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ABSTRACT

Vitrification is a promising cryopreservation technique for complex specimens such as tissues and organs.
However, it is challenging to identify mixtures of cryoprotectants (CPAs) that prevent ice formation without
exerting excessive toxicity. In this work, we developed a multi-CPA toxicity model that predicts the toxicity
kinetics of mixtures containing five of the most common CPAs used in the field (glycerol, dimethyl sulfoxide
(DMSO), propylene glycol, ethylene glycol, and formamide). The model accounts for specific toxicity, non-
specific toxicity, and interactions between CPAs. The proposed model shows reasonable agreement with
training data for single and binary CPA solutions, as well as ternary CPA solution validation data. Sloppy model
analysis was used to examine the model parameters that were most important for predictions, providing clues
about mechanisms of toxicity. This analysis revealed that the model terms for non-specific toxicity were
particularly important, especially the non-specific toxicity of propylene glycol, as well as model terms for specific
toxicity of formamide and interactions between formamide and glycerol. To demonstrate the potential for model-
based design of vitrification methods, we paired the multi-CPA toxicity model with a published vitrification/
devitrification model to identify vitrifiable CPA mixtures that are predicted to have minimal toxicity. The
resulting optimized vitrification solution composition was a mixture of 7.4 molal glycerol, 1.4 molal DMSO, and
2.4 molal formamide. This demonstrates the potential for mathematical optimization of vitrification solution
composition and sets the stage for future studies to optimize the complete vitrification process, including CPA
mixture composition and CPA addition and removal methods.

1. Introduction

However, the elimination of extracellular ice requires high concentra-
tions of cryoprotectants (CPAs), which can cause chemical toxicity [9,
13,14,19,26]. Thus, a key challenge in the design of vitrification
methods is identifying minimally toxic CPA mixtures and methods for

Cryopreservation has had a significant impact in many different
fields, including animal and human assisted reproduction [23,30,31] by
enabling storage of gametes and embryos, and general scientific
research by enabling banking of thousands of cell types [2,10,28]. While
complex specimens such as tissues and organs are more challenging to
cryopreserve [16,19], successful cryopreservation of these specimens
would also have a tremendous impact by making tissue and organ banks
a reality [16,21,27].

For complex specimens like tissues and organs, vitrification methods
have been shown to hold particular promise [20,25,29,35], as the
damage associated with extracellular ice formation is eliminated.

adding and removing these mixtures [1,17,19,24].

There are many variables that influence toxicity, including: CPA
mixture type, CPA concentration, temperature, and exposure time.
Given the many combinations of these variables, and the fact that CPA
mixture type is essentially unbounded in regard to possibilities (i.e., any
chemical(s) or combinations thereof could be a CPA mixture type), the
potential protocol landscape where these variables are manipulated is
incredibly vast. It is not feasible to test all potential combinations
experimentally. Thus, there is a need for a mathematical model of
toxicity that would enable in silico exploration of the protocol landscape.
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Abbreviations

CPAs cryoprotectants
DMSO  dimethyl sulfoxide
EG ethylene glycol
FA formamide

Gly glycerol

PG propylene glycol

While there have been some previous efforts to develop toxicity models
[1,13,17,24,26], a comprehensive toxicity model that can account for all
of the previously mentioned variables is not yet available, and most
attempts in the field to minimize toxicity can be classified as an
empirically driven trial and error approach.

The molecular mechanisms of CPA toxicity are not very well un-
derstood, but may be related to destabilization of cell membranes,
protein denaturation, oxidative damage, disruption of mitochondrial
function or other factors [5,11]. CPA toxicity can be specific or
non-specific [17]. Specific toxicity refers to direct effects of a CPA by a
mechanism specific to that CPA. All CPAs are thought to exert toxicity
non-specifically, due to their overall effects on solution properties that
alter the hydrogen bonding around proteins and other biomolecules.

The objective of this work was to develop a mathematical model for
the toxicity of CPA mixtures that could be used for the design of less
toxic vitrification methods. As a foundation for this model, we used the
large CPA toxicity data set that we recently generated using high
throughput experiments on cultured bovine pulmonary artery endo-
thelial cells [38]. Specifically, we propose a comprehensive toxicity
model that spans five of the most common CPAs used in the field and any
combination thereof. The model breaks the toxicity rate into two main
contributions that have been discussed within cryobiology—specific and
non-specific toxicity [1,17]. Furthermore, the model accounts for
intermolecular interactions resulting in CPA complex formation and
concomittant modulation of both the specific and non-specific toxicity
contributions. The resulting model describes a wide range of CPA mix-
tures, offering clues about mechanisms of CPA toxicity and opening new
possibilities for design of less toxic vitrification methods.

2. Model formalism
2.1. General overview

In our previous work [38], we measured the viability of adherent
bovine pulmonary artery endothelial cells after exposure to various CPA
solutions comprised of five of the most common CPAs (glycerol, DMSO,
propylene glycol, ethylene glycol, and formamide). In that work, we
leveraged the power of automated liquid handling to increase the speed,
robustness, and accuracy of our experiments, enabling the creation of a
large CPA toxicity data repository. This data set includes 81 estimates of
the toxicity rate for CPA solutions containing one, two, or three CPAs at
concentrations ranging from 1 to 10 molal. To determine each toxicity
rate, we used four different CPA exposure times, each with 5-6 repli-
cates, resulting in more than 1500 cell viability data points. To complete
these experiments required over 12,000 pipetting steps, highlighting the
importance of automating the liquid handling process. In this study, we
use this large data set to drive the development of novel mathematical
models of CPA toxicity.

To quantify toxicity in our previous work, we used a first-order ki-
netic model to describe the decrease in the number of viable cells N over
time t [3,8,9,12,26,38]:

dN

— = —kN 1
7 ; @
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where k is the CPA toxicity rate. In particular, we estimated the toxicity
rate of each CPA mixture type and concentration tested. In this work, we
seek to identify a functional form that can predict the toxicity rate as a
function of CPA mixture type and concentration. We begin by consid-
ering models describing specific toxicity and non-specific toxicity on
their own, then we examine a more comprehensive model that accounts
for specific toxicity, non-specific toxicity, and formation of CPA com-
plexes. The model considers only binary CPA complexes, and we hy-
pothesize that binary interactions dominate compared to higher order
interactions. Thus, the model parameters can be determined using CPA
mixtures containing up to two CPAs, and the resulting parameters can
then be used to predict the toxicity of more complicated mixtures con-
taining more than two CPAs. In this paper, we refer to physiological
buffer containing a single CPA as a single CPA solution, and mixtures
with two or three CPAs are referred to as binary or ternary mixtures,
respectively. We used toxicity data for single CPA solutions and binary
CPA mixtures for model training (71 data points), and toxicity data for
ternary CPA mixtures for model validation (10 data points).

2.2. Specific toxicity

We begin by describing the toxicity rate dependence through a
power law in the CPA concentration, as we have done in the past for
solutions containing a single CPA [3,8,9]:

k=M (2)
where M is the CPA molality, { and a are constants, and subscript i
represents a particular CPA. This form is much like a chemical reaction
where ¢ can be thought of as the rate constant and « can be thought of as
the order of the reaction. As such, for each CPA, we assume that the
reaction network leading to cell death is only governed by the CPA
concentration and the two parameters ¢ and a. For this work, we
describe this toxicity as specific toxicity, in that each CPA leads to cell
death through its own independent mechanism.

We applied Equation (2) to the five single CPAs that were tested in
our previous study [38], resulting in the fits shown in Fig. 1. To fit the
parameters of Equation (2), we performed nonlinear regression in
MATLAB (R2020b; The MathWorks, Natick, MA) using the “fitnlm”
function.

As Fig. 1 shows, the fit of Equation (2) for single CPA solutions is
excellent, with an unweighted R? > 0.99 for each CPA. However, we
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Fig. 1. The toxicity rates of the five single CPAs tested from our previous work

[38], with the error bars representing the 95% confidence intervals of the
experimental toxicity rates. The curves represent fits to Equation (2).
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want to describe multi-CPA toxicity kinetics, because vitrification so-
lutions typically contain multiple CPAs [19,25]. To describe the toxicity
of CPA mixtures, we can add versions of Equation (2) together for each
CPA, taking a purely additive approach to toxicity, resulting in:

n

k=Y M,

i=1

3)

where n is the total number of CPAs in the mixture. The model form of
Equation (3) assumes that each CPA has its own independent reaction
network leading to cell death (i.e., specific toxicity) and there are no
interactions between the CPAs. In Fig. 2, we examine how well Equation
(3) fits our binary CPA mixture data for a few example cases.

As shown in Fig. 2 and Fig. S1, Equation (3) does a poor job of
predicting the toxicity rates of binary CPA mixtures. For the overall data
set (including both the single and binary CPA solutions), we obtain an
overall unweighted R? of only 0.124. Among the binary CPA mixtures,
Equation (3) matches the data for DMSO + formamide the best (Fig. 2A),
but even in this case toxicity is overestimated at low concentrations and
slightly underestimated at the highest concentration. However, this CPA
mixture is the only one that yields reasonable agreement with the pre-
dictions of Equation (3). For glycerol + formamide, toxicity is signifi-
cantly overestimated over the entire range of concentrations tested
(Fig. 2B). This is most likely due to the synergistic relationship that we
highlighted in our previous work [38]. For 8/10 binary mixtures,
Equation (3) significantly underestimated toxicity, as illustrated in
Fig. 2C for the propylene glycol + ethylene glycol mixture. As such, a
different modeling strategy needs to be implemented.

2.3. Non-specific toxicity

The specific toxicity model leads to gross underestimation of the
toxicity rate of most binary CPA mixtures at higher concentrations (e.g.,
Fig. 2C), which suggests that another mechanism of toxicity pre-
dominates under these conditions. To account for this, we define a non-
specific toxicity mechanism that is dependent on the total concentration
of CPA(s) in the mixture. Fahy et al. [17] describes non-specific toxicity
as a reduction in the stabilizing effect of water on biomolecules as water
is replaced by CPAs and as CPAs change the partitioning of water. As
such, any CPA should show non-specific toxicity, and the overall effect
should be dependent on the total amount of CPA in the solution. To
account for non-specific toxicity, we propose the following model form:

k= (ZﬁM>

where f is a CPA-dependent coefficient and a, is a constant reaction
order to describe non-specific toxicity of all CPA solutions. The coeffi-

G

(A) DMSO + formamide

(B) glycerol + formamide
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cient  accounts for potential differences in the tendency of each CPA to
alter the stabilizing effect of water.

To examine whether non-specific toxicity alone could explain the
observed toxicity trends, we fit Equation (4) to our data set for single
CPA solutions and binary CPA mixtures. To fit Equation (4), we per-
formed nonlinear regression in MATLAB using the “Isqcurvefit” func-
tion, and we accounted for the possibility of local minima by performing
a grid search using a wide range of initial parameter guesses. In Fig. 3,
we examine how well Equation (4) fits our data set for some example
cases.

Equation (4) provides a better fit to more CPA mixture types than
does Equation (3), and we greatly improve the overall unweighted R? to
0.916. Overall, 8/15 fits are reasonable (defined as an unweighted RZ >
0.7) for Equation (4) (Fig. S2) compared to 6/15 for Equation (3)
(Fig. S1). As an aside, we are only providing R? to give some sense of the
goodness of fit for the models presented, as the R? range for the different
models reported here is large. We are not using R? as a metric for
nonlinear model determination, as R? is generally inadequate for such a
purpose [36]. In particular, R? is biased in favor of selection of models
with more parameters. The Akaike Information Criterion bias-corrected
for small sample sizes (AIC.) and the Bayesian Information Criterion
(BIC) do a better job of accounting for the effects of increasing the
number of model parameters and are considered better metrics for
nonlinear model selection [36]. These metrics also point to the superi-
ority of Equation (4) over Equation (3), with an AIC, of —56 for Equation
(3) and —234 for Equation (4) (i.e., the lowest value is sought). The same
can be said for the BIC, with a value of —38 for Equation (3) and —221
for Equation (4).

For Equation (4), though, we still have some cases of poor fits as
shown in Fig. 3B and C. We again see the overestimation of toxicity in
some cases, especially with the synergistic interaction of glycerol +
formamide (Fig. 3B). Underestimation of toxicity was also observed in a
few cases. In fact, the worst case for underestimating toxicity is for
formamide solution (Fig. 3C), which exhibits more toxicity at low and
intermediate concentrations than the other CPAs. This low-
concentration toxicity could be because of the specific toxicity of
formamide, as reported by Fahy [15].

Given some successes with both the specific and non-specific model
forms, the next logical modeling iteration would be to consider both
forms combined, which is shown below:

n n n
k= ; LMY+ (Z}:ﬁ[M[> :

However, Equation (5) fails to provide a substantial leap in the
ability to make accurate predictions (yielding 7/15 reasonable fits),
even with an increase in the overall unweighted R? to 0.978 (Fig. S3),
and both the AIC. and BIC indicating the superiority of Equation (5) with

)
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Fig. 2. The toxicity rates of three binary CPA mixtures obtained in our previous work [38] plotted alongside the predicted toxicity rates using Equation 3. (A) CPA
mixture with the best agreement between the data and the toxicity rate prediction. (B) CPA mixture exhibiting a gross overestimate of the toxicity rate. (C) CPA
mixture exhibiting a gross underestimate of the toxicity rate. The error bars represent the 95% confidence intervals of the experimental toxicity rates.
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(A) DMSO + propylene

(B) glycerol + formamide
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Fig. 3. The toxicity rates of three CPA mixture types obtained in our previous work [38] plotted alongside the predicted toxicity rates using Equation 4. (A) CPA
solution with the best agreement between the data and the toxicity rate prediction. (B) CPA solution with a gross overestimate of the toxicity rate. (C) CPA solution
with a gross underestimate of the toxicity rate. The error bars represent the 95% confidence intervals of the experimental toxicity rates.

values of —300 and —274, respectively. One of the main systematic
problems encountered with Equations (3)-(5) is the overestimation of
toxicity for the known synergistic mixture of glycerol + formamide. This
suggests that there is some phenomenon that these equations do not
capture that is readily apparent for the glycerol + formamide mixture
but may also be important for other CPA mixtures as well.

2.4. A new modeling approach

2.4.1. Full toxicity model

To account for synergistic effects such as those observed in glycerol
+ formamide mixtures, we consider the formation of CPA complexes and
the resulting effect on specific and non-specific toxicity. Interactions in
solution and their subsequent influence on mixing phenomena are of
interest for many different fields. For example, mixtures of glycerol +
formamide and DMSO + formamide have been shown to form com-
plexes in solution (non-negligible intermolecular interactions), which in
turn creates a departure from ideal mixing, resulting in an excess
quantity of both physical and thermodynamic properties of solution [32,
34].

To incorporate interactions in our model formalism, we hypothe-
sized that any two CPAs in solution have the capacity to form a binary
complex, with some CPA pairs having a greater affinity for complex
formation over others. To simplify this representation, we only consid-
ered the possibility of 1:1 binary complexes forming in solution. Also, we
considered the complexes to always be in equilibrium with free solution
CPAs. As such, a single equilibrium constant governs the distribution
between CPAs in free solution and those in complexes. To incorporate
this idea in Equation (5), we allowed for not only free solution CPAs to
exhibit specific and non-specific toxicity but the complexes as well. This
results in the following proposed full toxicity model with the full deri-
vation presented in Supplementary Material:

n—1 n

n n-1 _n n n
k= DoEMLT DD D GM + (Zﬂi’”«e' 228 ’M’> ’
i=1 i=1

=1 j=itl i=1 j=itl

(6)

M, = M;, — Z My, (€)]

J=1j#
Mij = Mjh (9)

where the second index j has been introduced to account for complexes,
Kj is the equilibrium constant between CPAs i and j, and the added
subscripts of sol and T represent the concentration in free solution and
the total concentration (free + complex), respectively.

2.4.2. Parameter determination

The full toxicity model (Egs. (6)-(9)) was fit to the data for single
CPA solutions and binary mixtures, resulting in the best-fit model pre-
dictions shown in Fig. 4 (solid lines). The full toxicity model is in good
agreement with the data, yielding an unweighted overall R? > 0.99.
However, we obtain an AIC. of 154 and a BIC of —175 due to the penalty
incurred by the large number of parameters, indicating the inferiority of
the full toxicity model based solely on these metrics. However, the full
toxicity model incorporates mechanistic principles not incorporated in
previous model iterations, and as shown in Fig. 4, the best-fit full toxicity
model (solid lines) provides reasonable agreement with the data for all
of the single CPA solutions and binary CPA mixtures (something not
accomplished with Egs. (3)-(5)), yielding an unweighted R? > 0.7 in all
cases.

As can be seen in Equations (6)-(9), we have introduced many new
parameters with our new model formalism. Specifically, we have 56
parameters and 71 data points, and we have no prior knowledge of the
parameter values. The theory of Sloppy Models [6,7,22,37] was specif-
ically developed to try to understand parameter and prediction uncer-
tainty in nonlinear models with many poorly determined degrees of
freedom. Sloppy Models often have individual parameters that can vary
by orders of magnitude and still maintain a good fit to the data, since a
change in one parameter can be compensated for by adjusting other
parameters in the model. Sloppy Model analysis uses a combination of
Bayesian methods and information geometry to understand and quantify
parameter and prediction uncertainty, and we turn to this analysis in

M.

B (KiM, + KM, + 1) — \/Kijfr + KiM; — 2K M M, + 2KM;, + 2KM;, + 1

)

v 2K;;
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Fig. 4. Toxicity rate fits for all single and binary CPA cases. Predictions are shown for the full toxicity model (Egs. (6)-(9)) using the best-fit model parameters (solid
lines), as well as for a reduced version of the model that omits some terms (dashed lines). See text for details on the reduced model. For each individual CPA case, the
unweighted R? is given. CPAs are abbreviated as follows: glycerol (Gly), propylene glycol (PG), ethylene glycol (EG), and formamide (FA). Error bars represent the
95% confidence intervals of the experimental toxicity rates.
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order to explore the parameter space of the full toxicity model.

The geometry of Sloppy Model parameter spaces leads to large vol-
umes of parameter space (and large ranges in parameters) generating
near-equivalent fits. In order to quantify this parameter uncertainty and
propagate it to the model’s predictions (i.e., to place error bars on both
model parameters and model output/predictions), we used a Markov
Chain Monte Carlo sampling strategy as described previously [6] to
obtain an ensemble of parameter sets consistent with the toxicity data.
We used a vague (Jeffreys) prior and manipulated step sizes to keep the
acceptance ratio near 50-60%. After thinning the resulting parameter
ensemble to keep only independent samples, we were left with an
ensemble of 10,492 parameter samples. To assess which toxicity
mechanisms are most critical for agreement between predictions and the
data, we examined this parameter ensemble. In particular, we calculated
posterior mean parameter values and 95% posterior confidence in-
tervals. The resulting ensemble means and confidence intervals are
presented in Fig. 5, alongside the best-fit parameter values (i.e., the
specific combination of parameter values that yielded the lowest cost).
In many cases, the confidence intervals are large (as expected), indi-
cating that a wide range of parameter values can generate predictions
that match the data. However, in a few cases, the confidence intervals
are narrow, which indicates that only a narrow range of values for that
parameter will yield predictions that match the data.

As shown in Fig. 5C, narrow confidence intervals were observed for
parameters associated with the non-specific toxicity of individual CPAs,
highlighting the importance of these non-specific toxicity terms in the
model. In particular, the non-specific toxicity coefficients g; all had
lower confidence interval bounds that were much greater than zero, and
the non-specific toxicity exponent a, had a particularly narrow confi-
dence interval range of 8.14-10.64. Comparison of the non-specific
toxicity coefficients between CPAs is also illustrative. The f; value for
propylene glycol is substantially higher than the g; values for the other
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CPAs, and the error bars do not overlap. This suggests that the non-
specific toxicity of propylene glycol is particularly pronounced.

The ensemble means of the specific toxicity parameters are shown in
Fig. 5A and B. In most cases, the specific toxicity coefficients (¢; and ;)
had low ensemble means, suggesting that specific toxicity may be
negligible for many CPA mixtures. A notable exception is formamide,
which had an ensemble mean ¢; at least 3x higher than any of the other
CPAs, as well as a lower confidence interval bound that was significantly
greater than zero. Formamide also exhibited particularly narrow error
bars on the specific toxicity exponent ;. Taken together, this suggests
that formamide has relatively high specific toxicity.

Fig. 5D shows the ensemble mean equilibrium constants for complex
formation. The most notable mixture is glycerol + formamide, which
has the highest ensemble mean Kj;, as well as the highest lower bound of
the confidence interval. This indicates that modeling complex formation
between glycerol and formamide is critical for obtaining a good match
between the predictions and the data. To make sense out of this, it is
useful to examine the values of the specific and non-specific toxicity
coefficients for the glycerol + formamide complex. In both cases, the
toxicity coefficients for the complex are substantially smaller than the
toxicity coefficients for free formamide. This demonstrates that complex
formation is expected to decrease the toxicity in glycerol + formamide
mixtures, which is consistent with the toxicity neutralization effects
observed in our previous study [38].

While the full toxicity model has 56 parameters, it is likely that not
all of these parameters are needed to adequately describe the data, and
we must also consider the parameter cost incurred in such metrics as the
AIC. and BIC. To examine whether reasonable predictions could be
obtained using fewer parameters, we eliminated several parameters
from the model based on inspection of the results in Fig. 5. In particular,
we eliminated the terms for the specific toxicity of propylene glycol,
ethylene glycol, and all of the CPA complexes, as well as the terms for
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Fig. 5. Parameters for the full toxicity model (Egs. (6)-(9)), showing ensemble means with 95% confidence intervals as well as best-fit parameter values. Panels A
and B show specific toxicity parameters, panel C shows non-specific toxicity parameters, and panel D shows the equilibrium constants for CPA complex formation.
The non-specific toxicity exponent a, is not shown; it has an ensemble mean of 9.28 (+1.36 for the upper bound and —1.14 for the lower bound) and a best-fit value
of 9.66. Note that several upper bounds of the 95% confidence intervals are out of the range of the graphs. Two parameter values are also out of range (8; for Gly +

PG and PG + FA). For a comprehensive list of the parameters and 95% confidence intervals see Tables S1 and S2. CPAs are abbreviated as follows: glycerol (Gly),

propylene glycol (PG), ethylene glycol (EG), and formamide (FA).
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the non-specific toxicity of complexes of glycerol + propylene glycol,
DMSO + ethylene glycol, and propylene glycol + formamide. These non-
specific toxicity terms were eliminated by setting the corresponding Kj;
values to zero. The resulting reduced model has 26 parameters, 30 fewer
than the original full toxicity model. This reduced model was fit to the
toxicity data, yielding good agreement with the data for the best-fit
parameters, as shown in Fig. 4 (dashed lines). The overall unweighted
R? was > 0.99, and 14/15 CPA solutions had an unweighted R%2> 0.7
(only the results for glycerol were lower with a value of 0.66). Also, we
obtained a value of —330 for the AIC, and —303 for the BIC, which are
both superior when comparing to the lowest values obtained thus far
through Equation (5). This demonstrates that we can greatly reduce the
number of parameters (by more than a factor of two compared to the full
model) and still maintain good agreement with the data, suggesting that
perhaps even more parameters could be eliminated in future model
applications. All parameters from both the full and reduced models can
be found in Tables S1 and S2.

2.4.3. Model validation

Both the full and reduced forms of our proposed toxicity model fit
our single and binary CPA solution data well. However, for vitrification
solution composition optimization, we seek the ability to predict the
toxicity of solutions outside of available data. Our proposed model has
this capability, with the only requirement being both single and binary
CPA solution training data sets. To test the capability of our model
outside of our training data sets, we compared ternary solution pre-
dictions with obtained data. Specifically, from our previous work [38],
we collected toxicity data for all ten ternary combinations of the five
single CPAs we tested. As with our binary CPA mixture experiments, we
used equi-molal mixtures but only investigated one total CPA concen-
tration, that of 7 molal. In Fig. 6, we show our ternary data alongside our
toxicity model predictions using the best-fit parameters. In Fig. S4, we
show ensemble predictions (mean and 95% posterior confidence in-
tervals) for the ternary data. The overall trends are similar in both
figures.

From Fig. 6, we see reasonable agreement between the validation
data and the toxicity model predictions. Quantitatively, we obtain an
unweighted R? of 0.553 for the full model and 0.529 for the reduced
model. For the AIC, and BIC metrics, considering only the validation
data, the reduced model is again superior with an AIC. of —95 and a BIC
of —4, compared to an AIC. of —89 and a BIC of 64 for the full model. We
also can quantify the relative error between the data and predictions,
with the full model resulting in an average relative error of 42.0% and a
maximum relative error of 111.0%, and the reduced model resulting in
an average relative error of 40.2% and a maximum relative error of
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Fig. 6. Toxicity rate data for 7 molal (total concentration) equi-molal ternary
CPA mixtures compared against both full and reduced toxicity model pre-
dictions using the best-fit parameters. CPAs are abbreviated as follows: glycerol
(Gly), propylene glycol (PG), ethylene glycol (EG), and formamide (FA). Error
bars represent the 95% confidence intervals of the experimental toxicity rates.
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127.0%. Overall, most predictions fall within a factor of two of the data,
while also following the general low to high toxicity ordering trend
presented in Fig. 6. The predictions of Fig. 6 give credence to the idea
that binary interactions and general binary solution effects dominate in
multi-CPA solutions, highlighting the potential for estimating the
toxicity of any CPA solution based on toxicity data for only single and
binary CPA solutions. Overall, the predictions in Fig. 6 give us confi-
dence that our modeling approach is a reasonable foundation for opti-
mization of vitrification solution composition.

3. Model application: vitrification solution composition

A key challenge in the design of vitrification procedures is identifi-
cation of a non-toxic (or minimally toxic) CPA mixture that will vitrify
and remain in a glassy state during cooling and warming. Given that we
can describe the toxicity rate of any solution comprised of the five CPAs
we have investigated, we only need to pair our toxicity rate model with a
model that can predict vitrification/devitrification to identify promising
solution compositions. To optimize solution compositions for vitrifica-
tion, we adopted such a model from Weiss et al. [39]. Their work pro-
posed a statistical model for predicting the probability of vitrification
during cooling and the probability of reaching a given level of glass
stability during the rewarming process for the five CPAs we investigated.
More recently, this model was used in Shardt et al. [33] to refine
articular cartilage vitrification protocols.

By combining the Weiss et al. [39] model with our toxicity rate
model, we can predict the toxicity of any potential solution at a given
probability threshold of vitrification and/or devitrification. To identify
promising solution compositions for vitrification, we minimized the
value of the toxicity rate under several vitrification/devitrification
constraints by varying the concentrations of each of the five CPAs that
could be in solution. Specifically, we investigated the following con-
straints: 50% probability of vitrification, 50% probability of complete
devitrification (the lowest glass stability level of Weiss et al. [39] and
adopted as the threshold of Shardt et al. [33]), and 50% probability of no
devitrification (the highest glass stability level of Weiss et al. [39]). To
optimize solution composition, we used the “fmincon” function in
MATLAB and minimized both our full and reduced toxicity models
under the 3 different constraints for each possible combination of CPAs
in solution (i.e., 31 total ranging from single solution to quinary mixture
combinations). For each possible combination, we assigned 13 different
initial concentration guesses for each CPA, ranging from 0 to 12 molal in
1 molal increments. For a single toxicity model being minimized under a
single constraint, there are: 13 “fmincon” function calls for each of the 5
single CPA solutions, 132 “fmincon” function calls for each of the 10
binary CPA mixtures, 132 “fmincon” function calls for each of the 10
ternary CPA mixtures, 13* “fmincon” function calls for each of the 5
quaternary CPA mixtures, and 13° “fmincon” function calls for the 1
quinary CPA mixture. Out of all the “fmincon” function calls (over 500,
000), the optimal solution composition was considered to be the one that
returned the lowest toxicity rate. In Fig. 7, we show these optimization
results. We also determined optimal solution compositions excluding
formamide, and this is also shown in Fig. 7 for comparative purposes.

From Fig. 7, we can see that the optimized solution compositions and
toxicity rates are similar for the vitrification and devitrification 1 con-
straints. For the devitrification 4 constraint (the most stringent
constraint), the predicted toxicity rate is substantially higher. Also,
when comparing the full and reduced models, we see similar optimized
compositions and toxicity rate predictions. When formamide is included
as a possible solution constituent, the resulting optimized solution
composition is a mixture of glycerol, DMSO, and formamide. This so-
lution composition takes advantage of the toxicity neutralization effects
that have been observed in mixtures of DMSO + formamide [15,18] and
in mixtures of glycerol + formamide [38]. When formamide is not
included as a possible constituent, the predicted toxicity rate is higher.
For the vitrification and devitrification 1 constraints, the optimized
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Fig. 7. The least toxic vitrification solution compositions predicted using three vitrification/devitrification constraints presented by Weiss et al. [39]: 50% prob-
ability of vitrification (Vit), 50% probability of complete devitrification (Devit 1), and 50% probability of no devitrification (Devit 4). Panels A and B include
formamide as a potential solution constituent, while Panels C and D do not. Panels A and C use the full toxicity model with the best-fit parameters, and Panels B and D
use the reduced toxicity model with the best-fit parameters. The predicted toxicity rate (dotted line) of each solution is also shown on the secondary vertical axis.
CPAs are abbreviated as follows: glycerol (Gly), propylene glycol (PG), ethylene glycol (EG), and formamide (FA).

solution composition is a mixture of ethylene glycol and glycerol,
whereas for the devitrification 4 constraint, the optimized composition
is a mixture of ethylene glycol and propylene glycol.

Overall, given that Shardt et al. [33] used the devitrification 1
constraint to design successful methods for vitrification of articular
cartilage, we would recommend using this constraint. For the full model,
the resulting optimized composition is 7.39 molal glycerol, 1.41 molal
DMSO, and 2.42 molal formamide. The reduced model yielded a very
similar composition (7.44 molal glycerol, 1.50 molal DMSO, and 2.06
molal formamide). Importantly, Fig. 7 demonstrates the potential to
mathematically predict the concentration of each constituent in solution
rather than experimentally iterating through each potential
composition.

4. Conclusions and future directions

In this work, we developed a multi-CPA toxicity model based on the
large data set from our previous work [38]. The model accounts for
specific toxicity and non-specific toxicity, as well as modulation of these
toxicity mechanisms due to intermolecular interactions between the
CPAs in solution. To train the model we used toxicity rate data for 15
different CPA solutions (comprising 5 single and 10 binary solutions),
each over a range of CPA concentrations. The model fit the training data
well for all 15 CPA solutions, and extension of the model to the ternary
solution validation data yielded predictions that were in reasonable
agreement with the data. To understand the key parameters of the
model, we used Sloppy Model analysis, which revealed that the model
terms for non-specific toxicity of individual CPAs, specific toxicity of
formamide, and complex formation between formamide and glycerol

were particularly important for obtaining good agreement with the data.
This analysis also gave us a basis for reparametrizing the model by
eliminating over half of the parameters, resulting in a reduced model
that still matched the data well. To examine the potential for using the
toxicity model for designing vitrification solutions, we combined it with
a published vitrification/devitrification model [39], enabling prediction
of minimally toxic CPA mixtures for vitrification. The resulting opti-
mized mixture contains formamide, glycerol, and DMSO; this unique
mixture composition has the potential to reduce toxicity and should be
tested in future studies. Of course, this mixture composition prediction is
based on data for bovine pulmonary artery endothelial cells, and it may
not be optimal for all cell types; however, the promising toxicity
neutralization effect of DMSO + formamide, which our optimal
composition leverages, has been shown across different cell types from
Fahy and colleagues [15,18] and our previous work [38]. Future studies
predicting optimal mixture compositions for other cell types would be
useful to look for general composition trends.

Another future direction would be to apply the multi-CPA toxicity
model for optimization of the full vitrification process, including CPA
addition and removal. In previous studies, we presented a toxicity cost
function approach for designing minimally toxic CPA equilibration
methods [3,4,8,9], but this approach has been limited to single CPA
solutions. The new toxicity model will enable expansion of the cost
function approach to multi-CPA solutions, enabling optimization of not
only the CPA addition and removal process, but also the composition of
the CPA mixture. To realize the full potential of this approach it will be
necessary to also characterize the effects of temperature on toxicity and
incorporate this into the optimization framework. Experiments are
currently underway to quantify the temperature dependence of CPA
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toxicity for various CPA mixtures. It would also be useful in future
studies to quantify the toxicity of other CPAs (including nonpenetrating
CPAs such as trehalose), and to examine the effects of CPA carrier so-
lution on toxicity.
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