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Abstract—While molecular communication via diffusion expe-
riences significant inter-symbol interference (ISI), recent work
suggests that ISI can be mitigated via time differentiation pre-
processing which achieves pulse narrowing. Herein, the approach
is generalized to higher order differentiation. The fundamental
trade-off between ISI mitigation and noise amplification is
characterized, showing the existence of an optimal derivative
order that minimizes the bit error rate (BER). Theoretical
analyses of the BER and a signal-to-interference-plus-noise ratio
are provided, the derivative order optimization problem is posed
and solved for threshold-based detectors. For more complex
detectors which exploit a window memory, it is shown that
derivative pre-processing can strongly reduce the size of the
needed window. Extensive numerical results confirm the accu-
racy of theoretical derivations, the gains in performance via
derivative pre-processing over other methods and the impact
of the optimal derivative order. Derivative pre-processing offers
a low complexity/high-performance method for reducing ISI at
the expense of increased transmission power to reduce noise
amplification.

Index Terms—Molecular communication via diffusion, receiver
design, higher order derivatives, detector design.

I. INTRODUCTION

Molecular communication via diffusion (MCD) enables

communication through the emission of chemical (molecular)

signals [3]. In an MCD system, the information is encoded

into a physical property of the molecular signal such as

its emission intensity [4], emitted molecule type [5], time

of emission [6], spatial location of emission [7], [8], or a

combination of these signaling degrees of freedom [?], [7]–

[10]. After their emission from the transmitter, the messenger

molecules randomly propagate in the fluid communication

medium, exhibiting Brownian motion [11]. This stochasticity

causes some molecules to never arrive at the receiver, and

creates delays in some molecules that do arrive. From a

communications engineering perspective, the molecules that

arrive later than intended cause inter-symbol interference (ISI).

ISI is the leading cause of the notoriously low data rates of

MCD.

The ISI problem has been tackled through both transmitter

and receiver side solutions. In particular, single- or multi-

molecule modulation schemes have been considered [12],
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source and channel codes have been designed [13], as well

as transmitter-side pre-equalization approaches [10], [14]. At

the receiver side, the maximum a posteriori (MAP) and

maximum likelihood (ML) sequence detectors are considered

by [15], as well as decision feedback and minimum mean

squared error (MMSE) equalizers that account for ISI. Inspired

by the computational constraints of a nano-machine, a low

complexity, adaptive threshold detector is presented in [16].

In [17], a decision feedback mechanism is utilized to estimate

ISI and aid a symbol-by-symbol detector (memory limited

decision aided decoder, MLDA). A similar decision feedback

mechanism is also used in [18] in the context of a sequential

probability ratio test-based MCD detector.

Recently, it was shown in [19] that applying a single

discrete-time derivative on the received signal mitigates ISI

in concentration-based synthetic MCD. Subsequently, a rising-

edge-based detection with differentiation strategy was devised

in [20] for macro-scale molecular MIMO. In [19], it was

shown that a single differentiation narrowed the received

signal pulse thus mitigating ISI. Herein, we consider multiple

orders of differentiation and their pairing with a variety of

detector strategies as noted below. It should be observed that

differentiation is not only an engineered mechanism for micro-

or nano-machines, but is a processing/sensing that occurs in

organisms. In particular, bacterial responses are affected by

the rate of change of physical and biochemical quantities.

Examples include detecting spatial gradients of bio-molecule

concentration used for chemotaxis [21] and the varying effect

of heating rate in protein synthesis [22], [23].

In our preliminary study [1], we had introduced the higher

order derivative concept, discussed its fundamental trade-off

between ISI mitigation and noise amplification, and intro-

duced a lower complexity, banded alternative to the optimal

maximum likelihood sequence detector that exploits the ISI

mitigation offered by higher order differentiation. In addition,

in a separate preliminary study [2], we had improved the

fixed threshold detector used by [19] for m = 1 and [1] for

m ≥ 1, and provided an objective function to optimize the

derivative order m using the new fixed threshold detector. This

paper extends and completes these two works by providing

complete derivations and proofs, deriving the theoretical bit

error ratio (BER) of the detector proposed in [2], introducing

a new detector to be paired with the derivative operator, as well

as addressing the computational complexities of the detectors

and the asymptotic relationship between derivative orders. The

contributions of this paper are as follows:

1) We generalize the initial endeavors of [19] to a pre-
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Fig. 2. Evolution of
∂mfhit

∂tm
with the derivative order m. r0 = 15 µm, rr = 5 µm, D = 100

µm2

s
.

III. FUNDAMENTALS OF DERIVATIVE-BASED

PRE-PROCESSING

Herein, we discuss the main motivation and key statistical

properties of the mth order derivative operator in an MCD

system. To this end, we first address how the CIR in (1)

evolves with the derivative order m. Recalling a result from

our prior work, the first peak time of ∂mfhit

∂tm
(i.e., the time

at which the mth derivative of the CIR achieves its first

maximum) is a monotonically decreasing function of the

derivative order m, [1, Proposition 1]. Furthermore, ∂mfhit

∂tm

shrinks in pulse width with increasing m, as clearly observed

in Figure 2.

From a receiver design standpoint, the consequence of the

above two phenomena is an effective narrowing of each emit-

ted pulse at the receiver, which mitigates ISI for consecutive

symbol transmission scenarios. In order to characterize this

effect for the time-slotted, discrete time channel, we define

the discrete-time forward derivative operator, denoted by D,

as

D =

















−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
. . .

. . .
...

...
... −1 1

0 0 · · · 0 −1

















. (8)

Furthermore, we denote the output of the mth order derivative

operator as y(m) ∼ N (µ(m),Σ(m)). Then, y(m) can be

expressed as

y(m) = Dmy

= Dm (Hx+ λsj) +Dmη

∼ N
(

Dmµ,Dm
Σ(D⊤)m

)

.

(9)

The mean of y(m) reflects the aforementioned ISI mitigation

introduced by the Dm operator. However, since Σ(m) =

Dm
Σ(D⊤)m, the application of the mth order derivative op-

erator inherently introduces noise amplification and coloration

into the received signal. We note that the banded diagonal form

of Dm increases in both width and magnitude with increasing

m, further increasing the coloration and amplification.

Overall, increasing m results in better ISI mitigation at

the cost of a more severe enhancement of the noise power.

This interplay between ISI mitigation and noise amplification

implies a fundamental trade-off for a derivative-based MCD

receiver, implying the existence of an optimal derivative order

m that minimizes the error probability. We will address this

optimization problem in Section V.

IV. DETECTOR DESIGN

Per its description in Section III, the mth order derivative

operator can be interpreted as a pre-processor, whose output

y(m) is fed to the detector. Through this perspective, Figure 3

presents the overall diagram of an end-to-end MCD system

where the receiver employs the Dm operator. Herein, we

address the design of the detector to be paired with the mth

order derivative.

A. Optimal Detector

Our notion of optimality is defined by the maximum-

likelihood criterion, which implies that the maximum likeli-

hood sequence detector (MLSD) is optimal due to ISI in the

MCD channel [15]. Given that the receiver has access to λs
and h, the MLSD estimates the transmitted bit sequence ŝ

using the following rule:

ŝ = argmax
s

P (y(m)|s)

= argmax
s

exp[− 1
2 (y(m) − µ(m))

T
Σ

−1
(m)(y(m) − µ(m))]

√

(2π)SN |Σ(m)|

= argmin
s

{

ln(|Σ(m)|)+

(y(m) − µ(m))
T
Σ

−1
(m)(y(m) − µ(m))

}

.

(10)

Here, for each candidate symbol vector s, the conditional µ(m)

and Σ(m) are found using the corresponding channel statistics

presented in Equations (6)-(9). All vectors are of size SN ×1
and the covariance matrix is SN × SN .

B. Banded MLSD

The complexity of the MLSD is exponential in channel

memory L using the Viterbi algorithm. Unfortunately, as

the data rate increases, a shorter bit duration tb implies a

larger L due to the heavy tail of the CIR, rendering MLSD

infeasible for low-complexity, nano-scale machinery. However,
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Fig. 3. Overall diagram of a derivative pre-processed MCD system.

leveraging the aggressive ISI mitigation introduced by the

derivative operator, we consider a sub-optimal MLSD-like

detector implemented using a considerably shorter memory

window L′. This banded-MLSD approach results in a sig-

nificantly lower complexity in computation, as it requires

2L
′−1 log-likelihood computations to detect a single symbol,

compared to 2L−1 required by MLSD ([28], [29]). For this

detector, the branch metric M(·) that is input to the Viterbi

decoder has the following form:

M(y
(i)
(m), s(L′)) = ln(|Σ

(L′)
(m) |)+

(y
(i)
(m) − µ

(L′)
(m) )

⊤
Σ

(L′)
(m)

−1
(y

(i)
(m) − µ

(L′)
(m) ).

(11)

Here, the sub-/superscript (L′) implies that the vectors and

matrices are obtained considering a symbol memory of L′, and

the superscript (i) refers to the samples of the ith symbol. In

particular, s(L′) denotes a candidate symbol string of length

L′. Conditioned on a certain s(L′), µ
(L′) and Σ

(L′) denote the

obtained mean vector and covariance matrix of the samples of

the (L′)th symbol, respectively. Hence, the respective sizes of

µ(L′) and Σ
(L′) are N × 1 and N ×N . Furthermore, similar

to its conventional use throughout the paper, the subscript (m)
implies that the argument vector is pre-multiplied by Dm, and

the argument matrix is pre- and post-multiplied by Dm and

(D⊤)m, respectively. Note that Dm is also of size N × N

herein.

A key observation is that for a fixed derivative order m,

y(m)[k] is a function of y[k], . . . , y[k+m]. Consequently, the

Dm operator causes the last m samples of the ith symbol

to be correlated with the first samples of the (i + 1)th

symbol, which induces a non-causal ISI. To avoid this issue,

we truncate the last m samples of the intended symbol.

Hence, µ
(L′)
(m) and Σ

(L′)
(m) are of size (N − m) × 1 and

(N − m) × (N − m), respectively. Similarly, noting y(i)

corresponds to the arrival counts of the ith symbol, we have

y
(i)
(m) =

[

y(m)[(i− 1)N + 1] . . . y(m)[iN −m]
]⊤

.

Assuming standard matrix multiplication, each branch met-

ric computation has cubic complexity in the number of sam-

ples per symbol N , as the operation involves multiplying

vectors and matrices of sizes that are linear in N . Note that

Dm and the conditional vectors/matrices µ
(L′)
(m) , Σ

(L′)
(m) , and

Σ
(L′)
(m)

−1
can be pre-computed once and stored, which makes

their complexity independent of N and m. However, obtaining

y
(i)
(m) from y(i) is not independent of m. In particular, although

the discrete time forward derivative operation is represented

by D for clarity of argument, the operation for obtaining y
(i)
(m)

can be realized with a simple shift register and element-wise

subtractions. Therefore, the mth order derivative pre-processor

has a complexity of O(mN) per symbol, making the overall

complexity of banded MLSD O(m2L
′

N3).

C. Decision Feedback-Aided, Symbol-by-Symbol ML

The banded-MLSD’s complexity is still exponential in L′,

which might be undesirable for a nano-machine. To this end,

we generalize the memory limited decision aided decoder

(MLDA) proposed in [17] for an arbitrary derivative order

m, where m = 0 corresponds to the original version of the

detector.

In essence, MLDA is a decision feedback aided, symbol-

by-symbol maximum likelihood detector. For each symbol,

it first estimates the imposed ISI on the intended symbol’s

samples, using the previously decoded symbols. Ideally, the

ISI estimation is done using all L− 1 past decoded symbols.

However, due to possible memory or computational constraints

of a nano-machine, it might be desirable to consider a shorter

memory window of L′ when estimating the ISI. For this

memory-limited case, only L′ − 1 past decoded symbols are

utilized, and the rest of the past is replaced by the expected

transmissions (i.e., using (4) with equiprobable transmissions).

The entries of the estimated ISI mean of the ith symbol,

denoted by µ̂
(i)
ISI , is computed according to the previously

decoded symbols as follows:

µ̂
(i)
ISI [n] =

(L′−1)N−1
∑

k=0

h[k + n+ 1] x̂[(i− 1)N − k]

+

(L−1)N−1
∑

k=(L′−1)N

h[k + n+ 1] x̄[(L− 1)N − k],

(12)

where x̂ denotes the decoded emission vector, and is computed

through the decoded symbol vector ŝ through (4). In addition,

x̄ denotes the expected transmission vector that covers the

past symbols between (L′ + 1)th and Lth memory slots, and

is expressed as

x̄ =
[

M
2 0 . . . 0 M

2 0 . . .
]⊤

(L−L′)N×1
.

After estimating the ISI-induced mean vector, estimated dis-

tributions for the samples of possible bit-1 and bit-0 trans-

missions are computed. Let the estimated (and Gaussian

approximated) arrival random vectors be denoted as ŷ
(i)
1 ∼
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N (µ̂
(i)
1 , Σ̂

(i)

1 ) and ŷ
(i)
0 ∼ N (µ̂

(i)
0 , Σ̂

(i)

0 ). The ith sample’s

estimated means can be written as

µ̂
(i)
1 [n] = µ̂

(i)
ISI [n] +Mh[n] + λs,

µ̂
(i)
0 [n] = µ̂

(i)
ISI [n] + λs,

(13)

where, Σ̂
(i)

j = diag{µ̂
(i)
j } for j ∈ {0, 1}, as ŷ

(i)
j are Gaussian

approximations of Poisson RVs.

Recalling the truncated arrival vector output of the derivative

operator from Subsection IV-B as

y
(i)
(m) =

[

y(m)[(i− 1)N + 1] . . . y(m)[iN −m]
]⊤
,

the symbol is detected through a likelihood ratio test, that is

ŝ[i] = L̂
(i)
(m),1 − L̂

(i)
(m),0

1

≷
0
0, (14)

where the log-likelihoods are computed as

L̂
(i)
(m),j = −

1

2

[

(N −m) ln(2π) + ln(|Σ̂
(i)

(m),j)|)+

(y
(i)
(m) − µ̂

(i)
(m),j)

⊤
(

Σ̂
(i)

(m),j

)−1

(y
(i)
(m) − µ̂

(i)
(m),j)

]

.

(15)

Here, µ̂
(i)
(m),j = Dmµ̂

(i)
j and Σ̂

(i)

(m),j = Dm
Σ̂

(i)

j (Dm)⊤.

Overall, MLDA provides a computationally cheaper alter-

native to banded MLSD, by incurring a linear computational

complexity in L′. Note that for each symbol, evaluating Equa-

tions (12)-(13) necessitates holding (L′−1) past symbols, and

(12) involves the element-wise multiplication of two (L′−1)N
sample-long vectors. Including the O(mN) complexity of

the mth order differentiation and the O(N3) of (15), the

complexity of MLDA is of order O(mL′N3).

D. Fixed Threshold Detectors

Up to this point, each considered detector employs memory

at the receiver side. However, low-complexity and memoryless

detectors are particularly desirable for nano-scale applications.

To this end, we consider two types of fixed threshold detectors

in this subsection. Both detectors rely on comparing the arrival

count at a certain sample with a threshold, but they differ in

their selection of the arrival count to be compared.

1) Max-and-Threshold Detector: The max-and-threshold

detector (MaTD) selects the sample with the maximum ar-

rival count among the samples corresponding to the intended

symbol [1], [19]. The detection steps of the Dm-MaTD pair

can be summarized as follows:

• Employ the derivative operator,

• Discard the last m samples (to cancel non-causal ISI),

• Perform an argmax operation among the remaining (N−
m) samples,

• Compare with the threshold.

In essence, the detected symbol is found by performing

ŝ[i] = max
(

y(m)[(i−1)N+1], · · · , y(m)[iN−m]
)

1

≷
0
γ, (16)

where γ is the employed fixed threshold. We note that MaTD

with m = 0 corresponds to the simple asynchronous detector

(ADS) proposed in [30].

2) Fixed Sample, Fixed Threshold Detector: Using MaTD,

the sample that observes the maximum number of molecules

may differ for each transmitted symbol, as the arrival counts

are stochastic. In contrast, as we considered in our prior study

[2], the threshold detector can also be realized by fixing the

sample whose arrival count is to be compared, yielding the

fixed sample, fixed threshold detector (FSTD). In particular,

denoting the fixed sample of interest as q̃(m), FSTD selects

q̃(m) as the “peak sample due to the intended symbol”. In

other words, q̃(m) corresponds to the sample that has the

largest expected arrival count due to the intended symbol’s

transmission. Let µs,(m) denote the expected signal due to

the intended symbol after the mth order derivative operator

is applied at the receiver. We note that since the peak of

µs,(m) changes with m (see Figure 2), q̃(m) is a function of

m. Overall, the µs,(m) vector can be expressed as

µs,(m) = Dmµs, (17)

where

µs =











[

Mh[1] . . . Mh[N ]
]⊤

, if bit-1
[

0 . . . 0
]⊤

, if bit-0.
(18)

Similar to previously discussed strategies, for a derivative

order of m, the last m samples of µs,(m) are again discarded

to avoid non-causal ISI. Following this truncation, and de-

noting µ̄s,(m) as the expected µs,(m), FSTD selects q̃(m) by

performing

q̃(m) = argmax
q∈{1,...,N−m}

∣

∣µ̄s,(m)[q]
∣

∣ . (19)

The maximization in (19) does not perform the argmax
operation on µs,(m) itself, but selects the sample with the

largest signal in the absolute sense. Note that due to the

nature of time differentiation and the fhit(t) function, µs,(m)

can have both positive and negative elements (see Figure 2).

In some cases, the smallest negative element can actually

have a larger absolute value than the largest positive element,

implying that said negative sample is larger in energy. In such

a case, FSTD simply negates the received signal and finds

q̃(m) using the negated signal. Overall, the decision rule for

FSTD can be expressed as

ŝ[i] =

{

y(m)[(i− 1)N + q̃(m)]≷
1
0 γ, if µ̄s,(m)[q̃(m)] ≥ 0

−y(m)[(i− 1)N + q̃(m)]≷
1
0 γ, if µ̄s,(m)[q̃(m)] < 0.

(20)

We note that FSTD is a generalization of the fixed sample,

fixed threshold detector that is widely used in the MCD

literature ([31]–[33]) to an arbitrary derivative order m, where

m = 0 corresponds to the original version of the detector.

Since both MaTD and FSTD are memoryless detectors,

their complexities for decoding a symbol do not depend on

a memory window length L′. For FSTD, as the threshold

comparison is done using a fixed sample, the complexity does

not depend on N either. For MaTD, finding the maximum on

N−m samples has linear complexity in N . Overall, combining

with the O(mN) of the derivative pre-processing, both MaTD

and FSTD have complexities of order O(mN). This result
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suggests the conjunction of Dm and fixed threshold detectors

are particularly useful for low complexity, nano- to micro-

scale applications. Motivated by this, we will mainly consider

fixed threshold detectors throughout the rest of the paper, with

a particular focus of FSTD for the problem of derivative order

optimization. In the numerical results, Section VI, we will

compare performance of all of the detectors discussed herein.

V. THE OPTIMIZATION OF m

A. Error Probability Analysis

With the derivative order m as a design parameter, the

question of how to optimize it arises. Herein, we address

this derivative order optimization problem for fixed threshold

detectors. As the end goal is to minimize the error rate of the

transmission, we first derive the theoretical bit error probability

of the Dm-FSTD pair.

Recalling that the considered MCD channel is an ISI chan-

nel with memory length L, the theoretical error probability

expression will average over all (L−1) symbol-long strings of

data. Denoting sISI as the (L−1) symbol-long vector that holds

said string, the error probability can be found by performing

Pe =
1

2L−1

(

∑

∀sISI

Pe|sISI

)

. (21)

Conditioned on a certain symbol vector sL =
[

sISI s[L]
]⊤

,

the received signal mean can be written as

µL = E[y(L)|xL]

= HLxL + λsjN ,
(22)

where jN is an N sample-long vector of ones, the received

vector y(L) =
[

y[(L− 1)N + 1] · · · y[LN ]
]T

, xL is the

corresponding LN sample-long transmission vector corre-

sponding to sL through (4), and

HL =











h[(L− 1)N + 1] · · · h[1] 0 · · · 0
... · · ·

. . .
. . .

...

h[LN − 1] · · · h[2] h[1] 0
h[LN ] · · · h[3] h[2] h[1]











.

(23)

Similar to (7), the covariance matrix is then found by

ΣL = diag{µL}. Therefore, after applying the mth order

derivative operator, the mean vector and covariance matrix

associated with each conditional becomes µL,(m) = DmµL

and ΣL,(m) = Dm
ΣL(D

⊤)m, respectively.

Using these conditional statistics, we are interested in find-

ing Pe|sISI
, which can be expressed for FSTD as

Pe|sISI
=
1

2

(

P (B y(m)[(L− 1)N + q̃(m)] < γ|sL[L] = 1)

+ P (B y(m)[(L− 1)N + q̃(m)] > γ|sL[L] = 0)
)

=
1

2
(A1 +A0),

(24)

where q̃(m) is the fixed sample found by Equations (18)-(19),

and B = sgn
(

µ̄s,(m)[q̃(m)]
)

with sgn(·) defining the signum

function. As we employ the Gaussian approximation of the

Poisson arrivals, (24) can be re-written as

A1 = Q
( BµL,(m)[q̃(m)]− γ
√

ΣL,(m)[q̃(m), q̃(m)]

∣

∣

∣
sL[L] = 1

)

A0 = Q
( γ −BµL,(m)[q̃(m)]
√

ΣL,(m)[q̃(m), q̃(m)]

∣

∣

∣
sL[L] = 0

)

,

(25)

where Q(·) is the Gaussian Q-function, which concludes the

derivation. Note that A1 and A0 consider the same sISI.

However, they differ in sL[L], hence the mean vectors and

covariance matrices presented in (25) are not equal.

Error Analysis of the Dm-MaTD Pair: As noted in

Subsection IV-D, we focus on FSTD as the primary threshold-

based detector in this paper. However, we also provide the

error probability derivation of the Dm-MaTD pair, as it may

be more desirable in scenarios where the receiver is not

capable of locating the expected signal peak location for

FSTD.

Similar to FSTD, due to the ISI nature of the MCD

channel, the error probability of Dm-MaTD is also found by

averaging over the conditional error probabilities. Similarly,

the computation of conditional statistics is also not dependent

on the detector strategy. Therefore, Equations (21)-(23) hold

for the Dm-MaTD pair as well.

The derivation for the Dm-MaTD pair differs from that of

the Dm-FSTD pair in the way it computes the conditional

error probabilities. To evaluate a conditional error probability

for the Dm-MaTD pair, we first denote

Y(m) = max
j∈{1,...,N−m}

y
(L)
(m)[j]

as the maximum sample, where y
(L)
(m) = Dmy(L). Then, Pe|sISI

can be expressed as

Pe|sISI
=

1

2

(

P (Y(m) < γ|sL[L] = 1) + P (Y(m) > γ|sL[L] = 0)
)

=
1

2
(A′

1 +A′
0)

(26)

Therefore, characterizing the CDF of Y(m) is sufficient to

complete the derivation. However, Y(m) corresponds to the

maximum of correlated and differently distributed Gaussian

random variables, for which a straightforward, closed form

solution does not appear to exist. Instead, numerical solutions

are typically considered [34], [35]. Motivated by this, we use

the strategy developed by Clark [36] to approximate Y(m) as

a normal random variable through a recursive process. At its

first iteration, Clark’s method takes in two samples (which are

Gaussians), and computes its mean and variance in relation to

the samples’ first and second order statistics. Then, the method

assumes the maximum of these two samples is also normally

distributed (although it is not the case in reality), and uses this

approximated random variable as one of the two inputs to the

next iteration (the other input being the next sample, which

is a Gaussian). We refer the reader to Appendix A for further

details on the recursion. At the end of the process, we obtain

an approximate Gaussian distribution Y(m) ∼ N (µR, σ
2
R),
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where µR and σ2
R are computed via the recursion described

in Appendix A. We plug these statistics into (26) as

A′
1 = Q

(µR − γ

σR

∣

∣

∣
sL[L] = 1

)

A′
0 = Q

(γ − µR

σR

∣

∣

∣
sL[L] = 0

)

,
(27)

which completes the derivation.

B. Signal-to-Interference-Plus-Noise Ratio

Due to the presence of the 2L−1 conditional error probabili-

ties which constitute the theoretical BER, optimizing the BER

resulting from a particular choice of m is computationally

infeasible given the typical values of L associated with an

MCD channel. In particular, even though our earlier study

suggested considering L′ < L to decrease this complexity

[1], our observations suggest that such a simplification can

lose accuracy for very high data rate settings, even with the

aggressive right tail mitigation of the Dm operator. Further-

more, as for the case of true L, we still need to compute

multiple Q-functions for L′ as well (Equation (25)), which

may be undesirable for a simple nano-machine.

Motivated by aforementioned shortcomings of optimizing

m by examining theoretical error probabilities, we generalize

the signal-to-interference-plus-noise ratio (SINR) employed by

[27] to the Dm-FSTD pair. Overall, for an arbitrary symbol

index i, the expression has the following form [2]:

SINR(m) =
E
{

(

s[i]µs,(m)[q̃(m)]
)2
}

Var
{

η
(i)
(m)[q̃(m)]

}

+Var
{

I
(i)
(m)[q̃(m)]

} ,

(28)

where the superscript (i) indicates that the symbol of interest

is the ith. Here, η
(i)
(m) denotes the contribution of the signal

dependent noise induced by the intended symbol, on the sam-

ples of the ith symbol. Similarly, I
(i)
(m) denotes the aggregate

contribution of the signal dependent noise due to ISI symbols

and the external noise. In the sequel, we characterize each term

in the expression. Firstly, the numerator corresponds to the

second moment of the signal that is induced by the intended

symbol’s (ith) transmission. Recalling the definition of µs,(m)

from (17) and that q̃(m) is Dm-FSTD’s sample of interest, the

numerator is expressed as

E
{

(

s[i]µs,(m)[q̃(m)]
)2
}

=
1

2
× 0 +

1

2
E
{

(

µs,(m)[q̃(m)]
)2
}

=
1

2

(

µs,(m)[q̃(m)]
)2
.

(29)

In the denominator, the first expression represents the noise

variance induced by the intended symbol’s transmission. Let

Σs = diag(µs) and Σs,(m) = Dm
Σs(D

m)⊤. Then, the noise

variance incurred by the intended symbol is expressed as

Var
{

η
(i)
(m)[q̃(m)]

}

=
1

2
Var

{

η
(i)
(m)[q̃(m)]

∣

∣

∣
s[i] = 0

}

+

1

2
Var

{

η
(i)
(m)[q̃(m)]

∣

∣

∣
s[i] = 1

}

=
1

2
× 0 +

1

2
Σs,(m)[q̃(m), q̃(m)]

=
1

2

{

Dm diag(µs)(D
m)⊤

}

[q̃(m), q̃(m)].

(30)

Lastly, characterizing the noise variance induced by ISI and

external noise completes the derivation of (28). To this end,

we first denote µI as the mean arrival count vector that is

due to ISI. Note that µI depends on the evaluated ISI symbol

sequence sISI. We then define

µI,(m) = Dm (µI + λsj)

ΣI,(m) = Dm diag(µI + λsj)(D
⊤)m.

(31)

Overall, the variance induced by ISI and external noise can be

found by

Var
{

I
(i)
(m)[q̃(m)]

}

= Cov(I
(i)
(m)[q̃(m)], I

(i)
(m)[q̃(m)])

= E

[

(

I
(i)
(m)[q̃(m)]

)2
]

−
(

E
[

I
(k)
(m)[q̃(m)]

])2

= EsISI

[

(

I
(i)
(m)[q̃(m)]

)2 ∣
∣

∣
sISI

]

−

(

EsISI

[

I
(i)
(m)[q̃(m)

∣

∣sISI ]
])2

=
1

2L−1

∑

∀sISI

[

ΣI,(m)[q̃(m), q̃(m)] +
(

µI,(m)[q̃(m)]
)2
]

−

(

1

2L−1

∑

∀sISI

µI,(m)[q̃(m)]

)2

.

(32)

Similar to the theoretical BER expressions, evaluating SINR

also incurs an exponential complexity in L stemming from

computing conditional statistics when evaluating (32). To

avoid this, one can use a smaller memory window of L′ < L

when evaluating SINR, significantly reducing the incurred

complexity. Denoting this version of SINR as SINRL′ , the

objective function presented in this subsection can be used to

select the derivative order as follows:

m∗ = argmax
m

SINRL′(m). (33)

Using (33), m∗ is determined via an exhaustive search on

candidate m values. We note that this computation needs to

be performed only once (before data communication begins).

VI. NUMERICAL RESULTS

In this section, we present numerical results to assess the ac-

curacies of the theoretical error probability expressions derived

in Subsection V-A, demonstrate the efficacy of SINR as an

objective function for optimizing m, and provide comparative

BER results for derivative/no-derivative detectors. Throughout

the section, the external Poisson noise rate (λs) is normalized
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with respect to transmission power through the following

definition of signal-to-noise ratio (SNR):

SNR =
M
2

Nλs
=

M

2Nλs
. (34)

Here, the numerator follows from (4) for equiprobable BCSK

symbols, and represents the average emitted signal per one

symbol. Recalling N as the number of samples per one

symbol duration and λs as the external noise rate per symbol,

the denominator of (34) represents the expected number of

external noise molecules per one symbol.

Since parameters such as D, rr, and r0 all affect the

fhit(t) function hence the h vector. To this end, in order to

contextualize the data rate in relation to these parameters, we

normalize the symbol duration with respect to the channel peak

time tp = d2

6D = (r0−rr)
2

6D , see [24, Equation 26]. Throughout

this section, the bit duration tb is selected through a unitless

parameter Sr, which is defined as Sr = tb
tp

. Note that since

a smaller tb corresponds to a higher rate of transmission, a

smaller Sr corresponds to a higher data rate.

A. Accuracy of Error Analysis

Herein, we demonstrate the accuracy of the derived theo-

retical BER expressions for Dm-FSTD and Dm-MaTD pairs

with varying m. To this end, Figures 4a and 4b are presented

for different values of Sr (hence, different data rates). In both

figures, L = 10 is selected for demonstrative purposes, due

to the exponential complexity when computing the theoretical

BER expressions.

The results of Figures 4a and 4b show that the theoretical

BER expression for Dm-FSTD is accurate. Furthermore, the

results demonstrate that the approximations for Dm-MaTD

are tight, which validates the derivation in Subsection V-A,

as well as confirms the accuracy of Clark’s approximation in

our system of interest. In addition, confirming the results of

[2], FSTD is found to generally outperform MaTD. Motivated

by this, among the fixed threshold detectors, we will present

the error curves for Dm-FSTD throughout this section. Lastly,

regardless of the comparative relationship between FSTD and

MaTD, it can be observed that both detectors benefit from the

derivative operator and produce lower BER values with m > 0
compared to their standard versions with m = 0.

B. Accuracy of SINR

In this subsection, we show the accuracy of the SINR

expression derived in Subsection V-B. To this end, we provide

Figures 5a-5b and Figures 5c-5d to present results for two dif-

ferent data rates, and thus, two different levels of ISI. Similar

to the theoretical error probability expressions, the SINR also

necessitates evaluating over 2L−1 ISI symbol sequences. For

computational complexity reasons, we use the limited memory,

SINRL′ version of the expression with L′ = 10. However, we

note that the BER simulations use large channel memories

(L = 100 for Figure 5b and L = 200 for Figure 5d) to

satisfactorily capture the right tail of the CIR, and to test the

memory-limited SINR’s efficacy in the more accurate, large

channel memory scenario.

The results of Figure 5 demonstrate that SINR closely fol-

lows the comparative trend between different derivative orders.

Furthermore, SINR provides this accuracy with a significantly

smaller memory consideration than the true channel memory,

which suggests its utility for derivative order optimization

in micro- to nano-scale applications. That said, SINR can

incur slight discrepancies in the comparative trend when the

BER values of evaluated schemes are close. An example of

this phenomenon can be observed in Figures 5c-5d, between

m = 2 and 3 at M = 1010 molecules. The discrepancy is

due to the substantially smaller memory used to compute the

SINR. We refer the reader to compare Figures 5c and 4b,

which are with L = L′ = 10, to confirm SINR’s accuracy

when the considered memories are equal.

The comparative trends between different orders of m in

Figures 5b and 5d show that, as theorized and predicted, the

optimal derivative order is a function of system parameters.

In particular, Figure 5b shows that for a relatively larger Sr

(hence lower ISI), a smaller m is better. On the other hand,

Figure 5d shows that in a smaller Sr/higher ISI regime, higher

derivative orders outperform the first order. These results can

be explained through the fundamental trade-off between ISI

mitigation and noise amplification associated with the Dm

operator. Recall from Section III and Figure 2 that a higher

derivative order induces a lower ISI due to a narrower effective

pulse duration, at a cost of an increase in received signal

variance. In light of this trade-off, the results of Figure 5b

show that for lower ISI, the system is better off by avoiding

the additional noise amplification of m > 1 as the ISI is

already relatively low1. Furthermore, our empirical observa-

tions suggest that when Sr is increased even further, m = 0
begins to become the favorable derivative order as it incurs no

noise amplification. However, the higher data rate in Figure

5d incurs a very high level of ISI, which induces the need

for a more aggressive ISI mitigation, causing the optimal m

to be larger than one. Another noteworthy trend in Figure 5d

is that the optimal derivative order changes with M . Figure

5d shows that in the small M regime, m = 2 is optimal.

However, as M increases, the system is able to combat the

noise amplification better, hence is able to leverage the more

powerful ISI mitigation provided by m = 3.

C. Asymptotic Performance

In the previous subsection, we discussed the implications

of the ISI mitigation-noise amplification trade-off of the

derivative pre-processor. In particular, we noted that for low

ISI and/or small M scenarios, a smaller m is better due to

less noise amplification. On the other hand, in general, as

M increases, the system becomes more robust against noise,

and is better-off by increasing the derivative order for better

ISI mitigation. From these two trends, the following question

might arise: As M → ∞, do the performances of derivative

orders become monotonically better as m increases? To this

1However, it should be noted that the optimal derivative order is still larger
than m = 0, indicating that the existing ISI is still significant. We emphasize
that Sr = 0.5 implies the bit duration is half of that of the channel peak
duration, which incurs a highly deteriorating level of ISI, hence m > 0 is
needed for meaningful communication.
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Fig. 4. Theoretical and simulated BER vs. M . SNR = 10dB, r0 = 15 µm, rr = 5 µm, D = 100 µm2 s−1, N = 5, L = 10. γ values numerically optimized
through exhaustive search.
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(c) SINR vs. M , Sr = 0.25, L′ = 10.
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Fig. 5. BER and SINR vs. M . SNR = 10dB, r0 = 15 µm, rr = 5 µm, D = 100 µm2 s−1, N = 5. γ values numerically optimized through exhaustive
search.

end, although BER vs. M curves cannot be provided due to

extremely low error rates, we leverage the accuracy of SINR in

explaining the comparative relationship of different derivative

orders for Dm-FSTD, and provide SINR vs. M curves in

Figure 6.

As expected, the results of Figure 6b show that the SINR

is monotonically decreasing in m at the small M regime,

whereas for asymptotically large M , the SINR is monoton-

ically increasing. Our empirical observations with various

channel and system parameters verify that this trend is typ-

ical, confirming the implications of the ISI mitigation-noise

amplification trade-off. However, Figure 6a exemplifies that it

is not always the case. We return to the sampling argument

for Equation (19). In the context of (19), we had noted that

time differentiation causes some samples of the derivative

pre-processed signal to have large negative amplitudes in

expectation. In addition to this, for some scenarios, the same

effect of time differentiation can also cause the samples to
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Fig. 6. SINR vs. M . SNR = 10dB, r0 = 15 µm, rr = 5 µm, D = 100 µm2 s−1, N = 5, L′ = 10.
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Fig. 7. BER vs. L′. Sr = 0.25, log10 M = 8.5 molecules, SNR = 10dB,
r0 = 15 µm, rr = 5 µm, D = 100 µm2 s−1, N = 5, L = 200.

more evenly share the total received power within a symbol

duration. In such cases, the maximum sample considered by

FSTD has a smaller absolute magnitude, making the system

face a higher error floor due to ISI. The computation of

SINR implicitly accounts for this phenomenon and predicts

the comparative relationships for asymptotically large M .

D. BER vs. Detector Memory

We next consider the effects of detector memory in error

performance for the banded MLSD and MLDA. Figure 7

presents BER versus L′. For benchmarking purposes, Figure

7 also includes the results for minimum mean squared error

(MMSE) equalizer. We note that the MMSE, when applied

on the transmission block as a whole, has complexity that

is quadratic in block length S, which is undesirable for a

simple nano-machine. Hence, following the consideration of

[15], we employ the decision feedback-aided, online version

of the MMSE equalizer herein (which is O(L′2N2) for the

emission strategy considered in Equation (4)).

Figure 7 demonstrates three noteworthy trends:

1) Derivative-based pre-processing allows for a reduction

in the memory window of memory-aided detectors,

courtesy of its ISI mitigating nature. We emphasize that

even though the true channel memories are on the order

of hundreds of symbols, reliable communication can be

achieved using a substantially smaller L′. Combined

with the very low complexity nature of the discrete-

time derivative operation itself, the combination of the

pre-processor and detector remain low complexity, pro-

viding high-performance, computationally cheap MCD

receivers amenable to micro- and nano-scale MCD ap-

plications.

2) The ISI mitigation-noise amplification trade-off affects

the optimal derivative order in memory-aided detectors

as well. However, in memory-aided detectors, the opti-

mal derivative order is also affected by the choice of L′.

To exemplify, we note that the stronger ISI mitigation

of m = 3 makes the schemes with m = 3 outperform

other orders at L′ = 2. On the other hand, the schemes

with m = 2 provide lower error rates for L′ ≥ 3 due to

less noise amplification.

3) Due to its very definition, as L′ → L, the performance of

the banded MLSD would converge to the MLSD Viterbi

decoder. For the same derivative order, the results of

Figure 7 show that banded MLSD typically outperforms

its MLDA counterpart in the small L′ regime as well.

That said, we note that MLDA is also capable of yielding

a reliable error performance at this regime, and is a

low complexity alternative to banded MLSD therein.

Overall, we conclude that Dm-banded MLSD is able

to provide a lower BER with higher complexity, and

vice versa for Dm-MLDA, confirming the performance-

complexity trade-off between them.

E. Comparative Error Performance

In this subsection, we provide the comparative error per-

formances of the proposed strategies through Figure 8. We

note that due to their comparable computational complexi-

ties, Figure 8 also includes the conventional fixed threshold

detector (FTD, [4]) where the total arrival count within a

symbol duration is compared with a threshold, the adaptive

threshold detector (ATD) proposed in [16], and the weighted

sum detector in [37]. We note that these methods utilize all

samples within the symbol duration, unlike Dm-FSTD, where
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Fig. 8. BER vs. M . SNR = 10dB, r0 = 15 µm, rr = 5 µm, D = 100 µm2 s−1, N = 5, L′ = 2. γ values numerically optimized through exhaustive
search.

only one out of N available samples is utilized. Moreover, in

order to ensure a relatively comparable complexity to FSTD,

the memory aided detectors/equalizers are implemented with

L′ = 2.

The results of Figure 8 agree with the previously presented

results regarding the benefits of the derivative operator. Among

the derivative-based schemes, for the majority of the evaluated

data points in Figure 8, either Dm-banded MLSD or Dm-

MLDA are observed to outperform other schemes. That said,

Dm-FSTD is also found to provide reliable error rates despite

its simplicity. Comparing the strategies on a target BER level,

it can be inferred that Dm-banded MLSD and Dm-MLDA are

able to reach the target with a smaller M than Dm-FSTD,

whereas Dm-FSTD offers a lower receiver complexity at a

cost of increased transmission power.

VII. CONCLUSIONS

In this paper, receiver-side higher order time differentiation

has been proposed to mitigate ISI for MCD. Considering the

derivative operation as a pre-processor block before detection,

several memory-aided (i.e., MLSD, banded MLSD, MLDA)

and memoryless (i.e., FSTD, MaTD) detectors have been

provided to be paired with the derivative operator. In the

paper, it is shown that for a derivative-based MCD receiver,

there exists a fundamental trade-off between ISI mitigation

and noise amplification, implying the existence of an optimal

derivative order that minimizes BER. The derivative order op-

timization problem is addressed for fixed threshold detectors,

through the derivations of the theoretical BER expressions

of Dm-FSTD and Dm-MaTD pairs. Furthermore, an SINR-

like objective function is proposed to optimize m for Dm-

FSTD. Numerical results confirm the accuracy of the derived

expressions, demonstrate the efficacy of the Dm operator in

ISI mitigation, and show that said ISI mitigation decreases the

needed memory window of memory-aided detectors. Overall,

the proposed Dm operator is shown to be a computationally

very cheap strategy that provides a powerful ISI mitigation.

Given the transmitter is able to handle large transmission

powers to alleviate the effects of noise amplification, the

derivative operator allows for achieving considerably higher

data rates, while still preserving a reliable communication link.

APPENDIX A

CLARK’S APPROXIMATION FOR MATD

Let Xi = y
(L)
(m)[i]. Then, X1, . . . , XN−m are correlated

and differently distributed random variables whose maximum’s

distribution is of interest. In its first iteration, Clark’s approx-

imation finds the mean and the variance of max(X1, X2).
Afterwards, max(X1, X2) is approximated as a Gaussian

with said mean and variance2. Then, in the second iteration,

max(X1, X2, X3) = max[max(X1, X2), X3] simply becomes

the maximum of two “Gaussians”, which is handled in a

similar way to the first iteration. The process keeps iterating

until the nth random variable.

Herein, we present the method of finding the mean and

the variance of max(X1, X2). Let X1 ∼ N (µ1, σ
2
1) and

X2 ∼ N (µ2, σ
2
2). Note that by definition, µi is the ith entry

of µL,(m), and σ2
i is the ith diagonal entry of ΣL,(m). We

define two auxiliary parameters a and α to be

a =
√

σ2
1 + σ2

2 − 2σ1,2

α =
µ1 − µ2

a
.

(35)

Let ν1 and ν2 denote the first and second moments of

max(X1, X2). Then,

ν1 = µ1Q(−α) + µ2Q(α) + aψ(α)

ν2 = (µ2
1 + σ2

1)Q(−α) + (µ2
2 + σ2

2)Q(α) + (µ1 + µ2)aψ(α),
(36)

where ψ(·) denotes the standard normal PDF. Lastly, using

ν1 and ν2, we approximate max(X1, X2) ∼ N (ν1, ν2 − ν21),
completing the iteration.

2Note that maximum of two Gaussians is not a Gaussian itself. However,
Clark’s approximation considers it as such in order to devise its recursive
strategy [36], [38].
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