Automated Hand Osteoarthritis Classification Using
Convolutional Neural Networks
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Abstract—Osteoarthritis (OA) is the most common form of
arthritis and often occurs in joints such as the knees, hips, and
hands. Given there is no cure for OA, early detection and
prevention are required to avoid further damage to the joint.
Typically, joints are given a Kellgren and Lawrence (KL) grade of
0 to 4 with KL <1 meaning non-OA and KL > 2 being positive for
OA. Overall hand OA is determined by a positive OA rating of a
joint on more than one finger. Therefore, to detect hand OA, one
needs to detect worrisome hand joints first. This study uses a
convolutional neural network (CNN) and proposes a custom
architecture to automatically classify joints from hand X-rays into
5 KL categories as well as 2 categories of non-OA/OA. Post-
processing is used to determine overall hand OA. Using a dataset
of 3,556 hand X-rays, our custom CNN architecture was able to
achieve a 5-category finger joint classification accuracy of 82.7%
with a Matthews correlation coefficient (MCC) of 0.61. For 2-
category classification, our model achieved an accuracy of 92.9%
with an MCC of 0.74 and an area under the curve (AUC) score of
0.965. Based on the joint-level classification results of each hand,
our model achieved an accuracy of 88.6% to classify the hand-level
OA, i.e., to distinguish hand X-rays with and without OA. To our
knowledge, this is the first work that uses CNN to classify hand
joints into KL grades and detect overall hand OA based on
individual hand joints.

Keywords—Hand Osteoarthritis, X-ray, Machine Learning,
Convolutional Neural Networks

I. INTRODUCTION

The most common form of arthritis is osteoarthritis (OA) [1].
OA occurs in the joints and most commonly the knees, hips, and
hands [2]. Characteristics of OA include pain during activity,
reduced function, stiffness, and joint instability [3]. OA is the

This research was funded by the National Science Foundation, with grant
numbers NSF-173420 and NSF-173429.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Jordan Blackadar Zilong Yang
School of Computing and Data School of Computing and Data
Science Science
Wentworth Institute of Wentworth Institute of
Technology Technology
Boston, MA, USA Boston, MA, USA
blackadarj@wit.edu yangzl@wit.edu

Charles B. Eaton
Center for Primary Care &
Prevention, Alpert Medical
School of Brown University

Pawtucket, RI, USA
cbeaton51@gmail.com

Lena Schaefer
Department of Radiology,
Brigham and Women’s Hospital
and Harvard Medical School
Boston, MA, USA
lenafranziskaschaefer@yahoo.com

Juan Shan
Department of Computer Science
Pace University
New York, NY, USA
jshan@pace.edu

leading cause of disability in older adults and given an aging
population and longer lifespans will become more common
[4,5]. Unfortunately, there is no drug treatment method that can
cure OA [6] therefore, early detection and prevention are
needed.

Knee OA can limit walking, stair climbing, and other daily
activities and affect the overall quality of life [7]. Like knee OA,
hip OA can also cause a lack of mobility as well as a lack of
independence and increased use of health care services [8].
While many studies have been conducted on knee and hip OA,
hand OA is the next most common with patients reporting pain,
stiffness and disability, which is not well-studied [9]. The
cartilage loss and resulting disintegration of the joint can
progress to a point where they become harmful and interfere
with hand functions [10]. Early detection of hand OA is needed
as having baseline OA in a joint showed an increased chance of
developing OA in another joint within the same row or ray [11].

Assessment for hand OA can be made by examining
radiographic (X-ray) images which are inexpensive and widely
available [10]. OA can be diagnosed by observing the degrading
of cartilage through joint erosion (JE) and joint space narrowing
(JSN) [13]. The Kellgren—Lawrence (KL) scoring system for
OA has 5 grades (0 — 4) with KL=0 meaning no OA, KL=1
meaning doubtful, KL=2 being minimal, KL=3 being moderate,
and KL=4 indicating severe OA [14]. For hand OA, a KL grade
can be assigned to various joints including the
metacarpophalangeal (MCP), proximal interphalangeal (PIP),
and distal interphalangeal (DIP) joints in the hand [15].

Machine learning methods including support vector
machines (SVM) [16] and artificial neural networks (ANN)



have been used for the classification of OA [16,17,18]. More
recent machine learning techniques such as convolutional neural
networks (CNN) are able to use multidimensional data such as
images [19]. CNNss are often referred to as “deep learning” due
to the several layers of processing [20]. CNNs have been used
for medical image classification including pneumonia in chest
X-rays [21] and COVID-19 [22]. CNNs have also been used for
detection tasks such as locating discs in the spine [23]. Medical
images differ from natural images in that they are standardized
and regulated for quality which makes them well suited for
machine learning purposes [24].

There are recent related works involving automating KL and
OA classification using X-rays and CNNs. These studies include
joints such as the knee [25-27] as well as the hip [28]. While
there are studies using machine learning techniques to classify
Rheumatoid Arthritis (RA) in the hand [29,30], work involving
automated hand joint classification of OA is limited. A related
work[[S 1] ‘[SJ 1]used classic CNN architectures to classify the entire
hand as OA/non-OA. For this study, we created a custom CNN
architecture to classify the 5 KL grade categories on individual
hand joints and evaluated its performance with other models.

II. MATERIALS AND METHODS

A. Dataset

The Osteoarthritis Initiative (OAI) is a multi-center
longitudinal study of 4796 men and women ages 45-79 [32].
The study includes a publicly available dataset of X-ray images
as well as magnetic resonance images (MRI). While the OAI
was focused on knee OA, hand X-ray images were also collected
for the baseline and 48-month visit at each center. A trained
radiologist labeled the KL grades for 12 joints on the dominant
hand for 3,519 participants [33]. Intra-reader agreement based
on weighted kappas was good (weighted kappa > 0.84) [33,34].

For our study, we used data from the 48-month visit as it had
more KL=4 grades present. We manually located the MCP, PIP,
and DIP joints on the pinky, ring, middle, and index fingers. We
additionally stored the orientation of each joint. Individual hands
were assigned to training (70%), validation (15%), and testing
(15%) sets. For each hand, the individual joints are cropped from
the image. Table I shows the distribution of KL grades. The
available dataset is unbalanced in which KL=0 is about 73% of
the dataset with KL=4 (severe OA) making up under 1% of the
dataset.

TABLE L. DISTRIBUTION OF KL GRADES INTO TRAINING, VALIDATION,
AND TESTING SETS.
Set | KL=0 | KL=l | KL=2 | KL=3 | KL=4 Total
Training 21807 3231 3942 687 213 29880
Validation 4559 721 887 168 61 6396
Testing 4582 706 895 155 58 6396
Total 30948 | 4658 5724 1010 332 42672

B. Preprocessing

The majority of the X-ray images (72%) were of only the
right hand. For bilateral images (which contain both hands) the
image was split. The KL graded hands in the dataset were mostly

right hands with under 1% being left hands and as a result, we
flipped all left hands to more resemble right hands.

The original X-ray images contain noise and other
information not needed for KL classification. We developed a
separate model using the U-net [35] architecture to generate
masks of the hand. We manually masked the hand for a small
subset as training data with 36 images and applied the trained U-
net to the whole dataset. Fig. 1 shows the original image, mask
generated by the U-net model, and the result after applying the
mask to the original image. This leaves the hand isolated with a
clean background. The mask also helps to remove any markers
in the X-ray.

As a result of the different manufacturers of X-ray
equipment used, images in the dataset had varying pixel
dimensions. These images are in the DICOM format and have a
pixel spacing attribute which indicates the amount of physical
space between each pixel. We rescaled each image to a pixel
spacing of 0.15mm. This size was the most common in the
dataset resulting in about 28% not needing to be scaled.

Using manually labeled locations and angles, each joint was
cropped with a size of 180x180 and then rotated in the reverse
direction to give all joints the same orientation. Fig. 2 shows the
location and angles of an example pinky finger with the final
orientations of each joint.

Original Mask Masked Hand

Fig. 1. Original image, automatically generated mask, and hand X-ray after
mask is applied.

DIP

PIP

MCP

Fig. 2. Individual joints are cropped at an angle and rotated to have the same
orientation.



Additionally, given the various sizes of fingers across the X-
rays of different patients, scaling was needed to normalize the
size of the joints in the samples. Using the masked image, the
width of the finger at the PIP and DIP joints were calculated by
searching for pixels with intenisty=0 to the left and right. For the
MCP we used the PIP width and an additional 25%. These joint
images were then scaled to match the target width of 180. Fig. 3
shows the original cropped image and the result after scaling.

C. CNN Model

The model used in this study originated as a basic model with
a few layers. This model underwent several iterations and
tuning. The final CNN architecture used in this study can be seen
in Fig. 4. Each convolutional layer in the model is followed by
an activation layer using the ReLU function. The first
convolutional layer in the model uses 32 filters with a size of
7x7 and a stride of 2x2. The second convolutional layer uses 64
filters with a size of 5x5 and stride of 1x1. The third layer uses
128 filters with a size of 3x3 and stride of 1x1. Following this
first block of layers is an average pooling layer. The next 3
convolution layers use 256, 512, and 1024 filters, respectively,
all with a size of 3x3.

Global average pooling is used before the fully connected
layers. Each fully connected layer has 1024 nodes and uses L2
regularization. Dropout layers are used with a rate of 50% in
order to reduce overfitting. Finally, a SoftMax layer is used to
output the 5 KL categories. The convolutional layers used [He
initialization [SJ2][3 6]. During training, the model uses the Adam
optimizer with a learning rate of 0.0001, a batch size of 64, and
early stopping based on validation loss.

Scale to Target Size

Crop of Pinky DIP

Fig. 3. A small finger joint is scaled in place to fit the target width size.

Preprocessed Image Data

!

Convolution2D (32, 7«7) / Activation (ReLU)

Convolution2D (64, 5%5) / Activation (ReLU)
Convolution2D (128, 3%3) / Activation (ReLU)

Average Pooling

i

Convolution2D (256, 3%3) / Activation (ReLU)

Convolution2D (512, 3x3) / Activation (ReLU)

Convolution2D (1024, 3x3) / Activation (ReLU)

Global Average Pooling

!

Fully Connected (1024)
Dropout (50%)
Fully Connected (1024)
Dropout (50%)

SoftMax

Fig. 4. The CNN architecture used in this study.

The model was built in Python using the Keras library with
TensorFlow as the backend. The study was performed using a
high-performance computer with a NVIDIA Tesla V100 32G
GPU. Training time averaged 81 minutes.

III. EXPERIMENT AND RESULTS

Given the imbalance in our dataset, besides the commonly
used overall accuracy, we employed the Mathews correlation
coefficient (MCC) as evaluation metrics in the discussion of our
results. For binary classification, the formula for MCC [37] can
be seen in equation (1). Here TP is the true positive count, TN is
the true negative, FP being the false positive, and FN being the
false negative.

tpxtn—fpxfn
(O]

MCC = e rmapt s @

While originally proposed for binary classification, MCC
was extended to multiple categories [38]. For multiple
categories, MCC is defined as a confusion matrix C for K
categories and can be described using the following intermediate
variables [39]:

et = 3% €y The number of times k truly occurred.
e p, =YX C,; The number of times k was predicted.
e ¢ =YK (4 The total correctly predicted samples.
e s=YK 3% C;; The total number of samples.
The MCC formula for multiple categories is:
cxs=3K pyxt

MCC = — SR PiXte
j(sZ—z§ pRIx(s2-3K tB)
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Having trained models for both binary OA/non-OA
classification and 5-category KL classification, both formulas of
MCC will be used for evaluation. An MCC measure of 1.0
represents a perfect prediction with 0 being random and -1.0
meaning entirely incorrect. When there are more than two
categories, the minimum value will be between -1 and 0
depending on the true distribution.

A. Results for KL Classification

A validation set was used during the training of our model.
The results of the validation set can be seen in Table II.
Reviewing this result, we can see that category KL=0 was the
most accurate. This may be due to the majority of samples
having this label. Categories KL=1, KL=2, KL=3 and KL=4
were often misclassified into the next lowest category. Finally,
KL=4 with only 213 joints (0.7% of the training samples) was
difficult for our model to classify. The overall performance of
the validation set was an accuracy of 82.7% with an MCC of
0.62. Fig. 5 shows examples of different joint types with various
KL grades from the validation set. As the KL grade gets higher
(more severe OA) the space between the joints can be seen as
getting more narrow.

B. Dataset Balancing

As seen in Table 1, the training set KL=0 category has 21807
samples but KL=4 category only has 213 samples. To better
train a CNN model, we want to balance the sample across all
categroies. We experimented with downsampling the KL=0
category during training combined with oversampling of the
other KL grades. For instance, when KL=0 is limited to 5000

TABLE II. CONFUSION MATRIX FOR KL GRADES USING THE VALIDATION
SET.

]‘}:: d’ PO | Pl | P2 | P3 | P4 | Total | Ace
A0 | 4263 | 181 | 115 | 0 0 | 4559 | 93.5%
Al | 320 | 191 | 200 | o0 0o | 721 | 265%
A2 | 57 | 91 | 707 | 26 o | 887 | 79.7%
A3 3 0 46 | 15 | 4 | 168 | 68.5%
A4 1 0 4 46 | 10 | 61 | 164%

Total | 4645 | 469 | 1081 | 187 | 14 | 6396 | 82.7%

A0 denotes category is actually KL=0 while PO means predicted as KL=0 by the model.
KL=0

KL=1 KL=2 KL=3 KL=4

Fig. 5. Examples of MCP, PIP, and DIP joints with various KL grades from
the validation set.

samples, image augmentation is used on the other KL grades to
bring each up to 5000 samples and balance the dataset. Image
augmentation methods included horizontal flipping, rotation
between -20 and 20 degrees, and shifting the image horizontally
and vertically. The validation set is not changed, and the results
are in Table III. Balancing the dataset during training resulted in
the model predicting more of KL=4 and increased accuracy in
this category. However, it also caused decreased accuracy of the
other categories and the overall accuracy dropped as well. The
overall performance when limited to 10,000 is an accuracy of
82.1% with an MCC of 0.59. Performance when limited to 5,000
is an accuracy of 81.2% with an MCC of 0.57.

C. Individual Models for Different Joint Types

Our original model is trained by using all three joint types:
MCP, PIP, and DIP (see Fig. 2). We additionally trained three
separate models where each model processed a single joint type.
The results of each individually trained model as well as the
combined model can be seen in Table IV. In the dataset, there
are few cases where the MCP joints have a grade of KL=4 with
most being KL=0. PIP joints also have few KL=4 cases. The
DIP joints have the most diverse types of KL grades. A
reflection of the KL grade distribution can be seen in the MCC
scores for each joint type. The overall performance of the MCP
trained model was an accuracy of 93.3% with an MCC of 0.56.
The PIP trained model had an accuracy of 76.7% with an MCC
of 0.54. The DIP trained model had an accuracy of 78.6% with
an MCC of 0.64. Using the best MCP, PIP and DIP trained
models there was a slight increase in performance versus a single
model trained on all three (82.9% vs. 82.7%). In summary,
combining the three best individual models had a slightly higher
accuracy of 82.9% than the original one-model-for-all while the
MCC dropped slightly from 0.62 to 0.61.

TABLE IIL ACCURACY FOR KL GRADES WHEN DOWNSAMPLING KL=0
SAMPLES DURING TRAINING (MCC IN PARENTHESES).
Original Limited to: Limited to:
KL Grade Dataset 10000+ AUG | 5000 + AUG
KL=0 93.5% 94.4% 93.8%
KL=1 26.5% 20.3% 27.2%
KL=2 79.7% 73.1% 65.2%
KL=3 68.5% 73.2% 65.5%
KL=4 16.4% 45.9% 54.1%
Overall 82.7% 82.1% 81.2%
(0.62) (0.60) (0.57)
TABLE IV. ACCURACY FOR KL GRADES WHEN INDIVIDUALLY TRAINING

EACH JOINT TYPE (MCC IN PARENTHESES).

KL | Original | PIP DIP | Combined
Grade
KL=0 | 935% | 982% | 912% | 93.3% 94.7%
KL=1 265% | 250% | 348% | 30.9% 32.2%
KL=2 | 797% | 67.1% | 69.6% | 73.0% 71.3%
KL=3 | 685% | 42.1% | 387% | 78.0% 66.7%
KL=4 16.4% 0.0% 0.0% 15.0% 9.8%




KL Original :

Grade Method MCP PIP DIP Combined
Overall 82.7% 93.3% 76.7% 78.6% 82.9%
(0.62) (0.56) (0.54) 0.64) (0.61)

D. Transfer Learning

We compared our custom model built for this study with
classic CNN architectures. Table V shows the performance of
our model against VGGI16 [40], ResNet50 [41], and
DenseNet121 [42]. We used the pre-trained ImageNet weights
for transfer learning with the final pooling and SoftMax layer set
as trainable. Using transfer learning required the images to be
scaled to 224x224 as well as copying the grayscale images into
additional channels to form a RGB image. VGG16 classified
most joints into KL=0 with some as KL=2. ResNet50 classified
almost all samples into KL=0. DenseNet121 had the highest
accuracy of these classic architectures as well as the best
distribution of classification of KL grades, but the accuracy is
still lower than that of the proposed custom model.

E. Non-0O4 /04

Using the KL grade, a 2-category classification of non-OA
(KL < 1) and OA (KL > 2) can be determined. We additionally
trained a model with 2-category input by pre-processing the 5-
category input into 2-categories of non-OA and OA. The results
of the model trained on 2-categories can be seen in Table VI.
For comparison, we also trained the previously mentioned
classic architectures described in section III.D on 2-categories
using transfer learning. The receiver operating characteristic
(ROC) curves of our model and the classic CNN architectures
are plotted in Fig. 6. Our model outperformed the other models
with an AUC score of 0.965.

TABLE V. ACCURACY FOR KL GRADES USING CLASSIC CNN
ARCHITECTURES WITH TRANSFER LEARNING (MCC IN PARENTHESES).
KL Grade Custom VGG ResNet DenseNet

Model
KL=0 93.5% 97.8% 99.7% 95.6%
KL=1 26.5% 0.3% 0.0% 4.9%
KL=2 79.7% 33.6% 1.1% 58.3%
KL=3 68.5% 31.0% 0.0% 54.2%
KL=4 16.4% 14.8% 0.0% 32.8%
Overall 82.7% 75.4% 71.3% 78.5%
(0.62) (0.35) (0.04) (0.48)
TABLE VL CONFUSION MATRIX FOR NON-OA/OA USING 2-CATEGORY
INPUT FOR THE VALIDATION SET.

Act\Pred Non-OA OA Total Acc
Non-OA 5126 154 5280 97.1%
OA 292 824 1116 73.8%
Total 5418 978 6396 93.0%

Receiver operating characteristic

104
0.8
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I}
o
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g 0.4
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= Our Model, AUC=0.965
024 DenseNet, AUC=0.923
= VGG, AUC=0.873
—— ResNet, AUC=0.774
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Fig. 6. ROC curves for non-OA/OA classification using the validation set.

F. Hand OA

In the previous sections, individual joints were evaluated to
determine if they had OA. Having overall hand OA is
determined by the presence of OA in more than one finger. Fig.
7 shows a hand without hand OA. The joints can all be seen to
have good spacing and are graded with KL < 1. Fig. 8 shows a
hand with hand OA. Joints marked in red have a grade of KL=4
with orange indicating KL=3 and yellow meaning KL=2. Joints
marked in green are KL=0. The example hand had no joints with
KL=1. It can be seen that there is OA (KL > 2) on more than one
finger. Using the joint classification model and noting the
location of the joints we were able to evaluate our model in
classifying hand OA. The results in Table VII show the
performance for OA classification at the hand level.

Fig. 7. Hand without OA. Joints can be seen to have good spacing.



Fig. 8. Hand with OA due to the presence of OA on more than one finger.
Joints marked in red are graded KL=4. Orange are KL=3. Yellow are KL=2.
Green are KL=0.

TABLE VIIL CONFUSION MATRIX FOR HAND NON-OA/OA USING POST
PROCESSED 2-CATEGORY VALIDATION SET.
Act\Pred Non-OA OA Total Acc
Non-OA 286 24 310 92.3%
OA 41 182 223 81.6%
Total 327 206 533 87.8%

G. Additional Metrics and Post-processed Results From 5-

category Model

We’d like to evaluate the joint OA/non-OA classification
model and hand OA/non-OA classification model using more
evaluation metrics in this section. In addition, for each
classification task, besides training a new model as we did
above, we can also post-process the results from the 5-category
classification model using threshold KL=2, i.e., KL < 1 is non-
OA and KL > 2 is OA. By post-processing the confusion matrix
of the validation set from Table II into 2-categories, we can
evaluate the model’s performance for classifying non-OA and
OA, at both joint level and hand level. Table VIII shows
additional metrics including precision, recall, and F1 score. For
individual joint classification of OA, the post-processed 5-
category classification model had a better recall (sensitivity)
over the 2-category model, while the overall accuracy is similar.
Since sensitivity is a particularly important metric for medical-
related decision-making systems, we’d like to bring the different
performances of different models into the audience’s attention.
A high sensitivity or recall means the model is less likely to miss
a positive case, while a high precision means the model is less
likely to generate a false positive. Precision was higher when
using the 2-category model on the individual joints. Similarly,
for hand OA, although having the same overall accuracy, post-
processed S-category classification model had higher recall
while 2-category model had higher precision.

TABLE VIIL ADDITIONAL METRICS FOR JOINT-LEVEL AND HAND-LEVEL
OA CLASSIFICATION USING THE VALIDATION SET.

Method

Joint OA
classification using
post-processed 5-
category model
Joint OA

classification using 0.84 0.74 0.79 0.75
2-category model

Hand OA
classification using
post-processed 5-
category model
Hand OA
classification using
post-processed 2-
category model

Precision Recall F1 McCC Acc

0.75 0.86 0.80 0.76 | 92.5%

93.0%

0.81 0.92 0.86 0.76 87.8%

0.88 0.82 0.85 0.75 87.8%

H. Testing Set

A testing set was set aside to the end of the study and was
not seen by the models during the training process. The results
are presented in Table IX. The performance of the proposed
model is consistent with the validation set seen in Table II
indicating the good generalizability of the model. The overall
performance on the testing set was an accuracy of 82.7% with
an MCC of 0.61 for 5 KL category classification at the joint
level.

We continue to test the OA/non-OA model at joint level with
the results presented in Table X. The ROC curve for the testing
set can be seen in Fig. 9, with an AUC score of 0.966. The
corresponding results on the validation set are in Table VI.
Finally, we evaluated the hand level classification on the testing
set through post-processing the results from Table IX (5-
category model) and post-processing the results from Table X
(2-category model). The hand level OA/non-OA classification
performance is presented in Tables XI and XII. Again, a similar
performance of the validation set was presented by the testing
set.

TABLE IX. CONFUSION MATRIX FOR KL GRADES USING THE TESTING
SET.

';:ZC: PO P1 P2 P3 P4 Total Acc
A0 4313 188 80 0 1 4582 | 94.1%
Al 321 184 200 1 0 706 26.1%
A2 65 118 678 34 0 895 75.8%
A3 1 0 45 105 4 155 67.7%
A4 1 ‘ 0 2 44 11 58 19.0%

Total | 4701 490 1005 184 16 6396 82.7%

A0 denotes category is actually KL=0 while PO means predicted as KL=0 by the model.

TABLE X. CONFUSION MATRIX FOR NON-OA/OA USING 2-CATEGORY
INPUT FOR THE TESTING SET.
Act\Pred Non-OA OA Total Acc
Non-OA 5154 134 5288 97.5%
OA 322 786 1108 70.9%




Act\Pred Non-OA OA Total Acc
Total 5476 920 6396 92.9%

Receiver operating characteristic
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Fig. 9. ROC curve for non-OA/OA classification using the testing set.

TABLE XI. CONFUSION MATRIX FOR HAND NON-OA/OA USING POST
PROCESSED 5-CATEGORY TESTING SET.

Act\Pred Non-OA OA Total Acce
Non-OA 275 46 321 85.7%
OA 15 197 212 92.9%
Total ‘ 290 243 533 88.6%

TABLE XII.  CONFUSION MATRIX FOR HAND NON-OA/OA USING POST
PROCESSED 2-CATEGORY TESTING SET.

Act\Pred Non-OA OA Total Acc
Non-OA 299 22 321 93.1%
OA 39 173 212 81.6%
Total 338 195 533 88.6%

IV. CONCLUSION

In this paper, we proposed a machine-learning-based method
to classify the KL grade of individual hand joints as well as non-
OA/OA for the whole hand. Our custom CNN model
outperformed classical CNN architectures using transfer
learning. Our best performance for 5-KL-category joint
classification using the testing set was an accuracy of 82.7%
with an MCC of 0.61. For 2-category OA/non-OA joint
classification, the accuracy was 92.9%, with an MCC of 0.74
and an AUC score of 0.966. After post-processing the joint level
classification results, hand level OA/non-OA classification
using post-processed S5-category and 2-category both had an
overall accuracy of 88.6%. Future work includes reducing
misclassification of boundary categories KL=1 and KL=2 as
well as further exploring better solutions for the imbalanced
dataset.
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