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AbstractÐInspired by detection in Internet of Things appli-
cations and microbial communities, we formulate the problem
of state-dependent decentralized detection. In particular, we
consider both the case where the fusion center knows the network
state, and the case where it does not. We show that for a min-
max cost structure, monotone threshold rules are optimal for the
fusion center with state-knowledge, and for the Bayesian case,
monotone rules are optimal for both fusion centers. We also
compute the Chernoff information for both fusion centers, and
show a number of interesting asymptotic properties.

Index TermsÐdecentralized detection, multi-agent networks,
hypothesis testing, state-dependent networks, error exponents

I. INTRODUCTION

The problem of multi-agent detection has persistently been

studied over the years, with initial key work [1] wherein a fully

distributed system is examined. The optimal rule at each sensor

is a likelihood ratio test; however, optimal thresholds are

found via coupled non-linear equations. Modern applications

necessitating multi-agent decision making include the Internet-

of-Things [2], smart grid applications [3], cognitive radio

networks, [4], millimeter-wave communications [5], and our

motivating interest, decentralized decision making in micro-

bial communities [6]±[12]. We note that multi-agent decision

making includes scenarios where each agent determines their

own local decision; however, we shall focus on the case where

statistics are transmitted from each agent to a centralized

decision-maker or fusion center as depicted in Figure 1.

The fusion center framework has been well studied for both

a finite number of agents as well as asymptotically large net-

works [13]±[19]. For key families of cost functions, threshold-

base rules, specifically likelihood ratio (LR) quantizers, are

optimal [13], [14], [20], [21] and the quantization of such rules

has further been examined [22], [23]. Properties of likelihood

ratio functions have also been studied [24]±[26].

A classical assumption is that the agents’ observations are

conditionally independent. If this condition is removed, as

we will do herein, the problem of multi-agent detection is,

in general, NP-hard [13], [27]. Furthermore, in this case,

likelihood ratio based quantizers are no longer optimal [14],
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Fig. 1: Problem setup under the state-information structure

[28], challenging analysis. The case of dependent observations

has received recent attention [18], [29]±[32]. In particular,

a hierarchical conditional independence (HCI) model was

introduced in [18] for which analysis of the optimal decision

making was enabled. The structure introduced in this paper

allows one to solve a class of problems with correlated

observations via likelihood ratio based quantizers.

As seen in Figure 1, there is a communication link between

each agent and the fusion center. Herein, we adopt the general

framework of communication over channels with state [33]±

[37] which enables the consideration of distorted links in

wireless communications as well as directly handling gene

expression (and thus different behavioral states) of bacteria

[7], [9], [10]. In particular, we will examine two scenarios:

one wherein the fusion center knows the network state (the

state-information structure) and when it does not (the the no-

information structure). As previously noted, we do not assume

conditional independence amongst the observations of each

agent.

Our results herein generalize over our first presentation

of this work [38]. In particular, only the state-information

structure was previously considered, whereas herein we also

consider the no-information structure. Herein a min-max cost

is considered versus the purely Bayesian approach in [38].

Furthermore, full proofs are provided.

The main contributions of this paper are as follows:

• We formulate the problem of detection over sensor net-

works with state. In particular, the observations seen by

the agents (the signal and state of each sensor) are not

conditionally independent.

• For binary hypotheses, we derive the optimal rule for both



information structures, which correspond to monotone

rules.

• For a min-max cost, we derive the optimal rule for the

state-information case.

• Even though our observations are not conditionally in-

dependent, the ability to restrict ourselves to monotone

rules without loss of optimality allows one to use old

algorithms such as [22] with only minor adjustments.

• We derive the Chernoff information for both information

structures, and show that for both information structures,

one can use identical rules without loss of optimality.

• We study the effect of the hypothesis model on the

asymptotics. Specifically, we show that if the hypothesis

model has not adequately decayed (which corresponds to

a set of bounds not being sufficiently tight) one can incur

a performance loss by ignoring the hypothesis model,

even for relatively large networks.

Notation: Random variables are denoted by capital let-

ters X and realizations by lower case x. Boldfaced capital

letters indicate random vectors, V , and lower case, vector

realizations, v. The vector vk denotes the vector v \ vk =
[v1, v2, ..., vk−1, vk+1, ..., vN ]. The function p(x) is the prob-

ability mass function or probability density function of a

discrete or continuous random variable, respectively.

II. PROBLEM FORMULATION

Consider the setup depicted in Fig. 1. a set of n nodes are

oriented in a parallel configuration. Each agent receives an

observation consisting of the random variable Yk ∈ Y , which

we call the signal, and Sk ∈ S , which we call the the state of

agent k, k = 1, 2, ..., n. All agents observe the same underly-

ing hypothesis. We denote the state vector as S ∈ Sn, which is

a concatenation of all agent states, i.e., S = [S1, S2, ..., Sn].
Moreover, the hypothesis H ∈ {0, 1, ...,m} has conditional

distribution p(h|s), which we call the hypothesis model.

While we do not assume conditional independence among the

observations, i.e., p(y, s|h) ̸= ∏n
k=1 p(yk, sk|h), we do make

the following assumption:

Assumption 1. The signal Yk is independent of Y k and Sk

conditioned on Sk and H , for k = 1, 2, ..., n. That is,

ph(y|s) =
n
∏

k=1

ph(yk|sk) (1)

where ph(x) denotes the pmf (pdf) of the random variable X
conditioned on H = h.

We call the conditional distribution ph(yk|sk) the signal

model for agent k. Upon receiving the pair (Yk, Sk), agent k
makes a local decision Uk = γk(Yk, Sk) ∈ U = {0, 1, ..., b −
1}. These local decisions are then sent to the fusion center,

whose goal is to determine which of the possible hypotheses

is true. The fusion center may take one of two information

structures:

• state-information structure: The state network vector S is

known by the fusion center, and the fusion center output

is given by U0 = ψ(U ,S) ∈ {0, 1, ...,m − 1}. Hence,

we have the Markov chain structure S → (S, H) →
(Y ,S) → (U ,S) → U0.

• no-information structure: The fusion center only receives

U , and U0 = ψ(U) ∈ {0, 1, ...,m − 1}. Hence, S →
(S, H) → (Y ,S) → U → U0.

Let the set Γ be the set of all decision rules and Ψ be the

set of all fusion rules. Let γ denote the collection of agent

rules {γk}nk=1, γk ∈ Γ, k = 1, 2, ..., n. We call a collection

of agent rules γ ∈ Γn together with a fusion rule ψ ∈ Ψ a

strategy denoted by ψ ∈ Γn×Ψ. We also make the following

assumption on the relationship between H , S, Y , U , and U0.

• U is a function only of Y and S, with Uk being a

function only of Yk and Sk, i.e., the joint conditional

pmf is given as

p(u|y, s) =
n
∏

k=1

p(uk|yk, sk) (2)

For the rest of the paper, we restrict ourselves to binary

hypothesis, H ∈ {h0, h1}.

It is worth comparing our problem formulation and those

previously considered in the literature. The formulation where

the fusion center does not have access to the state is in part a

decentralized detection problem with correlated observations,

and so, could be solved under the assumption that the Hi-

erarchical Conditional Independence model (HCI) introduced

in [18] holds. However, as we will see in the sequel, the

state structure we have introduced into the problem is more

amenable to the development of iterative algorithms for finding

optimal strategies. Specifically, the state structure allows one

to use previous algorithms such as that developed in [22] with

minor adjustments. Moreover, our alternative representation

of the Chernoff information yields desirable properties that

facilitate design in the presence of large networks. As such, the

systems introduced in [18], [19] do not lend themselves to this

large scale analysis. The formulation where the fusion center

does know the network state is a solved, and well-understood

problem for a fixed network state s. It may be tempting to

fix the network state and solve the problem using previously

established methods for each state. However, we will see in

Section V, that this approach is, in general, sub-optimal. We

provide a discussion on this approach.

III. OPTIMUM SENSOR DESIGN

In this section, we show that under a min-max cost criteria

and linear combination criteria, there is no loss of optimality if

we restrict ourselves to state-dependent monotone likelihood

ratio (LR) partition rules. Moreover, we derive the optimal rule

for agent k when the other agents rules and the fusion rule are

fixed under a Bayesian cost criteria. The later result facilitates

the use of iterative algorithms such as [22] with only minor

adjustments to the algorithm. We first give the definition of a

state-dependent monotone LR partition.

Definition 1. A state-dependent monotone LR partition is a

set of partitions on Ω indexed by s, where each member of the



partition is denoted as Rs0, ..., R
s
v , such that

⋃v
k=0R

s
k = Ω for

any s ∈ S . Moreover, for any s ∈ S , x ∈ Rsi , x
′ ∈ Rsi , y ∈ Rsj ,

and y′ ∈ Rsj , if Ls(x) < Ls(y), then Ls(x
′) < Ls(y

′), where

Ls(x) =
p1(x|s)
p0(x|s)

(3)

is the state-dependent likelihood ratio 1.

Thus, a state-dependent monotone LR partition is simply

a set of monotone LR partitions on Ω where the partition

currently in use depends on s. If an agent is using a state-

dependent monotone LR rule, it’s code book for any state s
has the following property.

Lemma 1. Given a state-dependent monotone LR partition,

for any s ∈ S , assume Rsi and Rsj are two sets with Ls(x) <
Ls(y) for x ∈ Rsi and y ∈ Rsj , then Ls(Uk = i) < Ls(Uk =
j) where

Ls(Uk = i) =
p1(Uk = i|s)
p0(Uk = i|s) (4)

is the LR of the quantizer output Uk.

Proof. For a fixed s ∈ S , the proof is the same as that of

Lemma 2 in [22].

For brevity, from this point on we will simply call state-

dependent monotone LR partitions monotone LR partitions.

A. No Prior Formulation

In this section, we assume no prior knowledge of the state.

Typically, when one does not have prior information in stan-

dard decentralized detection, the hypothesis H is determined a

priori by nature and knowledge of the prior distribution p(h)
is unknown. In our problem, we assume that the hypothesis

model p(h|s) is known, and that instead nature has determined

the state of the system S a priori with the prior distribution

p(s) unknown. We can write the expected state cost under

state s as

J(ψ|s) =
1

∑

u0=0

1
∑

h=0

cu0,hp(u0, h|s) (5)

where cu0,h be the cost of deciding U0 = u0 when H = h is

true. We focus on the probability of error cost (c0,0 = c1,1 = 0,

and c0,1 = c1,0 = 1), so the expected state cost becomes

J(ψ|s) = p(u0 = 1, h = 0|s) + p(u0 = 0, h = 1|s) (6)

The worst case cost under strategy ψ is

max
s∈Sn

J(ψ|s). (7)

Hence, we would like to find the strategy ψ that minimizes

the worst expected state cost, i.e, we wish to find the ψ that

solves the optimization problem

inf
ψ∈Γn×Ψ

{max
s∈Sn

J(ψ|s)}. (8)

1More generally, Ls(x) =
dp1(•|s)
dp0(•|s)

is the Radon-Nikodym derivative

between the two conditional measures p1(•|s) and p0(•|s)

We first wish to find the optimal fusion rule given any

collection of agent rules γ.

Lemma 2. Given any collection of agent rules γ, define

Aγ =

{

(u, s) :
p1(u|s)
p0(u|s)

≥ p(h0|s)
p(h1|s)

}

. (9)

Then, the optimal rule for the fusion center ψ∗ for fixed γ is

given as

ψ∗(u, s) =

{

1, (u, s) ∈ Aγ
0, (u, s) ∈ Aγc . (10)

Proof. Note that for the state-information structure, upon

observing s, the fusion center is tasked with a simple binary

hypothesis testing problem, of which the optimal rule is the

Maximum a Posteriori (MAP) rule, which is given by (10).

There are a few important notes regarding the optimal fusion

rule.

1) ψ∗ is dependent on γ. In the proof above we dropped

this dependence from the notation for brevity. Note that

different γ will change the statistics of u. That is, the

set Aγ may change under different rules employed by

the agents, in turn changing the rule ψ∗. This latter

dependence is indeed captured by our notation.

2) Since the optimal rule is simply the MAP rule, it is

well known that randomization at the fusion center does

not improve performance. So we restrict ourselves to

deterministic fusion rules.

3) Given a specific set of rules γ ∈ Γn, the optimal fusion

rule can be completely characterized by (9) and (10). That

is, we treat ψ∗ as a deterministic function of γ.

Further examining the fusion rule, we see that

ψ∗(u, s) = 1 (11)

⇐⇒ Ls(u) ≥
p(h0|s)
p(h1|s)

(12)

(a)⇐⇒ Ls1(u1)Ls2(u2)...Lsn(un) ≥
p(h0|s)
p(h1|s)

(13)

(b)⇐⇒ Lsk(uk) ≥ τ(uk, s) (14)

where (a) is due to (1), and (b) is due to the assignment

τ(uk, s) =
p(h0|s)
p(h1|s)

1
∏n

j=1

j ̸=k
Lsk(uk)

. (15)

Moreover, assume that for any γk ∈ Γ, the codewords for

agent k are labelled such that for any s ∈ S
Ls(Uk = j) > Ls(Uk = i) for j > i. (16)

Since the labels of the codewords are irrelevant, if the rule γk
does not obey (16), we can simply relabel the codewords so

that (16) is satisfied without changing the performance. Hence,

assumption (16) can be made without loss of generality or

optimality. Then, if a rule satisfies (16), (14) implies

ψ∗(u, s) = 1

⇐⇒ uk ≥ η
(17)



where η ∈ {0, 1, ..., d − 1}, and is dependent on uk and s.

Then, we denote by f , the function that maps uk and s to

η, i.e., f(uk, s) = η. Before we continue, we note that given

agent k’s state s, rule γk is a function only of the random

variable Yk (since the state Sk is fixed). We introduce, for

notational simplicity, the definition of a prescription.

Definition 2. A prescription ϕ ∈ Φ is a function from the

signal space Y to the message space U . That is,

ϕ : Y → U .

Notice that any rule γ ∈ Γ can equivalently be characterized

by a collection of prescriptions indexed by state. Thus, finding

the optimal rule γk for agent k is equivalent to finding the set

of prescriptions {ϕks}s∈S . Moreover, we can write

max
s∈Sn

J(ψ|s) = max
z∈S

max
skz∈Sn−1

J(ψ|skz). (18)

Thus, we can focus on finding the optimal set of prescriptions

for each agent k. In order to find the optimal strategy, we first

wish to find the optimal rule for agent k when the other agents

rules are fixed. Expanding around Uk when Sk = z,

J(ψ|skz)
=

∑

uk

p(U0 = 1,uk, h0|skz) + p(U0 = 0,uk, h1|skz)

=
∑

uk

p0(U0 = 1|uk, skz)p0(uk|skz)p(h0|skz)+

p1(U0 = 0|uk, skz)p1(uk|skz)p(h1|skz)
=

∑

uk

p0(Uk ≥ f(uk, skz)|uk, skz)p0(uk|sk)p(h0|skz)+

p1(Uk < f(uk, skz)|uk, skz)p1(uk|sk)p(h1|skz)
=

∑

uk

p0(ϕkz(Yk) ≥ f(uk, skz)|uk, skz)p0(uk|sk)p(h0|skz)

+ p1(ϕkz(Yk) < f(uk, skz)|uk, skz)p1(uk|sk)p(h1|skz)
(19)

Define

Fψ
s,η = {uk : f(uk, s) = η}.

That is, for a given fusion rule ψ and s, Fψ
s,η is the set of uk

such that f(uk, s) = η. Then,

J(ψ|skz) =
∑

uk

p0(ϕkz(Yk) ≥ f(uk, skz)|uk, skz)p0(uk|sk)p(h0|skz)+

p1(ϕkz(Yk) < f(uk, skz)|uk, skz)p1(uk|sk)p(h1|skz)
=

∑

η

∑

uk∈Fψ
s
kz,η

p0(ϕkz(Yk) ≥ η)|uk, skz)p0(uk|sk)p(h0|skz)

+ p1(ϕkz(Yk) < η|uk, skz)p1(uk|sk)p(h1|skz)
(a)
=

∑

η

∑

uk∈Fψ
s
kz,η

p0(ϕkz(Yk) ≥ η)|z)p0(uk|sk)p(h0|skz)+

p1(ϕkz(Yk) < η|z)p1(uk|sk)p(h1|skz)
=

∑

η

p0(ϕkz(Yk) ≥ η)|z)Gψ
skz

(η)+

p1(ϕkz(Yk) < η|z)Qψ
skz

(η)
(20)

with

Gψ
skz

(η) =
∑

uk∈Fψ
s
kz,η

p0(u
k|sk)p(H = 0|skz) (21)

Qψ
skz

(η) =
∑

uk∈Fψ
s
kz,η

p1(u
k|sk)p(H = 1|skz), (22)

where (a) follows from (1), Yk is independent of Y k and Sk

when conditioned on Sk and H . Thus, ϕkz(Yk) is independent

of Uk and Sk when conditioned on Sk and H . We now

turn our attention the quantities p0(ϕkz(Yk) ≥ η)|z) and

p1(ϕkz(Yk) < η|z). Suppose we fix p0(ϕkz(Yk) ≥ η)|z) = ϵ
for ϵ ∈ [0, 1]. Then we seek the (not necessarily unique)

prescription ϕ that solves

min
ϕ∈Φ

p1(ϕ(Yk) < η|z)

s.t. p0(ϕ(Yk) ≥ η)z) = ϵ,
(23)

provided such a prescription exists.

Lemma 3. For any s ∈ S , let

Uηs,k = {y : Ls(y) ≥ τηs,k} (24)

where τηs,k is chosen so that p0(Uηs,k|s) = ϵ. Then, in order

for a prescription ϕ to be a solution to (23), it is sufficient for

ϕ to satisfy the following:

1) ϕ(y) ≥ η if y ∈ Uηs,k.

2) ϕ(y) < η if y ∈ (Uηs,k)c.
Proof. For a given s ∈ S , let

Yis,k = {y : γk(y, s) = ϕks(y) = i}, (25)

i.e., Yis,k is the set of all y such that agent k sends message

i when in state s. Therefore, the event ϕks(Yk) ≥ η (given s)
can be written as

Dη
s,k =

d−1
⋃

i≥η
Yis,k (26)



Hence, we can rewrite (23) as

min
Dη
s,k

p1((Dη
s,k)

c|s)

s.t. p0(Dη
s,k|s) = ϵ.

(27)

Notice that we can think of Dη
s,k as the acceptance region, and

thus p1((Dη
s,k)

c|s) and p0(Dη
s,k|s) are the missed detection and

false alarm probabilities, respectively. Then, by the Neyman-

Pearson lemma, a solution to (27) is

Uηs,k = {y : Ls(y) ≥ τηs,k}
where τηs,k is chosen so that p0(Uηs,k|s) = ϵ.

We observe that for fixed η, Lemma 3 makes no assumption

on how ϕks assigns the codewords aside from conditions 1

and 2. This result is helpful, as for a fixed fusion rule, the

lemma provides a methodical approach by which to construct

a monotone rule for agent k without degrading performance.

Notice that in general, much like Neyman-Pearson detection,

in order to satisfy p0(Uηs,k|s) = ϵ one may need to design a

randomized rule, our results still hold for this case.

Lemma 4. For s ∈ S and k = 0, 1, ..., n, let Uηs,k and Uη
′

s,k be

defined as in (24) with thresholds τηs,k and τη
′

s,k respectively.

Moreover, let τηs,k and τη
′

s,k be such that p0(Uηs,k|s) = ϵ and

p0(Uη
′

s,k|s) = ϵ′ with ϵ′ > ϵ. Then, τη
′

s,k < τηs,k.

Proof. Assume τη
′

s,k ≥ τηs,k. Then Uη
′

s,k ⊆ Uηs,k, and thus

p0(Uη
′

s,k|s) ≤ p0(Uηs,k|s), which is a contradiction. Thus, we

must have τη
′

s,k < τηs,k.

Let Γlr be the set of all monotone rules. Then γ ∈ Γlr if it

uses a monotone rule for every state. Let Γnlr be the set of all

monotone strategies, i.e., strategies that have every agent use

a monotone rule.

Theorem 1.

inf
γ∈Γn

{max
s∈Sn

J(ψ|s)} = inf
γ∈Γn

lr

{max
s∈Sn

J(ψ|s)}. (28)

That is, it is sufficient to search only over strategies where

each agent uses a monotone LR rule.

Notice that both infimums are taken over only the agents

decision rules γ. This is because for a fixed γ we can find the

optimal fusion rule ψ thanks to Lemma 2.

Proof. For k = 0, 1, ..., n and any z ∈ S , we start with (20),

J(ψ|skz)} =
∑

η

p0(ϕ
k
z(Yk) ≥ η)|z)Gψ

skz
(η) + p1(ϕ

k
z(Yk) < η|z)Qψ

skz
(η).

Observe that η can take on at most d distinct values. Hence,

p0(ϕ
k
z(Yk) ≥ η)|z) can take on at most d values across

all skz ∈ Sn−1. Let d′ ∈ {1, 2, .., d} be the number

of distinct values of p0(ϕ
k
z(Yk) ≥ η)|z), and arranged in

descending order. That is, p0(ϕ
k
z(Yk) ≥ i)|z) = ϵiz,k >

ϵjz,k = p0(ϕ
k
z(Yk) ≥ j)|z) for i, j ∈ {0, 1, ..., d′ − 1},

i < j. Moreover, note that p0(ϕ
k
z(Yk) ≥ 0)|z) = 1, and

is trivially satisfied by defining U0
z,k as in (24) with the

assignment τ0z,k = 0. Thus, we concern ourselves only with

those distinct p0(ϕ
k
z(Yk) ≥ i|z) for i ∈ {1, 2, ..., d′ − 1}.

For each p0(ϕ
k
z(Yk) ≥ i)|z), construct U iz,k according to

(24) with τ iz,k such that p0(ϕ
k
z(Yk) ≥ i)|z) = ϵiz,k, for

i ∈ {1, 2, ..., d′−1}. Then, by Lemma 3, any rule that satisfies

conditions 1 and 2 in Lemma 3 minimizes p1(ϕ
k
z(Yk) < i|z).

Let the minimum value of p1(ϕ
k
z(Yk) < i|z) attained by U iz,k

be denoted as αiz,k. Let Yiz,k = {y : ϕ′z(y) = i} where ϕ′z is

the prescription we will construct. Given the set of U iz,k that

solve (27) for i ∈ {0, 1, ..., d′ − 1}, we give the assignment

Yiz,k = U iz,k∩
⋂

j>i

(U jz,k)c = {y : τ iz,k ≤ Lz(y) < τ i+1
z,k }, (29)

with the understanding that τd
′

z,k = ∞. Moreover, since the

p0(ϕ
k
z(Yk) ≥ i)|z) are such that p0(ϕ

k
z(Yk) ≥ i + 1)|z) <

p0(Uk ≥ i)|z), then by Lemma 4 we have τ i+1
z,k > τ iz,k.

With the decision region for codeword i given in (29) for

i ∈ {0, 1, ..., d′ − 1}, we have completely characterized the

prescription ϕ′z . Note that with the definition of Yiz,k given in

(29) it is clear that ϕ′z ∈ Φlr, and thus by Lemma 1 satisfies

(16). Since z is any state in S , we can construct ϕ′z for all

z ∈ S . Hence, we let γ′ be the rule uses rule ϕ′z when in state

z. Since ϕ′z ∈ Φlr for all z ∈ S , we get γ′ ∈ Γlr. We have

for any s ∈ Sn,

J(ψ|s) =
∑

η

p0(Uk ≥ η)|sk)Gψs (η) + p1(Uk < η|sk)Qψs (η)

(30)

=
∑

η

ϵηs,kG
ψ
s (η) + p1(Uk < η|sk)Qψs (η) (31)

≥
∑

η

ϵηs,kG
ψ
s (η) + αηs,kQ

ψ
s (η) (32)

(a)
= J(ψ′|s), (33)

where ψ′ = [ψ, γ1, ..., γk−1, γ
′, γk+1, ..., γn]. To see (a), note

that γ′ satisfies conditions 1 and 2 in Lemma 3, and thus

solves (23). Moreover, note that ψ′ uses the fusion rule

of strategy ψ. That is, the quantities Gψs (η) and Qψs (η)
are unchanged under strategy ψ′. Hence, if we let ψ∗ =
[ψ∗, γ1, ..., γk−1, γ

′, γk+1, ..., γn], where ψ∗ is the optimal

fusion rule for [γ1, ..., γk−1, γ
′, γk+1, ..., γn], we have

J(ψ|s) ≥ J(ψ′|s) ≥ J(ψ∗|s) (34)

for any s ∈ S . Therefore, for any γ ∈ Γn, we can either

improve or keep the same performance by changing agent k’s

rule to a monotone LR partition. Thus,

inf
γ∈Γn

{max
s∈Sn

J(ψ|s)} ≥ inf
γ∈Γn

lr

{max
s∈Sn

J(ψ|s)}. (35)

Combining the above with the obvious inequality

inf
γ∈Γn

{max
s∈Sn

J(ψ|s)} ≤ inf
γ∈Γn

lr

{max
s∈Sn

J(ψ|s)}. (36)

completes the proof.



We direct the reader to focus on the construction of the

rule γ′. Notice that the prescription ϕ′z is constructed to

minimize p1(Uk < i|z) for all i ∈ {0, 1, ..., d′ − 1} for a

fixed p0(Uk ≥ i|z). For a fixed fusion rule ψ and agent rules

{γj}nj=1

j ̸=k
, the expected cost for any state skz ∈ Sn−1 depends

on the rule for agent k only through the prescription ϕz .

Moreover, the expected state cost only depends on ϕz through

the probabilities p1(Uk < i|z) and p0(Uk ≥ i|z), provided the

fusion center’s rule is fixed and the codebook for agent k while

in state z satisfies (16). Hence, the prescription ϕ′z improves

the expected state cost across all states with agent k taking

state z, i.e., skz ∈ Sn−1. Since we construct a prescription

for every state z ∈ S for agent k, and define the rule γ′ to be

the collection of these prescriptions indexed by the state, i.e.,

γ′ uses prescription ϕ′z when in state z, we can see that the

rule γ′ improves the expected cost across all states s ∈ Sn.

This observation yields the following corollary,

Corollary 1.1. Define the optimization problem

inf
ψ∈Ψ×Γn

J(ψ) = inf
ψ∈Ψ×Γn

∑

s∈Sn
csJ(ψ|s) (37)

where cs ≥ 0 for all s ∈ Sn are given constants. Then, we

have the following:

a) The optimal fusion rule for a given collection of agent

rules γ is given by (10). Hence, we only need to concern

ourselves with the optimization over agent rules.

b) infγ∈Γn J(ψ) = infγ∈Γn
lr
J(ψ). That is, it is sufficient to

search only over the set of monotone LR partition rules.

Proof. a) is a consequence of Lemma 2 and the fact that

cs ≥ 0 for all s ∈ Sn, since the rule given by (10)

minimizes J(ψ|s) for any s ∈ S . Therefore, we can drop

the optimization over the fusion rule as we did before. To

prove b), note that

J(ψ) =
∑

s∈Sn
csJ(ψ|s) =

∑

z∈S

∑

skz∈Sn−1

csJ(ψ|skz) (38)

and that for each z ∈ S , we can construct a prescription ϕ′z
for agent k in the same way as in Theorem 1. Hence, the

prescription ϕ′z improves the expected state cost for all skz ∈
Sn−1. Letting γ′ be the rule that uses prescription ϕ′z when

in state z for agent k, the rest of the proof is similiar to that

of Theorem 1.

An obvious consequence of Corollary 1.1 is that for the

Bayesian case no loss of optimality occurs from restricting

ourselves to monotone strategies. One must also take great care

in interpreting the proof of Theorem 1. We previously stated

that the rule constructed for agent k improves the performance

across all network states. However, this does not imply that

said rule is optimal for all network states. The performance

improvement may only be marginal in some network states,

and the overall cost may still be high given those states,

resulting in sub-optimal performance for the whole system.

Hence, one cannot simply ªfixº the network state and design

a strategy only for that state. An explicit example to show this

feature is constructed in Section V.

B. Bayesian Formulation

In this section, we now consider the no-information case,

and derive the optimal sensor rule under the Bayesian setting.

That is, the fusion center only receives U . We begin by writing

the cost as

J(ψ) = E[J(ψ|S)] (39)

where the expectation is taken over S. We can write J(ψ) as

J(ψ) =
∑

sk

∫

yk

d−1
∑

i=0

1
∑

h=0

1
∑

j=0

∑

uk,sk

cj,hp(sk, yk, Uk = i,H = h, U0 = j,uk, sk)dyk.

(40)

We turn our attention to

p(sk, yk, Uk = i,H = h, U0 = j,uk, sk) (41)

and rewrite it as

ph(U0 = j|uk, Uk = i, sk, sk, yk)ph(Uk = i,uk, yk|sk, sk)
p(H = h|sk, sk)p(sk|sk)p(sk).

(42)

From S → (S, H) → (Y ,S) → U → U0 we get

ph(U0 = j|uk, Uk = i, sk, sk, yk) =

p(U0 = j|uk, Uk = i).
(43)

Moreover,

ph(u
k, uk, yk|sk, sk) =

∑

yk

ph(u
k, uk, yk,y

k|sk, sk)

=
∑

yk

ph(u
k|yk, yk, uk, sk, sk)ph(uk|yk,yk, sk, sk, )

ph(yk|sk, sk,yk)ph(yk|sk, sk)
(a)
=

∑

yk

ph(u
k|yk, sk)ph(uk|yk, sk)

ph(yk|sk, sk,yk)ph(yk|sk, sk)

(b)
=

∑

yk

ph(u
k|yk, sk)p(uk|yk, sk)ph(yk|sk)ph(yk|sk)

= p(uk|yk, sk)ph(yk|sk)
∑

yk

ph(u
k|yk, sk)ph(yk|sk)

= p(uk|yk, sk)ph(yk|sk)ph(uk|sk)

(44)

where (a) comes from (2) and S → (S, H) → (Y ,S) →
U → U0 and (2), and (b) comes from (1). Therefore, (41) can

be written as

p(U0 = j|uk, Uk = i)p(uk|yk, sk)ph(yk|sk)
ph(u

k|sk)p(H = h|sk, sk)p(sk|sk)p(sk).
(45)

Substituting this into (40) and rearranging terms gives us

J(ψ) =

∑

sk

p(sk)

∫

yk

[

d−1
∑

i=0

p(Uk = i|yk, sk)Dki(yk, sk)

]

dyk.
(46)



where

Dki(yk, sk) =
1

∑

h=0

ph(yk|sk)
1

∑

j=0

cj,h
∑

uk,sk

{

p(U0 = j|uk, Uk = i)

ph(u
k|sk)p(H = h|sk, sk)p(sk|sk)

}

.

(47)

Thus, we see that the optimal rule is

i∗ = γk(yk, sk) = arg min
i∈{0,1,...,d−1}

Dki(yk, sk) (48)

Let

gk(i, sk, h) =
1

∑

j=0

cj,h
∑

uk,sk

{

p(U0 = j|uk, Uk = i)

ph(u
k|sk)p(H = h|sk, sk)p(sk|sk)

}

(49)

and so

Dki(yk, sk) = p0(yk|sk)gk(i, sk, 0) + p1(yk|sk)gk(i, sk, 1).
(50)

Note that this rule is for any arbitrary cost. Then, we have the

following,

Lemma 5. The optimal rule in (48) for the kth sensor amounts

is a monotone rule, provided i∗ in (48) is unique.

Proof. For a fixed s, the proof is the same as Lemma 1 in

[22].

Hence, the rule given by (48) corresponds to partitioning the

likelihood space into b (the cardinality of the message space

U ) of intervals. The sent message uk then corresponds to the

interval containing the observed likelihood ratio. We note that

even in the event where the minimizing index i is not unique,

we can still restrict ourselves to monotone rules by assigning

the decision regions for the codewords in such a way as to

satisfy Definition 1. If we restrict ourselves to the probability

of error, (50) becomes

Dki(yk, sk) = p0(yk|sk)Askki + p1(yk|sk)Bskki (51)

with

Askki =
∑

uk,sk

p(U0 = 1|uk, sk, Uk = i, sk)

p0(u
k|sk)p(H = 0|sk, sk)p(sk|sk),

(52)

and

Bskki =
∑

uk,sk

p(U0 = 0|uk, sk, Uk = i, sk)

p1(u
k|sk)p(H = 1|sk, sk)p(sk|sk).

(53)

These expressions are more amenable to the devolpment of

iterative algorithms, such as the algorithm given in Appendix

I.

IV. ASYMPTOTIC RESULTS

The iterative algorithm developed in Appendix I is useful

for finding the optimal rules for a finite number of agents.

However, as the number of agents grows, so too does the

complexity of the algorithm. Moreover, since we are primarily

inspired by microbial applications, it is not uncommon for us

to encounter systems with millions or even tens of millions

of agents. While it may be tempting to reduce complexity

by restricting oneself to search only over strategies where

identical agents use the same rules, we provide an example to

show that, in general, this approach is sub-optimal for finite

n. First, we give our definition of weakly identical agents.

Definition 3. Given a collection of n agents, these agents are

weakly identical if ph(Yk = y|Sk = s) = ph(Yj = y|Sj = s)
for all k, j ∈ {1, 2, ..., n}, h ∈ {h0, h1}, y ∈ Y , s ∈ S .

Now, consider the following example with binary messages

(b = 2), two agents (n = 2), two states (0, 1), and state-

information. We assume that the agent states are i.i.d with

p(S = 1) = .25. The hypothesis model is given as

p(h0|s1, s2) = p(h0|s1)
{

.52 s1 = 0

.48 s1 = 1.

The observations y1 and y2 are independent, conditioned on

the hypothesis and state, take values in {0, 1, 2}, and have the

following common distribution: (p0(y = 0|s = 0), p0(y =
1|s = 0), p0(y = 2|s = 0)) = (.8, .2, 0), p1(y = i|s = 0) =
1
3 , and

ph(y = i|s = 1) =

{

1 i = h

0 i ̸= h

for i = 0, 1, 2 and h = 0, 1. Notice that even though

the hypothesis model does not depend on agent 2 when

conditioned on agent 1, the two agents are still identical by our

definition. In a given state, each agent computes a likelihood

ratio test. If we enumerate through all of the cases for this

discrete observations example, we see that, in a given state

each agent can choose from one of two following rules:

A) ui = 1 if and only if yi = 0.

B) ui = 1 if and only if yi ∈ {0, 1}.

Hence, there are four candidate rules for each agent. Recall

that the fusion center always employs the MAP rule condi-

tioned on the strategies used by the agents. An optimal strategy

is found by exhaustive enumeration. Computing the probability

of error for every strategy, we find that the optimal strategy

is for agent one to use rule B when in state 0 and rule A
when in state 1, and for agent two to use rule A regardless

of its state. This strategy results in a probability of error of

.1185. Clearly, the optimal rule is not the same for each agent.

Moreover, in this example, the agents’ states are i.i.d. Indeed,

this case is of importance, and so we give the definition of

strongly identical agents.

Definition 4. A collection of n weakly identical agents are

further strongly identical if the agents’ states are mutually

independent and identically distributed a priori.



A. State-Information Error Exponent

We first devote our attention to the state-information case,

since this case is not handled by any prior results in the

literature. Let A0 and A1 be the sets where the fusion center

decides 0 and 1, respectively. Recall that these sets are defined

by (9), and thus depend on γ. We drop the dependence on γ

from the notation for simplicity. The probability of error can

then be written as

Jn(ψ) =
∑

s,u∈A1

p0(u|s)p(h0|s)p(s)+
∑

s,u∈A0

p1(u|s)p(h1|s)p(s).
(54)

We define the following key sequence:

αn = mins,h∈{h0,h1}p(h|s), (55)

that is, αn is the smallest p(h|s) appearing in either sum-

mation. Moreover, for the rest of the section, we make the

following assumption:

Assumption 2. for all n,

a) Both hypotheses are possible under all network states,

i.e., we do not condition on events with measure zero.

b) p0 (on Yn × Sn) is absolutely continuous, with respect

to p1, i.e., p0 ≪ p1.2 and E1[log
2 Ls(Y )] <∞ for all s,

where the expectation is taken with respect to p1(•|s).
c) limn→∞(logαn)/n = 0.

Notice that since the fusion center is implementing the MAP

rule, we can rewrite (54) as

Jn(ψ) =
∑

s,u

min{p0(u|s)p(h0|s), p1(u|s)p(h1|s)}p(s) (56)

Since we are concerned with large n, we focus on the error

exponent defined as

lim
n→∞

1

n
log Jn(ψ). (57)

Then, if we let rn(γ) = 1
n
log Jn(ψ) and Rn =

infγ∈Γn rn(γ) for all n, we analyze the limiting behavior of

Rn. Notice that we define rn as a function of γ. This is

because given γ, the optimal fusion rule is known. Similar

to [39], we would like to derive upper and lower bounds

on rn(γ). Unfortunately, we cannot use the bounds derived

in [39] and [16] since our observations are not conditionally

independent. Thus, we need the following.

Lemma 6. For any n and γ ∈ Γn, we have

logαn
n

− log 2

n
+

1

n
µ(γ, ϵ∗)−

√

2µ′′(γ, ϵ∗)

n

≤ rn(γ) ≤
1

n
µ(γ, ϵ∗),

(58)

2Let µ and ν be two measures on (X ,M). Then we say ν is absolutely

continuous with respect to µ, written as ν ≪ µ if ν(E) = 0 for every
E ∈ M, for which µ(E) = 0

where for ϵ ∈ (0, 1) we define 3

µ(γ, ϵ) = log

[

∑

s

∑

u

(p0(u|s))1−ϵ(p1(u|s))ϵp(s)
]

, (59)

αn is defined in (55), µ′′(γ, ϵ) is the second derivative of

µ(γ, ϵ) with respect to ϵ, and ϵ∗ = argminϵ∈[0,1] µ(γ, ϵ).

Proof. Assuming the fusion center is implementing the MAP

rule, we have

Jn(γ) =
∑

s,u

min{p0(u|s)p(h = 0|s), p1(u|s)p(h = 1|s)}p(s)

(a)

≤
∑

s,u

(p0(u|s)p(h = 0|s))1−ϵ(p1(u|s)p(h = 1|s))ϵp(s)

≤
∑

s,u

p0(u|s)1−ϵp1(u|s)ϵp(s)

(60)

where (a) is due to the fact that for any two positive numbers

a and b,

min{a, b} ≤ aϵb1−ϵ for all ϵ ∈ [0, 1]. (61)

Hence,

1

n
log Jn(γ) ≤

1

n
log

[

∑

s,u

(p0(u|s))1−ϵ(p1(u|s))ϵp(s)
]

.

(62)

Since this is true for all ϵ, simply take the minimum over

0 ≤ ϵ ≤ 1. To prove the lower bound, notice that

µ′(γ, ϵ) =
∑

u,s

Qϵ(u, s) logLs(u) (63)

µ′′(γ, ϵ) =

{

∑

u,s

Qϵ(u, s) log
2 Ls(u)

}

− (µ′(γ, ϵ))2 (64)

where all derivatives are with respect to ϵ. For ϵ ∈ (0, 1),
define

Qϵ(u, s) =
p0(u|s)1−ϵp1(u|s)ϵp(s)

∑

u′,s′(p0(u
′|s′))1−ϵp1(u′|s′)ϵp(s′) . (65)

Observe that we can think of Qϵ(u, s) as a probability

distribution on Ls(u). Hence, µ′(γ, ϵ) and µ′′(γ, ϵ) are the

mean and variance of logLs(u), respectively, according to

Qϵ(u, s). Since µ′′(γ, ϵ) is a variance, it is non-negative, so

for a fixed γ µ(γ, ϵ) is convex in epsilon. Furthermore, from

the definition of µ(γ, ϵ) we see that it is non-positive, and with

convexity is zero for all ϵ ∈ [0, 1] only in the uninteresting case

where the fusion center is unable to distinguish between the

two hypotheses, i.e., under all states, p0(u|s) = p1(u|s) for

all u. While these facts are not explicitly used in any of our

proofs, they are important for two reasons. First, they show

that the bounds we derive are both non-trivial and meaningful.

Second, we will show that the optimal asymptotic rule can

3We also extend the definition to include the cases ϵ = 0 and ϵ = 1, with
µ(γ, 0) = limϵ→0+ µ(γ, ϵ); µ(γ, 1) = limϵ→1− µ(γ, ϵ).



be found by optimizing µ(γ, ϵ). Hence, convexity in ϵ is a

desirable property. Moreover, it is not difficult to show

p0(u|s)p(s) = {exp[µ(γ, ϵ)− ϵ logLs(u)]}Qϵ(u, s) (66a)

p1(u|s)p(s) = {exp[µ(γ, ϵ) + (1− ϵ) logLs(u)]}Qϵ(u, s).
(66b)

Define Aϵ to be the set of pairs (u, s) for which logLs(u)
is within

√
2 standard deviations of its mean according to

Qϵ(u, s),

Aϵ = {(u, s) : | logLs(u)− µ′(γ, ϵ)| ≤
√

2µ′′(γ, ϵ). (67)

For any (u, s) ∈ Aϵ we have

µ′(γ, ϵ)−
√

2µ′′(γ, ϵ) ≤ logLs(u) ≤ µ′(γ, ϵ) +
√

2µ′′(γ, ϵ)
(68)

Then,

Jn(γ) =
∑

s,u

min{p0(u|s)p(h = 0|s), p1(u|s)p(h = 1|s)}p(s)

≥ αn
∑

s,u∈Aϵ
min{p0(u|s)p(s), p1(u|s)}p(s)

= αn exp[µ(γ, ϵ)]
∑

s,u∈Aϵ
min

{

exp[−ϵ logLs(u)], exp[(1− ϵ) logLs(u)]

}

Qϵ(u, s)

≥ αn exp[µ(γ, ϵ)]
∑

s,u∈Aϵ
min

{

exp[−ϵµ′(γ, ϵ)− ϵ
√

2µ′′(γ, ϵ)], exp[(1− ϵ)µ′(γ, ϵ)−

(1− ϵ)
√

2µ′′(γ, ϵ)]

}

Qϵ(u, s)

(a)

≥ αn exp[µ(γ, ϵ)−
√

2µ′′(γ, ϵ)]
∑

s,u∈Aϵ
min

{

exp[−ϵµ′(γ, ϵ)], exp[(1− ϵ)µ′(γ, ϵ)]

}

Qϵ(u, s)

= αn exp[µ(γ, ϵ)−
√

2µ′′(γ, ϵ)]min

{

exp[−ϵµ′(γ, ϵ)],

exp[(1− ϵ)µ′(γ, ϵ)]

}

∑

s,u∈Aϵ
Qϵ(u, s)

(b)

≥ αn exp[µ(γ, ϵ)−
√

2µ′′(γ, ϵ)]

min

{

exp[−ϵµ′(γ, ϵ)], exp[(1− ϵ)µ′(γ, ϵ)]

}

1

2
.

Where (a) comes from the fact that 0 ≤ ϵ ≤ 1, and (b) is due

to the Chebyshev bound. The above is true for all ϵ ∈ [0, 1],
thus, we can take the ϵ∗ that minimizes µ(γ, ϵ). If ϵ∗ ∈ (0, 1),
then µ′(γ, ϵ∗) = 0. Otherwise, if ϵ∗ = 0, then µ′(γ, 0+) ≥ 0,

so
lim
ϵ→0+

−ϵµ′(γ, ϵ) = 0

lim
ϵ→0+

(1− ϵ)µ′(γ, ϵ) ≥ 0.
(69)

Likewise, if ϵ = 1, then µ′(γ, 1−) ≤ 0, and

lim
ϵ→1−

−ϵµ′(γ, ϵ) ≥ 0

lim
ϵ→1−

(1− ϵ)µ′(γ, ϵ) = 0.
(70)

Thus, min

{

exp[−ϵ∗µ′(γ, ϵ∗)], exp[(1 − ϵ∗)µ′(γ, ϵ∗)]

}

= 1,

so

Jn(γ) ≥
αn
2

exp[µ(γ, ϵ∗)−
√

2µ′′(γ, ϵ∗)]. (71)

Taking the log and dividing by n on both sides completes the

proof.

Note that if 1
n
logαn and µ′′(γ, ϵ) are not properly con-

trolled, then the bounds given in (93) could be far apart even

for large n. Because of this, we elaborate on Assumption 2.

The next lemma controls µ′′(γ, ϵ).

Lemma 7. Subject to Assumption 2, for all n, γ ∈ Γn, and ϵ ∈
[0, 1], There exists a finite constant θ such that |µ′′(γ, ϵ)| ≤
nθ.

Proof. See Appendix.

Notice that Assumption 2(a) does not imply Assumption

2(b). Since, for a given s, only one set of signals y may be

possible under each hypothesis 4. Then, for fixed n, suppose

there exists some γ and ϵ ∈ [0, 1] such that |µ(γ, ϵ)| is not

finite. Then, we must have that
∑

s

∑

u

p0(u|s)1−ϵp1(u|s)ϵp(s) = 0

Since each term in the summation is non-negative, this im-

plies p0(u|s) = 0 whenever p1(u|s) ≥ 0, and vice-versa.

Then, let Ω be the set of (y, s) such that the strategy γ

maps (y, s) to (u, s) such that p1(u|s) ≥ 0. Then we

have p0(u|s)p0(s) = p0(u, s) = p0(γ(y, s) = (u, s)) =
p0((y, s) = γ−1(u, s)) = 0 on Ω. Similarly, p1(y, s) = 0
and p0(y, s) ≥ 0 on Ωc. Thus, the two measures are mutually

singular5, violating Assumption 2(b). Hence, if Assumption

2(b) is satisfied, then |µ(γ, ϵ)| must be finite for all γ ∈ Γn,

ϵ ∈ [0, 1]. Then, we have
∑

u

p0(u|s)1−ϵp1(u|s)ϵ > 0

For at least one s ∈ Sn with p(s) > 0. Using (1),
∑

u

p0(u|s)1−ϵp1(u|s)ϵ > 0 ⇐⇒

∑

u

n
∏

k=1

p0(uk|sk)1−ϵp1(uk|sk)ϵ > 0 ⇐⇒

n
∏

k=1

∑

uk

p0(uk|sk)1−ϵp1(uk|sk)ϵ > 0 ⇐⇒

4Take Y = [0, 1] with the Borel σ-algebra. Let p0(y|s) = δs(y), s ∈
{0, 1}, i.e., a point measure at s, and let p1(•|s) be Lebesgue measure.

5two measures µ and ν on (X ,M) are mutually singular if there exists
E ∈ M such that ν(E) = 0 and µ(Ec) = 0



∑

uk

p0(uk|sk)1−ϵp1(uk|sk)ϵ > 0 for all k ∈ {1, 2, ..., n}.

Therefore, if Assumption 2(a) holds, for every γ ∈ Γn and

ϵ ∈ [0, 1], each agent must posses at least one state s ∈ S
with p(s) > 0 such that

∑

uk
p0(uk|sk)1−ϵp1(uk|sk)ϵ > 0.

This property will prove useful in the proof of Theorem 3.

Observe that µ(γ, ϵ) does not depend on the hypothesis

model. Thus, the term 1
n
logαn can be thought of as the ªlossº

accrued due to removing the information the network state

provides about the true hypothesis. We offer a few comments

on this assumption. Recall that in the state-information struc-

ture, the fusion center has perfect knowledge of the network

state. If the desired condition does not hold, the informed

fusion center could could drive the probability of error to

zero exponentially fast regardless of the rules used by the

agents, thereby creating a pathological case that is not of

interest here. Our focus herein is the design of the agents

and their rules. Second, in the no-information structure, the

uninformed fusion center requires messages from the agents

as it does not have access to the state. In this scenario, the

hypothesis model must be incorporated into the design of

the strategy. However, the uninformed fusion center is still

at a disadvantage relative to the informed fusion center. Thus,

this assumption provides for a more fair comparison between

the two information structures. The sequence αn will play

an important role later when studying the asymptotic relation

between the two information structures, as well as asymptotic

properties of the no-information structure.

Under Assumption 2, the bounds given in (93) will be tight

for sufficiently large n, and so we define 6

Λ(n) = inf
γ∈Γn

min
ϵ∈[0,1]

1

n
µ(γ, ϵ). (72)

Then, under Assumption 2, we have the following.

Theorem 2. For the state-information structure, the optimal

error exponent defined in Equation (57) is given by

Λ = lim
n→∞

inf
γ∈Γn

min
ϵ∈[0,1]

1

n
µ(γ, ϵ) (73)

if the limit exists.

Proof. Assume limn→∞ Λ(n) exists and is equal to µ∗. Then,

for all γ ∈ Γn, the upper bound in (93) gives us

Rn ≤ rn(γ) ≤ min
ϵ∈[0,1]

1

n
µ(γ, ϵ) (74)

for all n. Then, Rn ≤ Λ(n). The lower bound in (93), together

with assumption (b) gives us

logαn
n

− log 2

n
+ Λ(n) −

√
2nθ

n
≤ rn(γ) (75)

for all γ ∈ Γn. Therefore,

logαn
n

− log 2

n
+ Λ(n) −

√
2nθ

n
≤ Rn. (76)

6We take the minimum over all ϵ since for any γ ∈ Γn, µ(γ, ϵ) is
continuous in ϵ and defined over a compact set.

Under assumption (c) and the assumption that limn→∞ Λ(n) =
µ∗, we get

lim
n→∞

{

logαn
n

− log 2

n
+ Λ(n) −

√
2nθ

n

}

= lim
n→∞

Λ(n) = µ∗.

(77)

Hence, limn→∞Rn = µ∗.

A few remarks are in order. First, the exponent makes no

assumption on the correlation between the states. Second, the

hypothesis model has no affect on the asymptotics (provided

assumption (c) is satisfied).

To provide a further analysis, we assume the agents’ states

are mutually independent a priori. We can then write,

µ(γ, ϵ) = log

[

∑

s

∑

u

(p0(u|s))1−ϵ(p1(u|s))ϵp(s)
]

= log

[

∑

s

∑

u

n
∏

k=1

(p0(uk|sk))1−ϵ(p(1uk|sk))ϵp(sk)
]

= log

[

{

∑

s1,u1

(p0(u1|s1))1−ϵ(p1(u1|s1))ϵp(s1)
}

...

...

{

∑

sn,un

(p0(un|sn))1−ϵ(p1(un|sn))ϵp(sn)
}

]

=

n
∑

k=1

log

[

∑

sk,uk

(p0(uk|sk))1−ϵ(p1(uk|sk))ϵp(sk)
]

=

n
∑

k=1

µk(γk, ϵ).

(78)

Thus, µ(γ, ϵ) is decomposable, that is, it is the sum of the

µk(γk, ϵ)s, where agent k is using rule γk ∈ Γ, k = 1, 2, ..., n.

Notice that the exponent loses this property if one of the

previous assumptions is removed. It can be shown that µ(γ, ϵ)
is convex in ϵ and non-positive, and is zero for all ϵ only in

the uninteresting case where the fusion center is unable to

distinguish between the two hypotheses, i.e., under all states,

p0(u|s) = p1(u|s) for all u. The same result can be shown

for µ(γk, ϵ), k = 1, 2, .., n. Thus, µ(γ, ϵ) is non-increasing in

n.

B. Identical Agents

We now turn our attention the case where the agents are

identical. Define

Λr = inf
γ∈Γ

min
ϵ∈[0,1]

1

n

n
∑

k=1

µk(γ, ϵ). (79)

Note that Λr is defined only over those strategies that have

all agents use the same rule. The main result of this section

is that if the agents are weakly identical, then, as n −→ ∞,

we can restrict ourselves to strategies where all agents use the

same rule without loss of asymptotic optimality.

Theorem 3. Assume the agents are weakly identical, the

agents’ states are mutually independent a priori, and Assump-

tion 2 holds. Then, Λ(n) = Λr for all n ∈ N.



Proof. Since having all agents use the same rule is a valid

strategy, we have Λ(n) ≤ Λr. For any γ ∈ Γn, let Φ0 be the

set of prescriptions used by the agents, i.e., Φ0 ⊆ Φ. Now, for

any k = 1, 2, ..., n, γ ∈ Γ, and ϵ ∈ [0, 1],

µk(γk, ϵ) = log
∑

s,u

(p0(u|s))1−ϵ(p1(u|s))ϵp(Sk = s)

= log
∑

s,u

p0(ϕs(Y ) = u|s)1−ϵp1(ϕs(Y ) = u|s)ϵp(Sk = s)

(80)

≥ log
∑

s,u

p0(ϕ
∗
s(Y ) = u|s)1−ϵp1(ϕ∗s(Y ) = u|s)ϵp(Sk = s)

= µk(γ
∗, ϵ),

(81)

where

ϕ∗s = arg min
ϕ∈Φ0

{
∑

u

(p0(u|s))1−ϵ(p1(u|s))ϵ} (82)

and γ∗ is the rule that uses ϕ∗s when in state s. Thanks to

Assumption 2(a) the terms inside all logarithms are strictly

greater that zero, and so all logarithms are well-defined. Notice

that since the agents are weakly identical, the rule γ∗ can be

chosen to be the same for all agents, and thus does not depend

on k. For any γ ∈ Γn and ϵ ∈ [0, 1],

1

n

n
∑

k=1

µk(γk, ϵ) ≥
1

n

n
∑

k=1

µ(γ∗, ϵ) ≥ Λr. (83)

Hence, Λ(n) ≥ Λr. We then conclude Λ(n) = Λr.

Recall that our definition of weakly identical does not make

any statement about the states of the agents. To provide more

analysis, we turn our attention to strongly identical agents.

If the agents are strongly identical, µk(γ, ϵ) does not depend

on k. We then drop the subscript when we are discussing

strongly identical sensors. We see that for any γ ∈ Γ and

ϵ ∈ [0, 1],

1

n

n
∑

k=1

µk(γ, ϵ) =
1

n

n
∑

k=1

µ(γ, ϵ) = µ(γ, ϵ). (84)

We define

Λ0 = inf
γ∈Γ

min
ϵ∈[0,1]

µ(γ, ϵ). (85)

Corollary 3.1. Assume the agents are strongly identical and

that both hypotheses are possible under all states. Then, Λ =
Λ0.

Proof. We have from Theorem 3 that Λ(n) = Λr for all n ∈ N.

Moreover, (84) gives us that

Λr = inf
γ∈Γ

min
ϵ∈[0,1]

1

n

n
∑

k=1

µk(γ, ϵ) = inf
γ∈Γ

min
ϵ∈[0,1]

µ(γ, ϵ) = Λ0.

Hence,

Λ0 = lim
n→∞

Λ(n) = lim
n→∞

Λ0 = Λ0.

Theorem 3 states that there is no loss of asymptotic opti-

mality if all agents use the same rule. Moreover, if the agents

are strongly identical, one only needs to solve the optimization

problem in (85).

C. No-Information Error Exponent

Following classic results in the literature, [19], [39], it

is readily shown that for the no-information case, the error

exponent ΛI is given as

ΛI = lim
n

inf
γ∈Γn

min
ϵ∈[0,1]

1

n
log

∑

u

p0(u)
1−ϵp1(u)

ϵ. (86)

There is however, an additional subtlety introduced by our

problem. Namely, in order for (86) to hold, one needs to ensure

that 1
n
logmin{π0, π1} → 0, since the priors are allowed to

vary with n. Indeed,

1

n
logαn ≤ 1

n
log

∑

s

p(h|s)p(s) = 1

n
log πh < 0,

where 1
n
logαn → 0 by assumption. Let

Λ
(n)
I = inf

γ∈Γn
min
ϵ∈[0,1]

1

n
log

∑

u

p0(u)
1−ϵp1(u)

ϵ (87)

To further motivate the study of αn, consider the following.
∑

u

p0(u)
1−ϵp1(u)

ϵ

≥
∑

u

[p0(u)π0]
1−ϵ[p1(u)π1]

ϵ

(a)

≥
∑

u,s

p(u, s, h0)
1−ϵp(u, s, h1)

ϵ

(b)

≥ αn
∑

u,s

p0(u|s)1−ϵp1(u|s)ϵp(s).

(88)

where (a) is due to HÈolder’s inequality and (b) is from the

definition of αn (Equation 55). It then follows that

Λ
(n)
I − Λ(n) ≥ 1

n
logαn (89)

Notice that 1
n
logαn is a sequence of strictly negative numbers.

Hence, the bound given above potentially allows for the possi-

bility that Λ
(n)
I < Λ(n) for a small enough n. In the numerical

results section, we explicitly construct an example such that

this property holds for relatively large networks. Assumption

2c characterizes the case when ΛI ≥ Λ, and in this case,

the no-information structure cannot do better than the state-

information structure, asymptotically. Moreover, the proof of

Theorem 3 relies on the fact that µ(γ, ϵ) is decomposable.

In contrast, 1
n
log

∑

u p0(u)
1−ϵp1(u)ϵ does not possess the

same property. This follows because even if the agents’ states

are independent a priori, they are still correlated through the

hypothesis model. This motivates us to define the following

quantity, which we call the untethered exponent.

ν(γ, ϵ) = log
∑

u

q0(u)
1−ϵq1(u)

ϵ (90)



with qh(u) =
∑

s

ph(u|s)p(s), for h = 0, 1, (91)

The quantity ν(γ, ϵ) shares several important and useful

properties with µ(γ, ϵ). First, log
∑

u q0(u)
1−ϵq1(u)ϵ is a

continuous, convex function of ϵ and we have ν(γ, ϵ) ≤ 0.

From convexity, ν(γ) = 0 ∀ ϵ ∈ [0, 1] only if q0(u) = q1(u),
∀ u. Moreover, if the agent states are independent a priori

and both hypotheses are possible under all s, then

log
∑

u

[

∑

s

p0(u|s)p(s)
]1−ϵ[

∑

s

p1(u|s)p(s)
]ϵ

=
∑

k

log
∑

uk

q0(uk)
1−ϵq1(uk)

ϵ
(92)

The above computation clearly shows that ν(γ, ϵ) is decom-

posable, a property we exploit and a property not observed in

the classical exponent representation.

Proposition 1. Let ν(γ) = minϵ∈[0,1] ν(γ, ϵ). Then, for all

n ∈ N,

1

n
logαn +

1

n
inf
γ∈Γn

ν(γ) ≤ Λ
(n)
I

≤ − 1

n
logmin{π0, π1}+

1

n
inf
γ∈Γn

ν(γ).
(93)

For any ϵ ∈ [0, 1], we have
∑

u

p0(u)
1−ϵp1(u)

ϵ

=
1

π0

1−ϵ 1

π1

ϵ
∑

u

[

∑

s

p0(u|s)p(h0|s)p(s)
]1−ϵ

[

∑

s

p1(u|s)p(h1|s)p(s)
]ϵ

≤ max{ 1

π0
,
1

π1
}
∑

u

[

∑

s

p0(u|s)p(s)
]1−ϵ

[

∑

s

p1(u|s)p(s)
]ϵ

where we use the fact that aϵb1−ϵ ≤ max{a, b} ∀ϵ ∈ [0, 1].
Combining the above with

∑

u

p0(u)
1−ϵp1(u)

ϵ ≥ αn
∑

u

q0(u)
1−ϵq1(u)

ϵ,

taking logarithms, and dividing by n gives us Proposition 1.

Notice that thanks to Proposition 1,

ΛI = lim
n

inf
γ∈Γn

1

n
ν(γ), (94)

where equality denotes that either both limits exist, or neither

does. Hence, for sufficiently large n, one can, without loss of

optimality, restrict attention to ν(γ). Given that this expression

does not depend on the hypothesis model, it is easier to

compute for large network sizes than (87). Moreover, the

untethered exponent gives us the following.

Theorem 4. Under Assumption 2, and assuming all agents

are strongly identical, we have that for all n ∈ N,

infγ∈Γn
1
n
ν(γ) = infγ∈Γ ν(γ). Hence, identical rules are

optimal.

Proof. For any fixed n, using identical rules is a valid strategy.

Therefore, the optimal strategy can do no worse than the

optimal identical strategy, and so we have infγ∈Γn
1
n
ν(γ) ≤

infγ∈Γ ν(γ). It then suffices to show that the reverse inequality

holds. First, we can show, similar to µ(γ, ϵ), that under

Assumption 2 |ν(γ)| is finite. Hence, all logarithms are well-

defined. Since the agents are strongly identical, we have

ν(γ) =
∑

k

νk(γk). (95)

Since this sum is finite for any γ, we have that νk(γ) is also

finite for any rule γ ∈ Γ, k = 1, 2, .., n. Notice that if the

agents are identical, νk(γ) depends only on the rule being

used by agent k, and so νk will be the same for different

agents as they all employ the same rule. Then, for a given

strategy γ, if we denote the set of distinct rules used by the

agents as G, and the number of agents using rule γ as Nγ , we

get

ν(γ) =
∑

k

νk(γk) =
∑

γ∈G
Nγν(γ)

≥
∑

γ∈G
Nγν(γ∗) = nν(γ∗)

(96)

where γ∗ = argminγ∈G ν(γ). This shows that for any γ, we

can improve the system’s performance by simply selecting the

best νk(γ), and having all agents use agent k’s rule. Taking

the infimum of both sides and dividing by n yields the desired

inequality. Invoking Proposition 1 we see that

ΛI = lim
n

inf
γ∈Γ

ν(γ) (97)

provided both limits exist. Hence, optimizing one agent is

sufficient for asymptotic network optimality.

It is important to note some diffirences between the proofs

of Theorems 3 and 4. First, Theorem 3 holds for weakly

identical agents whereas Theorem 4 holds only for strongly

identical agents. The reason for this can be seen in the

structural differences of µ and ν. In µ, the message and the

state are in some sense ºseparableº. This is seen by the double

summation over u and s. Hence, when working with µ, it

is possible, by interchanging sums, to fix the state s and

design the prescription that optimizes that state. This same

procedure cannot be done with ν, since one cannot interchange

the summations over u and s. Hence, when working with ν,

one needs the agents to be strongly identical to invoke these

simplifying results.

Notice that our definition of identicality makes no assump-

tion on the hypothesis model. Some agents’ states may be

more correlated with the hypothesis, and therefore with each

other. Therefore, when designing a system according to ΛnI ,

changing one agent’s rule may affect the other agents through

p(h|s). However, our result shows that for sufficiently large

n this cannot happen, since ΛnI and ν are asymptotically

equivalent. This further highlights the fact that although ν



and Λ
(n)
I are asymptotically equivalent, the additional structure

of ν provides insight into the structure and simplicity of the

optimal solution.

V. NUMERICAL RESULTS

In this section we present some numerical results to illus-

trate several important concepts from the preceding sections.

• In the state-information case, for a fixed network state, the

problem is the canonical decentralized detection problem

with parallel configuration and conditionally independent

observations. Hence, one might be tempted to fix the

network state and use previously established methods

such as [22]. We show that this approach is, in general,

sub-optimal.

• In the no-information case, the only true correlation

between the agents when conditioned on the hypothesis

is in the agents’ state. We then derive an approach

which assumes the observations (Yk, Sk), k = 1, 2, ..., n
are indeed conditionally independent, and use previous

results. Again, we show this approach is sub-optimal, and

so in both cases, this state structure should not be ignored.

• We construct a system where Λ
(n)
I < Λ(n) for a regime of

network sizes n. That is, for a regime of network sizes,

the Chernoff information of the no-information case (-

Λ
(n)
I ) is higher than the Chernoff Information (−Λ(n)) of

the state-information case.

For the rest of the section, we assume each agent k takes one

of two states, sk = 0 or sk = 1, makes a binary decision,

uk = 0 or uk = 1, and has the following signal model,

Yk = H[1 + Sk(β − 1)] +Nk (98)

where β ∈ (0, 1] is a constant, and {Nk}n1 i.i.d with Nk ∼
N (0, 1). Notice that when sk = 0, Yk = H +Nk, and when

sk = 0, Yk = βH + Nk. Hence, β may be thought of as a

jamming constant, which is only present when sk = 1.

A. Small Networks

In this section, we present numerical results to support the

first two points above. We consider a simple network with two

agents, and hypothesis model given by (98)

p(h1|s1, s2) =
1

4
+

1

4
(s1 + s2). (99)

Moreover, we assume the joint pmf of the states is given as

p(s1 = i, s2 = j) = qij with
[

q0,0 q0,1
q1,0 q1,1

]

=

[

.2 .1

.1 .6

]

. (100)

We now outline each strategy used:

A) For both the state-information and no-information struc-

tures, we use the iterative algorithm developed in the

appendix for each respective information structure. This

algorithm is developed based on the PBPO criteria devel-

oped in Section III. The state-information case is denoted

as Strategy A1, while the no-information structure is

denoted as Strategy A2.

B) For the state-information structure, fix the network state

s. For a fixed state, use the algorithm developed in [22].

In general, this may produce different thresholds for each

agent in a given state. For example, if agent 1 is in state 0,

there is no guarantee the thresholds τ0, τ1, corresponding

to the network states [0, 0] and [0, 1] respectively, are the

same. Hence, for a fixed sk, we use threshold τ0 with

probability p(sj = 0|sk) and τ1 with probability p(sj =
1|sk), so

ph(uk = 1|sk) = Q(τ0 − h[1 + sk(β − 1])p(sj = 0|sk)+
Q(τ1 − h[1 + sk(β − 1])p(sj = 1|sk).

(101)

C) For the no-information structure, assume the observations

{(Yk, Sk)}21 are conditionally independent and use the

algorithm given in [22]. Moreover,

ph(yk, sk) =
ph(yk|sk)p(h|sk)p(sk)

p(h)
. (102)

where p(h|sk) and p(h) are induced by the given hypoth-

esis model.

Also, all fusion centers use the appropriate MAP rule for

each strategy. We note some interesting phenomena for each

information structure.

• State-information structure: As stated before, and illus-

trated in Fig. 2a, fixing the network state and using

existing methods is sub-optimal. There are a few reasons

for this. First, finding the optimal strategy for a fixed

state neglects the performance of the other states. The

strategy that optimizes the performance in one network

state may only be able to do so at the expense of another

state. For example, in our model, when both agents are

in state 0, their signal models are identical, and both

have a ºtrueº look at the underlying hypothesis. However,

if one optimizes this state, one neglects the state [0, 1],
in which case the second agent does not have a clear

look at the hypothesis. It is not unreasonable to expect

that having agent 2 use the [0, 0] strategy would be sub-

optimal in state [0, 1]. Indeed, this is the case. Second,

upon fixing the network state, one removes the effect of

each agent state on the hypothesis. If the network state is

fixed, so too is p(h|s1, s2), and so each agent’s state has

no information regarding the hypothesis. Compare this

to the case where the network state is not fixed. Then,

upon taking state sk, agent k receives some knowledge of

the hypothesis, namely of p(h|s1, s2), through its state.

This is captured when β = 1. Notice that in this case,

the signal models under both states are identical, but the

thresholds themselves are not. This results from the fact

that the states themselves carry asymmetric information

about the hypothesis. In this example, for each agent

in a given state, we randomized between the two rules

obtained for each network state, according to p(sj |sk).
Hence, one may be tempted to say that finding the optimal

strategy might amount to finding the optimal randomiza-

tion between optimal network rules. However, it is not
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Fig. 2: Numerical results

clear that this problem has any desirable properties, i.e.,

convexity, quasi-convexity, etc., and so may be difficult

for certain models. Moreover, this approach does not

scale well in either the network size or network state-

space.

• No-information structure: When assuming conditional

independence between the observations, the thresholds

themselves are different from the optimal thresholds,

resulting in sub-optimal performance. Hence, one should

not ignore the correlation between agents states and the

hypothesis.

B. Large Networks

We now turn our attention to large networks, and focus on

the Chernoff information. We explicitly construct a system

with the desired behavior as described earlier. Consider a

network with n agents. Each agent takes binary state, makes a

binary decision, and has the same signal model given by (98).

The hypothesis model is given as

p(h0|s) = exp(−λ
√
z + 1) (103)

where λ > 0, and z =
∑

k sk. For sufficiently large n, αn =

exp(−λ
√
n+ 1), so 1

n
logαn = −λ

√
n+1
n

→ 0. Moreover, the

agent states are i.i.d with p(Sk = 1) = p. Hence, the agents are

strongly identical, and so we can restrict ourselves to identical

rules to obtain Λ(n). Moreover, we can optimize the Chernoff

information for only a single agent. Then, to find the optimal

thresholds for the fusion center with state information, we find

the thresholds that minimize

min
[0,1]

log

[

Q(τ0)
1−ϵQ(τ0 − 1)ϵ+

(1−Q(τ0))
1−ϵ(1−Q(τ0 − 1))ϵ

]

(1− p) +

[

Q(τ1)
1−ϵ

Q(τ1 − β)ϵ + (1−Q(τ1))
1−ϵ(1−Q(τ1 − β))ϵ

]

p.

(104)



We now turn our attention to Λ
(n)
I , and begin by writing

log
∑

u

p0(u)
1−ϵp1(u)

ϵ =

log
∑

u

[

1

p(h0)

∑

s

p0(u|s)p(h0|s)p(s)
]1−ϵ

[

1

p(h1)

∑

s

p1(u|s)p(h1|s)p(s)
]ϵ

=

log
∑

u

1

p(h0)

1−ϵ 1

p(h1)

ϵ
[

∑

s

∏

k

p0(uk|sk)

p(h0|s)p(s)
]1−ϵ[

∑

s

∏

k

p1(uk|sk)p(h1|s)p(s)
]ϵ

.

(105)

First, notice that p(h0|s) depends only on the type of s, and

so

p(h0) =

n
∑

z=0

exp(−λ
√
z + 1)

(

n

z

)

pz(1− p)(n−z) (106)

Similarly, the summations in (105) can be written with respect

to ω, z, z0, and z1, where ω is the number of agents that decide

1, z0 is the number of agents that decide 0 in state 1, and z1
is the number of agents that decide 1 in state 1. Then, we can

rewrite (105) as

log
1

p(h0)

1−ϵ 1

p(h1)

ϵ
∑

ω

f0(ω)
1−ϵf1(ω)

ϵ (107)

where fh(ω) is given as

fh(ω) =
∑

z

∑

max{ω−n+z},0}≤z1≤min{ω,z}

(

ω

z1

)(

n− ω

z0

)

(qh,0,0)
n−ω−z0(qh,0,1)z0(1− qh,0,0)

ω−z1(1− qh,0,1)
z1

exp(−λ z
n
)pz(1− p)(n−z),

(108)

with qh,u,s = ph(u|s). Our results are presented in Fig. 2d.

As stated before, we find the thresholds that optimize the

state-information structure, and use these thresholds in the

no-information structure as well. Thus, if the no-information

structure outperforms the state-information structure with

these thresholds, our claim is validated (since the optimal

thresholds for the no-information structure must do at least

as well). Indeed, this is the case as illustrated in Fig. 2d. As

λ increases, the size of the network required for the Chernoff

information of the state-information case to outperform the no-

information case increases as well. Hence, it is in fact possible

for the fusion center without state information to outperform

the fusion center with state information in large networks.

While this result seems highly counter-intuitive, this phenom-

ena become more clear upon examining the expressions for the

Chernoff information between the two structures. Notice that

the Chernoff information for the state-information structure

in no way depends upon the hypothesis model, whereas

the Chernoff information for the no information structure

implicitly depends on the hypothesis model. This however,

does not result in a loss of optimality thanks to Assumption

2c, which states the information contained in the hypothesis

model goes to zero in the network size. Moreover, it is because

of Assumption 2c that we have ΛI ≤ Λ. However, Assumption

2c makes no statement about the speed of decay. That is,

the hypothesis model may contain substantial information

about the underlying hypothesis even for large networks, but

eventually, this information must decay to zero as the network

grows. Indeed, this is what happens in our example. As λ
increases, the rate of decay slows, and so the hypothesis model

carries more information even for larger networks. This is seen

in Fig. 2d from the fact that for increasing λ the no-information

structure outperforms the state-information structure for larger

and larger network sizes.

VI. CONCLUSION

In this paper, we have formulated the problem of multi-

agent hypothesis testing over networks with state, and shown

a number of interesting properties. We have found the optimal

design rule for the state-information structure under a min-

max criterion, and the optimal design rule for both structures

under the Bayesian setting. We have also found the optimal

error decay rate for both information structures and used

them to prove a number of interesting results. Namely that

identical rules are optimal for weakly identical agents, and

that it is indeed possible for the no-information structure to

outperform the state-information structure, even for relatively

large networks.

APPENDIX

A. Proof of Lemma 7

Proof. For any strategy γ, let Mγ be the smallest sub σ-

algebra of My,s such that γ is measurable. Let pγ0 and pγ1
denote the restrictions of p0 and p1 to Mγ . Moreover, from

absolute continuity, we have that pγ0 ≪ pγ1 . Let

Lγs (y) =
dpγ1 (•|s)
dpγ0 (•|s)

. (109)

Then, we make two important observations. First,

Lγs = E0[Ls(Y )|Fγ ] (110)

a.s., for all s, and

Ls(u) = Lγs (y) (111)

for every y such that γ(y, s) = u, almost surely. Using (110)

together with convexity of ζ(x) = x log2 x yields, for fixed s,

E1[log
2 Lγs ] = E0[L

γ
s log

2 Lγs ] = E0[ζ(L
γ
s )]

=E0[ζ(E0[Ls|Fγ ])] ≤ E0[E0[ζ(Ls)|Fγ ]]
=E0[Ls log

2 Ls] = E1[log
2 Ls].

(112)

Then, there exists some constant cl < ∞ such that

E1[log
2 Lγs ] < cl. Moreover, using E[|X|] ≤ 1+E[X2], we get



E1[| logLγs |] < cl. Next, using (111), (63), and the inequality

(Lγs )
ϵ ≤ 1 + Lγs , we obtain

|µ′(γ, ϵ)| = |Es[E0[(L
γ
s )
ϵ logLγs ]]|

|Es[E0[(L
γ
s )ϵ]]|

≤ |Es[E1[logL
γ
s ]]|+ |Es[E0[logL

γ
s ]]|

|Es[E0[(L
γ
s )ϵ]]|

.

(113)

We have already bounded the numerator. The denominator is

bounded by noticing that E0[Ls] = 1 for all s. Hence, there

must exist some My,s measurable set E , such that for all

s, there exist δs1 > 0, and δs2 > 0 with p0(E|s) > δs1 and

Ls > δs2 . Then, using that xϵ ≥ min{1, x} for all ϵ ∈ [0, 1],
we get E0[(Ls)

ϵ] ≥ δs1 min{1, δs2} for all ϵ ∈ [0, 1]. Using the

fact that xϵ is concave for fixed ϵ ∈ [0, 1] yields

E0[(L
γ
s )
ϵ] = E0[E0[Ls|Fγ ]ϵ]

≥E0[E0[(Ls)
ϵ|Fγ ]] = E0[(Ls)

ϵ] ≥ δs1 min{1, δs2}.
(114)

taking the minimum over all s of δs1 min{1, δs2} completes the

bound on |µ′(γ, ϵ)|. For |µ′′(γ, ϵ)|, we have

µ′′(γ, ϵ) =
Es[E0[(L

γ
s )
ϵ log2 Lγs ]]

Es[E0[(L
γ
s )ϵ]]

− (µ′(γ, ϵ))2.

Then, the proof that µ′′(γ, ϵ) is bounded is identical, and is

thus omitted.

B. Iterative Algorithm for Optimal Quantizers

In this section we develop an iterative algorithm to find the

local quantizers for each agent following a person-by-person

optimal approach for the Bayesian setting. The iterative algo-

rithm we present is a slightly modified version of that given

in [22]. Thus, we skip some of the details in the derivation,

and refer the reader to [22] for a thorough treatment. We start

by exploiting the structure of the rule given in (48) with the

following. Define

Zskij = {yk : Dki(yk, s) < Dkj(yk, s)} (115)

That is, Zskij is the set of all y such that assigning y to

codeword i results in a lower probability of error than if

assigned to codeword j when in state s. Moreover,

Dki(yk, s) < Dkj(yk, s) ⇐⇒
p0(yk|s)(Aski −Askj)+

p1(yk|s)(Bski −Bskj) < 0 ⇐⇒
(Aski −Askj) + Ls(yk)(B

s
ki −Bskj) < 0

(116)

Hence, Zskij is equivalent to

Zskij(L) = {Ls(yk) : Dki(yk, s) < Dkj(yk, s)}. (117)

That is, Zskij(L) is the set of LR values such that assigning

observations with an LR value in the set to codeword i rather

than j results in a smaller probability of error. Let

τ skij = −
αskij
βskij

. (118)

where

αskij = Aski −Askj (119)

βskij = Bski −Bskj . (120)

Then, we have several possibilities for Zskij(L) depending on

the values of αskij and βskij .

Zskij(L) =



















[0, τskij), βskij > 0

[τ skij ,∞), βskij < 0

[0,∞), βskij = 0, αskij < 0

ϕ, βskij = 0, αskij ≥ 0.

(121)

A few remarks are in order. First, if Zskij(L) = [0,∞),
it is always better to map the observation to codeword i
instead of j. Likewise, if Zskij(L) = ϕ, it is never better to

map the observation to codeword i instead of j. Hence, if

Zskij(L) = [0,∞) (Zskij(L) = ϕ), codeword j (i) should be

deleted. Second, if we define

τ suki = min
j:βs

kij
>0

{τ skij} (122)

and

τ slki = max
j:βs

kij
<0

{τ skij} (123)

then the set

Zksi(L) =

d−1
⋂

j=0

j ̸=i

Zskij(L)

which is the set of L(yk) that should be mapped to index i,
can be expressed as

Zksi(L) =











ϕ, βskij = 0, αskij ≥ 0 for some j

[0,∞), βskij = 0, αskij < 0 for all j

[τ slki, τ
su
ki ), otherwise

with the understanding that [a, b) = ϕ for a > b. Thus, if

τ slki > τ suki , Zksi(L) = ϕ. Finally, it can be shown that for

j > i, where neither code word i nor j has been deleted, we

have βskij > 0 and αskij < 0. Similarly, for j < i we have

βskij < 0 and αskij > 0. We present the iterative algorithm

below, and present some numerical results of this algorithm

in Section VI.
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