggests that these parameters have a strong in-
fluence on the quality of model-data fit. Instead, the Bayesian analysis
of sloppiness (matrices P and G) identifies that it is combinations of
parameters ¢y, an, cm, A, Cp, and ap that are the most constrained by
the available data (Fig. 4). The prior distribution appears to be weakly
informing the three stiffest eigenparameters 91, 9,, and 63 (Table 2)
since the first eigenparameter 8, from the posterior covariance method
(matrix P) also corresponds to the third eigenparameter 85 from the
LIS method (matrix G), while the quotlent (CHNE) ) and product (92 3)
of the second and third eigenparameters 8, and 8; from the posterior
covariance method (matrix P) approximate the first and second eigen-
parameters 8, and 6, from the LIS method (matrix G), respectively.
For this system, the identified stiff eigenparameters (Fig. 4) do not
appear together in single terms within the model (table S1). However,
parameter ratios cx/ax (or ax/cx) with X = N, M, P arise as part of
the dominant eigenparameters (Table 2) as they appear in separate
terms with opposite sign in this model (table S1). As a result, there
is a compensation effect between values of parameters ax and cx that
has two key implications for the model predictions. First, the model-
data fit is highly informative for characterizing growth dynamics
(rn» T 7p) Of rabbits (an/cy), threatened mammals (api/cy), and foxes
(ap/cp), which is likely to significantly affect animal species abun-
dances (N, M, and P). Second, analysis of sloppiness reveals that by
measuring either the maximum rate of decrease (ay) or increase
(cp) of the threatened mammal density (also applies for rabbits and
foxes), collective model-data fit will inform values of the other pa-
rameter to a similar extent, as we discuss in the next section.
Bayesian analysis of sloppiness readily informs future
experimental design
Bayesian analysis of sloppiness unveils hidden parameter inter-
dependencies that can help design future experiments for improved
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Table 2. Comparison of the stiffest eigenparameters @1, @z, and @3 (associated with the largest eigenvalues )4, 1,, and )3) considering a multivariate
log-normal prior distribution for the parameters to fit the ecosystem model (table S1) to data (Fig. 3B). Each 8;, 65, and 83 is identified via Eq. 8 after
obtaining eigenvalues (fig. S6) and eigenvectors from matrices H (or L), P, and G. Stiff eigenparameters from matrix H (or L) are obtained at two sets of best-fit
parameter values (-)1* and 6; (fig. S5). Matrix H (or L) returns different stiff eigenparameters when evaluated at two distinct sets of best-fit parameter values, while
matrices P and G return different stiff eigenparameters because the prior influences the model-data fit.

Sensitivity matrices

. N HorlL evaluated at P G
Eigenparameter 0;
0] 03
1 (en/an)am/cm)** (em/am(an/cn)*® ap’/cp (em/am(an/cn)*®
2 (cmlam)(cn/an)®* (en/an)(cm/am®® cn/ay (en/an)cm/am)®®
3 cp/ (ag‘9 dg,"‘) cp/ 02'9 cy/am cp/ 02'9
| Prior Prior mean Posterior =—==== Posterior mean = = =Reference «seesees MLEs
él from matrix P éz from matrix P é; from matrix P
1f ' ‘ ' : 1f ‘ - 3 1F - - - '
| TR b i i g TAY T
i os) ! JE £ 1os i u ! !El osf | \l !
| 1 ,,lai \ i 13 1 !g, iy : 1
) Y =N = H iy :
=1 bad-= M J e L : VR Bl T, ey W
.S 05 : o 0.825 o1 097 { : - 11 2] 05] !;| " 11 12
5 4 E
g i B i3
g A . : | ol L T ‘ ‘ ol . L T ‘ . .
= 0 0.7 1.4 2.1 2.8 3.5 0 0.6 1.2 1.8 2.4 3 0 0.6 1.2 1.8 2.4 3
= a%?/cp (quarter®!) ¢y /an (unitless) ¢y /apr (unitless)
< . . .
~g 0; from matrix G 0, from matrix G 03 from matrix G
B 1F - ' ; 1F e p— 1f ‘ ' — e
= 0.5 i h 1 n ! E' 0.5 [ !
8 : Y i i I N 1 l 2 N 1
8 0.5 : P e B P ili 1 oobd 1S L. | o5l i N
el . 0.9 1 1.1 : il | 1 1.25 1.5 : H] 1.1 1.2 1.3
W 13 {
i i P L
o B! B
0f P . ‘ =R L - ‘ ‘ Of ! L. : : : :
0 0.7 14 2.1 2.8 3.5 0 0.7 14 2.1 2.8 3.5 0 1.2 2.4 3.6 4.8 6
(ear/anr)(an/en)™ (unitless) (en/an)(car/anr)™® (unitless) cp/a%’® (quarter%1)

Fig. 4. Prior and posterior distributions for eigenparameters 61, ﬁz, and 63 (Table 2) compared to their reference values and associated sets of best-fit values
(MLEs) (see also insets). Posterior distributions for all eigenparameters and their associated MLEs closely match the true values (see also Figures’ Supplementary Legends).

parameter inference. For example, given that the posterior covari-
ance method (matrix P) reveals that the ratio of parameters a%g/ cp
is the stiffest eigenparameter (Table 2), this ratio also indicates that
parameters ap and cp are approximately linearly related, 1/1%9 o< Cp
(Fig. 5A). Here, an analogous tendency is seen for the stiffest eigen-
parameter from the LIS method (matrix G), (cadang) (anlen)®?
(Table 2), with parameter ¢ and combination of parameters (1/ay)
(an/cn)™’ being instead inversely related, cps o< [(1/ap) (an/cn)*]
(Fig. 5B). In addition, many samples from the posterior distributions
are seen to lead to the same value of the log-likelihood function (no
apparent color change across posterior distribution samples in Fig. 5),
with the two sets of best-fit parameter values (x symbols) and refer-
ence (true) values (+ symbols) falling within the corresponding
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posterior distribution sample. This tendency indicates that every
value for the model parameter (or combination of parameters) on
one side of the relation (e.g., a(}),‘g and cy) has a corresponding con-
strained estimate for the parameter (or combination of parameters)
on the other side of the relation [e.g., cp and (1/an)(an/cn)®?]. Sim-
ilar tendencies are seen for the remaining eigenparameters (fig. S7).

In addition to identifying compensation effects between subsets
of parameters (Fig. 5 and fig. S7) that lead to similar model outputs
(Fig. 3B), analysis of sloppiness also reveals that prioritizing im-
provement of the estimates of any of the parameters (or parameter
combinations) on one side of the proportionality relationship will
immediately improve estimation of parameters (or parameter com-
binations) on the other side. As an example of this, we considered a
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Fig. 5. Bivariate scatterplots of the prior and posterior distributions (shaded regions) for the first stiffest eigenparameter obtained from the Bayesian methods
(Table 2) compared to their reference parameter values and sets of best-fit values (MLEs). (A) @1 and §3 from matrices P and G, respectively, and (B) @1 from matrix
G. Many samples of the posterior distribution yield similar values of the log-likelihood function (see also Figures’ Supplementary Legends).

multivariate log-normal prior distribution (fig. S8), which is very
informative for parameters ay;, ay;, and ap, to fit the ecosystem net-
work model to data. These prior conditions act as improved estimates
for parameters ay, ay, and ap, obtained from either expert elicita-
tion or parameter-specific experiments [e.g., spotlight counts (42)].
After the model-data fit (fig. S9), parameters on the other side of the
relations (cn;, ¢y, and cp) are also found to be more narrowly con-
strained. The percentage coefficients of variation (CV) for the
posterior distributions of parameters cy;, ¢y, and cp range between 7
and 8% when a more informative prior distribution is specified for
parameters ay;, dy, and ap, which are much lower than those obtained
(ranging between 30 and 50%) when a vague multivariate log-normal
prior distribution is instead specified (fig. S5). Thus, combining
Bayesian inference together with the analysis of sloppiness reveals
parameter interdependencies that can be strategically exploited to
efficiently improve individual parameter inference using less addi-
tional data than might be otherwise expected.

Case study 2: Cardiac electrophysiology

Key controlling mechanisms for complex systems are
uncovered by analysis of sloppiness

The previous section considered an ecological model as an example
of a system characterized by a moderately large number of parameters
and poor access to data. A separate class of systems is that for which
data are more readily available, but the dynamics that produce the
data manifest in complex sensitivities to their controlling parameters.
For these systems, the challenge is often how to summarize these
nonlinear dynamics in a meaningful, actionable way, and so, stiff
eigenparameters identified by analyzing model sloppiness have a
recognizable potential. However, so far, model sloppiness has pri-
marily been considered for models characterized by large numbers
of fundamental interactions, such as the Michaelis-Menten kinetics
that describe the cell signaling network analyzed in the foundational
work of Brown et al. (12, 13). Here, we seek to demonstrate the use-
fulness and purpose of stiff eigenparameters in systems where the
constituent dynamics themselves, and not only their interactions,
are complex and unwieldy.

Monsalve-Bravo et al., Sci. Adv. 8, eabm5952 (2022) 21 September 2022

As an example of such a system, we consider the Beeler-Reuter
(BR) model (43), which describes the AP of a cardiac ventricular
myocyte, the pattern of highly regulated ion flow that creates the
depolarization and subsequent repolarization governing the heart-
beat. This cardiac cell model consists of eight nonlinear ordinary
differential equations, six constitutive equations (table S3), and nine
parameters (table S4). Although an older model, the BR model cap-
tures many of the most important electrophysiological features of the
ventricular AP (49), and interest remains regarding its sensitivity to
changes in its parameters (8, 25). Cardiac AP models are critical for
mechanistically understanding arrhythmia (50), and the issue of pa-
rameter variability is fundamental to understanding the differential
effects of antiarrhythmic treatments within a population (51) or the
cardiotoxicity of other pharmacological agents (52).

The AP is summarized by the time course of a cell’s transmem-
brane potential in response to stimulation and can be recorded by
an electronic measurement device at good temporal resolution and
without much noise (e.g., synthetic data in Fig. 6A). The complexity
in these models rests with the way multiple ion channels—each with
its own set of time-adaptive, nonlinear voltage-gated dynamics—
combine additively to determine the total ion flow that produces
the AP (table S3). The most commonly varied parameters are the
relative levels of expression for these different ion channels (53),
and so, rather than describing fundamental quantities such as rates
of production or destruction, model parameters in this context de-
scribe the extent to which a variety of complex and strongly nonlinear
dynamics contribute to the system behavior.

For this system, Bayesian model-data fitting (steps iii and iv; see
Materials and Methods) produces an ensemble of plausible values
for model parameters that recapture the data extremely well (Fig. 6A).
Most of the individual parameters are well constrained by the AP
data (as seen from their marginal distributions; fig. S10), although
none emerges as substantially more important than all others. Ana-
lyzing model sloppiness to consider parameters in terms of their
combinations (steps v and vi; see Materials and Methods), however,
reveals that the combination of parameters A%lg AY*/g,is the primary
driver of the AP dynamics. This eigenparameter’s corresponding
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Fig. 6. BR model fit to synthetic time-series data together with the identified stiffest eigenparameter. (A) Synthetic AP data with measurement error of 6 =2 mV
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eigenparameter and their associated best-fit value (MLE) closely match the true eigenparameter value (see also Figures’ Supplementary Legends).

eigenvalue eclipses the value of the others (fig. S11), and accordingly,
its value is extremely well specified by the population of plausible
parameter values (Fig. 6B). This eigenparameter and its relative im-
portance are identified by both the standard and Bayesian approaches
for model sloppiness, owing to the use of a relatively uninformative
prior and the fact that the data are highly informative about the
model parameters. Unlike the Michaelis-Menten kinetics or the
ecosystem network model examples, here, all approaches for model
sloppiness are similarly suitable because of the strong informative-
ness of the data relative to the prior.

The key eigenparameter has a natural electrophysiological inter-
pretation. Parameters Ak, and g; describe the relative strengths of the
primary outward and inward (i.e., counteracting) currents active
during the plateau and repolarization phases that compose the bulk
of the AP (Fig. 6A), and so, they appear in the eigenparameter as a
ratio. Here, the third parameter A,, contributes to the eigenparameter
to a lesser extent and appears as a product with parameter Ag,, owing
to their shared role in describing strengths of the outward potassium
currents that drive repolarization. The three currents Ix,, I,,, and I
(table S3), associated with these three model parameters (Ax,, Ay,
and g, respectively), exhibit nonlinear dynamics (fig. S12). Thus, it
is unexpected how well the primary actions of these three currents
(Ix,» Iy, and I;) can be summarized by a simple product of parameters
with exponents (A%l9 AY* ¢ 1), whose value strongly dictates whether
the model output reproduces the data (Fig. 7).

Analysis of model sloppiness naturally uncovers this result, by
revealing the precise way in which the three currents I, I, and I,
(table S3) act together and thus highlighting the importance of their
balance by assigning a much higher eigenvalue to their eigenparameter
than any other. Without considering the curvature of the log pa-
rameters, however, this relationship is not easily observed. The pre-
cise relationship between A, Ay,, and g remains hidden from view
in standard Bayesian bivariate analysis (8, 25), and even when di-
rectly plotting the values of posterior samples for these three pa-
rameters against one another (fig. S13). Such a relationship is also
not obvious from the model definition, where none of the three pa-
rameters Ag,, Ay, and g; appear as products or quotients with one
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another, nor do the coefficients of their addition correspond to the
exponents found in the governing eigenparameter.

Analysis of sloppiness uncovers knowledge limitations

in mathematical models fitted to data

As also observed in the ecological application (Fig. 5), the existence
of a strong eigenparameter(s) introduces a pronounced structure to
the space of plausible parameter sets (Fig. 8). The nature of the eigen-
parameter implies a strong linear interdependency between combina-
tion of parameters A?g? Ag'f and parameter g, as seen in the posterior
samples found by the Bayesian inference (Fig. 8). Identifying these
critical structures introduced by the model-data fitting process is
key to understanding the information provided by the data on the
model parameters. Cardiac electrophysiology is a particularly im-
portant example as parameter identifiability is a well-established
issue for AP models (5, 8). Thus, owing to sloppiness in parameter
estimation such as that found and quantified here, even perfect AP
data (Fig. 6A) can imply multiple different parameter estimations
(Fig. 7B and fig. S14), with consequences that then emerge under
pathological conditions or in response to drug treatments (54).

As in many other disciplines, in cardiac electrophysiology, it can
be difficult to design further experiments and/or to target experiments
to learn specific parameter values. To this end, our comprehensive
approach to model sloppiness does uncover the deficiencies in the
available information through the identification of the critical eigen-
parameters. For example, once these critical eigenparameters are
identified, the model can be used to simulate scenarios considering
extreme system conditions (fig. S14) that are theoretically still plau-
sible given current data (Fig. 7B). This concept might be even more
applicable where a model’s computational runtime limits the feasi-
bility of Bayesian inference. Even when a posterior of plausible
parameter value sets cannot be realistically generated, standard
analysis of sloppiness can still quickly identify directions in param-
eter space of poor information. In this way, simulations can be car-
ried out along directions of poor knowledge (e.g., perpendicular to
the linear relationship depicted in Fig. 8) to further justify the con-
clusions of simulation studies against the uncertainty that remains
in the parameters after the model-data fit.
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Ever-present knowledge limitations about parameter values in
cardiac electrophysiology have motivated studies in which virtual
populations consisting of many models with varying parameter values
are used to explore how populations as a whole, characterized by
variable data, respond to different treatments or conditions (51, 52).
This has included a Bayesian methodology for calibrating such pop-
ulations (7). The Bayesian framework of model sloppiness, which
provides a more global sense of parameter space curvature in the
plausible region defined by the given data (Fig. 8), could be applied
to the “posteriors” of such population-calibration processes, and
thus provide a unique way to identify the combinations of parameters
that are constrained (or not constrained) by the process of fitting
these models to data exhibiting variability.
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DISCUSSION

Recognizing the influence of prior information on the quality
of model-data fit

The use of informative priors has been shown to help constrain
model parameters when mathematical models are fitted to data in
many Bayesian inference applications (7, 25, 32, 33, 55). Despite
this advantage, the usage of uninformative priors has predominated
in the context of analyzing model sloppiness (12, 13, 15). In such a
context, vague uniform priors, spanning several orders of magnitude,
have been used to prevent potential optimization algorithm failures
(11, 12, 16), rather than reflecting their true purpose: accounting for
preexisting knowledge about the parameter values (33, 34). Here,
we introduced how to account for informative priors when analyzing
model sloppiness, with our example results illustrating how this
approach identifies the relative effect of informative priors on the
quality of the model-data fit. Specifically, the LIS method (matrix G)
was shown to reveal directions in parameter space where the poste-
rior differs most strongly from the prior (Fig. 2B), while the poste-
rior covariance method (matrix P) was shown to reveal directions
in parameter space that are strongly informed by the combination
of both data and priors (Figs. 2A and 4). In addition, the Bayesian
analysis of sloppiness (matrices P and G) was shown to provide
equivalent results to those based on earlier approaches (matrices H
and L) when uninformative (vague) priors are used in the imple-
mentation of Bayesian inference (Table 1) and when the data are
very informative for the model parameters (Fig. 6 and fig. S11).
Consequently, we have demonstrated that the Bayesian approach to
analyzing sloppiness complements earlier approaches (12, 13) in
that the effects of prior beliefs on the quality of the model-data fit
can be segregated when all methods are used together. This then
clarifies which of the model parameters (or parameter combinations)
are predominantly informed by the data or the prior.

In the motivating Michaelis-Menten kinetics example and the
cardiac electrophysiological application, we specifically showed that
if stiff eigenparameters obtained from all methods (matrices Hor L,
P, and G) are similar, priors are weakly informative, and so, stiff
eigenparameters are largely constrained by the data (Table 1, sce-
nario 1, and fig. S11). We also showed in the motivating example that
if stiff eigenparameters obtained from the LIS method (matrix G)
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are similar to those obtained from the standard method (matrices H
or L) but different from those obtained from the posterior covariance
method (matrix P), then critical parameter combinations associated
with the posterior covariance method (matrix P) are significantly
influenced by the priors (Table 1, scenario 2). Last, we showed in
the same motivating example that if stiff eigenparameters obtained
from the standard method (matrices H or L) differ from those ob-
tained from the Bayesian methods (matrices P and G), then priors
may also be influencing the quality of the model-data fit. Under such
conditions, stiff eigenparameters obtained from the LIS method
(matrix G) are informed by the data relative to the prior, and those
from the posterior covariance (matrix P) are mostly constrained by
the prior (Table 1, scenario 3) (a topographical interpretation of
these findings is also provided in the next section). In this way, we
also demonstrated that our methods are well suited not only for
applications where there is little prior knowledge about the param-
eter values (12, 13, 15, 27) but also for those where prior beliefs can
be confidently included as part of the model-data fitting process
(5,7, 32,33,55).

In our implementation of Bayesian inference, we specifically
considered combinations of vague and informative uniform and/or
log-normal prior distributions (figs. S1A to S3A, S5, S8, and S10), as
these types of priors are traditionally used in ensemble modeling
applications in biochemistry (11, 12, 40, 47), ecology (17, 34, 55),
and biology (7, 8, 25). While implementation of Bayesian inference
with application-specific prior distributions is beyond the scope of
this work, the Bayesian methods (matrices P and G) to analyzing
model sloppiness may not be limited to the types of priors discussed
here. We note, however, that for applications using heavy-tailed
and/or sparsity-promoting priors in the implementation of Bayesian
inference, we anticipate that more and/or better quality data would
be required to obtain critical parameter combinations. Under this
condition, the posterior covariance method (matrix P) is expected
to reveal data-informed stiff parameter combinations at least when
the data are considerably more informative than the prior, such as
in the Michaelis-Menten kinetics example (Table 1, scenario 1).
However, for implementation of the LIS method (matrix G), careful
estimation of the prior covariance matrix for the logarithms of pa-
rameters Q (Eq. 12) would be required for the successful inference
of stiff parameter combinations. Here, an interesting direction for
future work would be to apply the prior normalization technique
recently introduced by Cui et al. (56) in the context of Bayesian inverse
problems to transform heavy-tailed priors into standard Gaussian
distributions, to then implement the LIS method with these prior
transformations in the context of analyzing model sloppiness.

Last, we note that the sensitivity matrices P and G (Egs. 11 and
12, respectively) are logarithmically based on this work, since stan-
dard methods for analyzing model sloppiness have been usually
applied with the doubly logarithmic Hessian (Eq. 5) owing to their
history in analyzing complex systems describing physical processes
(11, 15, 29). This is a transformation not typically used in the classi-
cal implementation of PCA (36, 38); however, it is not uncommon
to the implementation of the LIS method for Bayesian dimensionality
reduction applications (35, 48). While such a conveniently chosen
transformation implies the use of single-sign prior distributions (i.e.,
either positive or negative for each parameter) in the implementa-
tion of Bayesian inference, it also conveys three key advantages for
the Bayesian analysis of model sloppiness: (i) It reflects the positivity
constraints on model parameters (true of the majority of parameters
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characterizing physical systems), (ii) it prevents inconsistencies in
scaling between parameters (due to different orders of magnitude)
from affecting the analysis of sloppiness (11), and (iii) it provides a
basis to identify stiff eigenparameters as products and/or quotients
(combinations) of bare model parameters with different power in-
dices whose magnitude informs the relative parameter importance
in the combination (Eq. 8) (13). If, despite these advantages, prior
distributions spanning negative to positive values are required for a
given application, nonlogarithmic versions of sensitivity matrices P
and G may be used as part of the analysis of model sloppiness. Under
this condition, eigendecomposition on such matrices will instead
reveal stiff eigenparameters as linear combinations (summations and
subtractions) of bare model parameters premultiplied by different
coefficients whose magnitude represents the relative parameter
importance in the combination. However, large differences in the
magnitude of model parameters may mask the true stiff eigenpa-
rameters from these nonlogarithmic-based sensitivity matrices, so
great care must be taken to use them for the analysis of sloppiness.

Characterizing the topography of the surface described by
the model-data fit

Our work significantly adds to the literature on sensitivity analysis
(18, 21), which, in the context of models fitted to data, largely focuses
on “locally” investigating the curvature of the surface described by
the likelihood function (11, 12, 15, 16, 27), around the best-fit pa-
rameter values (MLE). Thus, a key contribution of the Bayesian ap-
proach to analyzing sloppiness is that it accounts for changes in the
curvature of this surface “globally” upon considering potentially
plausible model parameter sets at a finite distance away from the
best-fit parameter values (7, 22, 25). In addition, our implementa-
tion of Bayesian inference advances upon earlier such implementa-
tions for analyzing model sloppiness (12, 13). In these earlier works,
a type of Markov chain Monte Carlo (MCMC) algorithm, with un-
informative priors and started at the set of best-fit parameter values
(MLE), was used to characterize the likelihood surface in the vicinity
of the preidentified MLE (11, 15). However, we have shown here that
different MLEs can lead to completely different locations on the
surface describing the likelihood function (Fig. 5 and fig. S7), which
can mislead inference of stiff eigenparameters (Table 2). More so,
for systems in which the topography of the model-data fit function
is very rugged, local optima can misguide the optimization algorithm
(13, 15, 16), for example, as illustrated by Fernandez Slezak et al. (57)
in fitting a model of avascular tumor growth to noisy data using differ-
ent optimization algorithms. Hence, convergence issues become the
bottleneck for the identification of stiff eigenparameters via standard
approaches to analyzing sloppiness. Instead, Bayesian inference as
implemented here does not rely upon a single set of best-fit param-
eter values to characterize the surface describing the quality of the
model-data fit (see Materials and Methods). Rather, all posterior
samples contribute to the description of the surface topology. This
stochastic exploration of the posterior distribution can reduce the
risk of convergence to a local optimum (24, 58), with the added
value that the Bayesian sensitivity matrices also acknowledge any
effect of prior beliefs on the most plausible region in parameter
space (Figs. 2, 4, and 6B).

In our example results, we specifically illustrated that compari-
son of stiff eigenparameters obtained from both the standard (ma-
trices H or L) and Bayesian (matrices P or G) methods can reveal
whether the topography of the surface described by the likelihood
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function is globally and locally similar as well as whether such a
surface is similar to that described by the posterior distribution. For
example, if stiff eigenparameters obtained from all methods (matrices
H or L, P, and G) are similar, the shape of the surface described
by the likelihood function and posterior distribution is locally and
globally similar (Table 1, scenario 1, and Fig. 6B). Instead, if stiff
eigenparameters obtained from the standard methods (matrices H
or L) are similar to those obtained from the LIS method (matrix G)
but differ from those obtained from the posterior covariance method
(matrix P), the shape of the surface described by the likelihood
function is locally and globally similar but different from that de-
scribed by the posterior distribution (Table 1, scenario 2, and
Table 2, with matrix H or L evaluated at 05). Alternatively, if stiff
eigenparameters obtained from all methods (matrices H or L, P, and
G) are different, the shape of the surface described by the likelihood
function is not only locally and globally different but also different
from the surface described by the posterior distribution (Table 1,
scenario 3, and Table 2, with matrix H or L evaluated at (')f). We
note, however, that while differences between the shape of surfaces
describing the posterior distribution and likelihood function are as-
sociated with the effects of priors on the quality of the model-data
fit, identifying whether the likelihood is locally and globally similar
is crucial when multiple (but also very different) parameter sets lead
to similar values of the likelihood function (Fig. 5). This is a situa-
tion that is likely to occur when there are limited data to inform
model parameters (15, 59), for which the Bayesian sensitivity matrices
are thoroughly informed by the data and the prior.

We also note that analysis of model sloppiness, including our
new Bayesian perspective on the topic, describes the topography of
the likelihood surface using the eigenvectors of the sensitivity ma-
trix. Analogous to the use of PCA for dimension reduction (36), this
can be viewed in a sense as a linearized description of the topography.
However, extending beyond this linearized view would require tech-
niques that produce eigenvectors expressed in terms of the original
parameters [as opposed to, say, in a reproducing kernel Hilbert
space (60)]. Rather, owing to the connections between the different
sensitivity matrices and inverse covariance matrices, methods for
improved covariance matrix estimation appear to be a promising
direction for extending the way model sloppiness describes topog-
raphy. For example, the graphical LASSO algorithm estimates sparse
inverse covariance matrices that enforce conditional independence
between some parameters. This might assist in the identification of
stiff eigenparameters similar to how it can assist problems such as
classification (61).

Improving parameter identifiability by designing

experiments based on identified parameter interdependencies
Careful experimental design can improve ambiguous parameter in-
ferences or even biased model predictions (15, 27, 40). In the con-
text of analyzing model sloppiness, much effort has been devoted to
studying effects on parameter identifiability by increasing the qual-
ity and quantity of the data used to fit the model (29, 30, 59, 62). For
example, Apgar et al. (30) carefully designed complementary exper-
iments that constrained parameter values in the model of Brown et al.
(12, 13). To achieve this, they modified some of the model inputs to
create different synthetic datasets that were more informative for
some of the model parameters than others, but when used together,
all model parameters could be constrained within 10% of their true
values. However, these computational experiments still required
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considerably more data than those typically obtained in practice
(15, 27). Instead, we have shown here that the identification of critical
parameter interdependencies may more efficiently improve parameter
inference when prior knowledge about related (interdependent)
model parameters is strategically improved through expert elicita-
tion or new experiments (fig. S8).

We also showed in the cardiac electrophysiological application
that if experiments are designed to modify parameter values as well
as the values of the stiff eigenparameters, these new experiments are
likely to provide new information about the system (Fig. 7A). How-
ever, if experiments are designed to change parameter values and
instead keep the values of the stiff eigenparameters approximately
constant, these new experiments are unlikely to provide new in-
formation about the system (Fig. 7B). We note that if the design of
parameter-specific experiments is not practically possible (29, 30, 59),
the posterior covariance matrix (inverse of matrix P) can still be
used to measure the increase in parameter identifiability obtained
by increasing the quantity and quality of data. Furthermore, this
technique has been recently used in optimal Bayesian experimental
design (63).

Identifying critical parameter combinations

in stochastic settings

In our example results, we identified critical parameter combinations
through the analysis of sloppiness for three different deterministic
models (Eq. 1 and tables S1 and S3) fitted to data, in which we also
treated the error structure as having been correctly specified by the
modeler (Eq. 15). However, implementing such an approach for
stochastic models could be a potential area for future research. In
stochastic models, randomness often manifests beyond just noise of
known structure being added to a deterministic output (64). More
s0, incorporation of a stochastic component can be used to include
effects of random fluctuations into otherwise deterministic models,
for example, to represent temporal variations in gene expression in
cardiac electrophysiology models (65), similar to the one considered
in this work (case study 2). However, such models present a chal-
lenge for understanding model sloppiness. Although methods suit-
able for stochastic models [such as minimum distance estimation
(66)] can be used to statistically estimate the values of their param-
eters, with no closed-form version of the likelihood function avail-
able, nor any guarantee of its smoothness, one cannot reasonably
evaluate and analyze the Hessian at this point as per the standard
approach. Here, the Bayesian perspective on model sloppiness may
provide a remedy for these issues. By adopting a likelihood-free
method (67, 68), posterior samples may still be generated, at which
point the posterior covariance method (matrix P) can be used to
identify stiff eigenparameters in the context of both data and prior,
as we have demonstrated (Tables 1 and 2).

In contrast to the posterior covariance method (matrix P), the
LIS-based approach presented here (matrix G), separating the anal-
ysis of model sloppiness from the effects of the prior, does rely upon
large numbers of point-wise evaluations of the Hessian matrix
(Eq. 12). To rectify this for stochastic models, one may formulate
approximations to the matrix G that avoid calculation of the Hes-
sian by instead attempting to directly remove the effects of the prior
from matrix P. For example, the sensitivity matrices formed by sub-
tracting the posterior inverse covariance 2! from the prior inverse
covariance Q" (69) or by premultiplying the posterior covariance
X by the inverse prior covariance Q7! (70) have been used in the
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context of Bayesian inference to understand the posterior in con-
nection with the prior. Although these alternative approaches solve
related eigenproblems, we put forward here the sensitivity matrix G,
formed by premultiplication and postmultiplication of the Hessian
matrix by the Cholesky factors (Eq. 12) of the prior covariance ma-
trix €. This matrix factorization leads directly to the eigendirections
(parameter combinations) where the data are most informative
relative to the prior (further discussion in Materials and Methods).

Recognizing knowledge limitations in mathematical models
fitted to data

Regardless of how good a mathematical model is, its predictions are
only as useful as its known limitations (2, 55, 71). Here, by recognizing
knowledge limitations in mathematical models fitted to data, our
work also adds to the literature of model development and simula-
tion (2, 3, 9). For example, the identified stiff parameter combina-
tions in the cardiac electrophysiological application uncovered a
hidden controlling mechanism of the system (Fig. 6B) that dictated
the success or failure of the model output accurately reproducing
the experimental data (Fig. 7). In practical applications, identifying
this type of model behavior would inform which of the model pa-
rameters are important for model reduction (26) or need to be
prioritized in future experimental designs (29, 30, 40). Furthermore,
the implementation of Bayesian inference to fit the model to data
brings the added benefit of quantifying the uncertainty in both pa-
rameter values (figs. S1A to S3A, S5, S8, and S10) and model predic-
tions (Figs. 3B and 6A and figs. S1B to S3B and S9). Hence, this
work constitutes an example of how this advanced model-data fitting
technique can be exploited to reveal the hidden geometry of parameter
uncertainty and its effects on model predictions—a topic of grow-
ing interest within many fields of science (2-4, 18) that has thus far
been hindered due to concerns about system complexity and limited
data accessibility (2, 55, 71).

MATERIALS AND METHODS

To assist with the subsequent mathematical description, we first
summarize how sloppiness of a model is analyzed in its standard,
non-Bayesian, form. Then, we describe how it can be analyzed via a
Bayesian framework. Last, we describe the procedure followed in
Results to identify the stiff eigenparameters according to both stan-
dard and Bayesian approaches to analyzing model sloppiness.

Standard (non-Bayesian) approach to analyzing sloppiness
The standard approach to analyzing sloppiness involves three key
steps (12, 13): (i) obtaining the best-fit parameter values 0* by fit-
ting the model to data, (ii) calculating the sensitivity matrix S eval-
uated at the best-fit parameter values 8, and (iii) identifying the
eigenparameters that are more or less sensitive to the model-data fit
through eigendecomposition of the sensitivity matrix S. We detail
these three steps for analyzing sloppiness using the standard approach
as follows.

Step 1. Obtaining values of the model parameters by fitting

the model to data

Let us assume that a deterministic model ymoqel = fx, 0), with known
structure f, a known vector of input conditions x € R™* of dimen-
sion N, (e.g., representing the spatial and/or temporal location at
which the model is evaluated, and/or the external conditions that
alter the model output), and parameterized by a vector 8 € R0 of

Monsalve-Bravo et al., Sci. Adv. 8, eabm5952 (2022) 21 September 2022

dimension Np, has been proposed to explain a dataset y,ps that con-
sists of Nops independent observations Yobs = (Vobs, 1> Yobs,2> ** *» Yobs, Nobs)»
where yops k represents the kth observation in this dataset, k €
{1,2, ---, Nops}. Here, the problem of uniquely estimating values of
parameter set 0 given data yops depends on whether the deterministic
model Ymodel = f(x, 0) is structurally and, ultimately, practically identi-
fiable, discussed in detail elsewhere (39, 44). However, regardless of
the source of parameter unidentifiabilities, the standard approach
to model sloppiness considers identifiability of parameters in the
context of their best-fit values (11, 13). Typically, a likelihood-based
approach is taken, in which the modeler specifies an error structure
that then formalizes this notion of best fit (26, 31). For example, a
common choice is to assume that errors are independent and with
Gaussian distribution, each having mean zero and a specified standard
deviation (SD) that could be observation specific, ok (12, 15, 27, 30).
Under these conditions, the likelihood takes the form (26, 40)

Nobs obsk — Vmode x,e 2
coul0= f hgew |3 (225 0) |

k=1 V2T O

where Ymodel, k(%, 0) is the model’s prediction of an equivalent noise-
less observation for yj given parameters 0 and input conditions x.
The advantage of this likelihood-based approach is the ability to
specify a given error structure that produces a tractable likelihood
function, for example, incorporating heteroscedasticity in the data
by varying o with each observation (17, 55) as in Eq. 2, or even
choosing appropriate error distributions for more specific model-data
fitting problems. While appropriate specification of the error struc-
ture could potentially depend on domain knowledge, Eq. 2 serves as
a broadly applicable choice (8, 11, 17, 29, 62).

The values of the model parameter vector 0 that maximize the
likelihood function L(yobs | 0) are altogether called the MLE, here
denoted as 0* = 0}, = argmaxp L(¥obs|0) (29). We note, how-
ever, that a standard least-squares regression may be cast as maxi-
mizing a Gaussian likelihood by enforcing homoscedastic errors
ok = ¢ and introducing (12, 15)

C(e) = _log ['(yobs | e) =

Nobs obs,k — Ymodel,k(%> @) ’
1 <}/b,k )’Gdl)k ) 3)

%Nobslog (2m)+ %NobS log 6” + 2 X
where C(8) is the cost function. The first two terms in Eq. 3 are indepen-
dent of the parameter values, so C(0) o< Zﬁ’é"is (Yobs,k — YmodeLk(x,0) )2+
constant. Thus, minimizing the cost function C(0) in Eq. 3 to find
the best-fit parameter values is equivalent to maximizing the Gaussian
likelihood function in Eq. 2 to find the MLE. Furthermore, as a MLE
under these conditions, the ordinary least-squares solution is an
estimator in the large sample limit, achieving the minimal variance
specified by the Cramér-Rao lower bound (72).

Step 2. Calculating the sensitivity matrix

The standard approach to analyzing sloppiness obtains the sensi-
tivity matrix S by investigating how the cost function C(0) in Eq. 3
varies with respect to the parameter vector 0 in the vicinity of the
MLE 0* =0}, ;.- To do so, this matrix is obtained by a Taylor expan-
sion of C(0) around the best-fit parameter values while differentiat-
ing with respect to the logarithm of the parameters (log 0), which
yields (13, 15, 30)
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CO)~ C(0")+VC(0*)- (logh —logh™) +
5 (logh — log®*) " H(logd - log6")
where the gradient VC(0™) of the cost function is zero at the best-fit
parameter values by definition so that the sensitivity of the model fit

to changes in parameter values is characterized by the Hessian ma-
trix H defined in Eq. 4, whose elements are given by (12, 13)

(4)

L 010g L0 |0)

77 " dlog 6; olog 6; ®)

0=0"

with i and j both taking integer values ranging from 1 to Np. Thus,
the Hessian matrix describes the quadratic behavior of the cost func-
tion C(0) infinitesimally close to the point 8, and thus, it is consid-
ered here as one of the matrices that could be used as the sensitivity
matrix S for analyzing model sloppiness (12, 15, 30). However, since
evaluating second-order derivatives can be computationally ex-
pensive, the sensitivity matrix can also be approximated by the
Levenberg-Marquardt Hessian L at a much lower computational cost,
following (11, 12, 15)

Nobs

ark ark

B Z  9log 0; dlog 6; ©

*_px
07=0y;

where the residual error r, for the kth observation is calculated via
7k = [Yobs, k — Ymodelk(%, 8)]/0k, and the first derivatives in Eq. 6 can
be evaluated by first-order finite differences or by integrating sensitiv-
ity equations for ordinary differential equation models (11, 29). The
Levenberg-Marquardt Hessian L corresponds to the Gauss-Newton
approximation of the Hessian H in Eq. 5, guaranteed to be positive
semidefinite (39). Matrix L is also equal to the observation informa-
tion matrix evaluated at the MLE, which itself is a sample-based ver-
sion of the Fisher information matrix (26), whose connections with
information theory have been well considered elsewhere (3, 15, 26).
The Levenberg-Marquardt Hessian L thus is a more computationally
convenient sensitivity matrix S for analyzing sloppiness, although as
with the Hessian matrix H it only considers the curvature of the
likelihood surface infinitesimally close to the MLE.

Step 3. Identifying the eigenparameters that are more or less
sensitive to the model-data fit

To identify the stiff eigenparameters, eigenvalues A, and eigenvectors
v, are obtained via eigendecomposition of the sensitivity matrix S
or via singular value decomposition if numerical stability is an issue
(12). Each of the n =1,2, ..., Ny eigenvectors v, is mutually orthogonal
so that eigenparameters can be conveniently expressed as linear com-
binations of natural logarithms of model parameters, following (13)

Ny
n = 2 (vw)jlog; (7)
j=1

where (v,); is the jth element of the nth elgenvector v,, of the sensi-
tivity matrix. Thus, each eigenparameter 6, can be simply repre-
sented as the product and/or quotient of bare model parameters
raised to an index given by the elements of eigenvector v,, by rewrit-
ing Eq. 7 as (13)

8 7ot
0, = exp (an)=H9j " (8)
2
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with stiff eigenparameters 8, associated with the largest eigenvalues
A, and sloppy (soft) eigenparameters associated with the smallest
eigenvalues. The magnitude of each element (v,);,j=1, ..., Ng of the
eigenvector v, in Eq. 8 therefore indicates the relative contr1but10n
of bare parameter 0; to eigenparameter 9 If eigenvectors are nor-
mahzed each (vy); takes values between —1 and 1 inclusive so that
all §,, are products of bare parameters having exponents with mag-
nitudes that do not exceed unity. Any factors 6; " in Eq. 8 having
relatively low magnitudes for (v,,); [e.g., | (vy); | < 0.2] contribute
little to the eigenparameter’s value; thus, these small factors 6"
can be practically excluded from the product (12). Hence, each of
the n = 1,2, ..., Np eigenparameters 0, may depend strongly on only
a few bare parameters that may be importantly related to each other.

V,

Bayesian approach to analyzing sloppiness

In the context of fitting models to data, Bayesian inference provides
a coherent statistical framework to estimate probability distributions
for model parameters, constrained by the combination of data and
prior beliefs (22, 33). Thus, if the model-data fitting problem is
recast as a Bayesian inference problem, the final estimates for the
probability distribution of parameters 0, based on all of the data yqps,
are called the posterior distribution 7(6 | yobs). To apply Bayesian in-
ference, we require definition of both a likelihood function L(y,ps | 0)
and a prior distribution p(0). An example of the former of these was
defined in Eq. 2 (i.e., Gaussian likelihood), while the latter of these
represents the initial beliefs about the parameter values, which are
often based on earlier studies, or in their absence, they are based on
expert knowledge (33, 73). Once both likelihood function and prior
distribution are defined, Bayes’ theorem is then used to obtain the
posterior distribution, following (23)

Lobs|8)p(8)
f ‘C(yobs | B)P(e) do

1'c(9 |yobs) = (9)

Here, the denominator is a multidimensional integral over the
parameter space, O, that serves as a normalizing constant but is, how-
ever, difficult to calculate directly or often intractable (22, 23, 58).
Therefore, several methods that avoid calculation of this constant
have been developed to sample from the posterior distribution, in-
cluding MCMC sampling (74), sequential Monte Carlo (SMC) sam-
pling (58), approximate Bayesian computation (ABC) (67), variational
Bayesian inference (75), Laplace approximation (76), and many
others. For the purposes of this section, we simply assume that the
posterior has been successfully sampled, and thus, we hereafter dis-
cuss practical aspects of computing the sensitivity matrix within a
Bayesian framework. Thus, analogous to the standard approach to
analyzing sloppiness, the Bayesian approach consists of three steps:
(i) obtaining an estimate of the posterior distribution m(0 | yobs)
by fitting the model to data, (ii) calculating a Bayesian-based sensi-
tivity matrix S from the posterior distribution 7(0 | yobs), and (iii)
identifying the eigenparameters that are more or less sensitive to the
model-data fit through eigendecomposition of the Bayesian-based
sensitivity matrix S.

Exact details of the first step above depend on the posterior-
computation method chosen, while the third step is the same as the
third step of the standard approach. Thus, we focus here on the sec-
ond step, for which we adapt two Bayesian methods for dimension-
ality reduction to obtain sensitivity matrices for analyzing model
sloppiness. These are described as follows.
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Posterior covariance method
The posterior covariance method is based on the application of PCA
(36). This technique uses eigendecomposition of a sensitivity matrix
(a covariance matrix) to reduce the dimensionality of large datasets,
which thus identifies the dataset components that account for the
largest amount of variance (38). In our context, the dataset of interest
is a Bayesian ensemble of plausible parameter values, which we
obtain from the posterior distribution for the parameters. Thus, if
PCA is applied on this specific dataset, eigenvectors and eigenvalues
of the posterior covariance matrix inform the variability of the
model-data fit to changes in parameter values. However, given that
we seek to identify the eigenparameters that are well constrained by
the available data (i.e., those that have less variability), we instead
calculate the sensitivity matrix S as the PCA Hessian matrix P that
is based on the inverse of the posterior covariance matrix X (12)
P=x"1 (10)
where the matrix X is calculated in terms of the natural logarithms
of model parameters log 0, with this transformation required in Eq. 8
to characterize stiff/sloppy eigenparameters as products or quotients
of the bare model parameters. This is a key advantage of the posterior
covariance method over more sophisticated dimensional reduction
techniques [e.g., kernel PCA (60) and/or ISOMAP (77)], in which
mappings back to original parameter space are not typically sought,
and thus, the associated eigenparameters describing the lower di-
mensional parameter space are not readily interpretable. Hence,
eigendecomposition of the PCA Hessian matrix P identifies which
eigenparameters are more or less constrained by the combination of
both data and prior beliefs. Specifically, eigenvectors of matrix P with
large eigenvalues indicate stiff eigenparameters, while eigenvectors
with small eigenvalues indicate sloppy eigenparameters.

We note that if Monte Carlo methods such as MCMC sampling
(74), SMC sampling (58), or ABC (67) are used to approximate the
posterior as a set of M equally weighted samples {Om}lrle, the re-
quired posterior covariance matrix X, calculated with respect to the
natural logarithms of parameters log 0, can be estimated using the
sample covariance matrix £

M

ﬁ Y (log ©,, —log 8) (log 0,, —log 8) 7 (11)
m=1

T~T=
where log 0 = ﬁZ%I:l log 0,, is the estimated posterior mean for
the natural logarithm of parameters. If Monte Carlo methods are
overly computationally expensive, fast approximate methods such
as variational Bayesian inference or Laplace approximation (76) can
be used as an alternative to provide a rapid estimate of the posterior
covariance matrix. However, these fast approximate methods provide
a rapid, albeit possibly biased, estimate of the posterior covariance
matrix (76).

LIS method

The LIS method proposed here has its origins in the Bayesian pa-
rameter reduction literature, specifically from the work of Cui et al.
(35) who developed a method for Bayesian inverse problems that
identifies the directions in parameter space where the data are most
informative relative to the prior. The motivation for Cui et al. (35)
was to develop an approximate but accelerated MCMC algorithm
that samples over a lower-dimensional subspace, called the LIS, to
avoid sampling from directions of prior variability that the likelihood
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does not inform (48). The LIS is constructed on the idea that the
Hessian of the log-likelihood can be compared to the prior covari-
ance to then identify directions in parameter space along which the
posterior distribution differs strongly from the prior, i.e., directions
that are likelihood informed (78). Thus, we adapt here the approach
used by Cui et al. (35) to construct the LIS to define a sensitivity
matrix in our context.

Our goal is to make the sensitivity matrix dependent primarily
on the data and eliminate effects of the prior distribution. To achieve
this, we first assume that the covariance matrix Q of the prior distri-
bution for the logarithms of parameters is known and that this matrix
can be Cholesky factored to a lower triangular matrix Ly, such that
L,Ly = Q. Then, by following Cui ef al. (35), we define the prior-
preconditioned Hessian matrix ¥(0) as

¥(0)=LyH()L, (12)
for parameter vector 0, with elements of H(0) given by Eq. 5. We
note that Cui et al. (35) used a multivariate Gaussian prior to define
the prior-preconditioned Hessian matrix ¥(0) in Eq. 12, which is
needed in that context to approximate the posterior distribution as
the product of a lower-dimensional posterior defined on the LIS and
the prior distribution marginalized onto a complementary subspace
(48, 78). However, given that our purpose is to identify the directions
that are data informed, and not to approximate a posterior distribu-
tion, the LIS definition is not restricted to multivariate Gaussian
priors in our application. Thus, we obtain an expression for the LIS,
used here to define the LIS-based sensitivity matrix G, by integrating
over the prior-preconditioned Hessian matrix with respect to the
posterior (35), which yields

G = ['(0) m(B]yobs) dO (13)

Given that Eq. 13 involves an integral over Np-dimensional space,
then if the posterior is approximated by a Monte Carlo method
(e.g., MCMC, SMC, or ABC) as a set of M equally weighted samples
{0 m}ﬁf:l, the LIS-based sensitivity matrix G can instead be estimated as

1 M
G =~ Mﬂ;‘l‘(em) (14)

where each W(0,,) is calculated via Eq. 12 with the Hessian matrix
H(8,,) of the negative log-likelihood function evaluated at each poste-
rior sample 0,, via Eq. 5 or approximated by the Levenberg-Marquardt
Hessian L(0,,) via Eq. 6 to reduce computational cost in the calcula-
tion of matrix G (35). Furthermore, we note that these M matrices
H(0,,) are all left-multiplied by L; and right-multiplied by L, with
the M resulting ¥(0,,) matrices averaged to obtain the sensitivity
matrix G. As a result, eigendecomposition of this prior-informed
sensitivity matrix G can reveal which eigenparameters are strongly
informed by the data relative to the prior, i.e., directions in param-
eter logspace where the posterior differs most strongly from the
prior (78).

Demonstrating how to analyze model sloppiness using
examples of models fitted to synthetic data

In this section, we describe the six-step procedure used to analyze
model sloppiness in the examples discussed in Results. This six-step
procedure incorporates both approaches discussed above, i.e., the
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local sensitivity analysis around the best-fit parameter values (stan-
dard approach) and the global sensitivity analysis considering all
plausible parameter values consistent with the available data (Bayesian
approach). Each step of the procedure describes specific details of
the examples considered in Results.

Step i. Defining the model form

We consider deterministic models of the form ymodel(x, 8), where x
€ RM is a vector of input conditions, 8 € R™0 is a vector of model
parameters, and Ymodel € R is a vector of model outputs (see step 1,
standard approach). Here, N, and N, are the number of model in-
puts and outputs, respectively.

Step ii. Generating synthetic data to fit the model

We generate measurement data for the motivating example and
ecological application by adding heteroscedastic noise with variance
proportional to the observation, which follows a truncated normal dis-
tribution yobs, j(x:) ~ NV (y,(x:), 0,,(x;)) with mean p,,(x;) = ymodel, j(x> Or),
SD Gyj(xi) = €Ymodl, j(Xi» Or), and lower truncation bound of zero on
each of the synthetic observations yobs, j(x;) (17). Here, O is the vec-
tor containing the reference (true) values for the model parameters,
€ is a user-defined measurement error ranging between 0 and 100%,
and noise is added to the jth model output associated with the ith set
of input conditions. Alternatively, we generate measurement data for
the cardiac electrophysiological application by adding homoscedastic
noise, which follows a normal distribution ygps, j(2;) ~ N (Hy, (x:), o), (%)
with mean uyj(xi) = Ymodel, j(Xi» Or) and constant SD cyj(xi) =0 (8).In
each case, measurement error and sampling frequency (number of
measurements) are chosen according to typical experimental con-
ditions. As later discussed in detail in step iv, the choice of error
structure used for synthetic data generation is also used to define
the form of the likelihood function for each case. That is, the error
structure is treated as having been correctly specified by the modeler.
Step iii. Defining the vector of unknown model parameters

and their prior distributions

We define the vector of unknown model parameters 0 consisting of
(i) the model parameters, (ii) model initial conditions (only consid-
ered in the ecological model), and (iii) measurement error € or SD
o following the type of noise added to the synthetic data. Then, we
specify prior distributions for the parameters p(0) using either pos-
itive uniform or multivariate log-normal probability distributions
(8, 25, 34, 47, 55), as follows.

In the Michaelis-Menten kinetic example, three different joint
prior distributions p(8) = p(kca, [E1], Ky, €) are used for the three
parameters Ky, [E7), and Ky of the model and measurement error €.
The first joint prior consists of a uniform prior for each parameter;
the second joint prior consists of multivariate log-normal priors for
all parameters, with the prior of parameter Ky being badly speci-
fied; and the third joint prior consists of a uniform prior for ks,
a badly specified log-normal prior for [E7], and a well-specified
log-normal prior for Ky and e. All joint priors assume indepen-
dence between the model parameters and measurement error, so
p(0) = plkaar)p([ET))p(Kp)p(€). In this work, a badly specified prior
for the nth parameter 8, means that this parameter’s true value 0y ,
has little support under the prior distribution (i.e., it lies in the tails
of the prior). This is a condition referred to as a prior-data conflict
that occurs when informative prior beliefs are inconsistent with the
information revealed by the data (79), although the model is cor-
rectly specified as is assumed here [see (80) for discussion of appro-
priateness of Bayesian inference when the model is misspecified].
Alternatively, a well-specified prior in this work means that the true
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parameter value O , is well supported by the prior distribution, i.e.,
it lies within the bulk of the prior distribution so that prior beliefs
are consistent with the information given by the data.

In the ecological application, two different joint prior distribu-
tions are used for the 20 parameters of the ecosystem network model
(table S2) and measurement error €. The first joint prior distribu-
tion is chosen to be a product of vague log-normal distributions for
each parameter so that this joint prior has zero covariance. Alterna-
tively, the second joint prior distribution is chosen to be a product
of well-specified log-normal distributions for parameters ay, an,
and ap and vague log-normal distributions for each of the remain-
ing parameters, including the measurement error €. As discussed in
Results, well-specified priors for parameters ayy, ay, and ap are chosen
on the basis of the stiff eigenparameters, identified from the analysis
of sloppiness for the case considering vague log-normal distribu-
tions for each parameter.

In the cardiac electrophysiological application, a well-specified
multivariate log-normal prior distribution is used for the nine pa-
rameters of the BR model (table S4) and the SD . This joint prior
distribution is centered at the reference parameter values and assumes
zero covariance between the nine parameters and the SD . Stimu-
lation conditions Aj, ton, and t4,; membrane capacitance Cy,; and
initial conditions V,,(0), [Ca](0), x1(0), m(0), h(0), j(0), 4(0), and
S(0) are set to their reference values (table S4) and are not estimated
via our model-data fitting techniques.

Step iv. Fitting the model to data

We use two approaches to fit each example model to data, with the
first being MLE and the second being Bayesian inference. To imple-
ment these two approaches, we conveniently rewrite the Gaussian
likelihood function defined in Eq. 2 as

2
L(yobs|9)= y(’bsl(x )_ymodel](xz, )) ]

Gy,(xi)

;Huqv_cyj( ) Xp[ <

(15)

where Gyj(xi) = €Jmodel, j(Xi» 0) when heteroscedastic noise is used to
generate the synthetic data and (Syj(x,*) = o when homoscedastic noise
is instead used. Then, we use this Gaussian likelihood function and
specified prior distributions (step iii) to approximate the joint pos-
terior distribution 7(0 | yops) via Bayes’ theorem (Eq. 9) by imple-
menting the SMC sampling algorithm adapted from Adams et al.
(17, 55). In our implementation of this posterior sampling algorithm,
we use a sample size of M = 10,000, Metropolis-Hastings acceptance
fraction of C = 0.95, and effective sample size reduction target of
A = 0.001. These settings were sufficient for reproducible sampler
performance: Results did not vary in independent runs of the sam-
pling algorithm using a smaller sample size of M = 5000 and larger
effective sample size reduction target of A = 0.005 (figs. S15 to S21).
Once the joint posterior probability distributions (0 | y,bs) are
obtained for each example, we estimate the best-fit parameter values
0* (MLE) by minimizing the cost function C(8) = — log L(yobs | 0)
with L(y.bs | 8) given by Eq. 15 while using the posterior mean as the
initial guess to start the optimization. Here, the sets of best-fit
parameter values 0%, 07, and 0 are only used to calculate the sensi-
tivity matrices (H or L) via the standard approach, while the already
obtained prior and posterior distributions are used to calculate the
sensitivity matrices (P and G) based on the Bayesian approach.
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Step v. Calculating the sensitivity matrix

Equations 5, 6, 10, and 14 are used to calculate the Hessian H, the
Levenberg-Marquardt Hessian L, the PCA Hessian P, and the LIS
G, respectively. Each of these matrices acts as a sensitivity matrix for
the purpose of analyzing sloppiness. In the absence of analytical de-
rivatives, we use central finite differences (81) to approximate first-
and second-order derivatives of the log-likelihood function with
respect to the logarithm of parameters, with a step size A6; = § x 6;,
i=1, ..., Ny, where & is a small scalar between 10~* and 1072 Finite
differencing is the most widely used technique for numerical differ-
entiation in physical applications (81), including approximations of
the sensitivity matrix (H or L) in standard analysis of model sloppiness
(13, 15, 30). However, for more complex models than those consid-
ered here, this technique can become computationally expensive, as
it requires multiple model evaluations for approximating derivatives.
As an alternative, more sophisticated methods such as automatic
differentiation (82) may also be used (where appropriate) in con-
junction with the analysis of model sloppiness (11, 28).

Rows and columns of each sensitivity matrix characterizing the
sensitivity of the model-data fit with respect to the measurement
error (represented by € or ¢ in Eq. 15) are not calculated, thus pre-
venting the measurement error from appearing in the parameter
combinations that are identified through the analysis of model slop-
piness. Here, the measurement error is effectively treated as a
nuisance parameter, that is, it is involved with the model-data
fitting procedure but does not provide information to identify rele-
vant parameter combinations. In addition, for likelihood functions
of the form given by Eq. 15, small changes to the measurement error
are expected to affect only the degree of overall curvature of the
model-data fit surface but not the directions of high or low curva-
ture. As a result, the dimension of the square symmetric sensitivity
matrices H, L, P, and G obtained here is equal to the number of
model parameters, excluding the measurement error (e or ¢ in Eq. 15),
i.e., we obtain 3 x 3 sensitivity matrices in the Michaelis-Menten
kinetic example, 20 x 20 in the ecological application, and 9 x 9 in
the cardiac electrophysiological application.

Step vi. Identifying stiff eigenparameters

Eigenvalues and eigenvectors of the sensitivity matrices H, L, P, and
G are calculated via singular value decomposition (12). Then, eigen-
parameters 0 are obtained via Eq. 8, in which we consider the con-
tribution of parameter 6; to eigenparameter 6, only when element j of
the normalized nth eigenvector (v,); satisfies | (v,);| = 0.2 (see step 3,
standard approach). We also rescale exponents (v,); of the bare param-
eters 0; associated with each eigenparameter 0, so that the magnitude
of the largest/smallest index (v,); for every eigenvector v, is 1. Here,
eigenvalues are ordered from largest to smallest so that the corre-
sponding eigenparameters are also ordered from stiffest to sloppiest.

Trade-offs of locally and globally analyzing model sloppiness
To summarize these methods, we have proposed a unified framework
to obtain locally and globally the key quantity for analyzing model
sloppiness—the sensitivity matrix S (e.g., H, L, P, and G). This
approach accurately estimates uncertainty in parameter values, con-
strained by the combination of prior information and data, with the
key benefit of robustly identifying the relative effect of this prior infor-
mation in the inference of critical parameter combinations that
control the quality of the model-data fit. This is a key achievement
of this work as it extends the application of the analysis of sloppiness
beyond systems where there is little prior knowledge about the
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model parameter values (11, 12) to those where prior information is
more readily available (32, 34, 45, 55), and thus can be confidently
incorporated as part of the Bayesian model-data fitting process to
constrain parameter values (7, 8, 17, 25).

In the implementation of this framework, the local (standard)
methods to analyzing sloppiness (matrices H or L) were found to be
computationally inexpensive in comparison to the Bayesian methods
(matrices P and G). Thus, standard methods can be very useful in
model-data fitting applications where computationally expensive
models make implementation of Bayesian inference impractical.
Nevertheless, since local analysis of sloppiness considers a single
point estimation in parameter space (i.e., the best-fit parameter
values), this local approach can only accurately quantify the model
sensitivity to parameter changes when the likelihood function max-
imum (or cost function minimum) is well defined (11, 59). Unfor-
tunately, if the likelihood surface is relatively complicated (e.g., with
ridges), this method can mislead inference of stiff eigenparameters
(see, for example, Table 2) (15, 57). Careful selection of the optimiza-
tion algorithm is thus needed to avoid convergence to local optima
(12, 16, 57). In addition to this limitation, both standard methods to
analyzing sloppiness require a closed-form likelihood function to
calculate sensitivity matrices H and L, such as the Gaussian likelihood
functions (e.g., Egs. 2 and 15) considered here.

Alternatively, the global (Bayesian) analysis of sloppiness looks
beyond the curvature of the likelihood function surface at a single
point while fully exploring the topography of this surface by using
an ensemble of plausible parameter values to characterize the sensi-
tivities of the model-data fit to changes in parameter values. As part
of this global approach, we exploited PCA (36) to implement the
posterior covariance method (matrix P) that assesses the data infor-
mativity about the critical parameter combinations while accounting
for (including) any prior information about parameter values. This
method does not require approximating gradients of the log likelihood
(Eq. 10), and so, calculating sensitivity matrix P is computationally
inexpensive after the posterior distribution is obtained via Bayesian
inference. However, since the posterior covariance method (matrix P)
assumes that the posterior structure is well captured by a covariance
matrix X of the logarithm of parameters log 0, it is also restricted to
applications where the posterior distribution for log 0 is approximately
multivariate normally distributed. Despite this limitation, the pos-
terior covariance method has the added benefit of being readily appli-
cable to all kinds of statistical models, even to those with intractable
likelihood functions where “likelihood-free” Bayesian methods, such
as ABC (67) and Bayesian synthetic likelihood (68), are prevalent.

As part of the global approach, we also implemented the LIS
method for Bayesian dimensionality reduction (35, 37) to analyze
model sloppiness. Following its origins, the LIS method (matrix G)
adapted here assesses the data informativity about the critical pa-
rameter combinations while also acknowledging and excluding any
prior information. As with the standard methods (matrices H or L),
the LIS method requires a closed-form likelihood function (e.g.,
Gaussian likelihood functions in Egs. 2 and 15) to obtain the sensi-
tivity matrix G (Eq. 14). More so, given that the LIS method also
involves calculation of the Hessian matrix at a posterior sample (Eq. 12),
approximating second-order derivatives for all posterior samples can
become computationally expensive via finite differencing for models
with time-consuming solutions. Despite these limitations, as the LIS
method does not assume a given shape for the posterior distribution,
it has the added benefit of being readily applicable to systems with
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non-Gaussian posterior distributions. On the other hand, where the
posterior distribution is close to a Gaussian, one may replace the
LIS’s average over Hessians (Eq. 14) with the posterior covariance

K~ LZXZ'L, or K'=~L,IL,' (16)
with LpLT = Q (see LIS method), hence formulating a likelihood-
free approximation to matrix G. This makes the LIS applicable for
stochastic models with intractable likelihoods and greatly reduces
the extra computational cost of Hessian calculation at all posterior
samples. This idea is similar to other approaches comparing prior
and posterior covariance matrices to understand the posterior in
the context of the prior (69, 70), arising from the generalized eigen-
problem Hv ~ X'v = AQ"'v upon approximating the Hessian with
the inverse covariance matrix X' for Gaussian settings (37). Matrix
K can also be obtained by transforming this generalized eigenproblem
into a standard eigenproblem, for which the eigenvectors are then
readily interpretable for analyzing model sloppiness. As the eigen-
vectors of matrix X in Eq. 11 are equivalent to those of matrix H in
Eq. 12 for a Gaussian posterior distribution, matrix G in Eq. 14 and
matrix K (or K'}) in Eq. 16 share the same eigenvectors [see (37) for
discussion of eigenproperties of matrices H and X under Gaussian
settings].

Beyond the Bayesian methods discussed here, for applications in
which sampling the posterior distribution is infeasible or simply
impractical, forward sensitivity analysis methods such as the active
subspace (AS) (83) could potentially be used as an alternative to
assess sensitivities of the model-data fit function to changes in pa-
rameter values. The AS method has the advantage of evaluating a
similar sensitivity matrix at a prior sample [referred to as matrix C
by Constantine et al. (83)], which makes its implementation less com-
putationally expensive than that of the LIS method since a posterior
sample is not needed. Similar to the LIS, the AS identifies a set of
important (stiff) directions in the space of all parameters (83, 84).
However, the method has also been recently shown to be not com-
pletely analogous to the LIS method for both Gaussian and non-
Gaussian settings in the context of Bayesian dimensionality reduction
(85). Consequently, for analyzing model sloppiness, eigenparameters
obtained from the AS method are expected to have a different inter-
pretation than that of eigenparameters obtained from matrices P and
G in relation to acknowledging the source of information (i.e., prior
and/or data). Thus, exploring how the AS method compares to the
Bayesian methods discussed here could be an interesting direction
for future work.

Hence, given the great flexibility of the techniques discussed here
to unveil sensitivities of the model-data fit to changes in parameter
values, our comprehensive approach to analyzing model sloppiness
does comprise a suitable set of tools to aid in understanding many
of nature’s systems, ranging from a single cell in the human body
(7, 8) and the myriad of microorganisms found almost everywhere
(3-5) to large ecosystem networks (2, 17) and beyond (9, 10), through
the simultaneous usage of experimental data, mathematical models,
and computer simulation.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abm5952

View/request a protocol for this paper from Bio-protocol.
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