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A B S T R A C T   

Vitrification is a promising cryopreservation technique for complex specimens such as tissues and organs. 
However, it is challenging to identify mixtures of cryoprotectants (CPAs) that prevent ice formation without 
exerting excessive toxicity. In this work, we developed a multi-CPA toxicity model that predicts the toxicity 
kinetics of mixtures containing five of the most common CPAs used in the field (glycerol, dimethyl sulfoxide 
(DMSO), propylene glycol, ethylene glycol, and formamide). The model accounts for specific toxicity, non- 
specific toxicity, and interactions between CPAs. The proposed model shows reasonable agreement with 
training data for single and binary CPA solutions, as well as ternary CPA solution validation data. Sloppy model 
analysis was used to examine the model parameters that were most important for predictions, providing clues 
about mechanisms of toxicity. This analysis revealed that the model terms for non-specific toxicity were 
particularly important, especially the non-specific toxicity of propylene glycol, as well as model terms for specific 
toxicity of formamide and interactions between formamide and glycerol. To demonstrate the potential for model- 
based design of vitrification methods, we paired the multi-CPA toxicity model with a published vitrification/ 
devitrification model to identify vitrifiable CPA mixtures that are predicted to have minimal toxicity. The 
resulting optimized vitrification solution composition was a mixture of 7.4 molal glycerol, 1.4 molal DMSO, and 
2.4 molal formamide. This demonstrates the potential for mathematical optimization of vitrification solution 
composition and sets the stage for future studies to optimize the complete vitrification process, including CPA 
mixture composition and CPA addition and removal methods.   

1. Introduction 

Cryopreservation has had a significant impact in many different 
fields, including animal and human assisted reproduction [23,30,31] by 
enabling storage of gametes and embryos, and general scientific 
research by enabling banking of thousands of cell types [2,10,28]. While 
complex specimens such as tissues and organs are more challenging to 
cryopreserve [16,19], successful cryopreservation of these specimens 
would also have a tremendous impact by making tissue and organ banks 
a reality [16,21,27]. 

For complex specimens like tissues and organs, vitrification methods 
have been shown to hold particular promise [20,25,29,35], as the 
damage associated with extracellular ice formation is eliminated. 

However, the elimination of extracellular ice requires high concentra
tions of cryoprotectants (CPAs), which can cause chemical toxicity [9, 
13,14,19,26]. Thus, a key challenge in the design of vitrification 
methods is identifying minimally toxic CPA mixtures and methods for 
adding and removing these mixtures [1,17,19,24]. 

There are many variables that influence toxicity, including: CPA 
mixture type, CPA concentration, temperature, and exposure time. 
Given the many combinations of these variables, and the fact that CPA 
mixture type is essentially unbounded in regard to possibilities (i.e., any 
chemical(s) or combinations thereof could be a CPA mixture type), the 
potential protocol landscape where these variables are manipulated is 
incredibly vast. It is not feasible to test all potential combinations 
experimentally. Thus, there is a need for a mathematical model of 
toxicity that would enable in silico exploration of the protocol landscape. 

* Corresponding author. School of Chemical, Biological and Environmental Engineering Oregon State University 116 Johnson Hall, 105 SW 26th St Corvallis, OR, 
97331-2702, USA. 

E-mail address: adam.higgins@oregonstate.edu (A.Z. Higgins).  

Contents lists available at ScienceDirect 

Cryobiology 

journal homepage: www.elsevier.com/locate/cryo 

https://doi.org/10.1016/j.cryobiol.2022.09.002 
Received 17 May 2022; Received in revised form 5 August 2022; Accepted 7 September 2022   

mailto:adam.higgins@oregonstate.edu
www.sciencedirect.com/science/journal/00112240
https://www.elsevier.com/locate/cryo
https://doi.org/10.1016/j.cryobiol.2022.09.002
https://doi.org/10.1016/j.cryobiol.2022.09.002
https://doi.org/10.1016/j.cryobiol.2022.09.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cryobiol.2022.09.002&domain=pdf


Cryobiology 108 (2022) 1–9

2

While there have been some previous efforts to develop toxicity models 
[1,13,17,24,26], a comprehensive toxicity model that can account for all 
of the previously mentioned variables is not yet available, and most 
attempts in the field to minimize toxicity can be classified as an 
empirically driven trial and error approach. 

The molecular mechanisms of CPA toxicity are not very well un
derstood, but may be related to destabilization of cell membranes, 
protein denaturation, oxidative damage, disruption of mitochondrial 
function or other factors [5,11]. CPA toxicity can be specific or 
non-specific [17]. Specific toxicity refers to direct effects of a CPA by a 
mechanism specific to that CPA. All CPAs are thought to exert toxicity 
non-specifically, due to their overall effects on solution properties that 
alter the hydrogen bonding around proteins and other biomolecules. 

The objective of this work was to develop a mathematical model for 
the toxicity of CPA mixtures that could be used for the design of less 
toxic vitrification methods. As a foundation for this model, we used the 
large CPA toxicity data set that we recently generated using high 
throughput experiments on cultured bovine pulmonary artery endo
thelial cells [38]. Specifically, we propose a comprehensive toxicity 
model that spans five of the most common CPAs used in the field and any 
combination thereof. The model breaks the toxicity rate into two main 
contributions that have been discussed within cryobiology—specific and 
non-specific toxicity [1,17]. Furthermore, the model accounts for 
intermolecular interactions resulting in CPA complex formation and 
concomittant modulation of both the specific and non-specific toxicity 
contributions. The resulting model describes a wide range of CPA mix
tures, offering clues about mechanisms of CPA toxicity and opening new 
possibilities for design of less toxic vitrification methods. 

2. Model formalism 

2.1. General overview 

In our previous work [38], we measured the viability of adherent 
bovine pulmonary artery endothelial cells after exposure to various CPA 
solutions comprised of five of the most common CPAs (glycerol, DMSO, 
propylene glycol, ethylene glycol, and formamide). In that work, we 
leveraged the power of automated liquid handling to increase the speed, 
robustness, and accuracy of our experiments, enabling the creation of a 
large CPA toxicity data repository. This data set includes 81 estimates of 
the toxicity rate for CPA solutions containing one, two, or three CPAs at 
concentrations ranging from 1 to 10 molal. To determine each toxicity 
rate, we used four different CPA exposure times, each with 5–6 repli
cates, resulting in more than 1500 cell viability data points. To complete 
these experiments required over 12,000 pipetting steps, highlighting the 
importance of automating the liquid handling process. In this study, we 
use this large data set to drive the development of novel mathematical 
models of CPA toxicity. 

To quantify toxicity in our previous work, we used a first-order ki
netic model to describe the decrease in the number of viable cells N over 
time t [3,8,9,12,26,38]: 

dN
dt

= −kN, (1)  

where k is the CPA toxicity rate. In particular, we estimated the toxicity 
rate of each CPA mixture type and concentration tested. In this work, we 
seek to identify a functional form that can predict the toxicity rate as a 
function of CPA mixture type and concentration. We begin by consid
ering models describing specific toxicity and non-specific toxicity on 
their own, then we examine a more comprehensive model that accounts 
for specific toxicity, non-specific toxicity, and formation of CPA com
plexes. The model considers only binary CPA complexes, and we hy
pothesize that binary interactions dominate compared to higher order 
interactions. Thus, the model parameters can be determined using CPA 
mixtures containing up to two CPAs, and the resulting parameters can 
then be used to predict the toxicity of more complicated mixtures con
taining more than two CPAs. In this paper, we refer to physiological 
buffer containing a single CPA as a single CPA solution, and mixtures 
with two or three CPAs are referred to as binary or ternary mixtures, 
respectively. We used toxicity data for single CPA solutions and binary 
CPA mixtures for model training (71 data points), and toxicity data for 
ternary CPA mixtures for model validation (10 data points). 

2.2. Specific toxicity 

We begin by describing the toxicity rate dependence through a 
power law in the CPA concentration, as we have done in the past for 
solutions containing a single CPA [3,8,9]: 

k = ζiM
αi
i , (2)  

where M is the CPA molality, ζ and α are constants, and subscript i 
represents a particular CPA. This form is much like a chemical reaction 
where ζ can be thought of as the rate constant and α can be thought of as 
the order of the reaction. As such, for each CPA, we assume that the 
reaction network leading to cell death is only governed by the CPA 
concentration and the two parameters ζ and α. For this work, we 
describe this toxicity as specific toxicity, in that each CPA leads to cell 
death through its own independent mechanism. 

We applied Equation (2) to the five single CPAs that were tested in 
our previous study [38], resulting in the fits shown in Fig. 1. To fit the 
parameters of Equation (2), we performed nonlinear regression in 
MATLAB (R2020b; The MathWorks, Natick, MA) using the “fitnlm” 
function. 

As Fig. 1 shows, the fit of Equation (2) for single CPA solutions is 
excellent, with an unweighted R2 > 0.99 for each CPA. However, we 

Abbreviations 

CPAs cryoprotectants 
DMSO dimethyl sulfoxide 
EG ethylene glycol 
FA formamide 
Gly glycerol 
PG propylene glycol  

Fig. 1. The toxicity rates of the five single CPAs tested from our previous work 
[38], with the error bars representing the 95% confidence intervals of the 
experimental toxicity rates. The curves represent fits to Equation (2). 
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want to describe multi-CPA toxicity kinetics, because vitrification so
lutions typically contain multiple CPAs [19,25]. To describe the toxicity 
of CPA mixtures, we can add versions of Equation (2) together for each 
CPA, taking a purely additive approach to toxicity, resulting in: 

k =
∑n

i=1
ζiM

αi
i , (3)  

where n is the total number of CPAs in the mixture. The model form of 
Equation (3) assumes that each CPA has its own independent reaction 
network leading to cell death (i.e., specific toxicity) and there are no 
interactions between the CPAs. In Fig. 2, we examine how well Equation 
(3) fits our binary CPA mixture data for a few example cases. 

As shown in Fig. 2 and Fig. S1, Equation (3) does a poor job of 
predicting the toxicity rates of binary CPA mixtures. For the overall data 
set (including both the single and binary CPA solutions), we obtain an 
overall unweighted R2 of only 0.124. Among the binary CPA mixtures, 
Equation (3) matches the data for DMSO + formamide the best (Fig. 2A), 
but even in this case toxicity is overestimated at low concentrations and 
slightly underestimated at the highest concentration. However, this CPA 
mixture is the only one that yields reasonable agreement with the pre
dictions of Equation (3). For glycerol + formamide, toxicity is signifi
cantly overestimated over the entire range of concentrations tested 
(Fig. 2B). This is most likely due to the synergistic relationship that we 
highlighted in our previous work [38]. For 8/10 binary mixtures, 
Equation (3) significantly underestimated toxicity, as illustrated in 
Fig. 2C for the propylene glycol + ethylene glycol mixture. As such, a 
different modeling strategy needs to be implemented. 

2.3. Non-specific toxicity 

The specific toxicity model leads to gross underestimation of the 
toxicity rate of most binary CPA mixtures at higher concentrations (e.g., 
Fig. 2C), which suggests that another mechanism of toxicity pre
dominates under these conditions. To account for this, we define a non- 
specific toxicity mechanism that is dependent on the total concentration 
of CPA(s) in the mixture. Fahy et al. [17] describes non-specific toxicity 
as a reduction in the stabilizing effect of water on biomolecules as water 
is replaced by CPAs and as CPAs change the partitioning of water. As 
such, any CPA should show non-specific toxicity, and the overall effect 
should be dependent on the total amount of CPA in the solution. To 
account for non-specific toxicity, we propose the following model form: 

k =

(
∑n

i=1
βiMi

)αn

, (4)  

where β is a CPA-dependent coefficient and αn is a constant reaction 
order to describe non-specific toxicity of all CPA solutions. The coeffi

cient β accounts for potential differences in the tendency of each CPA to 
alter the stabilizing effect of water. 

To examine whether non-specific toxicity alone could explain the 
observed toxicity trends, we fit Equation (4) to our data set for single 
CPA solutions and binary CPA mixtures. To fit Equation (4), we per
formed nonlinear regression in MATLAB using the “lsqcurvefit” func
tion, and we accounted for the possibility of local minima by performing 
a grid search using a wide range of initial parameter guesses. In Fig. 3, 
we examine how well Equation (4) fits our data set for some example 
cases. 

Equation (4) provides a better fit to more CPA mixture types than 
does Equation (3), and we greatly improve the overall unweighted R2 to 
0.916. Overall, 8/15 fits are reasonable (defined as an unweighted R2 ≥

0.7) for Equation (4) (Fig. S2) compared to 6/15 for Equation (3) 
(Fig. S1). As an aside, we are only providing R2 to give some sense of the 
goodness of fit for the models presented, as the R2 range for the different 
models reported here is large. We are not using R2 as a metric for 
nonlinear model determination, as R2 is generally inadequate for such a 
purpose [36]. In particular, R2 is biased in favor of selection of models 
with more parameters. The Akaike Information Criterion bias-corrected 
for small sample sizes (AICc) and the Bayesian Information Criterion 
(BIC) do a better job of accounting for the effects of increasing the 
number of model parameters and are considered better metrics for 
nonlinear model selection [36]. These metrics also point to the superi
ority of Equation (4) over Equation (3), with an AICc of −56 for Equation 
(3) and −234 for Equation (4) (i.e., the lowest value is sought). The same 
can be said for the BIC, with a value of −38 for Equation (3) and −221 
for Equation (4). 

For Equation (4), though, we still have some cases of poor fits as 
shown in Fig. 3B and C. We again see the overestimation of toxicity in 
some cases, especially with the synergistic interaction of glycerol +

formamide (Fig. 3B). Underestimation of toxicity was also observed in a 
few cases. In fact, the worst case for underestimating toxicity is for 
formamide solution (Fig. 3C), which exhibits more toxicity at low and 
intermediate concentrations than the other CPAs. This low- 
concentration toxicity could be because of the specific toxicity of 
formamide, as reported by Fahy [15]. 

Given some successes with both the specific and non-specific model 
forms, the next logical modeling iteration would be to consider both 
forms combined, which is shown below: 

k =
∑n

i=1
ζiM

αi
i +

(
∑n

i=1
βiMi

)αn

. (5) 

However, Equation (5) fails to provide a substantial leap in the 
ability to make accurate predictions (yielding 7/15 reasonable fits), 
even with an increase in the overall unweighted R2 to 0.978 (Fig. S3), 
and both the AICc and BIC indicating the superiority of Equation (5) with 

Fig. 2. The toxicity rates of three binary CPA mixtures obtained in our previous work [38] plotted alongside the predicted toxicity rates using Equation 3. (A) CPA 
mixture with the best agreement between the data and the toxicity rate prediction. (B) CPA mixture exhibiting a gross overestimate of the toxicity rate. (C) CPA 
mixture exhibiting a gross underestimate of the toxicity rate. The error bars represent the 95% confidence intervals of the experimental toxicity rates. 
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values of −300 and −274, respectively. One of the main systematic 
problems encountered with Equations (3)–(5) is the overestimation of 
toxicity for the known synergistic mixture of glycerol + formamide. This 
suggests that there is some phenomenon that these equations do not 
capture that is readily apparent for the glycerol + formamide mixture 
but may also be important for other CPA mixtures as well. 

2.4. A new modeling approach 

2.4.1. Full toxicity model 
To account for synergistic effects such as those observed in glycerol 

+ formamide mixtures, we consider the formation of CPA complexes and 
the resulting effect on specific and non-specific toxicity. Interactions in 
solution and their subsequent influence on mixing phenomena are of 
interest for many different fields. For example, mixtures of glycerol +
formamide and DMSO + formamide have been shown to form com
plexes in solution (non-negligible intermolecular interactions), which in 
turn creates a departure from ideal mixing, resulting in an excess 
quantity of both physical and thermodynamic properties of solution [32, 
34]. 

To incorporate interactions in our model formalism, we hypothe
sized that any two CPAs in solution have the capacity to form a binary 
complex, with some CPA pairs having a greater affinity for complex 
formation over others. To simplify this representation, we only consid
ered the possibility of 1:1 binary complexes forming in solution. Also, we 
considered the complexes to always be in equilibrium with free solution 
CPAs. As such, a single equilibrium constant governs the distribution 
between CPAs in free solution and those in complexes. To incorporate 
this idea in Equation (5), we allowed for not only free solution CPAs to 
exhibit specific and non-specific toxicity but the complexes as well. This 
results in the following proposed full toxicity model with the full deri
vation presented in Supplementary Material: 

k =
∑n

i=1
ζiMisol

αi +
∑n−1

i=1

∑n

j=i+1
ζijM

αij
ij +

(
∑n

i=1
βiMisol +

∑n−1

i=1

∑n

j=i+1
βijMij

)αn

,

(6)     

Misol = MiT −
∑n

j=1,j∕=i

Mij, (8)  

Mij = Mji, (9)  

where the second index j has been introduced to account for complexes, 
Kij is the equilibrium constant between CPAs i and j, and the added 
subscripts of sol and T represent the concentration in free solution and 
the total concentration (free + complex), respectively. 

2.4.2. Parameter determination 
The full toxicity model (Eqs. (6)–(9)) was fit to the data for single 

CPA solutions and binary mixtures, resulting in the best-fit model pre
dictions shown in Fig. 4 (solid lines). The full toxicity model is in good 
agreement with the data, yielding an unweighted overall R2 > 0.99. 
However, we obtain an AICc of 154 and a BIC of −175 due to the penalty 
incurred by the large number of parameters, indicating the inferiority of 
the full toxicity model based solely on these metrics. However, the full 
toxicity model incorporates mechanistic principles not incorporated in 
previous model iterations, and as shown in Fig. 4, the best-fit full toxicity 
model (solid lines) provides reasonable agreement with the data for all 
of the single CPA solutions and binary CPA mixtures (something not 
accomplished with Eqs. (3)–(5)), yielding an unweighted R2 ≥ 0.7 in all 
cases. 

As can be seen in Equations (6)–(9), we have introduced many new 
parameters with our new model formalism. Specifically, we have 56 
parameters and 71 data points, and we have no prior knowledge of the 
parameter values. The theory of Sloppy Models [6,7,22,37] was specif
ically developed to try to understand parameter and prediction uncer
tainty in nonlinear models with many poorly determined degrees of 
freedom. Sloppy Models often have individual parameters that can vary 
by orders of magnitude and still maintain a good fit to the data, since a 
change in one parameter can be compensated for by adjusting other 
parameters in the model. Sloppy Model analysis uses a combination of 
Bayesian methods and information geometry to understand and quantify 
parameter and prediction uncertainty, and we turn to this analysis in 

Fig. 3. The toxicity rates of three CPA mixture types obtained in our previous work [38] plotted alongside the predicted toxicity rates using Equation 4. (A) CPA 
solution with the best agreement between the data and the toxicity rate prediction. (B) CPA solution with a gross overestimate of the toxicity rate. (C) CPA solution 
with a gross underestimate of the toxicity rate. The error bars represent the 95% confidence intervals of the experimental toxicity rates. 

Mij =

(
KijMiT + KijMjT + 1

)
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

K2
ijM

2
iT + K2

ijM
2
jT − 2K2

ijMiT MjT + 2KijMiT + 2KijMjT + 1
√

2Kij
, (7)   
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Fig. 4. Toxicity rate fits for all single and binary CPA cases. Predictions are shown for the full toxicity model (Eqs. (6)–(9)) using the best-fit model parameters (solid 
lines), as well as for a reduced version of the model that omits some terms (dashed lines). See text for details on the reduced model. For each individual CPA case, the 
unweighted R2 is given. CPAs are abbreviated as follows: glycerol (Gly), propylene glycol (PG), ethylene glycol (EG), and formamide (FA). Error bars represent the 
95% confidence intervals of the experimental toxicity rates. 
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order to explore the parameter space of the full toxicity model. 
The geometry of Sloppy Model parameter spaces leads to large vol

umes of parameter space (and large ranges in parameters) generating 
near-equivalent fits. In order to quantify this parameter uncertainty and 
propagate it to the model’s predictions (i.e., to place error bars on both 
model parameters and model output/predictions), we used a Markov 
Chain Monte Carlo sampling strategy as described previously [6] to 
obtain an ensemble of parameter sets consistent with the toxicity data. 
We used a vague (Jeffreys) prior and manipulated step sizes to keep the 
acceptance ratio near 50–60%. After thinning the resulting parameter 
ensemble to keep only independent samples, we were left with an 
ensemble of 10,492 parameter samples. To assess which toxicity 
mechanisms are most critical for agreement between predictions and the 
data, we examined this parameter ensemble. In particular, we calculated 
posterior mean parameter values and 95% posterior confidence in
tervals. The resulting ensemble means and confidence intervals are 
presented in Fig. 5, alongside the best-fit parameter values (i.e., the 
specific combination of parameter values that yielded the lowest cost). 
In many cases, the confidence intervals are large (as expected), indi
cating that a wide range of parameter values can generate predictions 
that match the data. However, in a few cases, the confidence intervals 
are narrow, which indicates that only a narrow range of values for that 
parameter will yield predictions that match the data. 

As shown in Fig. 5C, narrow confidence intervals were observed for 
parameters associated with the non-specific toxicity of individual CPAs, 
highlighting the importance of these non-specific toxicity terms in the 
model. In particular, the non-specific toxicity coefficients βi all had 
lower confidence interval bounds that were much greater than zero, and 
the non-specific toxicity exponent αn had a particularly narrow confi
dence interval range of 8.14–10.64. Comparison of the non-specific 
toxicity coefficients between CPAs is also illustrative. The βi value for 
propylene glycol is substantially higher than the βi values for the other 

CPAs, and the error bars do not overlap. This suggests that the non- 
specific toxicity of propylene glycol is particularly pronounced. 

The ensemble means of the specific toxicity parameters are shown in 
Fig. 5A and B. In most cases, the specific toxicity coefficients (ζi and ζij) 
had low ensemble means, suggesting that specific toxicity may be 
negligible for many CPA mixtures. A notable exception is formamide, 
which had an ensemble mean ζi at least 3x higher than any of the other 
CPAs, as well as a lower confidence interval bound that was significantly 
greater than zero. Formamide also exhibited particularly narrow error 
bars on the specific toxicity exponent αi. Taken together, this suggests 
that formamide has relatively high specific toxicity. 

Fig. 5D shows the ensemble mean equilibrium constants for complex 
formation. The most notable mixture is glycerol + formamide, which 
has the highest ensemble mean Kij, as well as the highest lower bound of 
the confidence interval. This indicates that modeling complex formation 
between glycerol and formamide is critical for obtaining a good match 
between the predictions and the data. To make sense out of this, it is 
useful to examine the values of the specific and non-specific toxicity 
coefficients for the glycerol + formamide complex. In both cases, the 
toxicity coefficients for the complex are substantially smaller than the 
toxicity coefficients for free formamide. This demonstrates that complex 
formation is expected to decrease the toxicity in glycerol + formamide 
mixtures, which is consistent with the toxicity neutralization effects 
observed in our previous study [38]. 

While the full toxicity model has 56 parameters, it is likely that not 
all of these parameters are needed to adequately describe the data, and 
we must also consider the parameter cost incurred in such metrics as the 
AICc and BIC. To examine whether reasonable predictions could be 
obtained using fewer parameters, we eliminated several parameters 
from the model based on inspection of the results in Fig. 5. In particular, 
we eliminated the terms for the specific toxicity of propylene glycol, 
ethylene glycol, and all of the CPA complexes, as well as the terms for 

Fig. 5. Parameters for the full toxicity model (Eqs. (6)–(9)), showing ensemble means with 95% confidence intervals as well as best-fit parameter values. Panels A 
and B show specific toxicity parameters, panel C shows non-specific toxicity parameters, and panel D shows the equilibrium constants for CPA complex formation. 
The non-specific toxicity exponent αn is not shown; it has an ensemble mean of 9.28 (+1.36 for the upper bound and −1.14 for the lower bound) and a best-fit value 
of 9.66. Note that several upper bounds of the 95% confidence intervals are out of the range of the graphs. Two parameter values are also out of range (βij for Gly +
PG and PG + FA). For a comprehensive list of the parameters and 95% confidence intervals see Tables S1 and S2. CPAs are abbreviated as follows: glycerol (Gly), 
propylene glycol (PG), ethylene glycol (EG), and formamide (FA). 
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the non-specific toxicity of complexes of glycerol + propylene glycol, 
DMSO + ethylene glycol, and propylene glycol + formamide. These non- 
specific toxicity terms were eliminated by setting the corresponding Kij 
values to zero. The resulting reduced model has 26 parameters, 30 fewer 
than the original full toxicity model. This reduced model was fit to the 
toxicity data, yielding good agreement with the data for the best-fit 
parameters, as shown in Fig. 4 (dashed lines). The overall unweighted 
R2 was > 0.99, and 14/15 CPA solutions had an unweighted R2 ≥ 0.7 
(only the results for glycerol were lower with a value of 0.66). Also, we 
obtained a value of −330 for the AICc and −303 for the BIC, which are 
both superior when comparing to the lowest values obtained thus far 
through Equation (5). This demonstrates that we can greatly reduce the 
number of parameters (by more than a factor of two compared to the full 
model) and still maintain good agreement with the data, suggesting that 
perhaps even more parameters could be eliminated in future model 
applications. All parameters from both the full and reduced models can 
be found in Tables S1 and S2. 

2.4.3. Model validation 
Both the full and reduced forms of our proposed toxicity model fit 

our single and binary CPA solution data well. However, for vitrification 
solution composition optimization, we seek the ability to predict the 
toxicity of solutions outside of available data. Our proposed model has 
this capability, with the only requirement being both single and binary 
CPA solution training data sets. To test the capability of our model 
outside of our training data sets, we compared ternary solution pre
dictions with obtained data. Specifically, from our previous work [38], 
we collected toxicity data for all ten ternary combinations of the five 
single CPAs we tested. As with our binary CPA mixture experiments, we 
used equi-molal mixtures but only investigated one total CPA concen
tration, that of 7 molal. In Fig. 6, we show our ternary data alongside our 
toxicity model predictions using the best-fit parameters. In Fig. S4, we 
show ensemble predictions (mean and 95% posterior confidence in
tervals) for the ternary data. The overall trends are similar in both 
figures. 

From Fig. 6, we see reasonable agreement between the validation 
data and the toxicity model predictions. Quantitatively, we obtain an 
unweighted R2 of 0.553 for the full model and 0.529 for the reduced 
model. For the AICc and BIC metrics, considering only the validation 
data, the reduced model is again superior with an AICc of −95 and a BIC 
of −4, compared to an AICc of −89 and a BIC of 64 for the full model. We 
also can quantify the relative error between the data and predictions, 
with the full model resulting in an average relative error of 42.0% and a 
maximum relative error of 111.0%, and the reduced model resulting in 
an average relative error of 40.2% and a maximum relative error of 

127.0%. Overall, most predictions fall within a factor of two of the data, 
while also following the general low to high toxicity ordering trend 
presented in Fig. 6. The predictions of Fig. 6 give credence to the idea 
that binary interactions and general binary solution effects dominate in 
multi-CPA solutions, highlighting the potential for estimating the 
toxicity of any CPA solution based on toxicity data for only single and 
binary CPA solutions. Overall, the predictions in Fig. 6 give us confi
dence that our modeling approach is a reasonable foundation for opti
mization of vitrification solution composition. 

3. Model application: vitrification solution composition 

A key challenge in the design of vitrification procedures is identifi
cation of a non-toxic (or minimally toxic) CPA mixture that will vitrify 
and remain in a glassy state during cooling and warming. Given that we 
can describe the toxicity rate of any solution comprised of the five CPAs 
we have investigated, we only need to pair our toxicity rate model with a 
model that can predict vitrification/devitrification to identify promising 
solution compositions. To optimize solution compositions for vitrifica
tion, we adopted such a model from Weiss et al. [39]. Their work pro
posed a statistical model for predicting the probability of vitrification 
during cooling and the probability of reaching a given level of glass 
stability during the rewarming process for the five CPAs we investigated. 
More recently, this model was used in Shardt et al. [33] to refine 
articular cartilage vitrification protocols. 

By combining the Weiss et al. [39] model with our toxicity rate 
model, we can predict the toxicity of any potential solution at a given 
probability threshold of vitrification and/or devitrification. To identify 
promising solution compositions for vitrification, we minimized the 
value of the toxicity rate under several vitrification/devitrification 
constraints by varying the concentrations of each of the five CPAs that 
could be in solution. Specifically, we investigated the following con
straints: 50% probability of vitrification, 50% probability of complete 
devitrification (the lowest glass stability level of Weiss et al. [39] and 
adopted as the threshold of Shardt et al. [33]), and 50% probability of no 
devitrification (the highest glass stability level of Weiss et al. [39]). To 
optimize solution composition, we used the “fmincon” function in 
MATLAB and minimized both our full and reduced toxicity models 
under the 3 different constraints for each possible combination of CPAs 
in solution (i.e., 31 total ranging from single solution to quinary mixture 
combinations). For each possible combination, we assigned 13 different 
initial concentration guesses for each CPA, ranging from 0 to 12 molal in 
1 molal increments. For a single toxicity model being minimized under a 
single constraint, there are: 13 “fmincon” function calls for each of the 5 
single CPA solutions, 132 “fmincon” function calls for each of the 10 
binary CPA mixtures, 133 “fmincon” function calls for each of the 10 
ternary CPA mixtures, 134 “fmincon” function calls for each of the 5 
quaternary CPA mixtures, and 135 “fmincon” function calls for the 1 
quinary CPA mixture. Out of all the “fmincon” function calls (over 500, 
000), the optimal solution composition was considered to be the one that 
returned the lowest toxicity rate. In Fig. 7, we show these optimization 
results. We also determined optimal solution compositions excluding 
formamide, and this is also shown in Fig. 7 for comparative purposes. 

From Fig. 7, we can see that the optimized solution compositions and 
toxicity rates are similar for the vitrification and devitrification 1 con
straints. For the devitrification 4 constraint (the most stringent 
constraint), the predicted toxicity rate is substantially higher. Also, 
when comparing the full and reduced models, we see similar optimized 
compositions and toxicity rate predictions. When formamide is included 
as a possible solution constituent, the resulting optimized solution 
composition is a mixture of glycerol, DMSO, and formamide. This so
lution composition takes advantage of the toxicity neutralization effects 
that have been observed in mixtures of DMSO + formamide [15,18] and 
in mixtures of glycerol + formamide [38]. When formamide is not 
included as a possible constituent, the predicted toxicity rate is higher. 
For the vitrification and devitrification 1 constraints, the optimized 

Fig. 6. Toxicity rate data for 7 molal (total concentration) equi-molal ternary 
CPA mixtures compared against both full and reduced toxicity model pre
dictions using the best-fit parameters. CPAs are abbreviated as follows: glycerol 
(Gly), propylene glycol (PG), ethylene glycol (EG), and formamide (FA). Error 
bars represent the 95% confidence intervals of the experimental toxicity rates. 
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solution composition is a mixture of ethylene glycol and glycerol, 
whereas for the devitrification 4 constraint, the optimized composition 
is a mixture of ethylene glycol and propylene glycol. 

Overall, given that Shardt et al. [33] used the devitrification 1 
constraint to design successful methods for vitrification of articular 
cartilage, we would recommend using this constraint. For the full model, 
the resulting optimized composition is 7.39 molal glycerol, 1.41 molal 
DMSO, and 2.42 molal formamide. The reduced model yielded a very 
similar composition (7.44 molal glycerol, 1.50 molal DMSO, and 2.06 
molal formamide). Importantly, Fig. 7 demonstrates the potential to 
mathematically predict the concentration of each constituent in solution 
rather than experimentally iterating through each potential 
composition. 

4. Conclusions and future directions 

In this work, we developed a multi-CPA toxicity model based on the 
large data set from our previous work [38]. The model accounts for 
specific toxicity and non-specific toxicity, as well as modulation of these 
toxicity mechanisms due to intermolecular interactions between the 
CPAs in solution. To train the model we used toxicity rate data for 15 
different CPA solutions (comprising 5 single and 10 binary solutions), 
each over a range of CPA concentrations. The model fit the training data 
well for all 15 CPA solutions, and extension of the model to the ternary 
solution validation data yielded predictions that were in reasonable 
agreement with the data. To understand the key parameters of the 
model, we used Sloppy Model analysis, which revealed that the model 
terms for non-specific toxicity of individual CPAs, specific toxicity of 
formamide, and complex formation between formamide and glycerol 

were particularly important for obtaining good agreement with the data. 
This analysis also gave us a basis for reparametrizing the model by 
eliminating over half of the parameters, resulting in a reduced model 
that still matched the data well. To examine the potential for using the 
toxicity model for designing vitrification solutions, we combined it with 
a published vitrification/devitrification model [39], enabling prediction 
of minimally toxic CPA mixtures for vitrification. The resulting opti
mized mixture contains formamide, glycerol, and DMSO; this unique 
mixture composition has the potential to reduce toxicity and should be 
tested in future studies. Of course, this mixture composition prediction is 
based on data for bovine pulmonary artery endothelial cells, and it may 
not be optimal for all cell types; however, the promising toxicity 
neutralization effect of DMSO + formamide, which our optimal 
composition leverages, has been shown across different cell types from 
Fahy and colleagues [15,18] and our previous work [38]. Future studies 
predicting optimal mixture compositions for other cell types would be 
useful to look for general composition trends. 

Another future direction would be to apply the multi-CPA toxicity 
model for optimization of the full vitrification process, including CPA 
addition and removal. In previous studies, we presented a toxicity cost 
function approach for designing minimally toxic CPA equilibration 
methods [3,4,8,9], but this approach has been limited to single CPA 
solutions. The new toxicity model will enable expansion of the cost 
function approach to multi-CPA solutions, enabling optimization of not 
only the CPA addition and removal process, but also the composition of 
the CPA mixture. To realize the full potential of this approach it will be 
necessary to also characterize the effects of temperature on toxicity and 
incorporate this into the optimization framework. Experiments are 
currently underway to quantify the temperature dependence of CPA 

Fig. 7. The least toxic vitrification solution compositions predicted using three vitrification/devitrification constraints presented by Weiss et al. [39]: 50% prob
ability of vitrification (Vit), 50% probability of complete devitrification (Devit 1), and 50% probability of no devitrification (Devit 4). Panels A and B include 
formamide as a potential solution constituent, while Panels C and D do not. Panels A and C use the full toxicity model with the best-fit parameters, and Panels B and D 
use the reduced toxicity model with the best-fit parameters. The predicted toxicity rate (dotted line) of each solution is also shown on the secondary vertical axis. 
CPAs are abbreviated as follows: glycerol (Gly), propylene glycol (PG), ethylene glycol (EG), and formamide (FA). 
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toxicity for various CPA mixtures. It would also be useful in future 
studies to quantify the toxicity of other CPAs (including nonpenetrating 
CPAs such as trehalose), and to examine the effects of CPA carrier so
lution on toxicity. 
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