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Abstract—While molecular communication via diffusion expe-
riences significant inter-symbol interference (ISI), recent work
suggests that ISI can be mitigated via time differentiation pre-
processing which achieves pulse narrowing. Herein, the approach
is generalized to higher order differentiation. The fundamental
trade-off between ISI mitigation and noise amplification is
characterized, showing the existence of an optimal derivative
order that minimizes the bit error rate (BER). Theoretical
analyses of the BER and a signal-to-interference-plus-noise ratio
are provided, the derivative order optimization problem is posed
and solved for threshold-based detectors. For more complex
detectors which exploit a window memory, it is shown that
derivative pre-processing can strongly reduce the size of the
needed window. Extensive numerical results confirm the accu-
racy of theoretical derivations, the gains in performance via
derivative pre-processing over other methods and the impact
of the optimal derivative order. Derivative pre-processing offers
a low complexity/high-performance method for reducing ISI at
the expense of increased transmission power to reduce noise
amplification.

Index Terms—Molecular communication via diffusion, receiver
design, higher order derivatives, detector design.

I. INTRODUCTION

Molecular communication via diffusion (MCD) enables
communication through the emission of chemical (molecular)
signals [3]. In an MCD system, the information is encoded
into a physical property of the molecular signal such as
its emission intensity [4], emitted molecule type [5], time
of emission [6], spatial location of emission [7], [8], or a
combination of these signaling degrees of freedom [?], [7]-
[10]. After their emission from the transmitter, the messenger
molecules randomly propagate in the fluid communication
medium, exhibiting Brownian motion [11]. This stochasticity
causes some molecules to never arrive at the receiver, and
creates delays in some molecules that do arrive. From a
communications engineering perspective, the molecules that
arrive later than intended cause inter-symbol interference (IST).
ISI is the leading cause of the notoriously low data rates of
MCD.

The ISI problem has been tackled through both transmitter
and receiver side solutions. In particular, single- or multi-
molecule modulation schemes have been considered [12],
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source and channel codes have been designed [13], as well
as transmitter-side pre-equalization approaches [10], [14]. At
the receiver side, the maximum a posteriori (MAP) and
maximum likelihood (ML) sequence detectors are considered
by [15], as well as decision feedback and minimum mean
squared error (MMSE) equalizers that account for ISI. Inspired
by the computational constraints of a nano-machine, a low
complexity, adaptive threshold detector is presented in [16].
In [17], a decision feedback mechanism is utilized to estimate
IST and aid a symbol-by-symbol detector (memory limited
decision aided decoder, MLDA). A similar decision feedback
mechanism is also used in [18] in the context of a sequential
probability ratio test-based MCD detector.

Recently, it was shown in [19] that applying a single
discrete-time derivative on the received signal mitigates ISI
in concentration-based synthetic MCD. Subsequently, a rising-
edge-based detection with differentiation strategy was devised
in [20] for macro-scale molecular MIMO. In [19], it was
shown that a single differentiation narrowed the received
signal pulse thus mitigating ISI. Herein, we consider multiple
orders of differentiation and their pairing with a variety of
detector strategies as noted below. It should be observed that
differentiation is not only an engineered mechanism for micro-
or nano-machines, but is a processing/sensing that occurs in
organisms. In particular, bacterial responses are affected by
the rate of change of physical and biochemical quantities.
Examples include detecting spatial gradients of bio-molecule
concentration used for chemotaxis [21] and the varying effect
of heating rate in protein synthesis [22], [23].

In our preliminary study [1], we had introduced the higher
order derivative concept, discussed its fundamental trade-off
between ISI mitigation and noise amplification, and intro-
duced a lower complexity, banded alternative to the optimal
maximum likelihood sequence detector that exploits the ISI
mitigation offered by higher order differentiation. In addition,
in a separate preliminary study [2], we had improved the
fixed threshold detector used by [19] for m = 1 and [1] for
m > 1, and provided an objective function to optimize the
derivative order m using the new fixed threshold detector. This
paper extends and completes these two works by providing
complete derivations and proofs, deriving the theoretical bit
error ratio (BER) of the detector proposed in [2], introducing
a new detector to be paired with the derivative operator, as well
as addressing the computational complexities of the detectors
and the asymptotic relationship between derivative orders. The
contributions of this paper are as follows:

1) We generalize the initial endeavors of [19] to a pre-
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Fig. 1. The considered system model of interest.

processor with an arbitrary derivative order m.

2) We characterize the fundamental trade-off of the
derivative-based pre-processing framework between ISI
mitigation and noise amplification.

3) Framing the derivative operation as a receiver pre-
processor block that takes place before detection, we
present several derivative operator-detector pairs. To this
end, we provide the limited-memory, banded version
of the MLSD, generalize the MLDA to an arbitrary
derivative order, and adapt two threshold-based detectors
to the derivative pre-processor.

4) We derive the theoretical bit error ratio (BER) expres-
sions for the threshold-based detectors.

5) We provide a signal-to-interference-plus-noise ratio-like
(SINR) objective function that is compatible with an
arbitrary derivative order. Through this objective func-
tion and the theoretical error expression, we address the
derivative order optimization problem.

6) Obtained numerical results demonstrate the character-
ized trade-off between ISI mitigation and noise ampli-
fication, and with proper derivative order optimization,
confirm the performance improvement of the derivative
operator.

The rest of the paper is organized as follows: Section II
presents the MCD channel model under consideration. Section
IIT proposes the m*" order derivative operator and discusses
the fundamental trade-off between ISI mitigation and noise
amplification. Section IV introduces possible detectors to be
combined with the derivative-based pre-processor, discussing
their main strategies of operation and computation complex-
ities. Section V addresses the derivative order optimization
problem through theoretical BER expressions and an alterna-
tive objective function. Section VI presents the comparative
numerical results, and Section VII concludes the paper.

II. SYSTEM MODEL

In this paper, the considered topology consists of a point
transmitter and a spherical absorbing receiver in a 3-D, un-
bounded environment. The distance between the transmitter
and the center of the spherical receiver is denoted by ry and the
radius of the receiver is denoted by r,.. Overall, the considered
topology is presented in Figure 1.

For the topology presented in Figure 1, denoting the dif-
fusion coefficient of the messenger molecules by D, the

time density of molecule arrivals (i.e., the channel impulse
response, CIR) is presented in [24] to be
e 1
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with its time integral being equal to
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Note that Equation (2) represents the probability of a
molecule’s arrival at the receiver up to time ¢. In this paper,
we consider a time-slotted MCD system where the transmitter
and receiver are perfectly synchronized. Using (2), the entries
of the channel coefficient vector h can be obtained by

h[n] :Fhit(nts)—Fhit((n—l)ts), n = 1,2,...,LN,
3)
where t¢ is the duration of a time slot (sample), N is the
number of samples per one symbol duration (i.e., tsympol =
Nty), and L denotes the length of the channel memory window
in symbols.

Throughout the paper, we consider binary concentration
shift keying (BCSK, [4]) signaling with equiprobable symbol
transmissions, which defines transmitting a bit-1 by emitting
M molecules, and a bit-0 by emitting no molecules. Note
that since BCSK is a binary modulation scheme, the symbol
duration is equal to the bit duration (tsympol = ¢p). Herein, we
denote s as the binary vector of transmitted bits. Employing
BCSK, assuming an idealized transmitter and that the emission
occurs at the beginning of the symbol interval, the emission
count vector x is given by

. M,
x[i] = {07

Given the channel coefficient vector h and the emission
count vector @, the n*" sample of the received signal y can
be approximated as a Poisson distributed random variable [25]:

ifsfk]=1landi=(k—1)N+1

otherwise.

“4)

y[n] ~ P (As + ) hlklan -k + 1]), (5)
k=1

where )\, is the rate of the external Poisson noise. This model
is also referred to as the linear time-invariant (LTI)-Poisson
channel [26]. Herein, we employ the Gaussian approximation
of the Poisson arrival counts [25]. Therefore, for transmissions
in blocks of length S, and separating the deterministic and
random components of y ~ (u,3), the received signal, in
vector form, can be expressed as

y=(Hx+ \j)+n. (6)

Here, H denotes the SN x SN Toeplitz matrix corresponding
to the convolution operation of LTI-Poisson in (5), j is an
SN x 1 vector of ones, and n ~ A (0,X), where

Y =diag{Hz} + A\ I. (7

Throughout the paper, unless specified otherwise, the term
“noise” refers to 7. Note that X is dependent on s through
x, which implies the signal-dependent noise phenomenon of
MCD systems [10], [13], [15], [27].
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Fig. 2. Evolution of

III. FUNDAMENTALS OF DERIVATIVE-BASED
PRE-PROCESSING

Herein, we discuss the main motivation and key statistical
properties of the m!" order derivative operator in an MCD
system. To this end, we first address how the CIR in (1)
evolves with the derivative order m. Recalling a result from
our prior work, the first peak time of % (i.e., the time
at which the m!" derivative of the CIR achieves its first
maximum) is a monotonically decreasing function of the
derivative order m, [1, Proposition 1]. Furthermore, a;ff?“
shrinks in pulse width with increasing m, as clearly observed
in Figure 2.

From a receiver design standpoint, the consequence of the
above two phenomena is an effective narrowing of each emit-
ted pulse at the receiver, which mitigates ISI for consecutive
symbol transmission scenarios. In order to characterize this
effect for the time-slotted, discrete time channel, we define
the discrete-time forward derivative operator, denoted by D,
as

-1 1 0 0
0 -1 1 0

D= ()
: -1 1
0 0 0 -1

Furthermore, we denote the output of the m!” order derivative
operator as Y, ~ N([l,(m), 3 (m)). Then, Y(mm) Can be
expressed as

Yoy = D™y
=D" (Hx+ \;j)+ D™n 9)

~N (Dmu,sz(DT)m) .

The mean of y,,) reflects the aforementioned ISI mitigation
introduced by the D™ operator. However, since 3(,,) =
D™3(D")™, the application of the m!" order derivative op-
erator inherently introduces noise amplification and coloration
into the received signal. We note that the banded diagonal form
of D™ increases in both width and magnitude with increasing
m, further increasing the coloration and amplification.
Overall, increasing m results in better ISI mitigation at
the cost of a more severe enhancement of the noise power.
This interplay between ISI mitigation and noise amplification

t(s) t(s)

2
with the derivative order m. ro = 15um, r» = 5um, D = 100%.

implies a fundamental trade-off for a derivative-based MCD
receiver, implying the existence of an optimal derivative order
m that minimizes the error probability. We will address this
optimization problem in Section V.

IV. DETECTOR DESIGN

Per its description in Section III, the m‘" order derivative

operator can be interpreted as a pre-processor, whose output
Y(m) 1s fed to the detector. Through this perspective, Figure 3
presents the overall diagram of an end-to-end MCD system
where the receiver employs the D™ operator. Herein, we
address the design of the detector to be paired with the m!"
order derivative.

A. Optimal Detector

Our notion of optimality is defined by the maximum-
likelihood criterion, which implies that the maximum likeli-
hood sequence detector (MLSD) is optimal due to ISI in the
MCD channel [15]. Given that the receiver has access to A
and h, the MLSD estimates the transmitted bit sequence 5
using the following rule:

8 = argmax P(y(,,)|s)
s

expl—3(Y(m) — H(m))TZ(:i) (Ym) = B(m))]
= arg max

s (2m) SN |Z (|

= arg min { In(|3 ) |)+

Tws—1
(y(m) - ,J’(m)) E(m)(y(m) - N(m))}-
(10)

Here, for each candidate symbol vector s, the conditional 4,
and X(,,) are found using the corresponding channel statistics
presented in Equations (6)-(9). All vectors are of size SN x 1
and the covariance matrix is SN x SN.

B. Banded MLSD

The complexity of the MLSD is exponential in channel
memory L using the Viterbi algorithm. Unfortunately, as
the data rate increases, a shorter bit duration ¢, implies a
larger L due to the heavy tail of the CIR, rendering MLSD
infeasible for low-complexity, nano-scale machinery. However,
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Fig. 3. Overall diagram of a derivative pre-processed MCD system.

leveraging the aggressive ISI mitigation introduced by the
derivative operator, we consider a sub-optimal MLSD-like
detector implemented using a considerably shorter memory
window L’. This banded-MLSD approach results in a sig-
nificantly lower complexity in computation, as it requires
oL'~1 log-likelihood computations to detect a single symbol,
compared to 25~ required by MLSD ([28], [29]). For this
detector, the branch metric M(-) that is input to the Viterbi
decoder has the following form:

i L’
Myl swn) = (S0 )+

(m
i) L’))T -

O i )
Y (m) = Bimy) By )-

L

(Ym) = Bmy

(11
Here, the sub-/superscript (L’) implies that the vectors and
matrices are obtained considering a symbol memory of L', and
the superscript (i) refers to the samples of the i*” symbol. In
particular, s(/) denotes a candidate symbol string of length
L’. Conditioned on a certain S(L)» ,u(L/) and E(Ll) denote the
obtained mean vector and covariance matrix of the samples of
the (L')*" symbol, respectively. Hence, the respective sizes of
u(L') and E(L/) are N x 1 and N x N. Furthermore, similar
to its conventional use throughout the paper, the subscript (m)
implies that the argument vector is pre-multiplied by D™, and
the argument matrix is pre- and post-multiplied by D™ and
(D)™, respectively. Note that D™ is also of size N x N
herein.

A key observation is that for a fixed derivative order m,
Y(m)[k] is a function of y[k], ..., y[k +m]. Consequently, the
D™ operator causes the last m samples of the i*" symbol
to be correlated with the first samples of the (i + 1)**
symbol, which induces a non-causal ISI. To avoid this issue,
we truncate the last m samples of the intended symbol.
Hence, “Ean)) and EEan)) are of size (N — m) x 1 and
(N — m) x (N — m), respectively. Similarly, noting y()
corresponds to the arrival counts of the i'” symbol, we have
Yoy = [Wom[G= DN +1] .. you[iN —m]]

Assuming standard matrix multiplication, each branch met-
ric computation has cubic complexity in the number of sam-
ples per symbol N, as the operation involves multiplying
vectors and matrices of sizes that are linear in /N. Note that

D™ and the conditional vectors/matrices “EZ)) , EEZ)) , and

n-1
ngn)) can be pre-computed once and stored, which makes
their complexity independent of N and m. However, obtaining
ygl) from y(?) is not independent of m. In particular, although

the discrete time forward derivative operation is represented

—é—ChanneI ——

Molecule | ¥
Counter

Detector

by D for clarity of argument, the operation for obtaining yEZ)
can be realized with a simple shift register and element-wise
subtractions. Therefore, the m'" order derivative pre-processor
has a complexity of O(mN) per symbol, making the overall

complexity of banded MLSD O(m2%' N3).

C. Decision Feedback-Aided, Symbol-by-Symbol ML

The banded-MLSD’s complexity is still exponential in L/,
which might be undesirable for a nano-machine. To this end,
we generalize the memory limited decision aided decoder
(MLDA) proposed in [17] for an arbitrary derivative order
m, where m = 0 corresponds to the original version of the
detector.

In essence, MLDA is a decision feedback aided, symbol-
by-symbol maximum likelihood detector. For each symbol,
it first estimates the imposed ISI on the intended symbol’s
samples, using the previously decoded symbols. Ideally, the
ISI estimation is done using all L — 1 past decoded symbols.
However, due to possible memory or computational constraints
of a nano-machine, it might be desirable to consider a shorter
memory window of L’ when estimating the ISI. For this
memory-limited case, only L’ — 1 past decoded symbols are
utilized, and the rest of the past is replaced by the expected
transmissions (i.e., using (4) with equiprobable transmissions).
The entries of the estimated ISI mean of the it" symbol,
denoted by ﬂI(SZ%, is computed according to the previously
decoded symbols as follows:

‘ (L'=1)N—-1
gl = > hlk+n+1] 5[ —1)N — K]
k=0
(L—1)N-1 (12)
+ > hlk+n+1]2(L—-1)N -k,
k=(L'-1)N

where & denotes the decoded emission vector, and is computed
through the decoded symbol vector § through (4). In addition,
Z denotes the expected transmission vector that covers the
past symbols between (L’ + 1) and L** memory slots, and
is expressed as

T

M
2 0 (L-L")Nx1"

= _ M

T =4 o & o0 ..]
After estimating the ISI-induced mean vector, estimated dis-
tributions for the samples of possible bit-1 and bit-0 trans-
missions are computed. Let the estimated (and Gaussian

approximated) arrival random vectors be denoted as g}(f) ~
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N(ﬂﬁi),ﬁiii)) and 4 ~ J\/(ﬂéi),ﬁ]gi)). The *" sample’s
estimated means can be written as
A7 n) = g n] + Mb[n] + s,

(@)

ke a3)
fig’ [n] = fysp[n] + As,

o) () ; . (i) .
where,.Zj = d1ag{u'j } for j € {0,1}, as g, are Gaussian
approximations of Poisson RVs.

Recalling the truncated arrival vector output of the derivative
operator from Subsection IV-B as

Yo = [y = DN +1]

the symbol is detected through a likelihood ratio test, that is

. T
Yim) [@N - mH )

1

alil — A3 A(1)
8l = ’C(m),l — ’C(m),(] % 0,

(14)
where the log-likelihoods are computed as

20

1 NO!
(m),j = _5 (N - m) 111(271') + 1n(|2(7n),j)|)+

i . (i & (4) -G . (i

Wiy = By (Bma) Wl = 80|

15)

H ~ (1) — DmA(i) d ﬁ)(l) o Dmﬁ:(z) D™ T

ere, fb,, ; a7 and X, ; (D™

Overall, MLDA provides a computationally cheaper alter-

native to banded MLSD, by incurring a linear computational

complexity in L. Note that for each symbol, evaluating Equa-

tions (12)-(13) necessitates holding (L’ —1) past symbols, and

(12) involves the element-wise multiplication of two (L'—1) N

sample-long vectors. Including the O(mN) complexity of

the m!" order differentiation and the O(N3) of (15), the
complexity of MLDA is of order O(mL'N3).

D. Fixed Threshold Detectors

Up to this point, each considered detector employs memory
at the receiver side. However, low-complexity and memoryless
detectors are particularly desirable for nano-scale applications.
To this end, we consider two types of fixed threshold detectors
in this subsection. Both detectors rely on comparing the arrival
count at a certain sample with a threshold, but they differ in
their selection of the arrival count to be compared.

1) Max-and-Threshold Detector: The max-and-threshold
detector (MaTD) selects the sample with the maximum ar-
rival count among the samples corresponding to the intended
symbol [1], [19]. The detection steps of the D™-MaTD pair
can be summarized as follows:

o Employ the derivative operator,

o Discard the last m samples (to cancel non-causal ISI),

« Perform an arg max operation among the remaining (N —

m) samples,

o Compare with the threshold.

In essence, the detected symbol is found by performing

1
8[i] = max (y(m) [(i—1)N+1], -+, y(m) [iN —m)]) %% (16)

where v is the employed fixed threshold. We note that MaTD
with m = 0 corresponds to the simple asynchronous detector
(ADS) proposed in [30].

2) Fixed Sample, Fixed Threshold Detector: Using MaTD,
the sample that observes the maximum number of molecules
may differ for each transmitted symbol, as the arrival counts
are stochastic. In contrast, as we considered in our prior study
[2], the threshold detector can also be realized by fixing the
sample whose arrival count is to be compared, yielding the
fixed sample, fixed threshold detector (FSTD). In particular,
denoting the fixed sample of interest as G(,,), FSTD selects
d(m) as the “peak sample due to the intended symbol”. In
other words, ¢(,,) corresponds to the sample that has the
largest expected arrival count due to the intended symbol’s
transmission. Let pt, ,,,) denote the expected signal due to
the intended symbol after the m‘" order derivative operator
is applied at the receiver. We note that since the peak of
Fs. (m) changes with m (see Figure 2), g, is a function of
m. Overall, the p, (,,,) vector can be expressed as

Bs.(m) = D" 1, A7)

where

T
Mh[N]} _if bit-1
T (18)
[ if bit-0.

Similar to previously discussed strategies, for a derivative
order of m, the last m samples of p, () are again discarded
to avoid non-causal ISI. Following this truncation, and de-
noting fi, (,,,) as the expected p, (,,y, FSTD selects g(,,) by
performing

19)

arg max

qe{l,....N—m} ’MS’(m) [QH .

The maximization in (19) does not perform the argmax
operation on i, (,,,) itself, but selects the sample with the
largest signal in the absolute sense. Note that due to the
nature of time differentiation and the fp;:(¢) function, g (.,
can have both positive and negative elements (see Figure 2).
In some cases, the smallest negative element can actually
have a larger absolute value than the largest positive element,
implying that said negative sample is larger in energy. In such
a case, FSTD simply negates the received signal and finds
d(m) using the negated signal. Overall, the decision rule for
FSTD can be expressed as

ol = Yo [0 = DN + Gm)] 207, if fis, (m) [Gm)] > 0
Yy [(i = N + Gomy] 207, i i, () [d(my] < 0.
(20)
We note that FSTD is a generalization of the fixed sample,
fixed threshold detector that is widely used in the MCD
literature ([31]-[33]) to an arbitrary derivative order m, where
m = 0 corresponds to the original version of the detector.
Since both MaTD and FSTD are memoryless detectors,
their complexities for decoding a symbol do not depend on
a memory window length L’. For FSTD, as the threshold
comparison is done using a fixed sample, the complexity does
not depend on NN either. For MaTD, finding the maximum on
N —m samples has linear complexity in V. Overall, combining
with the O(mN) of the derivative pre-processing, both MaTD
and FSTD have complexities of order O(mN). This result
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suggests the conjunction of D™ and fixed threshold detectors
are particularly useful for low complexity, nano- to micro-
scale applications. Motivated by this, we will mainly consider
fixed threshold detectors throughout the rest of the paper, with
a particular focus of FSTD for the problem of derivative order
optimization. In the numerical results, Section VI, we will
compare performance of all of the detectors discussed herein.

V. THE OPTIMIZATION OF m
A. Error Probability Analysis

With the derivative order m as a design parameter, the
question of how to optimize it arises. Herein, we address
this derivative order optimization problem for fixed threshold
detectors. As the end goal is to minimize the error rate of the
transmission, we first derive the theoretical bit error probability
of the D™-FSTD pair.

Recalling that the considered MCD channel is an ISI chan-
nel with memory length L, the theoretical error probability
expression will average over all (L —1) symbol-long strings of
data. Denoting sjgy as the (L—1) symbol-long vector that holds
said string, the error probability can be found by performing

1
Pe= W(ZPG\SISI)'

Vsisi

ey

. . T
Conditioned on a certain symbol vector sy, = [sis1  s[L]] ,
the received signal mean can be written as

Pr = E[y(L) |z1]

) (22)
=Hpxr+ Asjns

where j is an N sample-long vector of ones, the received
vector yL) = [y[(L — 1)N + 1] y[LNHT, xy, is the
corresponding LN sample-long transmission vector corre-
sponding to sy, through (4), and

h[(L —1)N + 1] 1] 0 - 0
h[LN — 1] h2] R[] 0
h[LN] h[3] h[2] h[1]
(23)

Similar to (7), the covariance matrix is then found by
¥, = diag{p;}. Therefore, after applying the m!" order
derivative operator, the mean vector and covariance matrix
associated with each conditional becomes py, () = D"y,
and Xy () = D™X (D)™, respectively.

Using these conditional statistics, we are interested in find-
ing P, which can be expressed for FSTD as

|SISI ’

1 ~

+ P(By)l(L = DN + Gomy)] > 1lsz[L] = 0))

1
:i(Al + AO)a
(24)

where G, is the fixed sample found by Equations (18)-(19),
and B = sgn (ﬂ&(m) [d(m)]) with sgn(-) defining the signum

function. As we employ the Gaussian approximation of the
Poisson arrivals, (24) can be re-written as

B g, m)ldm)] =
A =Q Jm)] - sl =1
1 (\/ZL»(m)[q(m%(Z(m)]‘ t ) os)
- B m ~m
to- o g il o)

\/EL,(WL) [Q(m)a lj(nb)]

where Q(-) is the Gaussian @-function, which concludes the
derivation. Note that A; and Ay consider the same sig.
However, they differ in sp[L], hence the mean vectors and
covariance matrices presented in (25) are not equal.

Error Analysis of the D™-MaTD Pair: As noted in
Subsection IV-D, we focus on FSTD as the primary threshold-
based detector in this paper. However, we also provide the
error probability derivation of the D™-MaTD pair, as it may
be more desirable in scenarios where the receiver is not
capable of locating the expected signal peak location for
FSTD.

Similar to FSTD, due to the ISI nature of the MCD
channel, the error probability of D™-MaTD is also found by
averaging over the conditional error probabilities. Similarly,
the computation of conditional statistics is also not dependent
on the detector strategy. Therefore, Equations (21)-(23) hold
for the D™-MaTD pair as well.

The derivation for the D"*-MaTD pair differs from that of
the D™-FSTD pair in the way it computes the conditional
error probabilities. To evaluate a conditional error probability
for the D™-MaTD pair, we first denote

Y, = (L) 1
m) = e Yo ]

as the maximum sample, where ygﬁl)) = D™yL) Then, P,
can be expressed as

1

o = 5 (PYmy <Alsz[L] = 1) + P(Yim) > yls1[L] = 0))

1
= i(Aﬁ + Ap)

|s1s1

P

(26)

Therefore, characterizing the CDF of Y(,,) is sufficient to
complete the derivation. However, Y(,,) corresponds to the
maximum of correlated and differently distributed Gaussian
random variables, for which a straightforward, closed form
solution does not appear to exist. Instead, numerical solutions
are typically considered [34], [35]. Motivated by this, we use
the strategy developed by Clark [36] to approximate Y|,y as
a normal random variable through a recursive process. At its
first iteration, Clark’s method takes in two samples (which are
Gaussians), and computes its mean and variance in relation to
the samples’ first and second order statistics. Then, the method
assumes the maximum of these two samples is also normally
distributed (although it is not the case in reality), and uses this
approximated random variable as one of the two inputs to the
next iteration (the other input being the next sample, which
is a Gaussian). We refer the reader to Appendix A for further
details on the recursion. At the end of the process, we obtain
an approximate Gaussian distribution Y{,,) ~ N ([LR,O'}Z%),
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where pir and 0% are computed via the recursion described
in Appendix A. We plug these statistics into (26) as

A= (M sy () =1)

A =Q(”;R"R\sL[u =0),

27

which completes the derivation.

B. Signal-to-Interference-Plus-Noise Ratio

Due to the presence of the 2°~1 conditional error probabili-
ties which constitute the theoretical BER, optimizing the BER
resulting from a particular choice of m is computationally
infeasible given the typical values of L associated with an
MCD channel. In particular, even though our earlier study
suggested considering L’ < L to decrease this complexity
[1], our observations suggest that such a simplification can
lose accuracy for very high data rate settings, even with the
aggressive right tail mitigation of the D™ operator. Further-
more, as for the case of true L, we still need to compute
multiple Q-functions for L’ as well (Equation (25)), which
may be undesirable for a simple nano-machine.

Motivated by aforementioned shortcomings of optimizing
m by examining theoretical error probabilities, we generalize
the signal-to-interference-plus-noise ratio (SINR) employed by
[27] to the D™ -FSTD pair. Overall, for an arbitrary symbol
index i, the expression has the following form [2]:

E { (sl s, (m) [CRm)DQ}
Var {7722) [@(mﬂ} + Var {I((Z) [(I(m)}}

SINR(m) = ,

(28)
where the superscript (i) indicates that the symbol of interest
is the 7t". Here, 77(:-7)1) denotes the contribution of the signal
dependent noise induced by the intended symbol, on the sam-
ples of the i*” symbol. Similarly, Z E:T)L denotes the aggregate
contribution of the signal dependent noise due to ISI symbols
and the external noise. In the sequel, we characterize each term
in the expression. Firstly, the numerator corresponds to the
second moment of the signal that is induced by the intended
symbol’s (i‘") transmission. Recalling the definition of Ko, (m)
from (17) and that G, is D™-FSTD’s sample of interest, the
numerator is expressed as

E{(s[z’]us,<m> [fi<m>])2} -

(29)

In the denominator, the first expression represents the noise
variance induced by the intended symbol’s transmission. Let
¥, = diag(p,) and X (,,,) = D™X,(D™) . Then, the noise

variance incurred by the intended symbol is expressed as
i) ra 1 i) rx .
Var {né,,l) [q(mﬂ} =g Var {77((,,)1) [G(m)] ‘S[Z] = 0} +
1 i) = .
5 Var {n% [Gm)] ‘S[Z] = 1}
1

1 L
=3 X 0+ 525,(m) [G(m)> T(m)]

1 m : m ~ ~
(30)

Lastly, characterizing the noise variance induced by ISI and
external noise completes the derivation of (28). To this end,
we first denote py as the mean arrival count vector that is
due to ISI. Note that p; depends on the evaluated ISI symbol
sequence sis. We then define

KBr(m) = D™ (I'LI + A5.7)

m 3; TN 3D
X1,m) = D" diag(pr + As3)(D )™

Overall, the variance induced by ISI and external noise can be
found by

Var {Z0) [} = Cov(Z{ ldm) s Zip i)
_E {(I((ZBL) [q}m)])? (B2 )
= g | () Jorsa| -
(B[22 @ s1s1])

1 - . ~ 2
= 9L-1 Z [El,(m) [q(m)vq(m)] + (NI,(m) [q(m)]) } -

VsrsI
1 2
<2Ll > ML(m)[‘f(m)]) :
Vsrs1
(32)

Similar to the theoretical BER expressions, evaluating SINR
also incurs an exponential complexity in L stemming from
computing conditional statistics when evaluating (32). To
avoid this, one can use a smaller memory window of L' < L
when evaluating SINR, significantly reducing the incurred
complexity. Denoting this version of SINR as SINR;/, the
objective function presented in this subsection can be used to
select the derivative order as follows:

m* = argmax SINRp/ (m). (33)

m
Using (33), m™* is determined via an exhaustive search on
candidate m values. We note that this computation needs to
be performed only once (before data communication begins).

VI. NUMERICAL RESULTS

In this section, we present numerical results to assess the ac-
curacies of the theoretical error probability expressions derived
in Subsection V-A, demonstrate the efficacy of SINR as an
objective function for optimizing m, and provide comparative
BER results for derivative/no-derivative detectors. Throughout
the section, the external Poisson noise rate (\,) is normalized



8 SUBMITTED TO IEEE TRANSACTIONS ON MOLECULAR, BIOLOGICAL, AND MULTI-SCALE COMMUNICATIONS

with respect to transmission power through the following
definition of signal-to-noise ratio (SNR):
u M
Ny 2N\,
Here, the numerator follows from (4) for equiprobable BCSK
symbols, and represents the average emitted signal per one
symbol. Recalling N as the number of samples per one
symbol duration and A, as the external noise rate per symbol,
the denominator of (34) represents the expected number of
external noise molecules per one symbol.

Since parameters such as D, r,., and 7o all affect the
frit(t) function hence the h vector. To this end, in order to
contextualize the data rate in relation to these parameters, we
normalize the symbol dugation with respect to the channel peak
time ¢, = % = %, see [24, Equation 26]. Throughout
this section, the bit duration ¢, is selected through a unitless
parameter S;., which is defined as S, = I—Z Note that since
a smaller ¢, corresponds to a higher rate of transmission, a
smaller S, corresponds to a higher data rate.

SNR = (34)

A. Accuracy of Error Analysis

Herein, we demonstrate the accuracy of the derived theo-
retical BER expressions for D™-FSTD and D™-MaTD pairs
with varying m. To this end, Figures 4a and 4b are presented
for different values of S, (hence, different data rates). In both
figures, L = 10 is selected for demonstrative purposes, due
to the exponential complexity when computing the theoretical
BER expressions.

The results of Figures 4a and 4b show that the theoretical
BER expression for D™-FSTD is accurate. Furthermore, the
results demonstrate that the approximations for D"*-MaTD
are tight, which validates the derivation in Subsection V-A,
as well as confirms the accuracy of Clark’s approximation in
our system of interest. In addition, confirming the results of
[2], FSTD is found to generally outperform MaTD. Motivated
by this, among the fixed threshold detectors, we will present
the error curves for D™-FSTD throughout this section. Lastly,
regardless of the comparative relationship between FSTD and
MaTD, it can be observed that both detectors benefit from the
derivative operator and produce lower BER values with m > 0
compared to their standard versions with m = 0.

B. Accuracy of SINR

In this subsection, we show the accuracy of the SINR
expression derived in Subsection V-B. To this end, we provide
Figures 5a-5b and Figures 5c¢-5d to present results for two dif-
ferent data rates, and thus, two different levels of ISI. Similar
to the theoretical error probability expressions, the SINR also
necessitates evaluating over 2X~1 ISI symbol sequences. For
computational complexity reasons, we use the limited memory,
SINR . version of the expression with L' = 10. However, we
note that the BER simulations use large channel memories
(L = 100 for Figure 5b and L = 200 for Figure 5d) to
satisfactorily capture the right tail of the CIR, and to test the
memory-limited SINR’s efficacy in the more accurate, large
channel memory scenario.

The results of Figure 5 demonstrate that SINR closely fol-
lows the comparative trend between different derivative orders.
Furthermore, SINR provides this accuracy with a significantly
smaller memory consideration than the true channel memory,
which suggests its utility for derivative order optimization
in micro- to nano-scale applications. That said, SINR can
incur slight discrepancies in the comparative trend when the
BER values of evaluated schemes are close. An example of
this phenomenon can be observed in Figures 5c-5d, between
m = 2 and 3 at M = 10'° molecules. The discrepancy is
due to the substantially smaller memory used to compute the
SINR. We refer the reader to compare Figures 5c and 4b,
which are with L = L’ = 10, to confirm SINR’s accuracy
when the considered memories are equal.

The comparative trends between different orders of m in
Figures 5b and 5d show that, as theorized and predicted, the
optimal derivative order is a function of system parameters.
In particular, Figure 5b shows that for a relatively larger S,
(hence lower ISI), a smaller m is better. On the other hand,
Figure 5d shows that in a smaller .S,./higher ISI regime, higher
derivative orders outperform the first order. These results can
be explained through the fundamental trade-off between ISI
mitigation and noise amplification associated with the D™
operator. Recall from Section III and Figure 2 that a higher
derivative order induces a lower ISI due to a narrower effective
pulse duration, at a cost of an increase in received signal
variance. In light of this trade-off, the results of Figure 5b
show that for lower ISI, the system is better off by avoiding
the additional noise amplification of m > 1 as the ISI is
already relatively low'. Furthermore, our empirical observa-
tions suggest that when S,. is increased even further, m = 0
begins to become the favorable derivative order as it incurs no
noise amplification. However, the higher data rate in Figure
5d incurs a very high level of ISI, which induces the need
for a more aggressive ISI mitigation, causing the optimal m
to be larger than one. Another noteworthy trend in Figure 5d
is that the optimal derivative order changes with M. Figure
5d shows that in the small M regime, m = 2 is optimal.
However, as M increases, the system is able to combat the
noise amplification better, hence is able to leverage the more
powerful ISI mitigation provided by m = 3.

C. Asymptotic Performance

In the previous subsection, we discussed the implications
of the ISI mitigation-noise amplification trade-off of the
derivative pre-processor. In particular, we noted that for low
ISI and/or small M scenarios, a smaller m is better due to
less noise amplification. On the other hand, in general, as
M increases, the system becomes more robust against noise,
and is better-off by increasing the derivative order for better
IST mitigation. From these two trends, the following question
might arise: As M — oo, do the performances of derivative
orders become monotonically better as m increases? To this

'However, it should be noted that the optimal derivative order is still larger
than m = 0, indicating that the existing ISI is still significant. We emphasize
that S, = 0.5 implies the bit duration is half of that of the channel peak
duration, which incurs a highly deteriorating level of ISI, hence m > 0 is
needed for meaningful communication.
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search.

end, although BER vs. M curves cannot be provided due to
extremely low error rates, we leverage the accuracy of SINR in
explaining the comparative relationship of different derivative
orders for D™-FSTD, and provide SINR vs. M curves in
Figure 6.

As expected, the results of Figure 6b show that the SINR
is monotonically decreasing in m at the small M regime,
whereas for asymptotically large M, the SINR is monoton-
ically increasing. Our empirical observations with various

(d) Simulated BER vs. M, S, = 0.25, L = 200.

= 100um2s~!, N = 5. v values numerically optimized through exhaustive

channel and system parameters verify that this trend is typ-
ical, confirming the implications of the ISI mitigation-noise
amplification trade-off. However, Figure 6a exemplifies that it
is not always the case. We return to the sampling argument
for Equation (19). In the context of (19), we had noted that
time differentiation causes some samples of the derivative
pre-processed signal to have large negative amplitudes in
expectation. In addition to this, for some scenarios, the same
effect of time differentiation can also cause the samples to
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more evenly share the total received power within a symbol
duration. In such cases, the maximum sample considered by
FSTD has a smaller absolute magnitude, making the system
face a higher error floor due to ISI. The computation of
SINR implicitly accounts for this phenomenon and predicts
the comparative relationships for asymptotically large M.

D. BER vs. Detector Memory

We next consider the effects of detector memory in error
performance for the banded MLSD and MLDA. Figure 7
presents BER versus L’. For benchmarking purposes, Figure
7 also includes the results for minimum mean squared error
(MMSE) equalizer. We note that the MMSE, when applied
on the transmission block as a whole, has complexity that
is quadratic in block length S, which is undesirable for a
simple nano-machine. Hence, following the consideration of
[15], we employ the decision feedback-aided, online version
of the MMSE equalizer herein (which is O(L"2N?) for the
emission strategy considered in Equation (4)).

Figure 7 demonstrates three noteworthy trends:

1) Derivative-based pre-processing allows for a reduction
in the memory window of memory-aided detectors,
courtesy of its ISI mitigating nature. We emphasize that
even though the true channel memories are on the order

of hundreds of symbols, reliable communication can be
achieved using a substantially smaller L’. Combined
with the very low complexity nature of the discrete-
time derivative operation itself, the combination of the
pre-processor and detector remain low complexity, pro-
viding high-performance, computationally cheap MCD
receivers amenable to micro- and nano-scale MCD ap-
plications.

2) The ISI mitigation-noise amplification trade-off affects
the optimal derivative order in memory-aided detectors
as well. However, in memory-aided detectors, the opti-
mal derivative order is also affected by the choice of L'.
To exemplify, we note that the stronger ISI mitigation
of m = 3 makes the schemes with m = 3 outperform
other orders at L' = 2. On the other hand, the schemes
with m = 2 provide lower error rates for L’ > 3 due to
less noise amplification.

3) Due to its very definition, as L' — L, the performance of
the banded MLSD would converge to the MLSD Viterbi
decoder. For the same derivative order, the results of
Figure 7 show that banded MLSD typically outperforms
its MLDA counterpart in the small L’ regime as well.
That said, we note that MLLDA is also capable of yielding
a reliable error performance at this regime, and is a
low complexity alternative to banded MLSD therein.
Overall, we conclude that D™-banded MLSD is able
to provide a lower BER with higher complexity, and
vice versa for D*-MLDA, confirming the performance-
complexity trade-off between them.

E. Comparative Error Performance

In this subsection, we provide the comparative error per-
formances of the proposed strategies through Figure 8. We
note that due to their comparable computational complexi-
ties, Figure 8 also includes the conventional fixed threshold
detector (FTD, [4]) where the total arrival count within a
symbol duration is compared with a threshold, the adaptive
threshold detector (ATD) proposed in [16], and the weighted
sum detector in [37]. We note that these methods utilize all
samples within the symbol duration, unlike D"*-FSTD, where
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only one out of N available samples is utilized. Moreover, in
order to ensure a relatively comparable complexity to FSTD,
the memory aided detectors/equalizers are implemented with
L'=2.

The results of Figure 8 agree with the previously presented
results regarding the benefits of the derivative operator. Among
the derivative-based schemes, for the majority of the evaluated
data points in Figure 8, either D™-banded MLSD or D™-
MLDA are observed to outperform other schemes. That said,
D™-FSTD is also found to provide reliable error rates despite
its simplicity. Comparing the strategies on a target BER level,
it can be inferred that D™ -banded MLSD and D" -MLDA are
able to reach the target with a smaller M than D™-FSTD,
whereas D"-FSTD offers a lower receiver complexity at a
cost of increased transmission power.

VII. CONCLUSIONS

In this paper, receiver-side higher order time differentiation
has been proposed to mitigate ISI for MCD. Considering the
derivative operation as a pre-processor block before detection,
several memory-aided (i.e., MLSD, banded MLSD, MLDA)
and memoryless (i.e., FSTD, MaTD) detectors have been
provided to be paired with the derivative operator. In the
paper, it is shown that for a derivative-based MCD receiver,
there exists a fundamental trade-off between ISI mitigation
and noise amplification, implying the existence of an optimal
derivative order that minimizes BER. The derivative order op-
timization problem is addressed for fixed threshold detectors,
through the derivations of the theoretical BER expressions
of D™-FSTD and D™-MaTD pairs. Furthermore, an SINR-
like objective function is proposed to optimize m for D™-
FSTD. Numerical results confirm the accuracy of the derived
expressions, demonstrate the efficacy of the D™ operator in
IST mitigation, and show that said ISI mitigation decreases the
needed memory window of memory-aided detectors. Overall,
the proposed D™ operator is shown to be a computationally
very cheap strategy that provides a powerful ISI mitigation.
Given the transmitter is able to handle large transmission
powers to alleviate the effects of noise amplification, the

derivative operator allows for achieving considerably higher
data rates, while still preserving a reliable communication link.

APPENDIX A
CLARK’S APPROXIMATION FOR MATD

Let X; = y&)) [i]. Then, X1,...,XN—_m are correlated
and differently distributed random variables whose maximum’s
distribution is of interest. In its first iteration, Clark’s approx-
imation finds the mean and the variance of max(X7, X5).
Afterwards, max(X;,X2) is approximated as a Gaussian
with said mean and variance?. Then, in the second iteration,
max (X1, X9, X3) = max[max(X7, X5), X3] simply becomes
the maximum of two “Gaussians”, which is handled in a
similar way to the first iteration. The process keeps iterating
until the n'* random variable.

Herein, we present the method of finding the mean and
the variance of max(Xy, X2). Let X7 ~ AN (ui,o0}) and
Xy ~ N (12,02). Note that by definition, p; is the ' entry
of pr, (), and o2 is the i'" diagonal entry of 3r,(m)- We
define two auxiliary parameters a and « to be

_ ] 2., 2
a=1/0]+05—2012

:#1—,u2
7@ .

(35)

«

Let 11 and vy denote the first and second moments of
max (X1, X5). Then,

v = mQ(=a) + p2Q() + a(a)

va = (4f + 01)Q(—a) + (15 + 03)Q() + (1 + p2)arp(«),
(36)

where ¢ (-) denotes the standard normal PDF. Lastly, using
v1 and vo, we approximate max (X, Xo) ~ N (vy, vy — v3),
completing the iteration.

2Note that maximum of two Gaussians is not a Gaussian itself. However,
Clark’s approximation considers it as such in order to devise its recursive
strategy [36], [38].
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