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Abstract—Osteoarthritis (OA) is the most common form of 

arthritis and often occurs in joints such as the knees, hips, and 

hands. Given there is no cure for OA, early detection and 

prevention are required to avoid further damage to the joint. 

Typically, joints are given a Kellgren and Lawrence (KL) grade of 

0 to 4 with KL ≤ 1 meaning non-OA and KL ≥ 2 being positive for 

OA. Overall hand OA is determined by a positive OA rating of a 

joint on more than one finger. Therefore, to detect hand OA, one 

needs to detect worrisome hand joints first. This study uses a 

convolutional neural network (CNN) and proposes a custom 

architecture to automatically classify joints from hand X-rays into 

5 KL categories as well as 2 categories of non-OA/OA. Post-

processing is used to determine overall hand OA. Using a dataset 

of 3,556 hand X-rays, our custom CNN architecture was able to 

achieve a 5-category finger joint classification accuracy of 82.7% 

with a Matthews correlation coefficient (MCC) of 0.61. For 2-

category classification, our model achieved an accuracy of 92.9% 

with an MCC of 0.74 and an area under the curve (AUC) score of 

0.965. Based on the joint-level classification results of each hand, 

our model achieved an accuracy of 88.6% to classify the hand-level 

OA, i.e., to distinguish hand X-rays with and without OA. To our 

knowledge, this is the first work that uses CNN to classify hand 

joints into KL grades and detect overall hand OA based on 

individual hand joints. 

Keywords—Hand Osteoarthritis, X-ray, Machine Learning, 

Convolutional Neural Networks 

I. INTRODUCTION 

The most common form of arthritis is osteoarthritis (OA) [1]. 
OA occurs in the joints and most commonly the knees, hips, and 
hands [2]. Characteristics of OA include pain during activity, 
reduced function, stiffness, and joint instability [3]. OA is the 

leading cause of disability in older adults and given an aging 
population and longer lifespans will become more common 
[4,5]. Unfortunately, there is no drug treatment method that can 
cure OA [6] therefore, early detection and prevention are 
needed. 

Knee OA can limit walking, stair climbing, and other daily 
activities and affect the overall quality of life [7]. Like knee OA, 
hip OA can also cause a lack of mobility as well as a lack of 
independence and increased use of health care services [8]. 
While many studies have been conducted on knee and hip OA, 
hand OA is the next most common with patients reporting pain, 
stiffness and disability, which is not well-studied [9]. The 
cartilage loss and resulting disintegration of the joint can 
progress to a point where they become harmful and interfere 
with hand functions [10].  Early detection of hand OA is needed 
as having baseline OA in a joint showed an increased chance of 
developing OA in another joint within the same row or ray [11].  

Assessment for hand OA can be made by examining 
radiographic (X-ray) images which are inexpensive and widely 
available [10]. OA can be diagnosed by observing the degrading 
of cartilage through joint erosion (JE) and joint space narrowing 
(JSN) [13]. The Kellgren–Lawrence (KL) scoring system for 
OA has 5 grades (0 – 4) with KL=0 meaning no OA, KL=1 
meaning doubtful, KL=2 being minimal, KL=3 being moderate, 
and KL=4 indicating severe OA [14]. For hand OA, a KL grade 
can be assigned to various joints including the 
metacarpophalangeal (MCP), proximal interphalangeal (PIP), 
and distal interphalangeal (DIP) joints in the hand [15].  

Machine learning methods including support vector 
machines (SVM) [16] and artificial neural networks (ANN) 
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have been used for the classification of OA [16,17,18]. More 
recent machine learning techniques such as convolutional neural 
networks (CNN) are able to use multidimensional data such as 
images [19]. CNNs are often referred to as “deep learning” due 
to the several layers of processing [20]. CNNs have been used 
for medical image classification including pneumonia in chest 
X-rays [21] and COVID-19 [22]. CNNs have also been used for 
detection tasks such as locating discs in the spine [23]. Medical 
images differ from natural images in that they are standardized 
and regulated for quality which makes them well suited for 
machine learning purposes [24]. 

There are recent related works involving automating KL and 
OA classification using X-rays and CNNs. These studies include 
joints such as the knee [25-27] as well as the hip [28]. While 
there are studies using machine learning techniques to classify 
Rheumatoid Arthritis (RA) in the hand [29,30], work involving 
automated hand joint classification of OA is limited. A related 
work [31] [SJ1]used classic CNN architectures to classify the entire 
hand as OA/non-OA. For this study, we created a custom CNN 
architecture to classify the 5 KL grade categories on individual 
hand joints and evaluated its performance with other models.  

II. MATERIALS AND METHODS 

A. Dataset 

The Osteoarthritis Initiative (OAI) is a multi-center 
longitudinal study of 4796 men and women ages 45–79 [32]. 
The study includes a publicly available dataset of X-ray images 
as well as magnetic resonance images (MRI). While the OAI 
was focused on knee OA, hand X-ray images were also collected 
for the baseline and 48-month visit at each center. A trained 
radiologist labeled the KL grades for 12 joints on the dominant 
hand for 3,519 participants [33]. Intra-reader agreement based 
on weighted kappas was good (weighted kappa > 0.84) [33,34]. 

For our study, we used data from the 48-month visit as it had 
more KL=4 grades present. We manually located the MCP, PIP, 
and DIP joints on the pinky, ring, middle, and index fingers. We 
additionally stored the orientation of each joint. Individual hands 
were assigned to training (70%), validation (15%), and testing 
(15%) sets. For each hand, the individual joints are cropped from 
the image. Table I shows the distribution of KL grades. The 
available dataset is unbalanced in which KL=0 is about 73% of 
the dataset with KL=4 (severe OA) making up under 1% of the 
dataset.  

TABLE I.  DISTRIBUTION OF KL GRADES INTO TRAINING, VALIDATION, 
AND TESTING SETS. 

Set KL=0 KL=1 KL=2 KL=3 KL=4 Total 

Training 21807 3231 3942 687 213 29880 

Validation 4559 721 887 168 61 6396 

Testing 4582 706 895 155 58 6396 

Total 30948 4658 5724 1010 332 42672 

 

B. Preprocessing 

The majority of the X-ray images (72%) were of only the 
right hand. For bilateral images (which contain both hands) the 
image was split. The KL graded hands in the dataset were mostly 

right hands with under 1% being left hands and as a result, we 
flipped all left hands to more resemble right hands. 

The original X-ray images contain noise and other 
information not needed for KL classification. We developed a 
separate model using the U-net [35] architecture to generate 
masks of the hand. We manually masked the hand for a small 
subset as training data with 36 images and applied the trained U-
net to the whole dataset. Fig. 1 shows the original image, mask 
generated by the U-net model, and the result after applying the 
mask to the original image. This leaves the hand isolated with a 
clean background. The mask also helps to remove any markers 
in the X-ray. 

As a result of the different manufacturers of X-ray 
equipment used, images in the dataset had varying pixel 
dimensions. These images are in the DICOM format and have a 
pixel spacing attribute which indicates the amount of physical 
space between each pixel. We rescaled each image to a pixel 
spacing of 0.15mm. This size was the most common in the 
dataset resulting in about 28% not needing to be scaled. 

Using manually labeled locations and angles, each joint was 
cropped with a size of 180×180 and then rotated in the reverse 
direction to give all joints the same orientation. Fig. 2 shows the 
location and angles of an example pinky finger with the final 
orientations of each joint. 

 

Fig. 1. Original image, automatically generated mask, and hand X-ray after 

mask is applied. 

 

Fig. 2. Individual joints are cropped at an angle and rotated to have the same 

orientation. 



Additionally, given the various sizes of fingers across the X-
rays of different patients, scaling was needed to normalize the 
size of the joints in the samples. Using the masked image, the 
width of the finger at the PIP and DIP joints were calculated by 
searching for pixels with intenisty=0 to the left and right. For the 
MCP we used the PIP width and an additional 25%. These joint 
images were then scaled to match the target width of 180. Fig. 3 
shows the original cropped image and the result after scaling. 

C. CNN Model 

The model used in this study originated as a basic model with 
a few layers. This model underwent several iterations and 
tuning. The final CNN architecture used in this study can be seen 
in Fig. 4. Each convolutional layer in the model is followed by 
an activation layer using the ReLU function. The first 
convolutional layer in the model uses 32 filters with a size of 
7×7 and a stride of 2×2. The second convolutional layer uses 64 
filters with a size of 5×5 and stride of 1×1. The third layer uses 
128 filters with a size of 3×3 and stride of 1×1. Following this 
first block of layers is an average pooling layer. The next 3 
convolution layers use 256, 512, and 1024 filters, respectively, 
all with a size of 3×3. 

Global average pooling is used before the fully connected 
layers. Each fully connected layer has 1024 nodes and uses L2 
regularization. Dropout layers are used with a rate of 50% in 
order to reduce overfitting. Finally, a SoftMax layer is used to 
output the 5 KL categories. The convolutional layers used He 
initialization [SJ2][36]. During training, the model uses the Adam 
optimizer with a learning rate of 0.0001, a batch size of 64, and 
early stopping based on validation loss.  

 

Fig. 3. A small finger joint is scaled in place to fit the target width size. 

 

Fig. 4. The CNN architecture used in this study. 

The model was built in Python using the Keras library with 
TensorFlow as the backend. The study was performed using a 
high-performance computer with a NVIDIA Tesla V100 32G 
GPU. Training time averaged 81 minutes. 

III. EXPERIMENT AND RESULTS 

Given the imbalance in our dataset, besides the commonly 
used overall accuracy, we employed the Mathews correlation 
coefficient (MCC) as evaluation metrics in the discussion of our 
results. For binary classification, the formula for MCC [37] can 
be seen in equation (1). Here TP is the true positive count, TN is 
the true negative, FP being the false positive, and FN being the 
false negative. 

𝑀𝐶𝐶 =
𝑡𝑝×𝑡𝑛−𝑓𝑝×𝑓𝑛

√(𝑡𝑝+𝑓𝑝)(𝑡𝑝+𝑓𝑛)(𝑡𝑛+𝑓𝑝)(𝑡𝑛+𝑓𝑛)
.   (1) 

  While originally proposed for binary classification, MCC 
was extended to multiple categories [38]. For multiple 
categories, MCC is defined as a confusion matrix C for K 
categories and can be described using the following intermediate 
variables [39]:   

• 𝑡𝑘 = ∑  𝐾
𝑖 𝐶𝑖𝑘 The number of times k truly occurred. 

• 𝑝𝑘 = ∑  𝐾
𝑖 𝐶𝑘𝑖 The number of times k was predicted. 

• 𝑐 = ∑  𝐾
𝑘 𝐶𝑘𝑘 The total correctly predicted samples. 

• 𝑠 = ∑  𝐾
𝑖 ∑  𝐾

𝑗 𝐶𝑖𝑗 The total number of samples. 

The MCC formula for multiple categories is:  

 𝑀𝐶𝐶 =
𝑐×𝑠−∑  𝐾

𝑘 𝑝𝑘×𝑡𝑘

√(𝑠2−∑  𝐾
𝑘 𝑝𝑘

2)×(𝑠2−∑  𝐾
𝑘 𝑡𝑘

2)

 () 



Having trained models for both binary OA/non-OA 
classification and 5-category KL classification, both formulas of 
MCC will be used for evaluation. An MCC measure of 1.0 
represents a perfect prediction with 0 being random and -1.0 
meaning entirely incorrect. When there are more than two 
categories, the minimum value will be between -1 and 0 
depending on the true distribution.  

A. Results for KL Classification 

A validation set was used during the training of our model. 
The results of the validation set can be seen in Table II. 
Reviewing this result, we can see that category KL=0 was the 
most accurate. This may be due to the majority of samples 
having this label. Categories KL=1, KL=2, KL=3 and KL=4 
were often misclassified into the next lowest category. Finally, 
KL=4 with only 213 joints (0.7% of the training samples) was 
difficult for our model to classify. The overall performance of 
the validation set was an accuracy of 82.7% with an MCC of 
0.62. Fig. 5 shows examples of different joint types with various 
KL grades from the validation set. As the KL grade gets higher 
(more severe OA) the space between the joints can be seen as 
getting more narrow. 

B. Dataset Balancing 

As seen in Table 1, the training set KL=0 category has 21807 
samples but KL=4 category only has 213 samples. To better 
train a CNN model, we want to balance the sample across all 
categroies. We experimented with downsampling the KL=0 
category during training combined with oversampling of the 
other KL grades. For instance, when KL=0 is limited to 5000 

TABLE II.  CONFUSION MATRIX FOR KL GRADES USING THE VALIDATION 

SET.  

Act / 

Pred 
P0 P1 P2 P3 P4 Total Acc 

A0 4263 181 115 0 0 4559 93.5% 

A1 321 191 209 0 0 721 26.5% 

A2 57 97 707 26 0 887 79.7% 

A3 3 0 46 115 4 168 68.5% 

A4 1 0 4 46 10 61 16.4% 

Total 4645 469 1081 187 14 6396 82.7% 

A0 denotes category is actually KL=0 while P0 means predicted as KL=0 by the model. 

 
Fig. 5. Examples of MCP, PIP, and DIP joints with various KL grades from 

the validation set. 

samples, image augmentation is used on the other KL grades to 
bring each up to 5000 samples and balance the dataset. Image 
augmentation methods included horizontal flipping, rotation 
between -20 and 20 degrees, and shifting the image horizontally 
and vertically. The validation set is not changed, and the results 
are in Table III. Balancing the dataset during training resulted in 
the model predicting more of KL=4 and increased accuracy in 
this category. However, it also caused decreased accuracy of the 
other categories and the overall accuracy dropped as well. The 
overall performance when limited to 10,000 is an accuracy of 
82.1% with an MCC of 0.59. Performance when limited to 5,000 
is an accuracy of 81.2% with an MCC of 0.57. 

C. Individual Models for Different Joint Types 

Our original model is trained by using all three joint types: 
MCP, PIP, and DIP (see Fig. 2). We additionally trained three 
separate models where each model processed a single joint type. 
The results of each individually trained model as well as the 
combined model can be seen in Table IV. In the dataset, there 
are few cases where the MCP joints have a grade of KL=4 with 
most being KL=0. PIP joints also have few KL=4 cases. The 
DIP joints have the most diverse types of KL grades. A 
reflection of the KL grade distribution can be seen in the MCC 
scores for each joint type. The overall performance of the MCP 
trained model was an accuracy of 93.3% with an MCC of 0.56. 
The PIP trained model had an accuracy of 76.7% with an MCC 
of 0.54. The DIP trained model had an accuracy of 78.6% with 
an MCC of 0.64. Using the best MCP, PIP and DIP trained 
models there was a slight increase in performance versus a single 
model trained on all three (82.9% vs. 82.7%). In summary, 
combining the three best individual models had a slightly higher 
accuracy of 82.9% than the original one-model-for-all while the 
MCC dropped slightly from 0.62 to 0.61. 

TABLE III.  ACCURACY FOR KL GRADES WHEN DOWNSAMPLING KL=0 

SAMPLES DURING TRAINING (MCC IN PARENTHESES).  

KL Grade 
Original 

Dataset 

Limited to: 

10000 + AUG 

Limited to: 

5000 + AUG 

KL=0 93.5% 94.4% 93.8% 

KL=1 26.5% 20.3% 27.2% 

KL=2 79.7% 73.1% 65.2% 

KL=3 68.5% 73.2% 65.5% 

KL=4 16.4% 45.9% 54.1% 

Overall 
82.7% 

(0.62) 

82.1% 

(0.60) 

81.2% 

(0.57) 

TABLE IV.  ACCURACY FOR KL GRADES WHEN INDIVIDUALLY TRAINING 

EACH JOINT TYPE (MCC IN PARENTHESES).  

KL 

Grade 

Original 

Method 
MCP PIP DIP Combined 

KL=0 93.5% 98.2% 91.2% 93.3% 94.7% 

KL=1 26.5% 25.0% 34.8% 30.9% 32.2% 

KL=2 79.7% 67.1% 69.6% 73.0% 71.3% 

KL=3 68.5% 42.1% 38.7% 78.0% 66.7% 

KL=4 16.4% 0.0% 0.0% 15.0% 9.8% 



KL 

Grade 

Original 

Method 
MCP PIP DIP Combined 

Overall 
82.7% 
(0.62) 

93.3% 
(0.56) 

76.7% 
(0.54) 

78.6% 
(0.64) 

82.9% 
(0.61) 

D. Transfer Learning 

We compared our custom model built for this study with 
classic CNN architectures. Table V shows the performance of 
our model against VGG16 [40], ResNet50 [41], and 
DenseNet121 [42]. We used the pre-trained ImageNet weights 
for transfer learning with the final pooling and SoftMax layer set 
as trainable. Using transfer learning required the images to be 
scaled to 224×224 as well as copying the grayscale images into 
additional channels to form a RGB image. VGG16 classified 
most joints into KL=0 with some as KL=2. ResNet50 classified 
almost all samples into KL=0. DenseNet121 had the highest 
accuracy of these classic architectures as well as the best 
distribution of classification of KL grades, but the accuracy is 
still lower than that of the proposed custom model.  

E. Non-OA / OA 

Using the KL grade, a 2-category classification of non-OA 
(KL ≤ 1) and OA (KL ≥ 2) can be determined. We additionally 
trained a model with 2-category input by pre-processing the 5-
category input into 2-categories of non-OA and OA. The results 
of the model trained on 2-categories can be seen in Table VI. 
For comparison, we also trained the previously mentioned 
classic architectures described in section III.D on 2-categories 
using transfer learning. The receiver operating characteristic 
(ROC) curves of our model and the classic CNN architectures 
are plotted in Fig. 6.  Our model outperformed the other models 
with an AUC score of 0.965.  

TABLE V.  ACCURACY FOR KL GRADES USING CLASSIC CNN 

ARCHITECTURES WITH TRANSFER LEARNING (MCC IN PARENTHESES).  

KL Grade 
Custom 

Model 
VGG ResNet DenseNet 

KL=0 93.5% 97.8% 99.7% 95.6% 

KL=1 26.5% 0.3% 0.0% 4.9% 

KL=2 79.7% 33.6% 1.1% 58.3% 

KL=3 68.5% 31.0% 0.0% 54.2% 

KL=4 16.4% 14.8% 0.0% 32.8% 

Overall 
82.7% 

(0.62) 

75.4% 

(0.35) 

71.3% 

(0.04) 

78.5% 

(0.48) 

TABLE VI.  CONFUSION MATRIX FOR NON-OA/OA USING 2-CATEGORY 

INPUT FOR THE VALIDATION SET.  

Act\Pred Non-OA OA Total Acc 

Non-OA 5126 154 5280 97.1% 

OA 292 824 1116 73.8% 

Total 5418 978 6396 93.0% 

 

Fig. 6. ROC curves for non-OA/OA classification using the validation set. 

F. Hand OA 

In the previous sections, individual joints were evaluated to 
determine if they had OA. Having overall hand OA is 
determined by the presence of OA in more than one finger. Fig. 
7 shows a hand without hand OA. The joints can all be seen to 
have good spacing and are graded with KL ≤ 1. Fig. 8 shows a 
hand with hand OA. Joints marked in red have a grade of KL=4 
with orange indicating KL=3 and yellow meaning KL=2. Joints 
marked in green are KL=0. The example hand had no joints with 
KL=1. It can be seen that there is OA (KL ≥ 2) on more than one 
finger. Using the joint classification model and noting the 
location of the joints we were able to evaluate our model in 
classifying hand OA. The results in Table VII show the 
performance for OA classification at the hand level.  

 
Fig. 7. Hand without OA. Joints can be seen to have good spacing.  



 

Fig. 8. Hand with OA due to the presence of OA on more than one finger. 

Joints marked in red are graded KL=4. Orange are KL=3. Yellow are KL=2. 

Green are KL=0.  

TABLE VII.  CONFUSION MATRIX FOR HAND NON-OA/OA USING POST 

PROCESSED 2-CATEGORY VALIDATION SET.  

Act\Pred Non-OA OA Total Acc 

Non-OA 286 24 310 92.3% 

OA 41 182 223 81.6% 

Total 327 206 533 87.8% 

G. Additional Metrics and Post-processed Results From 5-

category Model 

We’d like to evaluate the joint OA/non-OA classification 
model and hand OA/non-OA classification model using more 
evaluation metrics in this section. In addition, for each 
classification task, besides training a new model as we did 
above, we can also post-process the results from the 5-category 
classification model using threshold KL=2, i.e., KL ≤ 1 is non-
OA and KL ≥ 2 is OA. By post-processing the confusion matrix 
of the validation set from Table II into 2-categories, we can 
evaluate the model’s performance for classifying non-OA and 
OA, at both joint level and hand level. Table VIII shows 
additional metrics including precision, recall, and F1 score. For 
individual joint classification of OA, the post-processed 5-
category classification model had a better recall (sensitivity) 
over the 2-category model, while the overall accuracy is similar. 
Since sensitivity is a particularly important metric for medical-
related decision-making systems, we’d like to bring the different 
performances of different models into the audience’s attention. 
A high sensitivity or recall means the model is less likely to miss 
a positive case, while a high precision means the model is less 
likely to generate a false positive. Precision was higher when 
using the 2-category model on the individual joints. Similarly, 
for hand OA, although having the same overall accuracy, post-
processed 5-category classification model had higher recall 
while 2-category model had higher precision. 

TABLE VIII.  ADDITIONAL METRICS FOR JOINT-LEVEL AND HAND-LEVEL 

OA CLASSIFICATION USING THE VALIDATION SET.  

Method Precision Recall F1 MCC Acc 

Joint OA 
classification using  

post-processed 5-

category model 

0.75 0.86 0.80 0.76 92.5% 

Joint OA 

classification using 

2-category model 

0.84 0.74 0.79 0.75 93.0% 

Hand OA 
classification using 

post-processed 5-

category model 

0.81 0.92 0.86 0.76 87.8% 

Hand OA 
classification using 

post-processed 2-

category model 

0.88 0.82 0.85 0.75 87.8% 

H. Testing Set 

A testing set was set aside to the end of the study and was 
not seen by the models during the training process. The results 
are presented in Table IX. The performance of the proposed 
model is consistent with the validation set seen in Table II 
indicating the good generalizability of the model. The overall 
performance on the testing set was an accuracy of 82.7% with 
an MCC of 0.61 for 5 KL category classification at the joint 
level. 

We continue to test the OA/non-OA model at joint level with 
the results presented in Table X. The ROC curve for the testing 
set can be seen in Fig. 9, with an AUC score of 0.966. The 
corresponding results on the validation set are in Table VI. 
Finally, we evaluated the hand level classification on the testing 
set through post-processing the results from Table IX (5-
category model) and post-processing the results from Table X 
(2-category model). The hand level OA/non-OA classification 
performance is presented in Tables XI and XII. Again, a similar 
performance of the validation set was presented by the testing 
set.  

TABLE IX.  CONFUSION MATRIX FOR KL GRADES USING THE TESTING 

SET.  

Act / 

Pred 
P0 P1 P2 P3 P4 Total Acc 

A0 4313 188 80 0 1 4582 94.1% 

A1 321 184 200 1 0 706 26.1% 

A2 65 118 678 34 0 895 75.8% 

A3 1 0 45 105 4 155 67.7% 

A4 1 0 2 44 11 58 19.0% 

Total 4701 490 1005 184 16 6396 82.7% 

A0 denotes category is actually KL=0 while P0 means predicted as KL=0 by the model. 

TABLE X.  CONFUSION MATRIX FOR NON-OA/OA USING 2-CATEGORY 

INPUT FOR THE TESTING SET.  

Act\Pred Non-OA OA Total Acc 

Non-OA 5154 134 5288 97.5% 

OA 322 786 1108 70.9% 



Act\Pred Non-OA OA Total Acc 

Total 5476 920 6396 92.9% 

 

 

Fig. 9. ROC curve for non-OA/OA classification using the testing set. 

TABLE XI.  CONFUSION MATRIX FOR HAND NON-OA/OA USING POST 

PROCESSED 5-CATEGORY TESTING SET.  

Act\Pred Non-OA OA Total Acc 

Non-OA 275 46 321 85.7% 

OA 15 197 212 92.9% 

Total 290 243 533 88.6% 

TABLE XII.  CONFUSION MATRIX FOR HAND NON-OA/OA USING POST 

PROCESSED 2-CATEGORY TESTING SET.  

Act\Pred Non-OA OA Total Acc 

Non-OA 299 22 321 93.1% 

OA 39 173 212 81.6% 

Total 338 195 533 88.6% 

 

IV. CONCLUSION 

In this paper, we proposed a machine-learning-based method 
to classify the KL grade of individual hand joints as well as non-
OA/OA for the whole hand. Our custom CNN model 
outperformed classical CNN architectures using transfer 
learning. Our best performance for 5-KL-category joint 
classification using the testing set was an accuracy of 82.7% 
with an MCC of 0.61. For 2-category OA/non-OA joint 
classification, the accuracy was 92.9%, with an MCC of 0.74 
and an AUC score of 0.966. After post-processing the joint level 
classification results, hand level OA/non-OA classification 
using post-processed 5-category and 2-category both had an 
overall accuracy of 88.6%. Future work includes reducing 
misclassification of boundary categories KL=1 and KL=2 as 
well as further exploring better solutions for the imbalanced 
dataset.   
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