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Abstract—Inspired by detection in Internet of Things appli-
cations and microbial communities, we formulate the problem
of state-dependent decentralized detection. In particular, we
consider both the case where the fusion center knows the network
state, and the case where it does not. We show that for a min-
max cost structure, monotone threshold rules are optimal for the
fusion center with state-knowledge, and for the Bayesian case,
monotone rules are optimal for both fusion centers. We also
compute the Chernoff information for both fusion centers, and
show a number of interesting asymptotic properties.

Index Terms—decentralized detection, multi-agent networks,
hypothesis testing, state-dependent networks, error exponents

I. INTRODUCTION

The problem of multi-agent detection has persistently been
studied over the years, with initial key work [1] wherein a fully
distributed system is examined. The optimal rule at each sensor
is a likelihood ratio test; however, optimal thresholds are
found via coupled non-linear equations. Modern applications
necessitating multi-agent decision making include the Internet-
of-Things [2], smart grid applications [3], cognitive radio
networks, [4], millimeter-wave communications [5], and our
motivating interest, decentralized decision making in micro-
bial communities [6]-[12]. We note that multi-agent decision
making includes scenarios where each agent determines their
own local decision; however, we shall focus on the case where
statistics are transmitted from each agent to a centralized
decision-maker or fusion center as depicted in Figure 1.

The fusion center framework has been well studied for both
a finite number of agents as well as asymptotically large net-
works [13]-[19]. For key families of cost functions, threshold-
base rules, specifically likelihood ratio (LR) quantizers, are
optimal [13], [14], [20], [21] and the quantization of such rules
has further been examined [22], [23]. Properties of likelihood
ratio functions have also been studied [24]-[26].

A classical assumption is that the agents’ observations are
conditionally independent. If this condition is removed, as
we will do herein, the problem of multi-agent detection is,
in general, NP-hard [13], [27]. Furthermore, in this case,
likelihood ratio based quantizers are no longer optimal [14],
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Fig. 1: Problem setup under the state-information structure

[28], challenging analysis. The case of dependent observations
has received recent attention [18], [29]-[32]. In particular,
a hierarchical conditional independence (HCI) model was
introduced in [18] for which analysis of the optimal decision
making was enabled. The structure introduced in this paper
allows one to solve a class of problems with correlated
observations via likelihood ratio based quantizers.

As seen in Figure 1, there is a communication link between
each agent and the fusion center. Herein, we adopt the general
framework of communication over channels with state [33]—
[37] which enables the consideration of distorted links in
wireless communications as well as directly handling gene
expression (and thus different behavioral states) of bacteria
[71, [9], [10]. In particular, we will examine two scenarios:
one wherein the fusion center knows the network state (the
state-information structure) and when it does not (the the no-
information structure). As previously noted, we do not assume
conditional independence amongst the observations of each
agent.

Our results herein generalize over our first presentation
of this work [38]. In particular, only the state-information
structure was previously considered, whereas herein we also
consider the no-information structure. Herein a min-max cost
is considered versus the purely Bayesian approach in [38].
Furthermore, full proofs are provided.

The main contributions of this paper are as follows:

« We formulate the problem of detection over sensor net-
works with state. In particular, the observations seen by
the agents (the signal and state of each sensor) are not
conditionally independent.

« For binary hypotheses, we derive the optimal rule for both



information structures, which correspond to monotone
rules.

e For a min-max cost, we derive the optimal rule for the
state-information case.

« Even though our observations are not conditionally in-
dependent, the ability to restrict ourselves to monotone
rules without loss of optimality allows one to use old
algorithms such as [22] with only minor adjustments.

o We derive the Chernoff information for both information
structures, and show that for both information structures,
one can use identical rules without loss of optimality.

e We study the effect of the hypothesis model on the
asymptotics. Specifically, we show that if the hypothesis
model has not adequately decayed (which corresponds to
a set of bounds not being sufficiently tight) one can incur
a performance loss by ignoring the hypothesis model,
even for relatively large networks.

Notation: Random variables are denoted by capital let-
ters X and realizations by lower case x. Boldfaced capital
letters indicate random vectors, V', and lower case, vector
realizations, v. The vector v* denotes the vector v \ v =
[v1, V2, ..., Vk—1, V41, .., V). The function p(z) is the prob-
ability mass function or probability density function of a
discrete or continuous random variable, respectively.

II. PROBLEM FORMULATION

Consider the setup depicted in Fig. 1. a set of n nodes are
oriented in a parallel configuration. Each agent receives an
observation consisting of the random variable Y; € )/, which
we call the signal, and S, € S, which we call the the state of
agent k, k =1,2,....n. All agents observe the same underly-
ing hypothesis. We denote the state vector as S € S™, which is
a concatenation of all agent states, i.e., S = [S1, 52, ..., Sy]-
Moreover, the hypothesis H € {0, 1,...,m} has conditional
distribution p(h|s), which we call the hypothesis model.
While we do not assume conditional independence among the
observations, i.e., p(y, s|h) # [1r—, P(yk, sk|h), we do make
the following assumption:

Assumption 1. The signal Y}, is independent of Y* and S*
conditioned on Sy, and H, for k =1,2,...,n. That is,

pr(yls) = th(yk|5k) (1
k=1

where pp(x) denotes the pmf (pdf) of the random variable X
conditioned on H = h.

We call the conditional distribution pp,(yx|sx) the signal
model for agent k. Upon receiving the pair (Yj, Sy), agent k
makes a local decision Uy, = v, (Y%, Sx) € U = {0,1,...,b —
1}. These local decisions are then sent to the fusion center,
whose goal is to determine which of the possible hypotheses
is true. The fusion center may take one of two information
structures:

o state-information structure: The state network vector S is
known by the fusion center, and the fusion center output

is given by Uy = (U, S) € {0,1,...,m — 1}. Hence,
we have the Markov chain structure S — (S, H) —
(Y,S)— (U,S) — Up.

o no-information structure: The fusion center only receives
U, and Uy = v(U) € {0,1,...,m — 1}. Hence, S —
(S,H)— (Y,S) = U — Up,.

Let the set I' be the set of all decision rules and ¥ be the
set of all fusion rules. Let v denote the collection of agent
rules {vi}7_ 1. v € T, k= 1,2,...,n. We call a collection
of agent rules v € I'” together with a fusion rule ¢ € ¥ a
strategy denoted by 1 € I'" x U. We also make the following
assumption on the relationship between H, S, Y, U, and Uj.

e« U is a function only of Y and S, with Uy being a
function only of Y} and Sk, i.e., the joint conditional
pmf is given as

n
pluly, s) = [ p(urlye, si) 2
k=1

For the rest of the paper, we restrict ourselves to binary

hypothesis, H € {hg, h1}.

It is worth comparing our problem formulation and those
previously considered in the literature. The formulation where
the fusion center does not have access to the state is in part a
decentralized detection problem with correlated observations,
and so, could be solved under the assumption that the Hi-
erarchical Conditional Independence model (HCI) introduced
in [18] holds. However, as we will see in the sequel, the
state structure we have introduced into the problem is more
amenable to the development of iterative algorithms for finding
optimal strategies. Specifically, the state structure allows one
to use previous algorithms such as that developed in [22] with
minor adjustments. Moreover, our alternative representation
of the Chernoff information yields desirable properties that
facilitate design in the presence of large networks. As such, the
systems introduced in [18], [19] do not lend themselves to this
large scale analysis. The formulation where the fusion center
does know the network state is a solved, and well-understood
problem for a fixed network state s. It may be tempting to
fix the network state and solve the problem using previously
established methods for each state. However, we will see in
Section V, that this approach is, in general, sub-optimal. We
provide a discussion on this approach.

III. OPTIMUM SENSOR DESIGN

In this section, we show that under a min-max cost criteria
and linear combination criteria, there is no loss of optimality if
we restrict ourselves to state-dependent monotone likelihood
ratio (LR) partition rules. Moreover, we derive the optimal rule
for agent £ when the other agents rules and the fusion rule are
fixed under a Bayesian cost criteria. The later result facilitates
the use of iterative algorithms such as [22] with only minor
adjustments to the algorithm. We first give the definition of a
state-dependent monotone LR partition.

Definition 1. A state-dependent monotone LR partition is a
set of partitions on () indexed by s, where each member of the



partition is denoted as Ry, ..., RS, such that | J;,_, R; = §Q for
any s € S. Moreover, forany s € S, x € R, 2’ € R}, y € Rz,

7

and y' € RS, if Lg(x) < Ls(y), then Ls(x') < Ls(y'), where

_ pa(als)
Ls(@) = Lotals) @

is the state-dependent likelihood ratio .

Thus, a state-dependent monotone LR partition is simply
a set of monotone LR partitions on 2 where the partition
currently in use depends on s. If an agent is using a state-
dependent monotone LR rule, it’s code book for any state s
has the following property.

Lemma 1. Given a state-dependent monotone LR partition,

for any s € S, assume R} and R; are two sets with Lg(z) <

Ls(y) for x € R} and y € R, then Ls(Uy =1i) < Ls(Uy =

j) where

_ p1(Ux =i|s)
po(Uk = ils)

is the LR of the quantizer output Uy.

Ls(Ux =1) “4)

Proof. For a fixed s € S, the proof is the same as that of
Lemma 2 in [22]. O]

For brevity, from this point on we will simply call state-
dependent monotone LR partitions monotone LR partitions.

A. No Prior Formulation

In this section, we assume no prior knowledge of the state.
Typically, when one does not have prior information in stan-
dard decentralized detection, the hypothesis H is determined a
priori by nature and knowledge of the prior distribution p(h)
is unknown. In our problem, we assume that the hypothesis
model p(h|s) is known, and that instead nature has determined
the state of the system S a priori with the prior distribution
p(s) unknown. We can write the expected state cost under
state s as

1 1
J(@ls) = > > cupnp(uo, hls) )

up=0 h=0

where ¢, 5, be the cost of deciding Uy = ugp when H = h is
true. We focus on the probability of error cost (co,0 = ¢1,1 =0,
and co;1 = c1,0 = 1), so the expected state cost becomes

The worst case cost under strategy 1) is
max J(3]s). @)

Hence, we would like to find the strategy 1) that minimizes
the worst expected state cost, i.e, we wish to find the v that
solves the optimization problem

inf {max J(¢|s)}. (8)

Pelm XV seSn

"More generally, Ls(z) = Zi ég:li; is the Radon-Nikodym derivative

between the two conditional measures p1(e|s) and po(e|s)

We first wish to find the optimal fusion rule given any
collection of agent rules ~y.

Lemma 2. Given any collection of agent rules -y, define
pi(uls) p(ho|8)}
A7 = { u,8) : > .
S otuls) = pliuls)

Then, the optimal rule for the fusion center ¥* for fixed -y is
given as

€))

1, (u,s)e AY

. 1
0, (u,s)e A7 . (19)

w*<u7 5) = {
Proof. Note that for the state-information structure, upon
observing s, the fusion center is tasked with a simple binary
hypothesis testing problem, of which the optimal rule is the
Maximum a Posteriori (MAP) rule, which is given by (10). [

There are a few important notes regarding the optimal fusion

rule.

1) ¥* is dependent on -. In the proof above we dropped
this dependence from the notation for brevity. Note that
different v will change the statistics of w. That is, the
set \AY may change under different rules employed by
the agents, in turn changing the rule *. This latter
dependence is indeed captured by our notation.

2) Since the optimal rule is simply the MAP rule, it is
well known that randomization at the fusion center does
not improve performance. So we restrict ourselves to
deterministic fusion rules.

3) Given a specific set of rules v € I'", the optimal fusion
rule can be completely characterized by (9) and (10). That
is, we treat ¢b* as a deterministic function of ~.

Further examining the fusion rule, we see that

P (u,8) =1 (11)
p(hols)

= Lo(w) = TS (12)

(a) p(hols)
<% L, (u1)Ls, (u2)...Ls, (un) > o ls) (13)
Lp (uy) > T(uk, s) (14)

where (a) is due to (1), and (b) is due to the assignment

7(u®,s) = p(hols) ! (15)

~ p(hy]s) [T=1 Ls, (ug)”
() T2 Lo )

Moreover, assume that for any 7, € I, the codewords for
agent k are labelled such that for any s € S

L;(Up=3)>Ls(Up=1) for j>i. (16)
Since the labels of the codewords are irrelevant, if the rule
does not obey (16), we can simply relabel the codewords so
that (16) is satisfied without changing the performance. Hence,
assumption (16) can be made without loss of generality or

optimality. Then, if a rule satisfies (16), (14) implies
Uv*(u,s) =1

(17
S up =1



where 1 € {0,1,...,d — 1}, and is dependent on u* and s.
Then, we denote by f, the function that maps u* and s to
n, i.e., f(u”, s) = n. Before we continue, we note that given
agent k’s state s, rule v is a function only of the random
variable Y} (since the state Sj is fixed). We introduce, for
notational simplicity, the definition of a prescription.

Definition 2. A prescription ¢ € ® is a function from the
signal space Y to the message space U. That is,

oY —-U.

Notice that any rule v € I' can equivalently be characterized
by a collection of prescriptions indexed by state. Thus, finding
the optimal rule v for agent k is equivalent to finding the set
of prescriptions {¢ys }ses. Moreover, we can write

max J(tp|s) =

sesn (18)

J
max a1,

Thus, we can focus on finding the optimal set of prescriptions
for each agent k. In order to find the optimal strategy, we first
wish to find the optimal rule for agent k when the other agents
rules are fixed. Expanding around U* when Sy = 2,

J(]s*2)
= ZP(UO = 17uk7h0|skz) +p(UO = Oauk7h1‘skz)

= Zpo(Uo = 1|u”, 8*)po(u®|s"*)p(ho|s**) +
k
p1(Uo = 0]u®, s")py (u*[s")p(ha|s")
=Y po(Uk > f(u¥, %) [u*, 85 )po(u*|s*)p(ho|s™*)+
uk

pr(Uk < f(u®, %), s")py (u"|s*)p(hi|s™)
:Zp0(¢kz(yk) > f(u”, %) u, 8% )po(u®[s*)p(ho|s**)

+p1(¢kz(Yk)<f(u s5¥)|u”, s¥)py (u*|s%)p(h1|s")

(19)
Define

f;zfn = {ulg : f(uk,s) =n}.

That is, for a given fusion rule 1 and s, ]:;p’n is the set of u”

such that f(u*,s) = 7. Then,
J(p|s"*) =
D po(dn=(Ye) > f(uF, s5)[u”, 85 )po(u[s*)p(ho|s"*)+

uk

PPk (Vi) < f(u®, %) [u”, 85 )pi (u”|s*)p(hi|s™)
=" > poldr(Ya) = m)|ut, 7)o (u”|s*)p(hols*?)

n ukefsz_
+ p1(on=(Ya) < nlu”, s°)pi (u¥[s")p(h1|s"*)
EX X o) 2 mle)po(uts plholst)+

n uke]:wkz .

P1(91: (Y1) < nl2)pr (u?]sM)p(ia|6)
- zpowkz(m > n)|2) Gl (n)+

p1(dks(Ye) < 0l2)Q4s. ()

(20)
with
Go(m = po(uf|shp(H =0s*) D)
uke]'—:)kzm
Ql.(m) = > pFshpEH =1]s*), (22
ukE}_d}cz .

where (a) follows from (1), Y} is independent of Y” and S*
when conditioned on Sy, and H. Thus, ¢ (Y}) is independent
of U* and S* when conditioned on S; and H. We now
turn our attention the quantities po(dr.(Yx) > 7)|z) and
P (4-(Yi) < 7]2). Suppose we fix po(@n-(Vk) > 1)]2) =
for € € [0,1]. Then we seek the (not necessarily unique)
prescription ¢ that solves

gleig p1(o(Yr) < nl2)

(23)
s.t. po(d(Yy) > n)z) =k,
provided such a prescription exists.
Lemma 3. For any s € S, let
Ul = {y: Luy) > 7,) (24)

where 7], is chosen so that po(U_,|s) = €. Then, in order

for a prescription ¢ to be a solution to (23), it is sufficient for

¢ to satisfy the following:

1) ¢ly) =nifyeu!,
2) o(y) <nifyeUy)"

Proof. For a given s € S, let

Vie=Ay:mW,s) = ors(y) =i}, (25)

i.e., V', is the set of all y such that agent k sends message
¢ when in state s. Therefore, the event ¢xs(Yy) > 71 (given s)
can be written as

d—1

Dz,k = U y;k

i>n

(26)



Hence, we can rewrite (23) as

min  p; (D] ,,)°]s)
D7, ’ 27
s.t. po(Dn |s) = €.

Notice that we can think of D77  as the acceptance region, and
thus p1 ((D!,.)¢|s) and pO(D” '|s) are the missed detection and
false alarm ’probabilities, respectlvely. Then, by the Neyman-
Pearson lemma, a solution to (27) is

Uf,k ={y:Ls(y) = TZI{;}

where 7, is chosen so that po(U],|s) = e. O

We observe that for fixed 1, Lemma 3 makes no assumption
on how ¢y, assigns the codewords aside from conditions 1
and 2. This result is helpful, as for a fixed fusion rule, the
lemma provides a methodical approach by which to construct
a monotone rule for agent k£ without degrading performance.
Notice that in general, much like Neyman-Pearson detection,
in order to satisfy po(U',|s) = € one may need to design a
randomized rule, our results still hold for this case.

Lemma 4. For s € Sand k=0,1,...,n, let U, and Z/l:,k be
defined as in (24) with thresholds 1., and Tsn’k respectively.
Moreo/ven let 7)) and 7 be such {hat poU,ls) = € and
po(U,|s) = € with ¢ > e Then, 7}, <1/,

Proof. Assume T”

.- Then L{:/k C U!,, and thus
po(u” |s) < po(Z/l77 |s), which is a contradiction. Thus, we

rnusthaveT k<7 & O

n
kZTs,

Let I';,- be the set of all monotone rules. Then v € I'y,. if it
uses a monotone rule for every state. Let I';). be the set of all
monotone strategies, i.e., strategies that have every agent use
a monotone rule.

Theorem 1.
Jélrfn{?é%’i J(pls)} = ,ylenrfﬁ{grelg% J(pls)}.  (28)

That is, it is sufficient to search only over strategies where
each agent uses a monotone LR rule.

Notice that both infimums are taken over only the agents
decision rules . This is because for a fixed v we can find the
optimal fusion rule ¢ thanks to Lemma 2.

Proof. For k=0,1, ...,

J(3p|s™)} =
Zpo (V) = )|2)GYe. () + pr(¢¥ (Vi) < nl2)Q%. ().

Observe that 7 can take on at most d distinct values. Hence,
po(#%(Yx) > n)|z) can take on at most d values across
all s** € 8" ! Let d € {1,2,..,d} be the number
of distinct values of po(¢*(Yz) > n)|z), and arranged in
descending order. That is, po(¢%(Ya) > i)|z) = €, >

e = po(¢F(Ye) > j)lz) for ij € {0,1,...d — 1},

n and any z € S, we start with (20),

i < j. Moreover, note that po(qbk(Yk) > 0)]z) = 1, and
is trivially satlsﬁed by defining ° , as in (24) with the
assignment 7° » = 0. Thus, we concern ourselves only with
those distinct p0(¢5k(Yk) > i|z) for i € {1,2,...,d" — 1}.
For each po(gbk(Yk) > i)|z), construct U, according  to
(24) with 7/, such that po(¢t(Y) > i)|z) = €l for
ie{l1,2,. d’ —1}. Then, by Lemma 3, any rule that satisfies
conditions 1 and 2 in Lemma 3 minimizes p; (¢% (V%) < i|2).
Let the minimum value of p; (¢*(Y}) < i|2) attained by Uy
be denoted as o ;. Let Vi, = {y: ¢ (y) = i} where ¢/ is
the prescription we will construct. Given the set of U; i that
solve (27) for i € {0,1,...,d" — 1}, we give the assignment

;,k = Ui,m m(ug,k)c ={y:

G>i

e < La(y) <74} (29)

with the understanding that Tj;k = 00. Moreover, since the
Po(@%(Ye) > i)|z) are such that po(@h (Vi) > i + 1)|2) <
po(Ux > i)|2), then by Lemma 4 we have 7.7 > 7i .
With the decision region for codeword 7 given in (29) for
1 € {0,1,...,d — 1}, we have completely characterized the
prescription ¢,. Note that with the definition of Y’  given in
(29) it is clear that ¢, € ®;,., and thus by Lemma 1 satisfies
(16). Since z is any state in S, we can construct ¢, for all
z € S. Hence, we let 4/ be the rule uses rule ¢/, when in state
z. Since ¢, € ¥y, for all z € S, we get 7' € T';,.. We have
for any s € §™,

T(ls) = po(Uk = n)|sk)GY(n) + p1(Us < nlse)QY (n)
! (30)

= Z €1,.G2 (1) + pr(Ux < nlsk)QY () 31)

> ZGZkG"” )+ al Q¥ (n) (32)

2 J(']s), (33)

where ¥ = [, V1, ., Yo—1,Y s Vi1, ---» Tn). TO see (a), note

that ~ satisfies conditions 1 and 2 in Lemma 3, and thus
solves (23). Moreover, note that )’ uses the fusion rule
of strategy . That is, the quantities G¥(n) and QY¥(n)
are unchanged under strategy )’. Hence, if we let ¢* =

[ A1y vees Yoe1,7Ys V415 -s Yn)» Where 9* is the optimal
fusion rule for [y1, ..., Yk—1,7s Yk+1, ---, Yn), We have

J(ls) = J(§'|s) = J(¥*s)

for any s € S. Therefore, for any v € '™, we can either
improve or keep the same performance by changing agent k’s
rule to a monotone LR partition. Thus,

(34)

f J > inf J .35

Jinf {max J(yls)} > 71€nm{£r€1%>§ (¥]s)}.  (35)
Combining the above with the obvious inequality

f J < inf J . (36

Jnf {max J(yls)} < _inf {maxJ($ls)}. (36

completes the proof. O



We direct the reader to focus on the construction of the
rule 4'. Notice that the prescription ¢/, is constructed to
minimize p;(U; < i|z) for all ¢ € {0,1,...,d — 1} for a
fixed po(Uy > i|z). For a fixed fusion rule ¢ and agent rules
{~;}"_, . the expected cost for any state s"* € S"~! depends

on tﬁg krule for agent k only through the prescription ¢,.
Moreover, the expected state cost only depends on ¢, through
the probabilities py (U, < i|z) and po(Uy, > i|z), provided the
fusion center’s rule is fixed and the codebook for agent k£ while
in state z satisfies (16). Hence, the prescription ¢/, improves
the expected state cost across all states with agent k taking
state z, i.e., s** € S"71. Since we construct a prescription
for every state z € S for agent k, and define the rule v’ to be
the collection of these prescriptions indexed by the state, i.e.,
~' uses prescription ¢/ when in state z, we can see that the
rule 7/ improves the expected cost across all states s € S™.
This observation yields the following corollary,

Corollary 1.1. Define the optimization problem

inf J(p)=_inf > cad(ys)

(37
Ppew xI'm Ppe Sn

where cg > 0 for all s € 8™ are given constants. Then, we
have the following:

a) The optimal fusion rule for a given collection of agent
rules ~y is given by (10). Hence, we only need to concern
ourselves with the optimization over agent rules.

b) infyern J(p) = infyern J(1p). That is, it is sufficient to
search only over the set of monotone LR partition rules.

Proof. a) is a consequence of Lemma 2 and the fact that
cs > 0 for all s € 8", since the rule given by (10)
minimizes J(t|s) for any s € S. Therefore, we can drop
the optimization over the fusion rule as we did before. To
prove b), note that

J@p) = cad(ls) =D > cad(pls™) (38)
sesSn z€S gkzgSn—1

and that for each z € S, we can construct a prescription ¢/,
for agent k in the same way as in Theorem 1. Hence, the
prescription ¢/, improves the expected state cost for all s** €
S"~L. Letting +' be the rule that uses prescription ¢/, when
in state z for agent k, the rest of the proof is similiar to that
of Theorem 1. O

An obvious consequence of Corollary 1.1 is that for the
Bayesian case no loss of optimality occurs from restricting
ourselves to monotone strategies. One must also take great care
in interpreting the proof of Theorem 1. We previously stated
that the rule constructed for agent k£ improves the performance
across all network states. However, this does not imply that
said rule is optimal for all network states. The performance
improvement may only be marginal in some network states,
and the overall cost may still be high given those states,
resulting in sub-optimal performance for the whole system.
Hence, one cannot simply “fix” the network state and design
a strategy only for that state. An explicit example to show this
feature is constructed in Section V.

B. Bayesian Formulation

In this section, we now consider the no-information case,
and derive the optimal sensor rule under the Bayesian setting.
That is, the fusion center only receives U. We begin by writing
the cost as

J(P) = E[J(¢]5)]

where the expectation is taken over S. We can write J (1)) as

(39)

d—1 1 1
1) =3 [ X3y
sk Yk i=0 h=0 j=0 o~ sk (40)
¢inp(Sk, Y, Un = 4, H = b, Uy = j,u", s")dyy.
We turn our attention to
sk yp, Uy = i, H = b, Up = j,ub, s%)  (41)

and rewrite it as
pr(Uo = j|uf, Uy = i, 8", sk, y)pn(Us, = i, u", yi sy, s%)
p(H = h\sk,sk)P(Sk\Sk)P(Sk)-
(42)
From S — (S,H) — (Y,S) - U — Uy we get

ph(UO = j|uk7 Uk: = i73k75kayk) —

43
Uy jlik U — ).

Moreover,

pr(u®, ug, yils®, i) = th(ukaukvykayk‘skask)
yk
= th(uk|yk7ykauk'7SkvSk)ph(ukkgkaykaskvska)
yk

Pr(yr|s”s sk, 4" )on(y"[sk, 87)
(@)
= th(uk|yk7Sk)ph(uk|yk73k)
yk

(44)
P (Yk |Sk7 Sk, yk)ph(yk ‘Sk» Sk)

®)
= pun(uFly”, " )p(urlye, sk)pn(yrlse)pn(y*]s%)
yk‘

= p(urlyr, sk)pn(Wrlse) Y pu(uFly*, s%)pn(y"|s*)
yk
= p(ur|Yi, $1)Pn (Yr|sk)pn (w"]s)
where (a) comes from (2) and S — (S, H) — (Y,S) —
U — Uy and (2), and (b) comes from (1). Therefore, (41) can
be written as

p(Uo = jlu®, Uy = i)p(ur|y, sk)pn (k| sk)

(45)
pu(u®|s")p(H = hlsk, s*)p(s*|si)p(sk)-
Substituting this into (40) and rearranging terms gives us
J(Y) =
d—1
. (46)
ZP(Sk)/ l P(Uk = ilyk, k) Dri(Yk, sk) | Ay
Sk Yk 1=0



where

Dki(ykysk) =
th (Ursk) chh ;k{ (Uo = jlu®, Uy = i) @7)
(15T = s st .
Thus, we see that the optimal rule is
" = Yk(Yk, sk) —arg min o Driyese) - (48)
Let
e =2 esn 3 (o= i i
uk s (49)
(15T = s s |
and so
Dri(yr, s.) = po(yr|sk)gr(is sk, 0) + p1(yk|sk)gr (4, sk, 1)

(50)
Note that this rule is for any arbitrary cost. Then, we have the
following,

Lemma 5. The optimal rule in (48) for the kth sensor amounts
is a monotone rule, provided i* in (48) is unique.

Proof. For a fixed s, the proof is the same as Lemma 1 in
[22]. O

Hence, the rule given by (48) corresponds to partitioning the
likelihood space into b (the cardinality of the message space
U) of intervals. The sent message u;, then corresponds to the
interval containing the observed likelihood ratio. We note that
even in the event where the minimizing index ¢ is not unique,
we can still restrict ourselves to monotone rules by assigning
the decision regions for the codewords in such a way as to
satisfy Definition 1. If we restrict ourselves to the probability
of error, (50) becomes

Dii(yr, sx) = po(yrlsk)Aps +p1(yelse) By (51
with
A% =3 p(U = 1jub, 85, Uy = i, 51.)
uk,s" (52)
po(u®|s*)p(H = 0[s*, s)p(s¥|sk),
and
By = Z p(Uy = 0fu®, s, Uy =i, s,
uk sk (53)

P1(uk|3k)P(H = 1|Sk»8k)P(3k|Sk)'

These expressions are more amenable to the devolpment of
iterative algorithms, such as the algorithm given in Appendix
L

IV. ASYMPTOTIC RESULTS

The iterative algorithm developed in Appendix I is useful
for finding the optimal rules for a finite number of agents.
However, as the number of agents grows, so too does the
complexity of the algorithm. Moreover, since we are primarily
inspired by microbial applications, it is not uncommon for us
to encounter systems with millions or even tens of millions
of agents. While it may be tempting to reduce complexity
by restricting oneself to search only over strategies where
identical agents use the same rules, we provide an example to
show that, in general, this approach is sub-optimal for finite
n. First, we give our definition of weakly identical agents.

Definition 3. Given a collection of n agents, these agents are
weakly identical if pp(Yi = y|Sk = s) = pr(Y; = y|S; = s)
forall k,j€{1,2,...,n}, h € {ho,h1}, yey seS.

Now, consider the following example with binary messages
(b = 2), two agents (n = 2), two states (0, 1), and state-
information. We assume that the agent states are i.i.d with
p(S = 1) = .25. The hypothesis model is given as

.52 S1 = 0
A48 s =1.

The observations y; and y, are independent, conditioned on

the hypothesis and state, take values in {0, 1, 2}, and have the

following common distribution: (po(y = 0|s = 0),po(y =

Ls = 0),po(y = 2|s = 0)) = (8,.2,0), pa(y =1ls = 0) =
i=h

and
1
pu(y =ils ) {O i4h

for ¢+ = 0,1,2 and h = 0,1. Notice that even though
the hypothesis model does not depend on agent 2 when
conditioned on agent 1, the two agents are still identical by our
definition. In a given state, each agent computes a likelihood
ratio test. If we enumerate through all of the cases for this
discrete observations example, we see that, in a given state
each agent can choose from one of two following rules:

A) u; =1 if and only if y; = 0.

B) u; =1 if and only if y; € {0,1}.

Hence, there are four candidate rules for each agent. Recall
that the fusion center always employs the MAP rule condi-
tioned on the strategies used by the agents. An optimal strategy
is found by exhaustive enumeration. Computing the probability
of error for every strategy, we find that the optimal strategy
is for agent one to use rule B when in state 0 and rule A
when in state 1, and for agent two to use rule A regardless
of its state. This strategy results in a probability of error of
.1185. Clearly, the optimal rule is not the same for each agent.
Moreover, in this example, the agents’ states are i.i.d. Indeed,
this case is of importance, and so we give the definition of
strongly identical agents.

p(hols1, s2) = p(hols1) {

3

Definition 4. A collection of n weakly identical agents are
further strongly identical if the agents’ states are mutually
independent and identically distributed a priori.



A. State-Information Error Exponent

We first devote our attention to the state-information case,
since this case is not handled by any prior results in the
literature. Let Ay and A; be the sets where the fusion center
decides 0 and 1, respectively. Recall that these sets are defined
by (9), and thus depend on ~. We drop the dependence on «
from the notation for simplicity. The probability of error can
then be written as

Ta($) = Y poluls)p(ho|s)p(s)+

s, ucA;

(54)
Z p1(uls)p(h|s)p(s).
s, uc€Ag
We define the following key sequence:
Qp = mins,he{hmhl}p(ms)v (55)

that is, «,, is the smallest p(h|s) appearing in either sum-
mation. Moreover, for the rest of the section, we make the
following assumption:

Assumption 2. for all n,
a) Both hypotheses are possible under all network states,
i.e., we do not condition on events with measure zero.
b) pg (on Y™ x S8™) is absolutely continuous, with respect
10 py, i.e., po < p1.2 and By [log® Ly(Y)] < oo for all s,
where the expectation is taken with respect to py(e|s).
¢) lim, o (logay,)/n = 0.

Notice that since the fusion center is implementing the MAP
rule, we can rewrite (54) as

In(9h) =
min{po(u|s)p(hols), p(u|s)p(h1|s)}p(s)

s,u

(56)
Since we are concerned with large n, we focus on the error
exponent defined as

lim 1 log Jp, ().

n—o00 N

(57)

Then, if we let r,(y) = 2ZlogJ,(¢) and R, =
infyepn rp(y) for all n, we analyze the limiting behavior of
R,,. Notice that we define r, as a function of ~. This is
because given <, the optimal fusion rule is known. Similar
to [39], we would like to derive upper and lower bounds
on 7, (7). Unfortunately, we cannot use the bounds derived
in [39] and [16] since our observations are not conditionally
independent. Thus, we need the following.

Lemma 6. For any n and v € '™, we have

logay, log2 1 " 20" (7y, €*
—— = ——+ —ply.e )_#
n n n n (58)
1 *
<ra(y) < ﬁﬂ(')’ve )s

2Let p and v be two measures on (X, M). Then we say v is absolutely
continuous with respect to u, written as v < p if v(€) = 0 for every
&£ € M, for which u(€) =0

where for € € (0,1) we define *

(v, ) = log | 32 S (o(uls)) ~(p1 (uls))p(s) |, (59)

oy, is defined in (55), (' (v,¢€) is the second derivative of
p(7y, €) with respect to €, and € = arg mingco 1] (7, €).

Proof. Assuming the fusion center is implementing the MAP
rule, we have

Jn(v) =
> " min{po(uls)p(h = 0|s), pi (uls)p(h = 1|s)}p(s)

< > _(po(uls)p(h = 0]8)' = (pr(uls)p(h = 1]5))p(s)

< 3" poluls)~pi (uls)p(s)

(60)
where (a) is due to the fact that for any two positive numbers
a and b,

min{a,b} < a‘b'~¢ for all € € [0,1]. (61)
Hence,
1 1
S log Ju(v) < —log [Z(po(uw))lE(pl(UIS))ep(S) .
s,u (62)

Since this is true for all €, simply take the minimum over
0 < e < 1. To prove the lower bound, notice that

W (v,€) = Qclu,s)log La(u) (63)

Wi, e) = {ZQE(% 5) log? Ls(u)} — (W) (©4

u,s

where all derivatives are with respect to €. For € € (0,1),
define

O, 5) = — Po(l8)”p1(uls)p(s)

Y o (Po(W]8") ' p (w']8) p(s")

Observe that we can think of Q.(u,s) as a probability
distribution on Ls(u). Hence, p'(y,€) and u”(~,€) are the
mean and variance of log Ls(u), respectively, according to
Qc(u, s). Since u” (7, €) is a variance, it is non-negative, so
for a fixed v p(7y, €) is convex in epsilon. Furthermore, from
the definition of p(+y, €) we see that it is non-positive, and with
convexity is zero for all € € [0, 1] only in the uninteresting case
where the fusion center is unable to distinguish between the
two hypotheses, i.e., under all states, po(w|s) = p1(uls) for
all w. While these facts are not explicitly used in any of our
proofs, they are important for two reasons. First, they show
that the bounds we derive are both non-trivial and meaningful.
Second, we will show that the optimal asymptotic rule can

(65)

3We also extend the definition to include the cases ¢ = 0 and € = 1, with
p(y,0) = lim__ o+ p(y,€); p(y,1) =lim ;- p(vy,e).



be found by optimizing u(+,€). Hence, convexity in € is a
desirable property. Moreover, it is not difficult to show

{explu(y,€) — €log Ls(u)]}Qc(u, s) (66a)

+ (1 —¢)log Ls(u)|} Qe (u, 5).
(66b)

po(uls)p(s) =
p1(uls)p(s) = {exp[u(y,¢)

Define A, to be the set of pairs (u, s) for which log Ls(u)
is within /2 standard deviations of its mean according to

Qe(u, s),

Ac = {(u,s) : [log Ls(u) — p' (v, €)| < /21" (v,€). (67)
For any (u, s) € A, we have
w (s €) = 21" (7, €) <log Ls(u) < i/ (7, €) + /21" (7, €)

(68)

Then,

Jn(v) =

> " min{po(uls)p(h = 0]s), p1 (u|s)p(h = 1|5)}p(s)

>, Y min{po(uls)p(s), pi(uls)}p(s)

S, uEA,
= anexplu(y,€)] Y min {

s, ucA,

exp|—elog Ls(u)], exp[(1 — €) log Ls(u)] }Qe(u7 s)

> aveplu(r.] Y win

s, ucA.

e (7,€) — e/ 21" (7, €)], expl(1 — €)' (v, €)—
(1 V2, e>1}@e<u, )

Y 2] 3 min{

> apexplu(y,€) —
s, ucA.

exp[—

explei (. expl(1 = ' (7.0)] }Qu(u
= a,, explu(y, €) — /2u' (v, €)] min { exp[—ep (v, €)],

exp[(1 — e)u } D> Qc(u,s)

s, ucA.
(d)
> ay, explu(y, €) — /21" (7, €)]
win { explan (7, expl(l - ' (0l 5.

Where (a) comes from the fact that 0 < ¢ < 1, and (b) is due
to the Chebyshev bound. The above is true for all € € [0, 1],
thus, we can take the €* that minimizes u(v, €). If €* € (0, 1),
€*) = 0. Otherwise, if ¢* = 0, then p/(v,07) >0,

then 4/ (+,
sO
lim —e'(y,€) =0
€E—> 69
hm (176) '(,€) > 0. 69

Likewise, if € = 1, then u/(,17) < 0, and

lim —ep'(7,€) >0

hm(lfe)p( €) =0.

e—1

(70)

Thus, min { expl—€* 1/ (v, )], expl(1 — ) (7, e*n} -1,
SO

20" (v, €*)].

Taking the log and dividing by n on both sides completes the
proof. O

Tay) = 5 expl(y. ) - 7

Note that if L loga, and p”(7,€) are not properly con-
trolled, then the bounds given in (93) could be far apart even
for large n. Because of this, we elaborate on Assumption 2.
The next lemma controls p” (7, €).

Lemma 7. Subject to Assumption 2, for alln, v € I'", and € €

[0,1], There exists a finite constant 0 such that | (v, €)| <
no.
Proof. See Appendix. O

Notice that Assumption 2(a) does not imply Assumption
2(b). Since, for a given s, only one set of signals y may be
possible under each hypothesis #. Then, for fixed n, suppose
there exists some + and € € [0,1] such that |u(v,€)| is not
finite. Then, we must have that

ZZPO uls)'”

Since each term in the summation is non-negative, this im-
plies po(u|s) = 0 whenever p;(u|s) > 0, and vice-versa.
Then, let Q2 be the set of (y,s) such that the strategy -~y
maps (y,8) to (u,s) such that p;(uls) > 0. Then we
have po(u|s)po(s) = po(u,s) = po(v(y,s) = (u,s)) =
po((y,8) = v 1(u,s)) = 0 on Q. Similarly, p(y,s) = 0
and po(y, s) > 0 on Q°. Thus, the two measures are mutually
singular’, violating Assumption 2(b). Hence, if Assumption
2(b) is satisfied, then |u(7y,€)| must be finite for all v € I'”,
€ [0,1]. Then, we have

ZPO uls) (us)*>0

For at least one s € 8™ with p(s) > 0. Using (1),

> poluls)!
> T polulse)' = p1

p1(uls)p(s) =0

p1(uls) >0 —

(ug|sg) >0 <—

u k=1
n
1—
11D polulse)' = pi(urlsi)® >0
k=1 ug
4Take ) = [0, 1] with the Borel o-algebra. Let po(y|s) = 6s(y), s €

{0, 1}, i.e., a point measure at s, and let p1(e|s) be Lebesgue measure.
Stwo measures  and v on (X, M) are mutually singular if there exists
&€ € M such that v(£) =0 and pu(€€) =0



ZPO uk|sk)

Therefore, if Assumption 2(a) holds, for every v € I'” and

€ [0,1], each agent must posses at least one state s € S
with p(s) > 0 such that Y7 po(ux|si)'~pr(uklsi)® > 0.
This property will prove useful in the proof of Theorem 3.

Observe that (-, €) does not depend on the hypothesis
model. Thus, the term % log v, can be thought of as the “loss”
accrued due to removing the information the network state
provides about the true hypothesis. We offer a few comments
on this assumption. Recall that in the state-information struc-
ture, the fusion center has perfect knowledge of the network
state. If the desired condition does not hold, the informed
fusion center could could drive the probability of error to
zero exponentially fast regardless of the rules used by the
agents, thereby creating a pathological case that is not of
interest here. Our focus herein is the design of the agents
and their rules. Second, in the no-information structure, the
uninformed fusion center requires messages from the agents
as it does not have access to the state. In this scenario, the
hypothesis model must be incorporated into the design of
the strategy. However, the uninformed fusion center is still
at a disadvantage relative to the informed fusion center. Thus,
this assumption provides for a more fair comparison between
the two information structures. The sequence «,, will play
an important role later when studying the asymptotic relation
between the two information structures, as well as asymptotic
properties of the no-information structure.

Under Assumption 2, the bounds given in (93) will be tight
for sufficiently large n, and so we define °

p1(uk|sK)® >0 forall ke {1,2,...,n}.

1
AM™ = inf min —p(y,e€). (72)

yET™ e€[0,1] 1
Then, under Assumption 2, we have the following.
Theorem 2. For the state-information structure, the optimal
error exponent defined in Equation (57) is given by

1
A= lim inf min —u(y,e€)

73
n—ooy€l'™ e€[0,1] N 73

if the limit exists.
Proof. Assume lim,,_, o A exists and is equal to p*. Then,

for all v € I'", the upper bound in (93) gives us

R, <ra(y) < min Su(v,e) (74)

e€l0,1]

for all n. Then, R, < A The lower bound in (93), together
with assumption (b) gives us

1 n log?2 V2n0
ogan 1082 +AM n < rn(y) (75)
n n n
for all v € I'". Therefore,
loga, log2 A V2n6 <R.. (76)
n n n
SWe take the minimum over all € since for any v € T, u(v,e€) is

continuous in € and defined over a compact set.

Under assumption (c) and the assumption that lim,, A =
w*, we get

1 log 2 V2
lim {og On _ 082 + A nG} = lim A™ = a8
n—o0o n n n n—o00
(77
Hence, lim, o R, = p*. O]

A few remarks are in order. First, the exponent makes no
assumption on the correlation between the states. Second, the
hypothesis model has no affect on the asymptotics (provided
assumption (c) is satisfied).

To provide a further analysis, we assume the agents’ states
are mutually independent a priori. We can then write,

= log lzz po(uls)
= log [ZZ H Po Uk|5k (Pguk|5k))ep(5k)]

mt

“(pr(uls))p(s )]

Z (po(uals1))'™

“(p1(u1ls1))p(s1)

S1,U1

(78)
{ > <po<un|sn>>1-€<p1<un|sn>>6p<sn>}]
=Y log [ > (po(uk|Sk))1_‘(p1(Uk|5k))6p(5k)]
k=1 Sk,yUk
- Zﬂk(7k7 6)'
Thus, wu(v,€) is decomposable, that is, it is the sum of the

1k (Y, €)s, where agent k is usingrule v, € T, k= 1,2, ....n
Notice that the exponent loses this property if one of the
previous assumptions is removed. It can be shown that u(~y, €)
is convex in e and non-positive, and is zero for all € only in
the uninteresting case where the fusion center is unable to
distinguish between the two hypotheses, i.e., under all states,
po(u|s) = p1(u|s) for all u. The same result can be shown
for pu(vg,€), k=1,2,..,n. Thus, u(,€) is non-increasing in
n.

B. Identical Agents

We now turn our attention the case where the agents are
identical. Define

A, = inf min — Zuk v, € (79)

vele€l0,1] N

Note that A, is defined only over those strategies that have
all agents use the same rule. The main result of this section
is that if the agents are weakly identical, then, as n — oo,
we can restrict ourselves to strategies where all agents use the
same rule without loss of asymptotic optimality.

Theorem 3. Assume the agents are weakly identical, the
agents’ states are mutually independent a priori, and Assump-
tion 2 holds. Then, A" = A, for all n € N.



Proof. Since having all agents use the same rule is a valid
strategy, we have A(™) < A,.. For any v € T'™, let ®, be the
set of prescriptions used by the agents, i.e., &g C ®. Now, for
any k=1,2,...,n,v€T, and € € [0, 1],

k(i € IOgZ po(uls)) " (p1(uls))p(Sk = s)
=10g > po(¢s(Y) = uls) " p1(ds(Y) = u|s)p(Sk = s)
o (80)
>log Y po(@%(Y) = uls)' " pr(¢L(Y) = uls)P(Sk = s)
= /ik(’y*v 6)7
(81)
where
* . 1—e¢ €
¢ = arg;gg}){;(po(UIS)) (pi(uls))}  (82)
and ~* is the rule that uses ¢ when in state s. Thanks to

Assumption 2(a) the terms inside all logarithms are strictly
greater that zero, and so all logarithms are well-defined. Notice
that since the agents are weakly identical, the rule v* can be
chosen to be the same for all agents, and thus does not depend
on k. For any v € I'" and € € [0, 1],

1 n 1 n
=~ k() = =y p(y'e) = A (83)
k=1 k=1
Hence, A" > A,.. We then conclude A(™) = A,. O

Recall that our definition of weakly identical does not make
any statement about the states of the agents. To provide more
analysis, we turn our attention to strongly identical agents.

If the agents are strongly identical, 1k (7, €) does not depend
on k. We then drop the subscript when we are discussing
strongly identical sensors. We see that for any v € I' and
e €[0,1],

1 n
o

We define

Zu% (75 €)-

(84)

Ap = inf min
v€T e€[0,1]

(v, €)- (85)
Corollary 3.1. Assume the agents are strongly identical and
that both hypotheses are possible under all states. Then, A =
Ag.

Proof. We have from Theorem 3 that A = A, for all n € N.
Moreover, (84) gives us that

= inf min u('y, €) = Ay.

A, = inf —

’YEFeE 0,1]

Hence,
Ap = lim A" = lim Ay = Ao.

n—oo n—0o0

Theorem 3 states that there is no loss of asymptotic opti-
mality if all agents use the same rule. Moreover, if the agents
are strongly identical, one only needs to solve the optimization
problem in (85).

C. No-Information Error Exponent

Following classic results in the literature, [19], [39], it
is readily shown that for the no-information case, the error
exponent Ay is given as

A7 =lim inf min —log Zpo ““p

€
p1(w)e.
n ~yel'" e€[0,1] N

(86)

There is however, an additional subtlety introduced by our
problem. Namely, in order for (86) to hold, one needs to ensure
that L logmin{mo, 71} — 0, since the priors are allowed to
vary with n. Indeed,

<~ log Y plhls)as) =

where %log o, — 0 by assumption. Let

1 1
—logay, —logm, <0,
n n

87
~YET™ ec[0,1] N ®7)

To further motivate the study of a,, consider the following.

Zpo ) pr(u)

>Zpo o)t [p1 (w)m1]©

(88)

e anzpo<u|s>1 pi(uls)°p(s).
u,s

where (a) is due to Holder’s inequality and (b) is from the
definition of ., (Equation 55). It then follows that

Al A > 2 log o (89)
Notice that 1 —log ay, is a sequence of strictly negative numbers.
Hence, the bound given above potentially allows for the possi-
bility that A(n) < A™ for a small enough n. In the numerical
results section, we explicitly construct an example such that
this property holds for relatively large networks. Assumption
2¢ characterizes the case when A; > A, and in this case,
the no-information structure cannot do better than the state-
information structure, asymptotically. Moreover, the proof of
Theorem 3 relies on the fact that u(~,¢€) is decomposable.
In contrast, 2 log", po(w)'~“pi(u)® does not possess the
same property. This follows because even if the agents’ states
are independent a priori, they are still correlated through the
hypothesis model. This motivates us to define the following
quantity, which we call the untethered exponent.

longo ) (w)° (90)

v(v,e) =



with g (u p(s), for h=0,1, (91)

th (uls)
The quantity v(+,€) shares several important and useful
properties with (7, €). First, logy", qo(u)! g1 (u) is a
continuous, convex function of ¢ and we have v(vy,¢) < 0.
From convexity, v(v) =0 Ve € [0, 1] only if go(u) = ¢1(u),
vV w. Moreover, if the agent states are independent a priori
and both hypotheses are possible under all s, then

15> [Zpoms)p(s)} [Zm(ms)p(s)}e
= Z log Z qo( Uk

The above computation clearly shows that v(+, €) is decom-
posable, a property we exploit and a property not observed in
the classical exponent representation.

(92)
q1 (ug)©

Proposition 1. Let v(vy) = min.c(o1 v(7,¢€). Then, for all
n €N,

1 ]- n
logan—i—f inf v(vy) < Ag)

n n yerr

93)

1 1
< —= logmln{woﬂrl} + — inf v(v).
n yern

For any € € [0, 1], we have

ZPO(U)I

= 77101 ‘ 1 ‘ [ZPO uls)
[gjpl(us)p(hus)p(s)y

<max(L, ;}Z [;mms)p(s)
[gpmus)p(s)y

where we use the fact that a6’ ¢ < max{a,b} Ve € [0,1].
Combining the above with

ZPO () > an Y go(u)

taking logarithms, and dividing by n gives us Proposition 1.
Notice that thanks to Proposition 1,

7€p1 (u)e

ol8)p(s >T€

-

6611(11') )

Ar =lim inf l1/(')') (94)

n ~yelm n

where equality denotes that either both limits exist, or neither
does. Hence, for sufficiently large n, one can, without loss of
optimality, restrict attention to v(-y). Given that this expression
does not depend on the hypothesis model, it is easier to
compute for large network sizes than (87). Moreover, the
untethered exponent gives us the following.

Theorem 4. Under Assumption 2, and assuming all agents
are strongly identical, we have that for all n € N,

infyern 2v(v) = infyerv(y). Hence, identical rules are
optimal.

Proof. For any fixed n, using identical rules is a valid strategy.
Therefore, the optimal strategy can do no worse than the
optimal identical strategy, and so we have infycrn Lv(y) <
inf er v(7). It then suffices to show that the reverse inequality
holds. First, we can show, similar to pu(«,¢), that under
Assumption 2 |v()] is finite. Hence, all logarithms are well-
defined. Since the agents are strongly identical, we have

= w(m)-
k

Since this sum is finite for any -y, we have that v () is also
finite for any rule v € I', K = 1,2,..,n. Notice that if the
agents are identical, v,(y) depends only on the rule being
used by agent k, and so v, will be the same for different
agents as they all employ the same rule. Then, for a given
strategy -, if we denote the set of distinct rules used by the
agents as G, and the number of agents using rule ~y as IV, we

get
=D wlw) =Y Nyw(y)
k

Y

> 3 Nywlys) = ()
veG

95)

(96)

where v+ = arg min. g v(7). This shows that for any -+, we
can improve the system’s performance by simply selecting the
best v, (), and having all agents use agent k’s rule. Taking
the infimum of both sides and dividing by n yields the desired
inequality. Invoking Proposition 1 we see that

Ay =lim inf v(v)
n

~er D

provided both limits exist. Hence, optimizing one agent is
sufficient for asymptotic network optimality. O

It is important to note some diffirences between the proofs
of Theorems 3 and 4. First, Theorem 3 holds for weakly
identical agents whereas Theorem 4 holds only for strongly
identical agents. The reason for this can be seen in the
structural differences of 1 and v. In u, the message and the
state are in some sense ~separable”. This is seen by the double
summation over u and s. Hence, when working with p, it
is possible, by interchanging sums, to fix the state s and
design the prescription that optimizes that state. This same
procedure cannot be done with v, since one cannot interchange
the summations over » and s. Hence, when working with v,
one needs the agents to be strongly identical to invoke these
simplifying results.

Notice that our definition of identicality makes no assump-
tion on the hypothesis model. Some agents’ states may be
more correlated with the hypothesis, and therefore with each
other. Therefore, when designing a system according to A%,
changing one agent’s rule may affect the other agents through
p(h|s). However, our result shows that for sufficiently large
n this cannot happen, since A} and v are asymptotically
equivalent. This further highlights the fact that although v



and Agn) are asymptotically equivalent, the additional structure
of v provides insight into the structure and simplicity of the
optimal solution.

V. NUMERICAL RESULTS

In this section we present some numerical results to illus-
trate several important concepts from the preceding sections.

¢ In the state-information case, for a fixed network state, the
problem is the canonical decentralized detection problem
with parallel configuration and conditionally independent
observations. Hence, one might be tempted to fix the
network state and use previously established methods
such as [22]. We show that this approach is, in general,
sub-optimal.

e In the no-information case, the only true correlation
between the agents when conditioned on the hypothesis
is in the agents’ state. We then derive an approach
which assumes the observations (Y, Sk), k =1,2,...,n
are indeed conditionally independent, and use previous
results. Again, we show this approach is sub-optimal, and
so in both cases, this state structure should not be ignored.

o We construct a system where AY” < A™ for a regime of
network sizes n. That is, for a regime of network sizes,
the Chernoff information of the no-information case (-
Agn)) is higher than the Chernoff Information (—A™) of
the state-information case.

For the rest of the section, we assume each agent k takes one
of two states, s = 0 or s = 1, makes a binary decision,
ur, = 0 or uy = 1, and has the following signal model,

Vi = H[1+ Si(8 — 1)] + Ny

where 8 € (0,1] is a constant, and {Nj}} i.i.d with N ~
N(0,1). Notice that when s = 0, Yy = H + N}, and when
s = 0, Yy = BH + Ni. Hence, 8 may be thought of as a
jamming constant, which is only present when s; = 1.

(98)

A. Small Networks

In this section, we present numerical results to support the
first two points above. We consider a simple network with two
agents, and hypothesis model given by (98)

1 1
p(h1|51>32) = Z + 1(81 + 82).

Moreover, we assume the joint pmf of the states is given as
p(s1 =1,82 = j) = g;; with

q,0 qou| _ |2 -1
41,0 qi,1 16

We now outline each strategy used:

99)

(100)

A) For both the state-information and no-information struc-
tures, we use the iterative algorithm developed in the
appendix for each respective information structure. This
algorithm is developed based on the PBPO criteria devel-
oped in Section III. The state-information case is denoted
as Strategy Al, while the no-information structure is
denoted as Strategy A2.

B) For the state-information structure, fix the network state
s. For a fixed state, use the algorithm developed in [22].
In general, this may produce different thresholds for each
agent in a given state. For example, if agent 1 is in state 0,
there is no guarantee the thresholds 7y, 71, corresponding
to the network states [0, 0] and [0, 1] respectively, are the
same. Hence, for a fixed si, we use threshold 77 with
probability p(s; = 0|s) and 7 with probability p(s; =
1]sk), so

pr(uk = 1lsk) = Q(10 — h[1 + sk (B — 1])p(s; = Ofsk)+
Q(m1 — h[l + s (8 — 1])p(s; = 1|sk).

(101)

C) For the no-information structure, assume the observations

{(Yk, Sk)}? are conditionally independent and use the
algorithm given in [22]. Moreover,

Pr(Yk|sk)p(h|sk)p(sk) _

Ph(Yks Sk) = (102)
) (0]

where p(h|sy) and p(h) are induced by the given hypoth-
esis model.

Also, all fusion centers use the appropriate MAP rule for
each strategy. We note some interesting phenomena for each
information structure.

o State-information structure: As stated before, and illus-
trated in Fig. 2a, fixing the network state and using
existing methods is sub-optimal. There are a few reasons
for this. First, finding the optimal strategy for a fixed
state neglects the performance of the other states. The
strategy that optimizes the performance in one network
state may only be able to do so at the expense of another
state. For example, in our model, when both agents are
in state O, their signal models are identical, and both
have a ”true” look at the underlying hypothesis. However,
if one optimizes this state, one neglects the state [0, 1],
in which case the second agent does not have a clear
look at the hypothesis. It is not unreasonable to expect
that having agent 2 use the [0, 0] strategy would be sub-
optimal in state [0, 1]. Indeed, this is the case. Second,
upon fixing the network state, one removes the effect of
each agent state on the hypothesis. If the network state is
fixed, so too is p(h|s1, s2), and so each agent’s state has
no information regarding the hypothesis. Compare this
to the case where the network state is not fixed. Then,
upon taking state sy, agent k receives some knowledge of
the hypothesis, namely of p(h|s1, s2), through its state.
This is captured when g = 1. Notice that in this case,
the signal models under both states are identical, but the
thresholds themselves are not. This results from the fact
that the states themselves carry asymmetric information
about the hypothesis. In this example, for each agent
in a given state, we randomized between the two rules
obtained for each network state, according to p(s;|sg).
Hence, one may be tempted to say that finding the optimal
strategy might amount to finding the optimal randomiza-
tion between optimal network rules. However, it is not
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Fig. 2: Numerical results

clear that this problem has any desirable properties, i.e.,
convexity, quasi-convexity, etc., and so may be difficult
for certain models. Moreover, this approach does not
scale well in either the network size or network state-
space.

o No-information structure: When assuming conditional
independence between the observations, the thresholds
themselves are different from the optimal thresholds,
resulting in sub-optimal performance. Hence, one should

not ignore the correlation between agents states and the
hypothesis.

B. Large Networks

We now turn our attention to large networks, and focus on
the Chernoff information. We explicitly construct a system
with the desired behavior as described earlier. Consider a
network with n agents. Each agent takes binary state, makes a
binary decision, and has the same signal model given by (98).
The hypothesis model is given as

plhols) = exp(~A\vz + 1) (103)

where A > 0, and z = Zk si. For sufficiently large n, o, =
exp(—Avn + 1), so %log oy = f)\@ — 0. Moreover, the
agent states are i.i.d with p(Sy = 1) = p. Hence, the agents are
strongly identical, and so we can restrict ourselves to identical
rules to obtain A(™). Moreover, we can optimize the Chernoff
information for only a single agent. Then, to find the optimal

thresholds for the fusion center with state information, we find
the thresholds that minimize

mmin log Q(10)"Q(10 — 1)+

(1~ Qo) (1 — Qo 1))6} 1-p)+ [Qm)l*

Q(r1 = )+ (1= Q1)) ~*(1 = Q1 = )| .
(104)



We now turn our attention to Ag”)

log Y po(w)' ~p1(u)* =

Y [y S lsitholainte)]|

L?UM) Zpl(u|3)P(h
1 1—e 1 €

oY sy | oo It

1—e €
p(fms)p(s)} [ZHm(umsmp(hls)p(s)} |
s k

First, notice that p(hg|s) depends only on the type of s, and
SO

, and begin by writing

€

18)19(8)} = (105)

= ;exp(—)\\/z +1) (:>p2(1 —p)™=2) (106)

Similarly, the summations in (105) can be written with respect
to w, z, 2, and z1, where w is the number of agents that decide
1, 2y is the number of agents that decide O in state 1, and z;
is the number of agents that decide 1 in state 1. Then, we can
rewrite (105) as

1
lo )e (107)
g —7 p(ho) Z fO fl )
where fp,(w) is given as
fr(w) =
x oy ()00
z max{w—n+z},0}<z;<min{w,z} “1 %0
(r,0,0)" "7 (¢"")* (1 — gn,0,0)° > (1 — qn01)*"
z —Zz
exp(=A=)p*(1 = p)"7,
(108)

with gp, s = pp(uls). Our results are presented in Fig. 2d.
As stated before, we find the thresholds that optimize the
state-information structure, and use these thresholds in the
no-information structure as well. Thus, if the no-information
structure outperforms the state-information structure with
these thresholds, our claim is validated (since the optimal
thresholds for the no-information structure must do at least
as well). Indeed, this is the case as illustrated in Fig. 2d. As
A increases, the size of the network required for the Chernoff
information of the state-information case to outperform the no-
information case increases as well. Hence, it is in fact possible
for the fusion center without state information to outperform
the fusion center with state information in large networks.
While this result seems highly counter-intuitive, this phenom-
ena become more clear upon examining the expressions for the
Chernoff information between the two structures. Notice that
the Chernoff information for the state-information structure
in no way depends upon the hypothesis model, whereas
the Chernoff information for the no information structure

implicitly depends on the hypothesis model. This however,
does not result in a loss of optimality thanks to Assumption
2c, which states the information contained in the hypothesis
model goes to zero in the network size. Moreover, it is because
of Assumption 2c that we have A; < A. However, Assumption
2c makes no statement about the speed of decay. That is,
the hypothesis model may contain substantial information
about the underlying hypothesis even for large networks, but
eventually, this information must decay to zero as the network
grows. Indeed, this is what happens in our example. As A
increases, the rate of decay slows, and so the hypothesis model
carries more information even for larger networks. This is seen
in Fig. 2d from the fact that for increasing A the no-information
structure outperforms the state-information structure for larger
and larger network sizes.

VI. CONCLUSION

In this paper, we have formulated the problem of multi-
agent hypothesis testing over networks with state, and shown
a number of interesting properties. We have found the optimal
design rule for the state-information structure under a min-
max criterion, and the optimal design rule for both structures
under the Bayesian setting. We have also found the optimal
error decay rate for both information structures and used
them to prove a number of interesting results. Namely that
identical rules are optimal for weakly identical agents, and
that it is indeed possible for the no-information structure to
outperform the state-information structure, even for relatively
large networks.

APPENDIX

A. Proof of Lemma 7

Proof. For any strategy ~, let MY be the smallest sub o-
algebra of M, ¢ such that ~ is measurable. Let p] and p]
denote the restrictions of py and p; to M?. Moreover, from
absolute continuity, we have that pj < p7. Let

dpy (s|s)
L) (y) = —~ . (109)
W)= By els)
Then, we make two important observations. First,
L7 = Eo[L+(Y)| F7] (110)
a.s., for all s, and
Le(u) = Li(y) (111)

for every y such that v(y, s) = u, almost surely. Using (110)
together with convexity of ((x) = x log” x yields, for fixed s,
Ei[log” L7] = Eo[L7 log® L7] = Eo[¢(L7)]
=Eo[¢(Eo[Ls|F])] < Eo[Eo[¢(Ls)|F]]
=Eo[Ls log? Ls] = E1[log? Ls].

(112)

Then, there exists some constant ¢; < oo such that
E1[log? L7] < ¢;. Moreover, using E[| X |] < 1+E[X?], we get



E1[|log L7]] < ¢;. Next, using (111), (63), and the inequality
(LY) <1+ L7, we obtain
|Es[Eo[(L3)  log L]
|NI(7)€)| = E ]E L’Y €
[Es[Eo[(L3)<]]|
< [Es[Eqflog L3T]| + |Es[Eo[log L7]]|
- |Es[Eol(L3)]]]
We have already bounded the numerator. The denominator is
bounded by noticing that Eq[Ls] = 1 for all s. Hence, there
must exist some M, ; measurable set £, such that for all
s, there exist 65 > 0, and 65 > 0 with po(E|s) > 67 and
Ls > 05. Then, using that 2 > min{1,z} for all € € [0,1],
we get Eo[(Ls)€] > 0 min{1, 05} for all € € [0, 1]. Using the
fact that z° is concave for fixed € € [0, 1] yields
Eo[(L3)] = Eo[Eo[Ls|F7]]
>Eo[Eo[(Ls) | F7]] = Eo[(Ls)] = 67 min{1, 65}
taking the minimum over all s of 6% min{1, 45} completes the
bound on |/ (y, €)|. For |u” (v, €)|, we have

Es[Eo[(L)¢ log” L7]]

(113)

(114)

" / 2
(v, €)= - = (1 (v, 6)"
s [Eo[(L3)<]]
Then, the proof that p’(«,¢€) is bounded is identical, and is
thus omitted. O

B. Iterative Algorithm for Optimal Quantizers

In this section we develop an iterative algorithm to find the
local quantizers for each agent following a person-by-person
optimal approach for the Bayesian setting. The iterative algo-
rithm we present is a slightly modified version of that given
in [22]. Thus, we skip some of the details in the derivation,
and refer the reader to [22] for a thorough treatment. We start
by exploiting the structure of the rule given in (48) with the
following. Define

Zzij = {yk : Dkl(ykas) < ij(yk7s)}
That is, Z;,; is the set of all y such that assigning y to
codeword ¢ results in a lower probability of error than if
assigned to codeword j when in state s. Moreover,

Dri(yk, 5) < Drj(yk,s) <=

po(ykls) (AR, — Ag;)+

(115)

M (116)
p1(yxls)(Bi; — Bi;) <0 <=
(Af; — Agj) + Ls(yr)(Br; — Bg;) <0
Hence, Z;,, is equivalent to
Zii(L) = {Ls(yx) : Dri(yx,s) < Dij(y, )} (117)

That is, Zj;;;(L) is the set of LR values such that assigning
observations with an LR value in the set to codeword ¢ rather
than 7 results in a smaller probability of error. Let
aZij
Thij = — 35~ (118)
! Bris

where

Qi = Api — ARy (119)

Then, we have several possibilities for Z},;;(L) depending on
the values of aj,;; and Sj, ..

S
By,

0,7%:;), By >0
20 = § T O <0 120
[0, 00), Brij = 0,05, <0
&, B = 0,08, > 0.
A few remarks are in order. First, if Zj,,(L) = [0,00),

it is always better to map the observation to codeword i
instead of j. Likewise, if Zgij(L) = ¢, it is never better to
map the observation to codeword ¢ instead of j. Hence, if

Z3; (L) = [0,00) (Z3;;(L) = ¢), codeword j (i) should be
deleted. Second, if we define
% = min {7 122
ki jBk”>0{ k”} (122)
and
= 123
Tk1 I gii)io{TkU} ( )

then the set

ﬂ Z’ﬂj
J?ﬁz

which is the set of L(yy) that should be mapped to index ¢,
can be expressed as

o, Biij = 0,ap,; =0 for some j

sl :
(T8, T ) otherwise

with the understanding that [a,b) = ¢ for a > b. Thus, if
b > 7, ZE(L) = ¢. Finally, it can be shown that for
7 > 1, where neither code word ¢ nor j has been deleted, we
have ﬂ,‘:ij > 0 and of,;; < 0. Similarly, for j < i we have
Brij < 0 and aj,; > 0. We present the iterative algorithm
below, and present some numerical results of this algorithm
in Section VI

Zfz‘(L) =
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