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Abstract—Diffusion-based molecular communication (DBMC)
between spatially separated bacterial colonies has limited range
due to slow diffusive propagation. To this end, relay-aided
DBMC with bacterial colonies as nodes is considered in this
paper. A deterministic framework that governs the overall system
behavior is provided for amplify-and-forward (AF) type relays.
Motivated by real-life constraints in practical implementation,
the framework is expanded to cover a maximum saturation limit
on emission intensity, yielding the AF-with saturation (AFS) relay
model. For n-hop bacterial DBMC with AFS relays, a trade-off
between diffusion delay and relay processing time is investigated,
which hints to an optimal number of relays that minimizes end-
to-end delay. A tractable objective function for the end-to-end
delay is provided by approximating the system as a cascade of
n one-hop links. Numerical results show that the approximation
is tight, and up to 50% decrease in end-to-end delay can be
achieved by optimizing the number of relays.

Index Terms—Diffusive molecular communications, relays,
end-to-end delay, bacterial molecular communication

I. INTRODUCTION

Diffusion-based molecular communication (DBMC) has
heavy inter-symbol interference (ISI) due to the characteristics
of the diffusion process [1]. As in radio communications,
unmitigated ISI can affect data rates and reliability. In DBMC,
ISI is exacerbated by increasing ranges. As a potential so-
lution, relay-aided DBMC has been extensively considered.
In [2], the molecular multiple access, broadcast, and relay
channels are defined. Amplify-and-forward (AF) relays are
examined in [3]-[5], estimate-and-forward (EF) in [6], and
decode-and-forward (DF) in [7]-[10].

The above studies consider error rates as performance
metrics, and focus mostly on the communication theoretic side
of the design. On the other hand, end-to-end delay is seldom
considered as a performance metric in the relay-aided DBMC
literature. In [11], delay and link reliability are considered
in the context of multihop molecular communication, where
the information is encoded within the genetic material of
viruses. Similarly, [12] considers routing and the associated
delay when encoding information within the plasmid of a
bacterium, whose motility carries the information (as opposed
to diffusion-based propagation). In [13], a rate-delay trade-
off within a two-hop DBMC system is investigated, when the
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information is encoded information within the body of a large
molecule, assuming that a single molecule’s arrival is sufficient
for successful information transfer. In contrast to [11]-[13], we
focus on (relay-aided) DBMC where each node is a bacterial
colony within a chamber and concentration-based signaling is
employed. In this regard, the closest line of work to our study
is [14]-[16]. However, as much of the DBMC relay work, this
prior art focuses on error probability and capacity metrics.

Synthetic biology offers significant promise towards en-

gineering living cells including bacteria to achieve desired
functions in applications ranging from the production of
compounds that benefit human health or enhance plant growth
and resistance to invasion [17]. A key challenge is program-
ming the collective behavior of bacteria by exploiting infor-
mation processing systems including quorum sensing [18]-
[20]. Predictable design of complex synthetic circuits has
been limited by unintended interactions with the host cell
genome, leading to negative impacts on cellular fitness [21]. To
reduce metabolic burden, circuits could be partitioned among
different sub-populations or community members to achieve a
community-level function [22]. Further, these sub-populations
could be engineered for long-range signal communication [23].
Designing such functions [24], [25] necessitates understanding
how quickly or slowly microbial communities activate. This
activation time question can be answered through delay op-
timization in spatial networks of microbial communities. To
the best of our knowledge, our study is the first work that
considers delay minimization in bacterial relay-aided DBMC.
The models we propose herein are inspired by experimental
results [24], [26] on synthetically engineered bacterial relay
systems.

The contributions of this paper are as follows:

1) Considering bacterial colonies as nodes in a relay-aided
DBMC setting, we provide a model framework that
governs the overall system behavior for AF-type relays.

2) Motivated by experimental data, we extend our frame-
work to incorporate biologically consistent constraints
such as a maximum saturation limit on emission in-
tensity (as exhibited by real world bacterial colonies),
and propose the amplitude-and-forward with saturation
(AFS) relay model.

3) For the AFS model, we approximate the end-to-end
system as a cascade of identical one-hop links. Based on
the approximate model, we provide a tractable objective



function that can be used for optimizing the number of
relays numerically.

4) Numerical results show that the approximate model
closely follows the actual model, and demonstrates the
existence of an optimal number of relays that minimizes
end-to-end delay.

The remainder of this paper is organized as follows: Section

IT presents the system model and the corresponding signal
model. Section III characterizes the evolution of the system
observations as a function of the initial state. Section IV
provides an approximation to the end-to-end system, and
presents an objective function for optimization. Section V
presents numerical results and Section VI concludes the paper.

II. SYSTEM AND SIGNAL MODEL

The system of interest in this paper is an n-hop molecular
communication system between a transmitter node (TX, Ny)
and a receiver node (RX, N,), with n — 1 relay nodes
in between (Ni,...,N,_1). All nodes are assumed to be
identical. Throughout the paper, we model each node to be
passive observers in a driftless, unbounded, 1-D medium. Each
node is assumed to observe a region of length L. The distance
between the centers of the transmitter and the receiver is
denoted by d, and the relays are equally spaced between TX
and RX. Thus, the distance between the centers of node ¢ and
node j is equal to d;; = d@. The system considered in the
paper is presented in Figure 1.

For this system model, given unit impulse emission from
N;, the concentration at the center point of N; is given by

cij(t) = m exp(— f 115 ), where D denotes the diffusion
coefficient of the utilized molecule [27], [28]. When L < d;;
(which is satisfied throughout the paper), the total concentra-
tion observed within a node’s body can be approximated to be
uniform [29], yielding h;;(t) ~ Lc;;(t). Using said uniform
concentration approximation (UCA, [29]), the channel impulse
response (CIR) between IV; and IN; can be expressed as

ig(0) = e (— ) )
Y NZES TR T2

We consider the collective behavior of large bacterial
colonies as opposed to a single cell/nano-machine. Thus,
each node represents the collective response of the colony
at the node as a whole. Naturally, the concentration scale
of the system of interest is significantly larger than typically
considered for nano-scale applications. Throughout the pa-
per, we assume that the concentration scale is large enough
that the effects of perturbations around the mean (i.e., CIR)
are negligible when characterizing the observed number of
molecules/concentrations. Thus, we employ a deterministic
model in this paper. Under this assumption, using a discrete
time model with time increments At, for each (i, j) pair with
i # j, the series {h;;(kAt)},>1 fully characterizes the effect
of N; on N;. Henceforth, for brevity in notation, we refer to
time kAt with the discrete index k, e.g., hi;(kAt) = hy;[k].

Let r;[k] denote the observed local concentration at node j
at time k, and =, [k] denote its total generated signal. We model

r;[k] to consist of two components: the aggregate diffusion-
caused effect of all nodes other than N; (rf[k]), and the effect
of self-feedback within the colony (r Flk ]) That is,

r;lk] = 3T [k] + rik]. 2)

Within the scope of this paper, every node utilizes the same
molecule type. We assume that a fraction 5 € (0,1) of the
molecules emitted at time (k—1) from N are “trapped” within
the jth node, contributing to the arrival count of NN; at time k.
This consideration accounts for the self-feedback loop of the
bacterial colony at N;, and implies

r3F[k] = B[k —1]. (3)

Note that we assume a self-feedback with a memory of one
time-slot and with unit delay. The extension to more memory
self-feedback is left as future work.

The remaining (1 — () fraction of the transmitted concen-
tration is “leaked out” of the colony, yielding the emission of
N; at time k to be (1 — §)z;[k]. The diffusion-induced com-
ponent of 7;[k| is the superposition of the effects of all other
transmitting nodes in the system'. Due to the convolutional
nature of the DBMC channel, this component is then equal to
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From Equations (3) and (4), we see that r;[k] is affected
by previous emissions of all nodes in the system. Denoting
rlk] = [rolk] rn[k]]T, the characterization of the
system evolution through considering r[k] as the state at time
k is addressed in the sequel.

III. SYSTEM EVOLUTION CHARACTERIZATION

Herein, we characterize r[k] in terms of the initial state [0],
for AF type relays. Combining (3) and (4), we have
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r;lk] = B[k —

For AF-type relays, denoting the amplification factor/gain as

o and (k] = [o[k] xn[k]]T, we can write
xz[k] = ar[k], (6)
leading to
n k
rilk] = aBrjlk =1+ a(l=8)Y > rifk— (7)
1=0 l=1
1#£]

Setting hy;[1] := 125 and hy;[k] := 0 for all k # 1, we get

k
rilk — 1] zJz]_azh

=0 [=1

n

K=o rlk—1], ®)

'We assume that the effects of diffusive self-interference (SI) are accounted
for within the internal self-feedback loop in (3).
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Fig. 1. System model of interest. An idealized n-hop DBMC in 1-D (left). A practical, microfluidic channel-based n-hop system in 1-D with n = 7 (right).

where h;[l] = [ho;[l] hy;ll] hnj[l]]—r is the vector
that holds the channel coefficients going into node 7, and the
parameter 6 = «(1 — /3). Therefore, the overall system update
equation can be written as

ek =63 H ek 1], ©)

with H[l] = [holl] k. [1]]. Note that (9) fully charac-
terizes 7 [k] as a function of all previous observations including
the initial state 7[0] and a finite number of pre-determined
matrices H!] that depend on system parameters. Building
upon (9), we provide the following theorem that characterizes
r[k] solely using §, HI[1],..., H[k], and the initial state r[0].

Theorem 1. For the system defined by Equations (2)-(6), the

observation vector (state) at time k can be written as
rlk] = (HM) T[],

(5-1)

> HY, HY e H"[k] (11)

c=1

(10)

k
where H°7F = Z(Sb
b=1

b b
HOk] = {HH[qi] DS gi=k, g > 1}. (12)
=1 =1

Proof. The proof is given in Appendix A. O

Theorem 1 characterizes the system for an arbitrary input
vector r[0] (including cases where the relay nodes or RX
have non-zero initial state) and for purely AF-type relays. This
model is accurate when describing r[k], but has challenges:

Remark 1. For each time index k, evaluating H 0=k requires
evaluating (}_) expressions with b multiplicands. This incurs
a complexity O ((k — 1)min(b=1.k=b)) when evaluating each
b-term summand, and makes computing r[k] increasingly
difficult as k increases.

Remark 2. Due to the positive self-feedback at each relay
node, whenever a8 > 1, r;[k] exponentially increases in
magnitude since r;[k] > afr;[k—1] per Equation (7), yielding
an unstable system (in the sense that bounded rg[k] yields
unbounded 7 [k| for j # 0). However, as can also be confirmed
from Figure 2, actual relay colonies exhibit a self-saturation
that limits their maximum output.

Motivated by Remark 2, we extend our model to capture
the saturation effect. Throughout the manuscript, we call
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Fig. 2. Fluorescence of green fluorescent protein (GFP) controlled by LuxI
regulated promoter as a function of time. Wet-lab experiment where bacteria
are grown on agar and imaged using fluorescent time-lapse microscopy (each
plot corresponds to a different spatial region within the imaged colony).
The bacteria produces N-acyl-homoserine lactone (AHL) that activates the
expression of the AHL synthetase and GFP signal, resulting in a positive
feedback loop (up to a self-saturation that limits maximum output).

this extended model the amplify-and-forward with saturation
(AFS) model.

Henceforth, we focus on the particular case where the
transmitter is subject to a constant input M throughout the ex-
periment (adjusted exogenously), and all relay nodes and RX
have a zero initial state, implying 7[0] = [M 0 --- 0]
Note that since TX observes ro[k] = M for all k, we have
xolk] = aM. Motivated by this and the assumption that all
nodes are identical, we limit the maximum allowable emission
intensity to M in the AFS model. Thus, we have
(13)

zjlk] = min (ar;[k],aM), Vje{0,...,n}.

IV. CHARACTERIZING THE DELAY AND OPTIMIZATION

Herein, we address the problem of optimizing the number
of relays between a fixed TX and RX using AFS-type relays.
In other words, we seek to find the optimal n, given a fixed
d. Recall that the initial time & = 0 is the first instant when
the TX is stimulated (i.e., r9[0] = M and ro[k] = 0 for all
k < 0). We define the overall activation time (i.e., end-to-end
delay) of the system, 7y, as the first instant (i.e., smallest k)
when the last colony is fully activated (reaches saturation). For
an n-hop AFS system, the end-to-end delay is then defined as

T,(n) = min{k € Z* : r,,[k] > M}. (14)



Thus, the optimal n that minimizes the delay is expressed as

n* = argmin T, (n) = arg min mkin{k srplk] > M}, (15)

Mathematically, as each node is modeled as a passive
receiver, the introduction of extra relay nodes do not negatively
affect the pre-existing nodes’ observations. Therefore, extra
relays can only help, which yields the trivial solution n* = co
to minimize delay. However, in real life, bacterial colonies
that are close by compete for nutritional resources [30]. This
phenomenon imposes a cost associated with introducing extra
relays, as increasing n decreases %, causing more severe
competition for food among adjacent colonies. Motivated by
the tradeoff between the “health” (fitness) of the colony and
the signal amplification it can produce, we incorporate this
phenomenon into the gain parameter o, which now becomes
a function of n. In particular, denoting the 1-hop gain by o,
we assume o = 2% for some exponent p € RT.

A smaller o implies that each relay takes a longer time
to reach sufficiently large emission intensities once it starts
receiving a non-zero signal, due to slower self-feedback. This
introduces a processing delay that increases with increasing n.
Thus, the effect of n on « yields a trade-off between the benefit
of a relay (diffusion delay) and processing delay, which hints
to the existence of a finite n* that minimizes overall delay by
balancing these two sources of delay.

Unfortunately, the optimization problem described by (15)
is computationally challenging, since n governs «, the channel
coefficients h;;[k], as well as the size of the r[k] vectors. Fur-
thermore, as the saturation in (13) introduces a non-linearity
to the system, (9) is no longer valid for explaining system
behavior, rendering Theorem 1 inapplicable for AFS relays.
Since each node affects every other node, this interconnected
evolution of the system severely challenges optimization.

To overcome these computational challenges, we approxi-
mate the end-to-end delay of the system as

T, ~n x Ty, (16)

where T; denotes the one-hop delay between the TX and the
first relay (i.e., Ny and N7). We note that this approximation
is particularly accurate when
1) The one-hop distance % is large: This regime describes
the case where nodes are not too close to one another.
When it is satisfied, the signal at node j is dominated by
the contributions of the closest nodes N;_; and Nj 1,
since a large d; j4+; causes the effects of IV;4; (where
j' > 1) to be negligible compared to N;4;. Recalling
rl0] = [M 0 O}T, the activation/saturation is
likely to be “one-by-one” and the effect of N;; would
be negligible compared to /N;_1, thus it is reasonable to
further approximate rdlf[k] as

dlf
Tj Z zj_1lk

For a small one-hop dlstance, Nj’s effect on N4/
becomes non-negligible and considering (17) becomes

hj—1,5[1]. a7

inaccurate. This phenomenon is also observed experi-
mentally in [26, Figure 5.6].

2) The parameter « is large: This regime implies that each
node reaches saturation rapidly upon receiving a non-
zero signal. To provide insight, consider o« — oco. Then,
immediately upon node j — 1 receiving any non-zero
signal (say at time k), node j — 1 would reach saturation
at time k + 1, that is z;_1[]] = aM,Vl > k + 1.
Assuming that Point 1 above is satisfied, this implies that
from N;’s perspective, the Ny— NN link is approximately
equivalent to the N;_; — Nj; link. Then, the aggregate
end-to-end delay is well-approximated by the sum of n
identical, one-hop delays that are ~ Tp;.

We will validate these approximations in the next section.

Using the approximation in (16), and noting that Tj; =

ming{k € Z* : ri[k] > M}, the optimization problem in
(15) can be reformulated as

[k] > M}, (18)

n* = arg min
n

nxrr%n{kéZ*:rl
We underscore that 7 [k] is still a function of n in the hypo-
thetical one-hop scenario used for approximation, as n affects
both hgy[k] through %, and «a. Given zglk] = aM,Vk > 0,
combining (7) with (17) and expanding the recursion for time
k, the general expression governing r1[k] can be written as

r1[k] 1_B§:%a6 (19)

where ¢; = Zk "1 ho1[j]. Then, the one-hop delay can be
expressed as

To1 —mln{k Miz

_mln{k Z (aﬂ) _7}

Therefore, recalling o = 1, the optimal number of hops for
this approximate case can be found by

1= 1 OCB >M}

(20)

B
1-5 b
2D
Although the solution of (21) still needs numerical evaluation,
this objective function is considerably easier to compute than
(15). This is the case for the following three reasons: (a) the
expression does not depend on the size of the vector 7[k], (b)
the problem only requires the values of hgi[k] in contrast to
hi;[k] for all i # j, and (c) the problem only requires the
evaluation of this single link as opposed to considering the
system as a whole.

n* —argmln n x mln{k‘ Z gi(a1pn~P)" >

V. NUMERICAL RESULTS

In this section, we provide numerical results to assess the
approximation accuracy of (16) (hence the optimization in
(21)) compared to the simulated system evolution governed by
the model equations (2)-(9), and to aid discussion on the value
of n* as a function of system parameters. Table I presents
parameter values considered throughout the section.



TABLE I
CONSIDERED SYSTEM PARAMETERS. DEFAULT VALUES SHOWN IN BOLD.

Parameter Value

At (s) 60

D (m2?s1) 10—10

M (molecules) 1015

L (m) 1073

d (m) 0.1,0.15,0.2,0.25
(o %1 20, 50,100, 200, 500
B 0.7

P 0.4,0.7,1,1.3,1.6

~
=}

O Sim. (2)-(9), d = 10cm
—%—Theo. (16)-(21), d = 10cm

O Sim.(2)-(9),d=15cm  H
——Theo. (16)-(21), d = 15cm

o
=

O Sim. (2)-(9), d = 20cm
—»—Theo. (16)-(21), d = 20cm [{

O Sim. (2)-(9), d = 25cm
), d =25cm

o
=}
T

—%— Theo. (16)-(21

End-to-End Delay (hours)
S
5]

Number of Hops (n)

Fig. 3. Tq vs. n for varying d. All other parameters take their default values.

60
O Sim. (29 a,=20 —x— Theo. (16)-21), a, =100] |

55 |—x—Theo. (16)-21), a, =20 O  Sim. (2)(9), @, =200 q
o Sim.(2-9), a; =50 —s— Theo. (16)-(21), a; =200
50 | ——Theo. (16)-(21), a, =50 O Sim. (2)-(9), @, =500

O Sim.(2-(9), a, =100  —— Theo. (16)-(21), o, = 500

End-to-End Delay (hours)

Number of Hops (n)

Fig. 4. T, vs. n for varying a. All other parameters take default values.

Figure 3 shows the end-to-end delay 7, versus n for
different TX-RX distance (d) values. The results of Figure 3
confirm the existence of the trade-off between diffusion delay
and processing delay (due to non-zero time to reach saturation)
conjectured in Section IV. As expected, increasing distance
increases diffusion delay, which causes the optimal number of
hops, n*, to shift rightward with increasing d.

In Figure 4, we consider 7;, versus n for different gain (o)
values. The results of Figure 4 demonstrate that n* increases
with increasing a1, and vice versa. A smaller o implies that
the system has a longer processing delay. As increasing n
would further increase this delay, the results suggest that the
system is better-off by avoiding larger n values, and settling for
a larger diffusion delay to prevent o from further decreasing.
We note that even though a plot with respect to 3 could not
be provided due to space restrictions, our observations suggest
that it has common qualitative results with «;.

Recalling a = a larger p implies a sharper decrease

Q1
np’

® O Sim.(2-(9),p=04

——Theo. (16)-(21), p = 0.4
O Sim.(2-9),p=0.7
——Theo. (16)-(21), p= 0.7
O sim.(2-9),p=1
—— Theo. (16)-(21), p = 1
O Sim.(2-9),p=13
6)-(21),p=1.3
O Sim.(2-9),p=16
—— Theo. (16)-(21),p = 1.6

IS
S
7y

)
G
T

—»—Theo. (1

End-to-End Delay (hours)
8
T

N
o
T

20 I I I I I I

Number of Hops (n)

Fig. 5. Ty vs. n for varying p. All other parameters take their default values.

in « for the same n. Thus, increasing p increases the cost of
introducing additional relays. The results of Figure 5 confirm
this trend, as n* shifts leftward with increasing p, which
suggests that similar to Figure 4, the system favors incurring
more diffusion delay to prevent o from sharply decreasing.

Lastly, it can be observed from Figures 3-5 that considering
the overall system as a cascade of n individual one-hop links,
and using Equations (16)-(21) to theoretically optimize the
system yields a tight approximation to the actual end-to-end
delay. We note that the approximation is particularly accurate
when n is smaller, and is only slightly looser as n increases.
This confirms the corresponding explanation in Section IV, as
increasing n would both decrease % and o = %, the two
quantities which improve the accuracy when they are large.
Overall, the approximate objective function accurately follows
the trend of the true 7,, and can indeed be used to decrease
complexity when optimizing n.

VI. CONCLUSIONS

This paper considers spatially separated bacterial colonies
as nodes for relay-aided DBMC. A deterministic framework
that characterizes system evolution has been provided for AF-
type relays. The framework has been extended to incorporate
biological constraints such as a maximum saturation limit
on emission intensity, yielding the amplify-and-forward with
saturation (AFS) relay model. The end-to-end system has been
approximated as a cascade of one-hop links for AFS-type
relays, and a tractable objective function has been provided for
numerical optimization. As future work, we consider extending
our framework to cover stochastic or imperfect observations,
chemical reactions within nodes, and physically implement an
experimental relay-aided bacterial DBMC system.

APPENDIX A
PROOF OF THEOREM 1
The proof follows from induction.
Base Step (k = 1): For this case, we need to show
=1 b o001 0 O) (b)
H~! = Zb:1 § Zc:l HY HDY en®n,

which is equal to 6H§1), where Hgl) € HW[1]. The set
H M [1] has a single element in it by definition, which is H[1].
Thus, we have H7! = 6H [1], which confirms with (9).



Inductive Step: Here, we assume the theorem holds for all
time indices up to (k — 1), and prove that it holds for k.
To do so, we first note that since we assume the statement
is true for (k — 1) and r[k] relates to r[k — 1] with ¢, it is
trivial to show that the (outer) summation over b in (11) has
k summands (with maximum scalar multiplier §*). Thus, to
prove Theorem 1, it is sufficient to show that Vb € {1,...,k},
the bth summand in (11), which is the summand with scalar
multiplier 6%, has the corresponding H(®)[k] defined in (12).

o Special case with b = 1: For b = 1, we have H(V[k] =

{H[k]} by definition, which is trivially true since r[k] is
only dependent on H [k] through 7[0] (see (9)).

The general case with b € {2,...,k}: For an arbitrary
m e {b—1,...,k—1}, the (b—1)th summand of H*~™
can be written as

61)—1 ZHEb)’ Hgb—l) c H(b_l)[m],

where the set H(*~1[m] contains all (b — 1)-term com-
binations with time indices adding up to m.? Then, from
(9), since 7[m] appears in r[k] only through H [k — m],
the path from time zero to k through m yields all (b)-
term combinations with time indices adding up to k that
has H[k — m]| as the last multiplicand. Considering all
m € {b—1,...,k — 1} yields all b-term combinations
(with scalar multiplier §°) that have H[k — m] as the
last multiplicand for all m € {b—1,...,k — 1}. This is
equivalent to all possible b-term combinations that add
up to k, concluding the inductive step.

Lastly, to conclude the proof, we note that the cardinality of
the set |[H("[k]| = (’;:%) since by definition, Equation (12)
is equivalent to the “occupancy problem” with k£ balls and b
bins with no empty bins [31, Proposition 1.6].
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