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Abstract—Diffusion-based molecular communication (DBMC)
between spatially separated bacterial colonies has limited range
due to slow diffusive propagation. To this end, relay-aided
DBMC with bacterial colonies as nodes is considered in this
paper. A deterministic framework that governs the overall system
behavior is provided for amplify-and-forward (AF) type relays.
Motivated by real-life constraints in practical implementation,
the framework is expanded to cover a maximum saturation limit
on emission intensity, yielding the AF-with saturation (AFS) relay
model. For n-hop bacterial DBMC with AFS relays, a trade-off
between diffusion delay and relay processing time is investigated,
which hints to an optimal number of relays that minimizes end-
to-end delay. A tractable objective function for the end-to-end
delay is provided by approximating the system as a cascade of
n one-hop links. Numerical results show that the approximation
is tight, and up to 50% decrease in end-to-end delay can be
achieved by optimizing the number of relays.

Index Terms—Diffusive molecular communications, relays,
end-to-end delay, bacterial molecular communication

I. INTRODUCTION

Diffusion-based molecular communication (DBMC) has

heavy inter-symbol interference (ISI) due to the characteristics

of the diffusion process [1]. As in radio communications,

unmitigated ISI can affect data rates and reliability. In DBMC,

ISI is exacerbated by increasing ranges. As a potential so-

lution, relay-aided DBMC has been extensively considered.

In [2], the molecular multiple access, broadcast, and relay

channels are defined. Amplify-and-forward (AF) relays are

examined in [3]–[5], estimate-and-forward (EF) in [6], and

decode-and-forward (DF) in [7]–[10].

The above studies consider error rates as performance

metrics, and focus mostly on the communication theoretic side

of the design. On the other hand, end-to-end delay is seldom

considered as a performance metric in the relay-aided DBMC

literature. In [11], delay and link reliability are considered

in the context of multihop molecular communication, where

the information is encoded within the genetic material of

viruses. Similarly, [12] considers routing and the associated

delay when encoding information within the plasmid of a

bacterium, whose motility carries the information (as opposed

to diffusion-based propagation). In [13], a rate-delay trade-

off within a two-hop DBMC system is investigated, when the
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information is encoded information within the body of a large

molecule, assuming that a single molecule’s arrival is sufficient

for successful information transfer. In contrast to [11]–[13], we

focus on (relay-aided) DBMC where each node is a bacterial

colony within a chamber and concentration-based signaling is

employed. In this regard, the closest line of work to our study

is [14]–[16]. However, as much of the DBMC relay work, this

prior art focuses on error probability and capacity metrics.

Synthetic biology offers significant promise towards en-

gineering living cells including bacteria to achieve desired

functions in applications ranging from the production of

compounds that benefit human health or enhance plant growth

and resistance to invasion [17]. A key challenge is program-

ming the collective behavior of bacteria by exploiting infor-

mation processing systems including quorum sensing [18]–

[20]. Predictable design of complex synthetic circuits has

been limited by unintended interactions with the host cell

genome, leading to negative impacts on cellular fitness [21]. To

reduce metabolic burden, circuits could be partitioned among

different sub-populations or community members to achieve a

community-level function [22]. Further, these sub-populations

could be engineered for long-range signal communication [23].

Designing such functions [24], [25] necessitates understanding

how quickly or slowly microbial communities activate. This

activation time question can be answered through delay op-

timization in spatial networks of microbial communities. To

the best of our knowledge, our study is the first work that

considers delay minimization in bacterial relay-aided DBMC.

The models we propose herein are inspired by experimental

results [24], [26] on synthetically engineered bacterial relay

systems.

The contributions of this paper are as follows:

1) Considering bacterial colonies as nodes in a relay-aided

DBMC setting, we provide a model framework that

governs the overall system behavior for AF-type relays.

2) Motivated by experimental data, we extend our frame-

work to incorporate biologically consistent constraints

such as a maximum saturation limit on emission in-

tensity (as exhibited by real world bacterial colonies),

and propose the amplitude-and-forward with saturation

(AFS) relay model.

3) For the AFS model, we approximate the end-to-end

system as a cascade of identical one-hop links. Based on

the approximate model, we provide a tractable objective



function that can be used for optimizing the number of

relays numerically.

4) Numerical results show that the approximate model

closely follows the actual model, and demonstrates the

existence of an optimal number of relays that minimizes

end-to-end delay.

The remainder of this paper is organized as follows: Section

II presents the system model and the corresponding signal

model. Section III characterizes the evolution of the system

observations as a function of the initial state. Section IV

provides an approximation to the end-to-end system, and

presents an objective function for optimization. Section V

presents numerical results and Section VI concludes the paper.

II. SYSTEM AND SIGNAL MODEL

The system of interest in this paper is an n-hop molecular

communication system between a transmitter node (TX, N0)

and a receiver node (RX, Nn), with n − 1 relay nodes

in between (N1, . . . , Nn−1). All nodes are assumed to be

identical. Throughout the paper, we model each node to be

passive observers in a driftless, unbounded, 1-D medium. Each

node is assumed to observe a region of length L. The distance

between the centers of the transmitter and the receiver is

denoted by d, and the relays are equally spaced between TX

and RX. Thus, the distance between the centers of node i and

node j is equal to dij = d
|i−j|
n

. The system considered in the

paper is presented in Figure 1.

For this system model, given unit impulse emission from

Ni, the concentration at the center point of Nj is given by

cij(t) =
1

(4πDt)1/2
exp(− d2

ij

4Dt
), where D denotes the diffusion

coefficient of the utilized molecule [27], [28]. When L ≪ dij
(which is satisfied throughout the paper), the total concentra-

tion observed within a node’s body can be approximated to be

uniform [29], yielding hij(t) ≈ Lcij(t). Using said uniform

concentration approximation (UCA, [29]), the channel impulse

response (CIR) between Ni and Nj can be expressed as

hij(t) =
L√
4πDt

exp
(

−
d2ij

4Dt

)

. (1)

We consider the collective behavior of large bacterial

colonies as opposed to a single cell/nano-machine. Thus,

each node represents the collective response of the colony

at the node as a whole. Naturally, the concentration scale

of the system of interest is significantly larger than typically

considered for nano-scale applications. Throughout the pa-

per, we assume that the concentration scale is large enough

that the effects of perturbations around the mean (i.e., CIR)

are negligible when characterizing the observed number of

molecules/concentrations. Thus, we employ a deterministic

model in this paper. Under this assumption, using a discrete

time model with time increments ∆t, for each (i, j) pair with

i ̸= j, the series {hij(k∆t)}k≥1 fully characterizes the effect

of Ni on Nj . Henceforth, for brevity in notation, we refer to

time k∆t with the discrete index k, e.g., hij(k∆t) = hij [k].
Let rj [k] denote the observed local concentration at node j

at time k, and xj [k] denote its total generated signal. We model

rj [k] to consist of two components: the aggregate diffusion-

caused effect of all nodes other than Nj (rdif
j [k]), and the effect

of self-feedback within the colony (rSF
j [k]). That is,

rj [k] = rSF
j [k] + rdif

j [k]. (2)

Within the scope of this paper, every node utilizes the same

molecule type. We assume that a fraction β ∈ (0, 1) of the

molecules emitted at time (k−1) from Nj are “trapped” within

the jth node, contributing to the arrival count of Nj at time k.

This consideration accounts for the self-feedback loop of the

bacterial colony at Nj , and implies

rSF
j [k] = βxj [k − 1]. (3)

Note that we assume a self-feedback with a memory of one

time-slot and with unit delay. The extension to more memory

self-feedback is left as future work.

The remaining (1 − β) fraction of the transmitted concen-

tration is “leaked out” of the colony, yielding the emission of

Nj at time k to be (1− β)xj [k]. The diffusion-induced com-

ponent of rj [k] is the superposition of the effects of all other

transmitting nodes in the system1. Due to the convolutional

nature of the DBMC channel, this component is then equal to

rdif
j [k] = (1− β)

n
∑

i=0
i ̸=j

k
∑

l=1

xi[k − l]hij [l]. (4)

From Equations (3) and (4), we see that rj [k] is affected

by previous emissions of all nodes in the system. Denoting

r[k] =
[

r0[k] · · · rn[k]
]⊤

, the characterization of the

system evolution through considering r[k] as the state at time

k is addressed in the sequel.

III. SYSTEM EVOLUTION CHARACTERIZATION

Herein, we characterize r[k] in terms of the initial state r[0],
for AF type relays. Combining (3) and (4), we have

rj [k] = βxj [k − 1] + (1− β)

n
∑

i=0
i ̸=j

k
∑

l=1

xi[k − l]hij [l]. (5)

For AF-type relays, denoting the amplification factor/gain as

α and x[k] =
[

x0[k] · · · xn[k]
]⊤

, we can write

x[k] = αr[k], (6)

leading to

rj [k] = αβrj [k − 1] + α(1− β)

n
∑

i=0
i ̸=j

k
∑

l=1

ri[k − l]hij [l]. (7)

Setting hii[1] :=
β

1−β
and hii[k] := 0 for all k ̸= 1, we get

rj [k] = δ

n
∑

i=0

k
∑

l=1

ri[k − l]hij [l] = δ

k
∑

l=1

hj [l]
⊤
r[k − l], (8)

1We assume that the effects of diffusive self-interference (SI) are accounted
for within the internal self-feedback loop in (3).





Thus, the optimal n that minimizes the delay is expressed as

n∗ = argmin
n

Ta(n) = argmin
n

min
k

{k : rn[k] ≥ M}. (15)

Mathematically, as each node is modeled as a passive

receiver, the introduction of extra relay nodes do not negatively

affect the pre-existing nodes’ observations. Therefore, extra

relays can only help, which yields the trivial solution n∗ = ∞
to minimize delay. However, in real life, bacterial colonies

that are close by compete for nutritional resources [30]. This

phenomenon imposes a cost associated with introducing extra

relays, as increasing n decreases d
n

, causing more severe

competition for food among adjacent colonies. Motivated by

the tradeoff between the “health” (fitness) of the colony and

the signal amplification it can produce, we incorporate this

phenomenon into the gain parameter α, which now becomes

a function of n. In particular, denoting the 1-hop gain by α1,

we assume α = α1

np for some exponent p ∈ R
+.

A smaller α implies that each relay takes a longer time

to reach sufficiently large emission intensities once it starts

receiving a non-zero signal, due to slower self-feedback. This

introduces a processing delay that increases with increasing n.

Thus, the effect of n on α yields a trade-off between the benefit

of a relay (diffusion delay) and processing delay, which hints

to the existence of a finite n∗ that minimizes overall delay by

balancing these two sources of delay.

Unfortunately, the optimization problem described by (15)

is computationally challenging, since n governs α, the channel

coefficients hij [k], as well as the size of the r[k] vectors. Fur-

thermore, as the saturation in (13) introduces a non-linearity

to the system, (9) is no longer valid for explaining system

behavior, rendering Theorem 1 inapplicable for AFS relays.

Since each node affects every other node, this interconnected

evolution of the system severely challenges optimization.

To overcome these computational challenges, we approxi-

mate the end-to-end delay of the system as

Ta ≈ n× T01, (16)

where T01 denotes the one-hop delay between the TX and the

first relay (i.e., N0 and N1). We note that this approximation

is particularly accurate when

1) The one-hop distance d
n

is large: This regime describes

the case where nodes are not too close to one another.

When it is satisfied, the signal at node j is dominated by

the contributions of the closest nodes Nj−1 and Nj+1,

since a large dj,j±j′ causes the effects of Nj±j′ (where

j′ > 1) to be negligible compared to Nj±1. Recalling

r[0] =
[

M 0 · · · 0
]⊤

, the activation/saturation is

likely to be “one-by-one” and the effect of Nj+1 would

be negligible compared to Nj−1, thus it is reasonable to

further approximate rdif
j [k] as

rdif
j [k] ≈ (1− β)

k
∑

l=1

xj−1[k − l]hj−1,j [l]. (17)

For a small one-hop distance, Nj’s effect on Nj±j′

becomes non-negligible and considering (17) becomes

inaccurate. This phenomenon is also observed experi-

mentally in [26, Figure 5.6].

2) The parameter α is large: This regime implies that each

node reaches saturation rapidly upon receiving a non-

zero signal. To provide insight, consider α → ∞. Then,

immediately upon node j − 1 receiving any non-zero

signal (say at time k), node j−1 would reach saturation

at time k + 1, that is xj−1[l] = αM, ∀l ≥ k + 1.

Assuming that Point 1 above is satisfied, this implies that

from Nj’s perspective, the N0−N1 link is approximately

equivalent to the Nj−1 − Nj link. Then, the aggregate

end-to-end delay is well-approximated by the sum of n

identical, one-hop delays that are ≈ T01.

We will validate these approximations in the next section.

Using the approximation in (16), and noting that T01 =
mink{k ∈ Z

+ : r1[k] ≥ M}, the optimization problem in

(15) can be reformulated as

n∗ = argmin
n

n×min
k

{k ∈ Z
+ : r1[k] ≥ M}. (18)

We underscore that r1[k] is still a function of n in the hypo-

thetical one-hop scenario used for approximation, as n affects

both h01[k] through d
n

, and α. Given x0[k] = αM, ∀k ≥ 0,

combining (7) with (17) and expanding the recursion for time

k, the general expression governing r1[k] can be written as

r1[k] = M
1− β

β

k
∑

i=1

qi(αβ)
i, (19)

where qi =
∑k−i+1

j=1 h01[j]. Then, the one-hop delay can be

expressed as

T01 = min
k

{

k : M
1− β

β

∑k

i=1
qi(αβ)

i ≥ M
}

= min
{

k :
∑k

i=1
qi(αβ)

i ≥ β

1− β

}

.

(20)

Therefore, recalling α = α1

np , the optimal number of hops for

this approximate case can be found by

n∗ = argmin
n

n×min
k

{k :
∑k

i=1
qi(α1βn

−p)i ≥ β

1− β
}.

(21)

Although the solution of (21) still needs numerical evaluation,

this objective function is considerably easier to compute than

(15). This is the case for the following three reasons: (a) the

expression does not depend on the size of the vector r[k], (b)

the problem only requires the values of h01[k] in contrast to

hij [k] for all i ̸= j, and (c) the problem only requires the

evaluation of this single link as opposed to considering the

system as a whole.

V. NUMERICAL RESULTS

In this section, we provide numerical results to assess the

approximation accuracy of (16) (hence the optimization in

(21)) compared to the simulated system evolution governed by

the model equations (2)-(9), and to aid discussion on the value

of n∗ as a function of system parameters. Table I presents

parameter values considered throughout the section.



TABLE I
CONSIDERED SYSTEM PARAMETERS. DEFAULT VALUES SHOWN IN BOLD.

Parameter Value

∆t (s) 60
D (m2 s−1) 10−10

M (molecules) 1015

L (m) 10−3

d (m) 0.1, 0.15, 0.2, 0.25
α1 20, 50, 100, 200, 500
β 0.7
p 0.4, 0.7, 1, 1.3, 1.6
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Sim. (2)-(9), d = 20cm

Theo. (16)-(21), d = 20cm

Sim. (2)-(9), d = 25cm

Theo. (16)-(21), d = 25cm

Fig. 3. Ta vs. n for varying d. All other parameters take their default values.
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Fig. 4. Ta vs. n for varying α1. All other parameters take default values.

Figure 3 shows the end-to-end delay Ta versus n for

different TX-RX distance (d) values. The results of Figure 3

confirm the existence of the trade-off between diffusion delay

and processing delay (due to non-zero time to reach saturation)

conjectured in Section IV. As expected, increasing distance

increases diffusion delay, which causes the optimal number of

hops, n∗, to shift rightward with increasing d.

In Figure 4, we consider Ta versus n for different gain (α1)

values. The results of Figure 4 demonstrate that n∗ increases

with increasing α1, and vice versa. A smaller α1 implies that

the system has a longer processing delay. As increasing n

would further increase this delay, the results suggest that the

system is better-off by avoiding larger n values, and settling for

a larger diffusion delay to prevent α from further decreasing.

We note that even though a plot with respect to β could not

be provided due to space restrictions, our observations suggest

that it has common qualitative results with α1.

Recalling α = α1

np , a larger p implies a sharper decrease
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Fig. 5. Ta vs. n for varying p. All other parameters take their default values.

in α for the same n. Thus, increasing p increases the cost of

introducing additional relays. The results of Figure 5 confirm

this trend, as n∗ shifts leftward with increasing p, which

suggests that similar to Figure 4, the system favors incurring

more diffusion delay to prevent α from sharply decreasing.

Lastly, it can be observed from Figures 3-5 that considering

the overall system as a cascade of n individual one-hop links,

and using Equations (16)-(21) to theoretically optimize the

system yields a tight approximation to the actual end-to-end

delay. We note that the approximation is particularly accurate

when n is smaller, and is only slightly looser as n increases.

This confirms the corresponding explanation in Section IV, as

increasing n would both decrease d
n

and α = α1

np , the two

quantities which improve the accuracy when they are large.

Overall, the approximate objective function accurately follows

the trend of the true Ta, and can indeed be used to decrease

complexity when optimizing n.

VI. CONCLUSIONS

This paper considers spatially separated bacterial colonies

as nodes for relay-aided DBMC. A deterministic framework

that characterizes system evolution has been provided for AF-

type relays. The framework has been extended to incorporate

biological constraints such as a maximum saturation limit

on emission intensity, yielding the amplify-and-forward with

saturation (AFS) relay model. The end-to-end system has been

approximated as a cascade of one-hop links for AFS-type

relays, and a tractable objective function has been provided for

numerical optimization. As future work, we consider extending

our framework to cover stochastic or imperfect observations,

chemical reactions within nodes, and physically implement an

experimental relay-aided bacterial DBMC system.

APPENDIX A

PROOF OF THEOREM 1

The proof follows from induction.

Base Step (k = 1): For this case, we need to show

H
0→1 =

∑1

b=1
δb

∑(1−1

b−1)

c=1
H

(b)
c , H

(b)
c ∈ H(b)[1],

which is equal to δH
(1)
1 , where H

(1)
1 ∈ H(1)[1]. The set

H(1)[1] has a single element in it by definition, which is H[1].
Thus, we have H

0→1 = δH[1], which confirms with (9).



Inductive Step: Here, we assume the theorem holds for all

time indices up to (k − 1), and prove that it holds for k.

To do so, we first note that since we assume the statement

is true for (k − 1) and r[k] relates to r[k − 1] with δ, it is

trivial to show that the (outer) summation over b in (11) has

k summands (with maximum scalar multiplier δk). Thus, to

prove Theorem 1, it is sufficient to show that ∀b ∈ {1, . . . , k},
the bth summand in (11), which is the summand with scalar

multiplier δb, has the corresponding H(b)[k] defined in (12).

• Special case with b = 1: For b = 1, we have H(1)[k] =
{H[k]} by definition, which is trivially true since r[k] is

only dependent on H[k] through r[0] (see (9)).

• The general case with b ∈ {2, . . . , k}: For an arbitrary

m ∈ {b−1, . . . , k−1}, the (b−1)th summand of H0→m

can be written as

δb−1
∑

c

H
(b)
c , H

(b−1)
c ∈ H(b−1)[m],

where the set H(b−1)[m] contains all (b − 1)-term com-

binations with time indices adding up to m.2 Then, from

(9), since r[m] appears in r[k] only through H[k −m],
the path from time zero to k through m yields all (b)-

term combinations with time indices adding up to k that

has H[k − m] as the last multiplicand. Considering all

m ∈ {b − 1, . . . , k − 1} yields all b-term combinations

(with scalar multiplier δb) that have H[k − m] as the

last multiplicand for all m ∈ {b− 1, . . . , k − 1}. This is

equivalent to all possible b-term combinations that add

up to k, concluding the inductive step.

Lastly, to conclude the proof, we note that the cardinality of

the set |H(b)[k]| =
(

k−1
b−1

)

, since by definition, Equation (12)

is equivalent to the “occupancy problem” with k balls and b

bins with no empty bins [31, Proposition 1.6].
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