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Abstract—In high-level Autonomous Driving (AD) systems,
behavioral planning is in charge of making high-level driving
decisions such as cruising and stopping, and thus highly security-
critical. In this work, we perform the first systematic study of
semantic security vulnerabilities specific to overly-conservative
AD behavioral planning behaviors, i.e., those that can cause
failed or significantly-degraded mission performance, which can
be critical for AD services such as robo-taxi/delivery. We call
them semantic Denial-of-Service (DoS) vulnerabilities, which we
envision to be most generally exposed in practical AD systems due
to the tendency for conservativeness to avoid safety incidents. To
achieve high practicality and realism, we assume that the attacker
can only introduce seemingly-benign external physical objects to
the driving environment, e.g., off-road dumped cardboard boxes.

To systematically discover such vulnerabilities, we design
PlanFuzz, a novel dynamic testing approach that addresses var-
ious problem-specific design challenges. Specifically, we propose
and identify planning invariants as novel testing oracles, and
design new input generation to systematically enforce problem-
specific constraints for attacker-introduced physical objects. We
also design a novel behavioral planning vulnerability distance
metric to effectively guide the discovery. We evaluate PlanFuzz
on 3 planning implementations from practical open-source AD
systems, and find that it can effectively discover 9 previously-
unknown semantic DoS vulnerabilities without false positives.
We find all our new designs necessary, as without each design,
statistically significant performance drops are generally observed.
We further perform exploitation case studies using simulation
and real-vehicle traces. We discuss root causes and potential fixes.

I. INTRODUCTION

Today, various companies are developing high-level (e.g.,
Level-4 [1]) Autonomous Driving (AD) vehicles. Some of
them, e.g., Google Waymo [2], TuSimple [3], and Pony.ai [4],
are already providing services on public roads. To enable
such highly-automated driving, after the environmental sensing
steps such as perception and localization, the AD systems
need to use the sensed information to make high-level driving
decisions such as cruising, stopping, lane changing, etc., that
not only are safe and efficient, but also conform to driving
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norms such as traffic rules. Such a decision-making process is
commonly referred to as behavioral planning, which is highly
security critical as any mistakes made in it can directly lead to
undesired driving behaviors such as driving too aggressively
to cause collisions, or too conservatively to cause unnecessary
emergency stops and road blocking. Various prior works stud-
ied security vulnerabilities in AD systems with such semantic
consequences [5-9], but they mostly focus on environmental
sensing errors (e.g., camera/LiDAR object detection [6-9])
instead of planning. There are recent works able to discover
semantic planning errors [10], but they (1) are designed for
whole-system testing instead of being planning-specific; (2)
only consider overly-aggressive behaviors, leaving the overly-
conservative side unexplored; and (3) focus on safety instead
of security (i.e., lack explicit threat model considerations).
To fill this research gap, in this paper we perform the
first AD planning-specific semantic vulnerability discovery.
We specifically choose to focus on the more under-explored
overly-conservative behavioral planning behaviors, especially
those that can cause the victim AD vehicle to have a failed or
significantly-degraded mission performance (e.g., permanent
stop and never reach the destination). We refer to these as se-
mantic Denial-of-Service (DoS) vulnerabilities for behavioral
planning. We envision that such vulnerabilities can be most
generally exposed in practice, based on the hypothesis that
behavioral planning in real-world AD systems, especially in
production settings, will generally try to be as conservative
as possible to avoid any possible safety incidents, which can
cause great business reputation and financial damages as in
recent fatal accidents for Uber and Tesla [11-14]. In fact, such
overly-conservative behaviors have already been observed for
many production AD vehicles (e.g., Waymo, Uber, Volvo [15-
20]), causing troubles to AD service and traffic flow (§II-B).
Considering the realism and generality of such problems
in practice, we set our goal to develop an automated sys-
tem to systematically discover such vulnerabilities to most
generally help address these problems at the AD system
development stage. To achieve high practicality and realism,
we assume that the attacker can only introduce seemingly-
benign external physical objects to the driving environment,
e.g., dumped cardboard boxes or parked bikes on the road side,
attacker-driven vehicles, etc. Dynamic testing is a promising



approach to achieve domain-specific vulnerability discovery
in general [21-28]. However, none of the existing designs
can be directly applied to our problem due to several unique
design challenges specific to our problem definition: (Cl)
Lack of testing oracles to tell whether a change of a plan-
ning decision is overly conservative or not. For example,
directly putting obstacles ahead of the victim to cause DoS
is not a vulnerability for behavioral planning; (C2) Need to
systematically generate attacker-introduced physical objects
following problem-specific physical constraints, e.g., avoiding
road regions directly ahead of the victim as explained above;
and (C3) Need to obtain fine-grained code-level feedback from
the planning decision-making process to guide our vulnera-
bility discovery, which is highly desired for us as the direct
behavioral planning output is usually quite discrete (§III-B).

To achieve our goal, we design PlanFuzz, a novel dynamic
testing approach that systematically addresses the aforemen-
tioned design challenges in an evolutionary testing framework.
To address C1, we propose and identify Planning Invariant
(PI) as the problem-specific testing oracle, which defines a
set of constraints for the attacker-introduced physical objects
based on common driving norms such that if satisfied, the
behavior planning should not give up the desired planning
decision. To address C2, we design Pl-aware physical-object
generation, which can systematically enforce the generated
testing inputs to conform to both driving norms (e.g., traffic
rules) and the PI constraints above, while maintaining diversity
and inheritance properties desired for evolutionary testing.
To address C3, we design behavioral planning vulnerability
distance to measure how close the current planning decision
is to violate PI and thus trigger a vulnerability in the run time.

We implement a prototype of PlanFuzz and evaluate it
on 3 different behavioral planning implementations from two
open-source AD systems, Apollo [29] and Autoware [30],
which are both practical AD systems with full-stack imple-
mentations [31,32]. We use LGSVL, an industry-grade AD
simulator, to generate diverse driving scenarios, which allows
us to obtain 11,912 different initial testing seeds in total
for 8 different driving scenarios. Using PlanFuzz with these
seeds, all 3 behavioral planning implementations are found
vulnerable, with 9 previously-unknown semantic DoS vulner-
abilities discovered in total. Among them, 8 can prevent the
victim from reaching the destination (7 can cause permanent
stop), and the remaining 1 can cause emergency stop. We
also perform baseline comparisons by replacing different key
components in our design, which shows statistically significant
performance drops for almost all of the 9 vulnerabilities,
leading to over 3.5x average slow-down or even failure in
their discoveries. We also manually verified the discovered
vulnerabilities and no false positives are generated.

To concretely understand the end-to-end impacts of the
discovered vulnerabilities, we further perform 3 vulnerability
exploitation case studies by constructing and evaluating real-
world attack scenarios using simulation and real-vehicle sensor
traces. The results show that the discovered vulnerabilities
can cause the AD vehicle running Apollo or Autoware to (1)

permanently stop in an empty road or in front of an empty
intersection due to completely off-road cardboard boxes or
parked bikes; or (2) give up necessary lane changing purely
due to a following vehicle without any intention to change
lanes. Demos are at our website https://sites.google.com/
view/cav-sec/planfuzz [33]. We also discuss root causes and
potential fixes. We also release our code at our website [33].

In summary, this work makes the following contributions:

« To the best our knowledge, we are the first to perform AD
planning-specific semantic vulnerability discovery. We
focus on semantic DoS vulnerabilities, which can damage
the availability of AD services. We formulate the problem
with a domain-specific vulnerability definition and a
practical threat model that only allows adding seemingly
benign physical objects to the driving environment.

o To systematically discover the vulnerability, we design
PlanFuzz, a novel dynamic testing approach that ad-
dresses various problem-specific design challenges: (1)
propose and identify PIs as the testing oracle, (2) design
a novel Pl-aware physical object generation to systemat-
ically enforce problem-specific input constraints; and (3)
design a novel behavioral planning vulnerability distance
metric to effectively guide the discovery.

e We evaluate PlanFuzz on 3 planning implementations
from two practical open-source AD systems. We find that
PlanFuzz can effectively discover DoS vulnerabilities in
all 3 implementations without incurring false positives. In
total, 9 previously-unknown semantic DoS vulnerabilities
are discovered, which can all be exploited to either
prevent the victim from reaching its destination or cause
an emergency stop. We find all our main designs are
necessary, as without each design, statistically significant
drops in performance are generally observed.

o We further perform 3 vulnerability exploitation case stud-
ies using simulation. The results show that the discovered
vulnerabilities can cause the AD vehicle to unnecessarily
stop permanently or give up necessary driving decisions.
We also discuss root causes and potential mitigations.

II. BACKGROUND & PROBLEM DEFINITION

A. Behavioral Planning (BP) in AD Systems

AD planning. In high-level (e.g., Level-4 [1]) AD systems,
planning is a critical module designed to generate safe, effi-
cient, and smooth driving trajectories to reach the destination.
In industry-grade AD, such a module typically adopt a 3-layer
design: route planning, behavioral planning (BP), and local
planning [29, 30, 34-40]. Given the destination, route planning
selects a route from the map. To follow the selected route while
ensuring safety and correctness (e.g., conform to traffic rules),
BP then makes high-level driving decisions such as cruising,
stopping, lane changing, etc. based on the real-time driving
environment. For example, when the AD vehicle needs to pass
a signaled intersection, the BP layer needs to consider both the
traffic light and the dynamic behaviors of surrounding vehicles
and pedestrians to decide whether and when to proceed. Next,
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local planning translates the high-level decisions into concrete
low-level driving trajectories (e.g., waypoints), which will then
be passed to the vehicle control module to actuate.

Our focus: AD Behavior Planning (BP). As described
above, BP is at the core of AD decision making, and thus
highly security/safety critical: any mistakes made in it can
directly lead to undesired driving behaviors such as driving too
aggressively, which can cause collisions, or too conservatively,
which can cause unnecessary emergency stops and road block-
ing. In BP, the decisions can be generated from programmed or
learned logic. There are some recent works exploring learning-
based planning [41-43], but so far they are all experimental
(e.g., designed and evaluated only for simulated racing game
setups [44—48]) and generally lack the necessary capability and
support for real-world driving (e.g., limited to only cruising
without handling intersections, cross-walks, pedestrians [48—
51], and no consideration of traffic rules [51-56]). Such a
learning-based approach is also generally known to suffer from
difficulties with debugging and interpreting [57], and enforcing
safety rules/measures [58], while the latter is especially critical
for production AD. Thus, the BP in today’s industry-grade AD
systems generally adopts programmed logic [29, 30, 59, 60].
Such program-based BP is thus also the main target of our
design, which raises design challenges as detailed in §III-B.

B. Attack Goal and Incentives

Attack goal: Semantic Denial-of-Service (DoS) of BP.
In this paper, we target an attack goal of causing semantic
Denial-of-Service (DoS) on BP, which we define as causing it
to change a normal driving decision to an overly-conservative
one so that the victim AD vehicle will have a failed or
significantly-degraded mission performance (e.g., never reach
the destination). Specifically, we focus on 2 concrete types of
such DoS in an AD context: (1) causing an emergency/per-
manent stop, and (2) causing the victim to give up a mission-
critical driving decision, such as necessary left/right turns and
lane changing on the route. To achieve this goal, in this paper
we target physical-world attack vectors in the AD context (e.g.,
adding seemingly-benign static/dynamic physical road objects,
detailed in §II-C) for high practicality and realism.

We choose to focus on causing overly-conservative driv-
ing decisions instead of overly-aggressive ones because we
hypothesize that real-world BP, especially those in production
settings, will generally try to be as conservative as possible by
design to avoid any possible safety incidents. This is based on
the fact that one single fatal crash (e.g., the Uber one [11] and
increasingly more Tesla ones [12—14]), no matter whether it is
mainly due to AD system flaws or not, can cause great repu-
tational damage, lawsuits, and business being paused or even
sold [61, 62]. In fact, such overly-conservative behaviors have
already been observed in real-world production AD, causing
troubles to AD service and traffic flows. For example, there is
a video showing the AD vehicle from Waymo, a world-leading
AD company, getting stuck by non-road-blocking traffic cones
for >10 mins [17], in the parking lot when no other moving
objects are around [15], and at an intersection resulting in
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Figure 1: Real-world overly-conservative driving behavior observed for a
Waymo AD vehicle, which got stuck in the middle of the road and force
other vehicles to borrow the reverse lane [17].

blocking normal traffic [16]. A snapshot is in Fig. 1; since
the environmental perception results are all correct according
to the in-vehicle display [17], it is highly likely caused by
planning flaws/bugs. There are more issues in the same vein
reported for Waymo, Volvo, Uber, etc. [18-20].

Problem seriousness and incentives. With the growing
deployment of commercial AD services without safety drivers
(e.g., by Waymo, Nuro, and Baidu [63-65]), such DoS prob-
lems can severely damage the availability of these services and
thus ruin their user experience, reputation, and also revenues.
It can help if remote operators are available, but such helps
are not necessarily effective. For example, in the Waymo
video above (Fig. 1), the AD vehicle called remote-operator
help twice but it actually made the problem worse, and
eventually called road assistance team to physically arrive,
causing >10min trip delay in total. Such semantic DoS may
also cause safety problems, e.g., by triggering emergency
brakes in dangerous road segments like highway exit ramps,
or blocking the road and thus forcing other vehicles to borrow
the reverse lane like in Fig. 1. Since such consequences can
at least damage the reputation of the victim AD company, one
potential attack incentive is for business competition (e.g., by
a rival AD company to unfairly gain competitive advantages).

Distinction to traditional software bugs. As illustrated
in Fig. 2, the semantic BP DoS vulnerability targeted in
this paper is a type of semantic software vulnerability for
BP, which can be caused by either software design flaws or
implementation bugs. The key distinction of such semantic
vulnerabilities to traditional software bugs is that their symp-
toms are erroneous behaviors at the BP decision logic level
(e.g., keep driving or not, change lane or not) instead of
at the generic computer program level (e.g., software crash,
memory corruption, hang). In our problem setting, since we
target physical-world attack vectors (§1I-C), the semantic BP
vulnerabilities we target further differ in that the vulnerability
triggering is via physical-world realizable perturbations (e.g.,
by adding attacker-controllable road objects) instead of generic
program input changes (e.g., bit-level value changes of BP
inputs), which is also illustrated in Fig. 2.

C. Threat Model

Attack vector: Attacker-controllable common physical-
world road objects. Fig. 2 illustrates our threat model with a
comparison to traditional software vulnerability exploitation.
Instead of directly sending malicious inputs to the program,
we assume that the attacker can only exploit semantic BP DoS
vulnerabilities via introducing common and easily-controllable
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Figure 2: Illustration of the domain-specific threat model and exploitation
symptoms of the semantic BP DoS vulnerabilities targeted in this paper, along
with their distinctions to those of traditional software vulnerabilities.

external physical-world objects to the driving environment,
e.g., dumped cardboard boxes, parked bikes on the road side,
vehicles driving on the roadway, or pedestrians walking on
road pavements. We choose such a threat model because
the attacker can more realistically launch such an attack
in a practical setting since the attacker does not need to
compromise or tamper with the internals of the victim AD
system and the objects can pretend to be benign once they
follow basic traffic laws and driving norms. In § VII-B, we also
discuss the capabilities of a stronger threat model that might
also be able to compromise the perceptional sensors. Since
this work aims at developing a systematic BP vulnerability
discovery system for AD system developers, our system design
assumes white-box access to the BP implementation.
Distinction to safety problems. Under such a physical-
world attack threat model, the attack-targeted unintended BP
decision behaviors are also possible to naturally occur in non-
adversarial settings, making them also in the scope of general
safety or robustness problems. Here, the distinction is that
we focus on the set of such unintended behaviors that are
(more) triggerable by attackers in the driving environment,
e.g., easily-controllable road objects such as cardboard boxes,
bikes, and attacker-driven vehicles, instead of weather condi-
tions and road-side building locations/shapes. Such a security
focus makes the discovered vulnerabilities arguably more
severe, since with an adversary such unintended behaviors can
be more frequently, controllably, and strategically triggered
to cause more severe real-world consequences, e.g., causing
emergency brakes in more dangerous road segments such as
highway ramps, and causing traffic blocking in mission-critical
roads such as in front of police stations or fire stations.

III. MOTIVATION AND CHALLENGES

In this section, we use a motivating example to concretely
describe the BP DoS vulnerabilities targeted in this paper and
the design challenges to systematically discover them.

A. Motivating Example

Fig. 3 shows the simplified pseudo code for a BP DoS vul-
nerability our system discovered from version 5.0 of Apollo,
an open-source industry-grade AD system [29] (also confirmed
that such vulnerability also exist in 6.0, the latest version).
This logic is from path_bounds_decider, one of the
BP decision-making steps for the lane following scenario that
checks whether the current lane has enough space in the lateral
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Figure 3: Simplified pseudo code for a semantic DoS vulnerability PlanFuzz
discovered from BP in Apollo, an industry-grade AD system [29].
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Figure 4: Illustration of (A) BP decision logic in Fig. 3; (B) its semantic BP
DoS vulnerability; (C) potential real-world exploitation of it from our end-to-
end simulation case study (§VI).

direction (left/right) for the AD vehicle to drive; if not, it
considers the lane as blocked.

Decision logic. As shown in Fig. 3 and illustrated in
Fig. 4 (A), this code maintains 2 variables, left_bound
and right_bound, to represent the leftmost and rightmost
boundaries of the drivable space for a given longitudinal
(forward/backward) position. If the space between these two
boundaries is smaller than the AD vehicle width ADC_width
(line 13), it means no drivable space laterally and thus the
current lane is blocked. The two variables are initialized with
the left and right lane boundaries (line 5). Next, it iterates
over the list of detected surrounding static obstacles, and use
the rightmost lateral boundaries (obs .max_1) of the left-side
obstacles to update 1eft_bound (line 8-9), and the leftmost
lateral boundaries (obs .min_1) of the right-side obstacles to
update right_bound (line 10-11). Such logic can thus avoid
causing the vehicle body to hit/touch the static obstacles. Here,
a lateral obstacle safety buffer (obstacle_lat_buffer,
line 2) is conservatively applied to the leftmost and rightmost
boundary calculation (line 9, 11) on top of the detected
obstacle boundaries from the perception module, to ensure that
the vehicle can keep enough distance from the obstacles.

BP DoS vulnerability. In Apollo 5.0, the obstacle safety
buffer above is set to a constant value, 0.4m, regardless of
obstacle positions in the driving environment. Meanwhile, the
minimal lane width is 2.7m in urban areas [66], and thus



static obstacles out of the boundaries of such lanes can in
the extreme case reduce the lateral drivable space between
left_bound and right_bound to 1.9m (2.7 — 0.4 x 2).
This is actually narrower than most vehicle models popularly
used for AD today, e.g., 2.11-2.14m (with mirrors) for Lincoln
MKZ, Lexus RX, Jaguar I-Pace, etc. [67-70]. As shown in
Fig. 3, the default value in Apollo is set to 2.11m (line 3). This
means that with such logic a lane can be considered as blocked
even when its designed drivable space is completely empty
with no static obstacles invading its lane boundaries. For a
single-lane road, this means that the whole road is considered
blocked and thus the AD vehicle will permanently stop at the
current lane, as illustrated in Fig. 4 (B). This is a decision
flaw for BP as such driving behavior is too conservative to
the extent that it directly violates common driving norms.
For example, the requirement that a vehicle “should never
block the normal and reasonable movement of traffic” [71],
which can result in the vehicle being cited if this requirement
is violated, especially when such a violation occurs inside a
tunnel or 15 ft within a fire station’s driveway [72].

Based on the code logic, the root cause for such an overly-
conservative BP decision flaw is in the use and setting of the
obstacle safety buffer. We found that such a flaw is not spe-
cific to Apollo: our system discovers that Autoware, another
popular open-source full-stack AD system [30], has similar
flawed BP logic even though the concrete implementation is
quite different from Apollo’s. Also, Autoware is even more
conservative in such buffer settings (§V-B). This thus conforms
to our general design hypothesis in §1I-B that BP for practical
AD systems tends to be as conservative as possible, leading
to a general susceptibility to semantic DoS vulnerabilities.

Exploitation. To exploit this vulnerability in the real world,
an attacker simply needs to prepare 2 easy-to-carry static
objects that are not too uncommon in road regions, e.g.,
cardboard boxes, and place them close to but still off the lane
boundaries on each side of a single-lane road, as illustrated
in Fig. 4 (B). This is seemingly benign as these boxes are
not blocking road and such randomly-dumped garbage on
road side is not entirely uncommon. However, it can cause
the AD vehicle with the vulnerable BP logic above to get
permanently stuck at this road position and block traffic. Note
that these 2 boxes do not have to be at exactly the same
longitudinal position; from the code, they can be up to Sm
(in the latest Apollo version) apart in longitudinal direction
while still causing such a permanent stop decision, which can
make such exploitation look more benign and thus stealthier.
We did not include such longitudinal direction logic in Fig. 3
for the ease to understand the key vulnerable logic. Fig. 4 (C)
shows a snapshot of our end-to-end simulation case study of
this exploit for Autoware (detailed in §VI). As shown, the two
boxes are clearly off road and far from blocking the road, but
the AD vehicle is forced to permanently stop there.

B. Design Challenges

Motivated by the concrete example above and similar prob-
lems observed in real-world production AD settings today

(§II-B), it is highly desired to develop a systematic approach
to discover such BP DoS vulnerabilities at the AD system
development stage so that the developers can proactively find
and fix them before deployment.

Recently, property-based testing have achieved great success
in discovering safety violations in AD software [10, 28, 73—
77]. We follow the same general framework to develop a tool
which can systematically discover DoS vulnerabilities in AD
software. In the motivating example, the property we aim to
falsify can be formally expressed as:

IsSafetoDrive — —Stop (1)

The above property indicates that when the current lane is
safe to drive, the vehicle should be able to normally follow
the lane instead of getting stuck by irrelevant physical objects.
Even though the property seems to be simple at the first glance,
none of previous works can be directly applied to solve this
problem due to the following design challenges:

C1. Lack of testing oracles for semantic DoS vulnera-
bility in BP. For our vulnerability definition (§II-B), a key
challenge is how to judge whether the current situation is safe
to perform a certain planning behavior. For example, in our
motivating example in §III-A, we need to decide the value of
predicate IsSafetoDrive in Eq. 1. Previous works [10, 28, 73—
75] focus on the safety properties, especially collision, which
can be directly extracted from official documentations or easy
to define. But when it comes to studying DoS properties,
there is no clear boundary of whether it is safe for the
vehicle to drive due to the uncertainty and complexity of the
environment. The first challenge is that we need to concretize
the predicate IsSafetoDrive in Eq. 1 into expressions which
can be directly computed from planning inputs.

C2. Need to systematically generate attack inputs follow-
ing complicated problem-specific physical constraints. To
discover our BP DoS vulnerability, the dynamic testing process
needs to effectively generate attacker-introduced physical-
object properties (e.g., positions) that can (1) follow basic
traffic rules and driving norms as required in §II-C to achieve
high attack practicality and stealthiness, e.g., a moving attack
vehicle should drive in a lane following the road direction,
instead of on pavements or in the wrong direction; and (2)
make sure the value of predicate IsSafetoDrive is true, since
we can only find counterexamples when this predicate is
true. Both constraints require to resolve complicated problem-
specific geometry constraints; the closest solution so far is
from Scenic [78], which can generate test inputs within several
generic geometric constraints in AD context (e.g., certain
distances of a road object to curb). However, it still cannot
address the more complicated ones specific to our problem
context. For example, since we specifically want to generate
road objects that should not affect the ego vehicle driving
decision, their geometry constraints are inherently dependent
on the planned trajectory of the ego vehicle, e.g., cannot be on
or have any intention to move to any lanes that the ego vehicle
plans to drive on (PI-C1, C4, C5 in Table I). However, Scenic’s
current design does not consider such dependencies.



C3. Need to obtain more fine-grained feedback from
the planning decision-making code level (i.e., decision
code branches) to guide our vulnerability discovery. For
automated software vulnerability discovery in general, existing
dynamic testing methods popularly obtain code-level feedback
to guide the discovery process, which shows superior effec-
tiveness over treating the software as a black-box [79-83].
In the general CPS testing domain, prior works have used
quantitative feedback such as the robustness metrics to guide
testing [28, 76], but such a guidance still treats the code-level
decision logic (i.e., decision-making code branches) as black-
box, which thus cannot provide guidance once the overall
planning output stays unchanged. In our problem setting, it is
desired if we can improve this with more fine-grained code-
level guidance such as the distance between the current inputs
and the planning decision boundary at the code branch level.
For example, in Fig. 3, the guidance can be more effective
if we can leverage the value distance between left_bound
and right_bound at the decision code branch at line 13.

IV. DESIGN: PLANFuUZZ

In this paper, we are the first to address the 3 challenges in
§III-B by designing an automated approach to systematically
discover BP DoS vulnerabilities (§II-B), called PlanFuzz.

Design goal. The goal of PlanFuzz is to discover previously-
unknown semantic DoS vulnerabilities defined at the BP
decision code level (an example is in §III-A). Note that
our current focus is not on the comprehensive identification
of the triggering scenarios for the discovered vulnerabilities;
nevertheless, a few concrete triggering scenarios will come
with the discovery to provide the vulnerability triggerability
since we adopt a dynamic testing framework (detailed below).

A. Overview of Key Designs

At a high level, PlanFuzz follows an evolutionary test-
ing framework, which is widely adopted by prior works on
domain-specific vulnerability discovery with high generality,
effectiveness, and efficiency [21,26,84-86]. To address the
challenges in §1II-B, the following key designs are introduced:

Planning Invariant (PI) as testing oracle. To address C1,
we propose Planning Invariant (PI) as the problem-specific
testing oracle for BP DoS vulnerabilities. PI has 3 compo-
nents: planning scenario, constraints for physical objects, and
desired planning behavior, which together define an invariant
property for BP: In a planning scenario, the BP output should
always conform to the desired planning behavior as long
as the PI constraints for surrounding physical objects are
satisfied. For example, for our motivating example in §III-A,
the planning scenario is lane following; the PI constraints for
physical objects are that the surrounding physical objects are
all static and located outside the lane boundaries; the desired
planning behavior is that the AD vehicle should keep driving
forward. Such invariant properties are derived from common
driving norms (e.g., off-road static obstacles should not be
considered as blocking the road, detailed in §IV-C) so that its
violations can be used to tell an overly-conservative decision.

PI-aware physical-object generation. To address C2, we
need to design physical-object generation methods that con-
form to both the driving norms (e.g., traffic rules) and PI con-
straints above given a planning scenario and desired planning
behavior. A direct solution direction is to directly generate
random physical-object properties within these constraints.
However, generating them following a random distribution
is very difficult since these constraints are quite irregular
in the real world (e.g., curvy and zigzag road boundaries),
not to mention the problem-specific constraints due to the
dependence on the planned trajectory of the ego vehicle
(SIII-B). To address this, our strategy is to first generate objects
without considering these constraints, and then add a PI
constraint enforcement step afterwards to adjust its properties
(e.g., positions) for conformation. Specifically, here different
PI constraint enforcement operators are designed following
the diversity and inheritance principles desired for the random
input generation step in genetic algorithms [87].

BP vulnerability distance. To overcome C'3, we design BP
vulnerability distance as the code-level feedback to measure
how close the current BP execution is to violate a PI and thus
trigger a BP DoS vulnerability. Specifically, such a distance
is defined based on the control- and data-flow differences
between the current executed code path and its closet path
to a set of attack target positions, which are code positions
indicating violations of the PI (for example, the callsite of API
BuildStopDecision). To facilitate its run-time calculation dur-
ing the dynamic testing, we first perform an off-line analysis
of the BP code to (1) identify the key predicates that the attack
target positions control- and data-dependent on, and compute
information that can be pre-calculated about their run-time
control- and data-flow distances to the target positions, which
forms a BP vulnerability distance profile; and (2) instrument
these predicates to collect their execution status, called BP
vulnerability trace, in the run time. During the testing, based
on the execution status of these key predicates collected in BP
vulnerability trace, the control- and data-flow distances of the
executed key predicates are calculated with the pre-computed
information from BP vulnerability distance profile, which are
then combined to calculate the final vulnerability distance.

Next, we describe the whole PlanFuzz system design incor-
porating these key designs, and then provide details for each.

B. PlanFuzz System Design

System input and output. Fig. 5 shows an overview of
PlanFuzz system with the key designs above. As shown, the
whole PlanFuzz system requires 3 inputs: (1) BP source code
(we assume it is avaiable since PlanFuzz is designed for
AD developers); (2) BP input traces (including map) for the
planning scenarios of interest; and (3) a set of PIs for these
scenarios. The output is a set of test inputs that can trigger
a BP DoS vulnerability. The AD developers can then utilize
them to identify the vulnerable code logic and analyze root
causes, with the goal of developing vulnerability fixes.

Manual efforts. Three types of manual efforts are required
for using PlanFuzz: (1) Collecting BP input traces for the
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Figure 5: Overview of PlanFuzz, our automated approach for systematically discovering BP DoS vulnerabilities in AD systems.

targeted scenarios. Since PlanFuzz is designed for AD de-
velopers, we assume they have access to such traces from
their AD system testing or operations; (2) identifying PIs for
these targeted scenarios. Note that such identification is an
one-time effort and there are general ones applicable across
multiple scenarios identified later in §IV; and (3) identifying
and annotating the attack target positions in the source code.
For AD developers, we assume they can have high-level
knowledge of the BP code (e.g., BP decision APIs and state
variable class) to identify these based on the desired planning
behavior of PI and the state variables associated with the
scenarios. In our experiments, it took less than 50 lines in
total and less than 1 hour of manual efforts for an author who
is experienced with the AD planning code.

System framework. With the inputs above, the vulnera-
bility discovery process has 2 phases as shown in Fig. 5:
(1) offline analysis and instrumentation, and (2) online BP
vulnerability testing. On the left side of Fig. 5, the offline
phase takes the BP source code and attack target positions
based on PIs, and generate the BP vulnerability profile and
instrumented BP code. On the right side of Fig. 5, the online
phase follows the evolutionary testing framework in which
each single physical object is considered as a “gene”. It
customizes each component of a genetic algorithm: (1) fitness,
for which we use the run-time BP vulnerability distance to
measure how close a BP execution is to trigger a BP DoS
vulnerability. It is calculated by executing the instrumented
BP code in the planner executor and the fitness calculator
in Fig. 5; (2) mutation and crossover, for which we use the
PI-aware physical-object generation to mutate and exchange
physical objects; (3) seed selection, for which we select test
cases with smaller BP vulnerability distances as the new seeds.

To get started, the planner executor extracts the input frames
corresponding to each BP decision from the BP input trace,
and then feeds these frames to the instrumented BP code.

Table I: General PI (Planning Invariant) constraints across different driving
scenarios from the full list of PIs identified and used in this paper (Table IV).

Physical object type
Static obstacle (cardboard
boxes, parked bikes, etc.)

Vehicle

PI constraints for physical objects
PI-Cl. StaticOf f Road(x)

PI-C2. IsFollowingV ehicle(x)
PI-C3. IrrevalentVehicle(x)
PI-C4. StaticO f f Road(x)
PI-C5. DynamicO f f Road(x)

Pedestrian

To maintain the consistency of internal BP states, we record
a snapshot of the internal state variables beforehand for the
initial seed, and recover it before feeding the testing inputs
later. During the testing, the BP DoS vulnerability checker
determines whether a certain generated testing case violates
the PI; if so, it outputs the discovered vulnerability.

C. Planning Invariant

As introduced in §IV-A and shown in Fig. 5, each PI
has 3 components: planning scenario, constraints for physical
objects, and desired planning behavior, which together form
the BP invariant properties that concretely define the overly-
conservative BP decisions. In this paper, we consider 8 dif-
ferent planning scenarios commonly supported by industry-
grade AD systems [29, 30, 88], covering various basic real-
world driving scenarios, e.g., lane following, lane changing,
intersections with stop signs and traffic signals, lane bor-
rowing, bare intersection, and parking. The full list is in
Table IV. Since we target semantic DoS vulnerabilities, the
desired planning behavior for each scenario is usually to just
keep the intended driving behavior, e.g., keep cruising for lane
following, keep moving to pass the intersection, and finish the
lane-change/borrow/parking actions.

Given a planning scenario and the desired driving behavior,
the next is to identify the physical-world constraints of the
attacker-introduced physical objects such that if satisfied,
the BP logic should not give up the desired driving



behavior. We derive such constraints conservatively based
on common driving norms, e.g., descriptions from the
driver’s handbook [71] such as those quoted in §III-A.
Specifically, in this paper we focus on the general constraints
that are applicable to multiple driving scenarios, which are
summarized in Table I and denoted as PI-C. For example,
for static obstacles such as cardboard boxes and parked
bikes, the ones that are completely off-road and without
any violation of the boundaries of the lanes, which the AD
vehicle plans to drive on, should generally not cause the
BP logic to give up lane following, changing, borrowing,
or passing an intersection. For pedestrians and vehicles, the
ones moving in their commonly-designated regions (e.g.,
off-road pavement for pedestrians, and traffic lanes for
vehicles) without showing any intention to move towards
the AD vehicle or the lane regions the AD vehicles plans to
drive one should not give up those desired driving decisions.
Here for the simplicity, we define a list of functions
StaticO f f Road(x), DynamicO f froad(x), FollowVeh
icle(z), IrrevalentVehicle(z) to express the geometry
relationship between the road network, the trajectory of
a certain physical object z, and the trajectory of the AD
vehicle. The complete set of PI-Cs for all planning scenarios
and the formal definitions of the functions are in Table IV in
Appendix. With the defined PI-Cs, we are able to concretize
the high-level property in Eq 1 into the following format to
describe the property in lane following scenario:

StaticCons(x) := (x.type == Static) — (StaticO f f Road(x))
VehicleCons(z) := (z.type == Vehicle) —
(FollowVehicle(x) V IrrelevantV ehicle(x)
PedestrianCons(z) := (z.type == Pedestrian) —

(DynamicO f froad(z) V StaticO f f Road(x))
Nzeo ((StaticCons(z)) A (VehicleCons(x))

A (PedestrianCons(x)) — —Stop
@
Here O is the set of physical objects and z is a physical object
in the set. We define the constraints for each type of objects

and merge them in the end to define the availability property.

D. Pl-aware Physical-Object Generation

After concreting the property, the next step is to generate
the inputs that can always satisfy the constraints in planning
invariant. In other words, we want to make sure that the left
side of Eq. 1 is always true. We design Pl-aware physical
object generation to satisfy this requirement. Due to the page
limit, we leave most of the details in our extended version [89].
The input generation contains three main steps:

Static property initialization and mutation. In this step,
we first randomly generate the static properties of the objects,
e.g., position, type, and size, without considering PI-Cs during
the testing input initialization and mutation processes. For each
generated physical object, we will assign an appropriate size
given the randomly generated object type.

PI-constraints enforcement. The second step is to change
the position and heading of each physical object to enforce
the position correctness for each object. The high-level idea
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Figure 6: Illustration of the benefit of our BP vulnerability distance design
compared to other fitness function choices.

of this enforcement step is to adjust the property value to the
closest one that does not violate PI-C. For example, moving
a static obstacle, which violates the lane boundaries, to the
closest off-lane position. We also change the lateral position
and longitudinal position separately to keep the diversity and
inheritance during the evolutionary algorithm.

Dynamic property generation. The last step is to add
dynamic properties (e.g., speed and moving trajectory) for
dynamic physical objects such as driving vehicles and walking
pedestrians. Here, the generated properties need to ensure (1)
satisfying the driving norms (e.g., traffic rules) as in §II-C,
and (2) conforming to the related PI-Cs such as not showing
any intention to move towards the AD vehicle or the lanes it
plans to drive on (PI-C3,5 in Table I).

E. BP Vulnerability Distance

The BP vulnerability distance is calculated based on in-
formation from both offline BP vulnerability distance profile
and runtime BP vulnerability trace. If we recall the example
code in Fig. 3, our goal here is to find a set of physical
objects, which satisfy the constraints of PI, and make the
program execution reach line 14. Inspired by directed greybox
fuzzing [90], we design a distance metric to quantify the
distance between current execution trace and the attack target
positions. The directed greybox fuzzing techniques so far gen-
erally only consider control flow distance defined in [90]. In
this paper, we further add a data flow distance into our distance
metric design. This is motivated by our observation: (1) The
BP decision-making is usually based on a list of predicates
with floating-point number comparisons. Thus, measuring the
difference between floating points operands can help guide
the testing in a more fine-grained way. (2) The control-flow
changes in our problem setting is not very significant. For
example, in the path bounds case shown in §III-A, changing
the position of a certain obstacle will not change the overall
control flow unless a different decision is made.

Specifically, in the offline analysis and instrumentation
phase as shown in Fig. 5, we first build a Program Dependence
Graph (PDG) of the BP code and then use it to identify
all the predicates that the attack target positions control- and
data-dependent on. We further divide the predicates into two
parts: critical predicates and non-critical predicates. Critical
predicates refer to the predicates that connect themselves with



the attack target position with control dependence edges only.
On the other side, non-critical predicates refer to the predicates
that must connect with the attack target via data dependence
edges. Examples for these two types of predicates based on our
motivating example are included in our extended version [89].

For each of these predicates, we calculate their individual
control- and data-flow distances, and use the sum as the overall
BP vulnerability distance. Our control-flow distance design is
similar to that in prior directed grey-box fuzzing methods [90],
and thus next we focus on explaining our data-flow distance
design using run-time collected BP vulnerability traces. For
critical predicates, our offline phase determines which branch
is reachable or closer to the target positions. In the runtime, we
calculate how close the execution is to triggering such a branch
using the differences between the operands and the execution
number of each branch. For non-critical predicates, since we
do not know which branch is the closer branch towards the
target positions, our strategy is to minimize the difference
between operands to get more diverse execution traces.

We use the motivating example in §III-A to demonstrate
the benefit of this design. As illustrated in Fig. 6, we fix
the position of one static object right next to the left lane
line and 15m in front of the AD vehicle, and at the same
time, we arbitrarily move the other static object and measure
the robustness distance metric used in [28,76,77] and BP
vulnerability distance proposed by our paper. In Fig. 6 (a)(b),
the robustness metric can only give a boolean guidance on
whether the decision is changed. However, our distance metric
in Fig. 6 (c)(d) can guide the position of the second object
into the vulnerable area due to that the operand distance of
predicate on Line 8 and Line 13 in Fig. 3 becomes smaller
when the object is approaching to the vulnerable area.

V. EVALUATION
A. Evaluation Setup

Subject BP implementations. We evaluate PlanFuzz on the
BP code from 2 open-source AD systems, Baidu Apollo [29]
and Autoware [30]. Both are practical full-stack AD systems
that can be readily installed on real vehicles for driving
on public roads [91,92], and also have representativeness
for industry-grade AD systems as Baidu has been recently
ranked among the top 4 leading industrial AD developers with
Waymo, Ford, and Cruise [31] and has been providing self-
driving taxi services in China for months, while Autoware is
adopted by the USDOT in their AD vehicle fleet [32].

Specifically, we select the BP implementations in 2 Apollo
versions, 3.0 and 5.0, as their design and implementations
are significantly different based on the release log [93]. We
did not evaluate on 6.0, the latest Apollo version, as it only
made minor changes to 5.0 in BP [93]. We have confirmed
that all the discovered vulnerabilities from 5.0 also exist in
6.0. The Autoware BP implementation we evaluate on is
from Autoware.Al 1.14.0 [30,94], the latest version with an
implementation of the open planner [95]. Both Autoware and
Apollo use rule-based logic to make decisions. Their main
difference is that Autoware’s BP adopts a single finite state

machine-based design where all planning behavior changes are
modeled as state transitions, while Apollo’s is more modular,
which first decomposes the whole driving decision making
into independent primitive tasks (e.g., obstacle avoidance, lane
changing, intersection passing, velocity selection, etc.) and
then selects the appropriate ones based on different driving
scenarios (e.g., lane following, intersection, stop sign).

BP input trace collection. We use LGSVL, a production-
grade AD simulator [96], to collect the BP input traces as the
initial testing seed (§IV-B). The benefit of using a simulator
to generate seeds is that it is easier to (1) create different
planning scenarios to increase testing diversity, and (2) control
the scenario to prevent any irrelevant physical objects from
affecting the generation of desired planning behavior. Note
that such simulation-based testing is widely used in the AD
industry for flexibility, scenario coverage, and safety [97-99].
LGSVL itself is also designed for performance and safety
testing of production AD systems [96].

In total, 40 traces are collected under 8 different driving
scenarios (5 per scenario). For each scenario, the 5 traces have
diversity in driving tasks (e.g., drive straight or make turns)
and road layouts (e.g., width of the local road’s lane width or
the highway). Each trace spans up to 47sec with 100-2400 BP
decisions, and the input frame for each BP decision is used as
an individual testing seed. These traces lead to 28,789 (9,676
for Apollo, 19,113 for Autoware) different initial testing seeds
in total (3,598 per scenario on average) used in our evaluation.
Details are in our extended version [89]. In these traces, both
the AD vehicle itself and other traffic participants are behaving
normally/correctly (e.g., follow traffic rules and driving norms,
and can correctly execute the designed driving maneuvers).

Test input generation. For each initial testing seed, Plan-
Fuzz generates the attack’s physical objects as described
in §IV-D and injects them into the planning input. Here,
we directly use their ground-truth physical properties (e.g.,
type, bounding-box size and shape), which can thus avoid
finding violation cases due to errors in upstream modules (e.g.,
perception) instead of BP. As described in §IV-D, for each
attack object, PlanFuzz initializes and mutates their properties
within common feasible ranges according to their types. For
example, the positions of generated objects is within 80m to
the ego vehicle (a common range of AD perception [100]); the
sizes for static objects are 0.5-2m each dimension, and those
for pedestrians and vehicles are the same as the default ones
used in the simulator. Details are in our extended version [89].
Note that consistent with our threat model (§II-C), we do not
mutate the non-attacker-controllable planning inputs such as
weather conditions and the ego vehicle’s driving speed; all of
them just inherit the valid values from original BP input traces.

Evaluation metrics and setup. We consider a vulnerability
as discovered when any attack target position is triggered
(§IV-B). We consider a discovered BP DoS vulnerability
unique if its code-level decision logic (branches) that causes
such vulnerability (e.g., those in §III-A) is different from
the others, which is similar to unique crashes in traditional
fuzzers [101-104]). For each initial seed, we run PlanFuzz



Table II: Discovered BP DoS vulnerabilities from Apollo (3.0, 5.0) and Autoware. PI identifiers refer to PIs in Table IV in Appendix. All the vulnerabilities
discovered in Apollo 5.0 are confirmed to also exist in the latest version Apollo 6.0.

Vuln # Driving Scenario Software Violated PI # Attack-influenced Planning Behavior Triggering Objects
V1 Lane following Apollo 3.0/5.0 PI1 (PI-C1) Permanent stop Static obstacle
V2 Lane changing Apollo 3.0/5.0  PI3 (PI-C2, 3) Fail to change lane and never reach destination Vehicle
V3 Lane borrow Apollo 3.0/5.0 PI4 (SP-PI-C1, 2) Fail to borrow the lane and permanent stop i:éi“}rl(i)(;lfo?l:l?éﬁf;%:ﬁizlse
V4 Lane borrow Apollo 3.0/5.0 PI4 (PI-C1, 4, 5) Fail to borrow the lane and permanent stop Off-road static obstacle
V5  Intersection w/ traffic signal Apollo 3.0/5.0 PI6 (PI-C4) Fail to pass intersection and permanent stop Static pedestrian
V6 Intersection w/ traffic signal Apollo 3.0/5.0 PI6 (PI-C5) perman}egrrlrtlesrfoe[:lz}rllds tgllzl;spfoasilsiljolep::;sc?rtltseersection leasieri;e Stt;i:arilnre/?s()egfion
\'%i Intersection w/ stop sign  Apollo 3.0/5.0 PI5 (PI-C1) Fail to pass intersection and permanent stop Static bicycle off the road
V8 Lane following Autoware PI1 (PI-C1) Permanent stop Static obstacle off the lane
Vo Lane following Autoware PI1 (PI-C3) Emergency stop Moving vehicle off the lane

multiple times to increase the chance of finding unique
vulnerabilities. For each run, the testing terminates when
either a vulnerability is found, or the optimal fitness value
is unchanged for 100 generations. We manually verified each
discovered vulnerability and did not find any false positives.

B. Vulnerability Discovery Effectiveness

Throughout our experiments, PlanFuzz discovered 9 unique
BP DoS vulnerabilities in Apollo and Autoware as shown in
Table II. All these vulnerabilities can be exploited to adversely
delay the progress of the AD vehicle from reaching its destina-
tion; most of them can cause the AD vehicle to permanently
stop on the road. We classify the vulnerabilities into three
types based on the attack scenarios. In this section, we provide
a summary of the attack scenarios, including (1) the driving
scenarios and symptoms of the relevant vulnerabilities, (2) the
violated PIs, (3) the root causes, and (4) the potential real-
world exploitations. Pseudo code and detailed analysis of the
vulnerabilities can be found in our extended version [89].

Attack scenario 1: Lane following DoS attack. In this
scenario, the AD vehicle keeps cruising in the current lane
while static or dynamic obstacles located outside of the current
lane boundaries. Leveraging V1/V8/V9, the attacker can cause
the AD vehicle to decelerate or permanently stop in the
current lane, which effectively prevents the AD vehicle from
reaching the destination. Here, since the designed drivable
space (i.e., the current lane) is completely empty with no
obstacles invading the lane boundaries, such BP decisions thus
violate PI1 or PI2 depending on the road structure (i.e., single-
or multiple-lane road). As discussed in §III-A, the root cause
is the setting and usage of the lateral obstacle safety buffer,
which leads to the overly-conservative BP decisions.

To exploit V1 or V8, the attacker needs to find a single-lane
road (for V1, the lane width needs to match the corresponding
requirement described in §III-A) and place static obstacles
close to the lane boundaries. The AD vehicle will then
permanently stop in front of the static obstacles. To exploit
VO, multiple attackers can coordinate to drive two vehicles in
front of the AD vehicle on the lanes other than AD vehicle’s
current lane to trigger a deceleration decision.
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Attack scenario 2: Intersection passing DoS attack.
The third type of attack happens when the AD vehicle is
approaching an intersection. V5-7 belong to this type and
enable the attacker to cause the AD vehicle to stop in front
of the crosswalk or even permanently stop before the stop
sign. Since the static objects are all off-road and the dynamic
objects’ movement will not affect AD vehicle’s planning
behavior, the stopping decisions produced by BP thus violate
PIS and PI6. When passing the crosswalk, the AD vehicle
needs to make sure there is no pedestrian inside the crosswalk
or with the intention to move into the crosswalk. However,
due to the overly-conservative distance checking between the
AD vehicle’s driving path and a standing pedestrian (V5)
or trajectory collision checking between AD vehicle and a
moving pedestrian (V6), the BP decides to stop before the
crosswalk despite its driving path is in fact clear. For the
intersection with stop signs, the BP maintains a watch list
for the objects that arrive earlier such that it can proceed
following a first-come first-serve convention. However, due to
the overly-conservative distance threshold to the closest lanes
when considering which objects it should wait for, the BP
mistakenly includes parked bikes off the road into the watch
list. Since these bikes are static, the AD vehicle keeps waiting
for them and thus permanently stops before the stop line.

By exploiting V5 and V7, the attacker can cause the AD
vehicle to permanently stop at the intersection. To achieve that,
the attacker only needs to have a standing pedestrian or parked
bikes around the intersection. For V6, since the pedestrian
must be moving and will eventually leave the intersection,
the attacker can thus carefully control the movement of the
pedestrian such that the AD vehicle continuously applies
a large deceleration, which may pose safety threats to the
passengers and other vehicles (§II-B).

Attack scenario 3: Lane-changing DoS attack. This
type of attack happens when the AD vehicle is about to
change lanes or borrow the reverse lane due to the routing
requirement or a blocking static obstacle. By exploiting V2—
4, the attacker is able to use non-blocking static obstacles or
following vehicles to prevent the AD vehicle from performing
the desired lane-changing or lane-borrowing behaviors. As the



changing and borrowing lanes are clear in such scenarios,
the vulnerabilities thus make the BP violate PI3 and PI4
for the lane-changing and borrowing scenarios. Specifically,
V2 is caused by overly-conservative design when checking
if the AD vehicle’s future driving path overlaps with other
vehicles during the lane-changing. V3 is caused by wrong
judgement on whether it is necessary to borrow the lane.
Although PlanFuzz mainly aims to find BP DoS vulnerabilities
introduced by overly-conservative planning decisions, V4 is
likely due to an implementation bug when checking whether
the perception range is blocked by any obstacle before per-
forming lane borrowing. More details of the vulnerabilities
are in our extended version [89].

The attacker can exploit V2 by driving a vehicle tailgating
the AD vehicle in the same lane. As long as the attacker’s
vehicle is close to the left lane line (but without touching
the lane line), the AD vehicle will mistakenly interpret that
the changing lane is blocked and give up the lane-changing
attempt, which in the worst case can cause significant delays
for the AD vehicle to reach its destination if the attacker keeps
performing such attack. To exploit V3 and V4, the attacker
first needs to find a lane borrowing condition where the road
is blocked by a static obstacle (e.g., a truck which is unloading
the cargo). Second, the attacker can park another vehicle in
front of the truck (V3) or simply place an off-road cardboard
box Sm away from the AD vehicle (V4).

C. Baseline Comparison

Since there is no existing alternative fuzzer that directly
performs BP DoS vulnerability discovery, we evaluate the
benefits of our designs by replacing important design compo-
nents in PlanFuzz with possible baseline designs. Specifically,
through such an evaluation we aim at answering the following
methodology-level research questions (RQ):

RQ1. Can our BP vulnerability distance design (§IV-E) pro-
vide effective guidance to benefit the vulnerability discovery?

RQ2. Can our Pl-aware physical-object generation design
(§IV-D) benefit the vulnerability discovery?

RQ3. Can traditional fuzzing techniques without using
any of our problem-specific fuzzing designs also effectively
discover BP DoS vulnerabilities?

Baseline setups. To answer RQ1, we create a baseline setup,
PlanFuzz 8“4, that replaces the BP vulnerability distance-
guided genetic algorithm with random sampling (while still us-
ing all other PlanFuzz components such as PI-aware physical-
object generation). For RQ2, we create another baseline setup,
PlanFuzz~"!, that keeps the BP vulnerability distance design
but remove the steps that enforce PI constraints in the gen-
erated attack objects’ static and dynamic properties, which
are the key problem-specific designs in Pl-aware physical-
object generation (§IV-D). For RQ3, we remove both BP
vulnerability distance and PI-aware physical-object generation
designs; we directly use Protobuf-mutator for the entire test
input generation process (denoted as PB-M). Protobuf-mutator
is a readily-available fuzzer designed specifically for the data
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structure of protobuffers [105], which is directly compatible
with the BP input data structure in both Apollo and Autoware.

Evaluation setup and metrics. We use the initial testing
seeds that allow PlanFuzz to discover the 9 vulnerabilities in
Table II to perform this baseline evaluation. For each seed, we
run each of the 4 setups (full PlanFuzz and the 3 baselines)
for 10 times, each time for 24 hours, to avoid variance
as suggested by prior work [106]. For each fuzzer setup,
we measure the discovered unique vulnerabilities (defined
in §V-A), and their average Time-to-Exposure (uTTE), i.e., the
time taken to discover them. When comparing a given baseline
setup with the full PlanFuzz, we also use statistical testing
following the suggestions in [90, 106, 107]. Specifically, we
use the Vargha-Delaney statistic Ays to measure the effect
size, and use Mann-Whitney U [107] to measure the statistical
significance of the ¢TTE performance drop (recommended for
assessing randomized algorithms like fuzzers [90, 107]).

Results. As shown in the last column of Table III, PB-
M, the setup without using any of our main problem-specific
designs, fails to detect any of the 9 BP DoS vulnerabilities
within 24h, which is thus at least 57x less efficient/effective.
This concretely shows that our two main problem-specific
fuzzer designs, BP vulnerability distance (§IV-E) and PI-
aware physical-object generation (§IV-D), are necessary for
effectively discovering BP DoS vulnerabilities (RQ3).

For PlanFuzz~£"% and PlanFuzz~"!, the setups that each
still retains one of these two problem-specific designs, the
same set of unique vulnerabilities (as full PlanFuzz) are still
discoverable within 24h. However, their discovery efficiency
degrades substantially compared to the full PlanFuzz. Specif-
ically, for almost all vulnerabilities (7/9 for PlanFuzz —8vide,
and 8/9 for PlanFuzz~™), the uTTE performance drops are
statistically significant (bold Ay values in Table III). From
the uTTE values, PlanFuzz 84 and PlanFuzz "' are on
average >4.5x and >3.5x slower respectively; for com-
plicated cases like V1, such degradation can be even over
7.7x for PlanFuzz 2%, Among the 9 vulnerabilities, V4 is
the only one without significant yTTE differences for both
PlanFuzz 2% and PlanFuzz "', likely because it is relatively
easier to trigger by nature due to a likely range-checking bug,
which can be seen by its much lower uTTE values (1 sec).
However, even so, without both of these problem-specific de-
signs (BP vulnerability distance and PI-aware physical-object
generation), they still cannot be discovered by traditional
fuzzers like PB-M even given 24h (Table III).

VI. EXPLOITATION CASE STUDIES

In this section, we provide three case studies on the BP
DoS vulnerabilities discovered by our testing framework and
demonstrate how an attacker can exploit the vulnerabilities to
disrupt the normal driving behavior of the AD vehicle without
raising suspicion. Specifically, we select one vulnerability
from each of the attack scenarios categorized in §V-B. The
case studies are conducted in an end-to-end way, where
we create the concrete driving environments with the attack
obstacles in an AD simulator, LGSVL [96], and simulate with



Table TIT: Results of baseline comparison. PlanFuzz~2%¢: PlanFuzz with-
out BP vulnerability distance as guidance. PlanFuzz~P!: PlanFuzz without
Pl-aware physical-object generation. PB-M: Protobuf-mutator (a directly-
compatible traditional fuzzer). Each setup is run 10 times, 24h each time.
uTTE is average Time-To-Exposure. NF: Vulnerability not found in 24h. Bold
A2 values denote statistically significant uTTE performance drops.

Seeq Uniq. PlanFuzz PlanFuzz‘g“idi PlanFuzz*PIA PB-M
vuln 4 TTE uTTE A1z uTTE A1 uTTE

1 \ 165s  1278s (7.74x) 0.97 276s (1.67x) 0.88 NF
2 V2 19s 21s (1.11x) 0.55 117s (6.15x) 0.98 NF
3 V3 16s 34s (2.12x) 0.88 53s (3.31x) 0.88 NF
V4 Is Is (1.00x) 0.57 2s(2.00x) 0.58 NF

4 V5 47s 92s (1.95x) 0.89 167s (3.55x) 0.98 NF
V6 35s 78s (2.22x) 0.83 148s (4.22x) 0.93 NF

5 V7 455 119s (2.64x) 0.97 208s (4.62x) 0.96 NF
6 V8 53s 1935 (3.64x) 0.96 327s (6.16x) 0.90 NF
7 V9 37s 57s (1.54x) 0.93 188s (5.08x) 0.96 NF
Average 46s  208s (4.52x) 0.83 165s (3.58x) 0.89 NF

the complete AD stack (Apollo or Autoware) in the loop
more than 10 times, which also include other AD system
components such as localization, perception, and control. We
create attack demos for all the case studies listed in this
section. Demo videos are available at our project website
https://sites.google.com/view/cav-sec/planfuzz [33].

A. Lane Following DoS Attack on Autoware

Vulnerable decision logic. The lane following DoS attack
on Autoware (V8) is able to change the AD vehicle’s lane
following decision into an overly-conservative decision to
permanently stop on a clear road, by exploiting the vulnerable
decision logic in trajectory_evaluator in Autoware.
This evaluator is designed to decide whether there is a candi-
date trajectory for AD vehicle to safely pass without crashing
into a static obstacle. Similar to Apollo’s design illustrated
in §III-A, Autoware predefined an overly-conservative lateral
safety buffer of 1.2 meters between the AD vehicle and any
obstacles. As described in §III-A, since the minimal urban lane
width is 2.7m and typical width of AD vehicle (with mirrors)
is larger than 2m, two static obstacles out of lane boundaries
can block all the candidate trajectories for the AD vehicle.

Exploitation method. To exploit this vulnerability, the at-
tacker can find a single-lane road up to 4.35m wide (applicable
to both common local and highway roads [66]), and put
two easy-to-carry objects, e.g., cardboard boxes, on each side
of the road. There is no strict relative longitudinal position
requirement for them, as long as they are in the same planning
range (35m for Autoware). Since Autoware uses a more
conservative safety buffer size than Apollo, for a narrow road
width such as 2.7m [66], each of such object can be >80cm
to the road boundary to make them look more stealthy. An
example setup in the simulator is shown in Fig. 4 (C). This can
cause an emergency stop and/or permanent stop of the victim
AD vehicle and thus damage the AD service, block traffic, and
also potentially damage road safety (from emergency stop).

End-to-end attack results. We set up the above exploitation
scenario in the simulator. From the simulation, after detecting
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the cardboard boxes, the AD vehicle immediately starts to
decelerate and finally comes to a complete stop at ~10m in
front of the boxes. After the full stop, we keep the simulator
and AD system running to observe if the AD vehicle will move
forward. After waiting for ~30min, the vehicle still stops at
the original position. We manually examined the code and
confirmed that this will be a permanent stop. A demo video
is at our website [33] and the snapshot when the AD vehicle
stops in front of the boxes is in Fig. 4 (C). As shown, the
cardboard boxes are located very far from the lane boundaries
and the lane is completely clear to drive from the driver’s view.
Such a vulnerability can lead to severe congestion and even
rear-end collisions if the following vehicle is not able to react
in time; video demos are at our website [33]. The attack
consequence can be especially severe if launched at critical
road segments such as highway exit ramps, or in front of police
or fire stations (e.g., to block emergency responder actions).
Physical-world experiment. We further collect attack
traces in real world to justify the attack realism. We conduct
the experiment with a Lincoln MKZ [108] equipped with
Velodyne VLP-32C LiDAR [109] and NovAtel Positioning
Kits [110]. We mark a traffic lane with 3.5m width inside
the parking lot and use a cardboard box and a trash can to
construct the attack scenario. Due to the safety concern, we
manually drive the car following the traffic lane to collect
the attack trace. We run the Autoware’s LiDAR clustering
and tracking nodes to get the object detection results and
launch the op_planner nodes to get the planning decisions.
For all the frames in our collected traces, the two static
obstacles can be detected correctly, and the stop decision is
made for every single frame in the traces. Thus, we deemed
the Autoware’s lane following vulnerability reconstructable in
real world. Fig. 7 shows our experiment setup and result.

B. Intersection Passing DoS Attack on Apollo

Vulnerable decision logic. This DoS vulnerability (V7)
appears in Apollo, where the attacker can force an AD vehicle
to stop permanently in front of an intersection with a 4-way
stop sign. Apollo BP follows the “first come, first serve” traffic
principle when the AD vehicle arrives at a 4-way stop sign.
The vehicle maintains a watch list containing all vehicles and
bicycles which reaches the intersection earlier than itself and
waits until all vehicles and bicycles on that list have left the
intersection. However, due to an overly-conservative distance
threshold (5m), which is much larger than even the typical
highway lane width (3.6m [66]), when judging if a vehicle
or bicycle is on a lane and waiting for a stop sign, a parked
bicycle that is not on the road will be mistakenly added to the
watch list, which causes the AD vehicle to unnecessarily wait
for off-road objects that are irrelevant to the stop sign-based
intersection passing norms.

Exploitation method. To exploit this, the attacker can find
any stop sign-based intersections, and place road-side parked
bikes as long as they are within S5m from the lane center of any
lanes in the intersection. Here, 2 parked bicycles are enough


https://sites.google.com/view/cav-sec/planfuzz

to bypass all timeout mechanisms in Apollo BP. This can then
force the AD vehicles to stop in front of the stop line forever.

End-to-end attack result. We set up the exploitation
scenario above in the simulator. Fig. 8 shows the snapshots
of the benign and attack demos with and without the 2 parked
bicycles. In the benign scenario, the AD vehicle can smoothly
proceed and pass the intersection with stop signs. However,
in the attack scenario, after the AD vehicle arrives at the
intersection, it became stuck in front of the stop sign due to
the two roadside parked bicycles despite the intersection being
completely empty without any other vehicles.

C. Lane Changing DoS Attack on Apollo

Vulnerable decision logic. The lane-changing DoS attack
on Apollo (V2) is able to force the AD vehicle to give
up a lane-changing decision by exploiting decision logic
in lane_change_decider of Apollo. As shown by the
pseudo code in Fig. 10, the decision logic determines whether
the target lane is clear for performing lane changing by
checking if any vehicle occupies the target lane and is close
to the AD vehicle. In the code, all the position variables (e.g.,
start_1, start_s) are in the Frenet coordinate relative to
the target lane. Due to an overly-conservative lateral distance
threshold (2.5m in line 5), a nearby vehicle following the AD
vehicle or driving on the other adjacent lane will be considered
as occupying the target lane and force the AD vehicle to give
up the lane-changing decision.

Exploitation method. To exploit this, for lanes with
<3.55m width (applicable to almost all common local and
highway lanes (up to 3.6m wide) [66]), the attacker just needs
to drive a normal-size car (e.g., 2.11m as in §III-A) to follow
a victim AD vehicle with close following distance (up to
8m). This can then prevent the AD vehicle from making
lane changes forever, which can make it fail to arrive at the
destination (especially critical for AD services such as robo-
taxi/delivery). For lanes wider than 3.55m, the attacker just
needs to drive with a slight deviation to the lane center (e.g.,
Scm for a 3.6m-wide lane, which is far from touching the lane
line (>70cm)) towards the victim’s lane changing direction.

End-to-end attack results. We set up the exploitation
scenario above in the simulator. Fig. 9 shows the snapshots of
the benign and attack demo videos. In the benign scenario, the
AD vehicle can successfully change lanes since the following
vehicle’s lateral position does not satisfy the vulnerability con-
dition. However, in the attack scenario, although the changing
lane is completely empty without any vehicles in the front or
back, the AD vehicle still gives up the lane-changing decision
to stay on the current lane, which causes it to miss the optimal
route to the destination. For AD vehicles, such a BP decision
often entails a re-routing step to recalculate a new route to
reach the destination. However, since the attacker can simply
keep following the AD vehicle and perform such attacks on
every new route, it is possible for the AD vehicle to never
reach the destination in the worst case.
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VII. DISCUSSION AND FUTURE WORKS

A. Root Cause and Solution Discussions

Among the vulnerabilities discovered, only 1 (V4) is likely
an implementation bug, while the remaining 8 are due to
the overly-conservative planning parameters/logic in judging
safety. Specifically, V1, V8 are due to overly-conservative
safety buffer configuration to road-side static objects; V9 is
due to overly-conservative safe buffer configuration to moving
vehicle trajectories in other lanes; V2, V3, V5, V6, and V7 are
due to the overly-conservative logic in judging the intention
of surrounding vehicles (V2, V3), pedestrians (V5, V6), and
parked bikes (V7). More details are in extended version [89].

Solution discussions. Based on the causes, V4 can be
potentially fixed by a bug patch; the other 8 are harder
to fundamentally fix as it is non-trivial to effectively and
practically balance the trade-off between safety and availability
in an AD context. For example, considering the vulnerability
causes are overly-conservative parameters/logic, a direct idea
is to just make the design/implementation more aggressive,
e.g., reducing the safety buffer configuration to road-side
static objects. However, since such existing configurations may
already be sufficiently tuned to ensure safety, changing them
may compromise safety. One potential design direction for
better addressing this trade-off is to consider dynamic con-
figurations instead of fixed ones, e.g., dynamically adjusting
the safety margin based on the velocity, since the required
safety distance will decrease with a smaller velocity [111]
(which is one reason why highway lanes are wider than local
ones [112]). However, how to design such dynamic adjustment
is non-trivial since various internal and external driving factors
need to be systematically considered (e.g., internal ones such
as vehicle size/speed, external ones such as the static/dynamic
road conditions), which we thus leave as future work.

B. Limitations and Future Work

Tool effectiveness. PlanFuzz’s results do not have false
positives since all the discovered vulnerabilities have been
confirmed by the vulnerability checker. However, similar to
all dynamic testing approaches, PlanFuzz cannot give any
guarantee on the non-existence of the vulnerability and thus
can have false negatives (FNs). Specifically, FNs can come
from: (1) the evolutionary algorithm gets stuck at a local
minimum or terminate too early. We plan to try other generic
optimization algorithms in the future; and (2) the vulnerability
only exists in a specific road condition (e.g., a specific road
layout and/or surrounding traffic pattern) that is not included in
our BP input traces. These vulnerabilities may be arguably less
important though as their triggering conditions are narrower.
To also capture these, one potential future direction is to also
mutate the road conditions. However, how to ensure that the
PI still holds after such mutations is a challenge.

Applicability and generality. Due to the limitation of
available code bases, we only evaluate the applicability and
generality of PlanFuzz on open-source AD systems. Never-
theless, the design of PlanFuzz is general at both design and
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over the obstacle Iist

obs : obstacle_list):

based on the lateral position of a veh.

art_1, end_1 are veh's left/right boundaries

obs.end_1 < -2.5 or obs.start_1 > 2.5):
continue

# The backward safe buffer

BackwardSafeBuffer <« 4.0f

# Check whether the veh

if (ego_start_s-obs.end_s<BackwardSafeBuffer) :

IsClearChangelane < false

close

is

Figure 10: Simplified vulnerable pseudo code of V2 (lane changing).

implementation levels. The design of PI and PI-aware physical
object mutation does not make any assumption about the AD
system designs and implementations under test as long as
they are developed for driving on public roads. For the code
instrumentation part, we use LLVM [113], which can support a
variety of programming languages. Besides, our system should
be able to use the gradient to replace BP vulnerability distance
if learning-based planners becomes mainstream and easier to
interpret, debug, and enforce safety measures in the future.
Stronger threat models. To trigger the semantic DoS vul-
nerabilities, adding road objects is not the only possible threat
model. For example, attackers may also attack the perceptional
sensors, such as by sensor spoofing [7] or compromising
internal AD system components [114], to introduce malicious
inputs to BP. However, the downside is that such attack
vectors may also introduce new attack requirements/costs, e.g.,
sensor spoofing equipment [7] and access to internals or the
supply chain of AD systems [114], making the vulnerability
exploitation potentially less realistic/practical. We leave the
systematic exploration of such a direction to future work.

VIII. RELATED WORK

Autonomous Driving (AD) systems security. Since AD
systems heavily rely on sensors, prior works have studied
sensor attacks in AD context such as sensor spoofing/jam-
ming [6,7, 115-118]. Besides sensor-level attacks, prior works
also studied attacks and defenses of AD system components
related to environmental sensing, such as object detection and
tracking, localization, and lane detection [5,7-9,119-129].
However, so far none of them considered security problems
specific to downstream modules such as BP like in this paper.

Vulnerability discovery and property falsification in
AD/RV (Robot Vehicle) software. Recently, increasingly
more works consider software vulnerabilities/bugs in AD sys-
tems [130, 131]. Some developed methods to discover seman-
tic vulnerabilities in the DNN models in AD [7,9,23,24,119—
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lanes due to the attacker’s vehicle.

122,125,126, 132, 133]. These methods assume differentiabil-
ity of the test subject, which thus cannot be applied to the
more industry-representative program-based BP targeted in
this paper (§II-A). Previous works also falsify safety prop-
erties on AD/RV software [10,28,73-77,134]. They cannot
be directly applied since the problem scopes are different and
the guidance is only limited to black-box guidance.

Vulnerability discovery in RVs, such as drones or rovers,
is a closely-related research domain. Compared to AD, RVs
typically follow the control commands sent by a base sta-
tion without the need to make planning decisions by itself.
Thus, existing works concentrate on control-specific vulnera-
bilities [25,26,28] or highly rely on control-specific knowl-
edge [27, 129], which are orthogonal to the design challenges
we need to address for BP-specific vulnerabilities in AD.

IX. CONCLUSION

In this paper, we design PlanFuzz, a novel dynamic testing
approach to systematically discover BP DoS vulnerabilities
under physical-world attacks. We propose and identify PIs
as novel testing oracles, and design novel problem-specific
fuzzing designs such as Pl-aware physical-object generation
and BP vulnerability distance. We evaluate PlanFuzz on 3
practical BP implementations, and find that it can effectively
discover 9 previously-unknown semantic DoS vulnerabilities
without false positives. We further perform exploitation case
studies, and discuss root causes and potential vulnerability
solution directions. We hope that our findings and insights
can inspire effective solution designs in future works.
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APPENDIX A
SUMMARY OF PLANNING INVARIANT

We introduce the formal definition of constraints on physical
objects commonly used among different driving scenarios.
Note that more customized properties are needed for specific
scenarios. When processing the geometry relationship among
the objects, AD vehicle, and the road, a necessary step is to
transform the position of a physical object from a unified
coordinate system (UTM coordinate system in Apollo and
Autoware) into a coordinate system relative to a certain lane.
We define such functionality as the following function:

3

(s,1,lanel D) = transform(pos, m)
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We define the function with input position pos in UTM
coordinate system and the map (m). The outputs of this
function are longitudinal position (s) and lateral position (/)
relative to the closest lane, and the ID of the closest lane
(lanelID). We do not expand this function in a formal way
since this involves more than one thousand lines of source
code in Apollo.

We now introduce the constraints of physical objects in
detail. For the static objects, the most common constraint is
that the static objects should be off the road and should not
intersect with any lane boundary. This can be formally defined
based on a specific static physical object z and a set of polygon
points of its boundary x.polygon:

StaticOf f Road(zx) :=

4
Apew.polygon |transform(p, m).l| > hal f LaneWidth @

This means every polygon point of the object boundary is not
within the range of any lane. The halfLaneWidth also needs to
be queried from the map. For simplicity, we just describe it as
a constant. For a pedestrian x, we want to make sure that it will
not touch any lane in its future moving trajectory and does not
show any intention to enter the traffic lane or intersection. In
this case, for a pedestrian x, the waypoints set .1V to describe
its moving trajectory, z.polygons(w) for the polygon points at
waypoint w, the constraints for the pedestrian can be defined
as:

DynamicOf f Road(z) :=
(/\wez‘w(/\peppolygon(w)\transform(p,m).” > hal f LaneWidth))
A (inner Product(z.heading, directionTowardsLane) < 0) )
The property DynamicO f f Road will check all the way-
points in the future moving trajectory of a physical object
x and make sure that any points on the boundary shall not
touch the lane boundary. Besides, it also checks the heading
of the moving trajectory is not towards to the lane.

There are two possible constraints for a vehicle. First, a
vehicle can simply follow the AD vehicle, and it should
not affect the planning behavior. For simplicity, we also
use a property drivelnLane(x,lanelD) to describe that the
vehicle = keeps driving within the lane denoted by the lane
ID (lanel D). This can be modeled as:

FollowVehicle(x) :=

(transform(xz.pos,m).lanel D == ego.lanel D)

A (transform(z.pos, m).s + safetyFollowingDistance < ego.s)
A (z.wvelocity < ego.velocity)

A driveInLane(z, trans form(z.pos, m).lanel D)
Q)
Another possibility is that the vehicle is driving normally on
another lane. We formally define it as:

IrrevalentVehicle(x) :

(transform(z.pos, m).lanel D # ego.lanelD)

(O]

A driveInLane(z, transform(z.pos,m).lanel D)


https://tinyurl.com/2r7yfkmu

Table IV: Summary of Planning Invariants (PI) identified and used in the paper.

PI Index Planning Scenario

Object Type

Constraints on Physical Objects

Desired Planning Behavior

Lane following

Static obstacles

PI-C1. Off-road and w/o any violation of the boundaries
of the lanes the AD vehicle plans to drive on

PI1 . . PI-C2. Follow the AD vehicle Keep cruising in the current lane
(single-lane road) Vehicles PL-C3. Driv 1
. e on reverse lane
Pedestrians PI-C44+5. Off-road and w/o any intention to move towards to
) ; the AD vehicle or the lanes the AD vehicle plans to drive on
. PI-C1. Off-road and w/o any violation of the boundaries
Static obstacles . .
Lane following of the lanes the AD vehlclg plans to drive on -
PI2 (multiple-lane road) Vehicles PI-C2. Follow the AD vehicle Keep cruising in the current lane
P PI-C3. Drive on other lanes
Pedesirians PI-C4+5. Off-road and w/o any intention to move towards to
the AD vehicle or the lanes the AD vehicle plans to drive on
Static obstacles (l)’fl-tgg.lglif;rglaed/:.n])civvgg;él);ﬂ\;lnc)slizogri(\)/fe tgs boundaries Finish changing to the targeted lane
PI3 Lane changing Vehicles PI-C2. Follow the AD vehicle
) PI-C3. Drive on other lanes except current and targeted lanes
Pedestrians PI-C4+5. Off-road and w/o any intention to move towards to
the AD vehicle or the lanes the AD vehicle plans to drive on
PI-C1. Off-road and w/o any violation of the boundaries
Static obstacles of the lanes the AD vehicle plans to drive on
SP-PI-C1. On-lane and in front of the blocking obstacle - .
Lane borrow . Finish borrowing the reverse lane
PI4 (due to a blocki bstacle) PI-C2. Follow the AD vehicle d blocki hicl
ue o a blocking 0bstacle) vepicles PI-C3. Drive on other lanes except current and targeted lanes and pass blocking vehicle
SP-PI-C2. On-lane and park in front of the blocking obstacle
Pedestrians PI-C4+5. fo—road and w/o any intention to move towgrds to
the AD vehicle or the lanes the AD vehicle plans to drive on
PI-C1. Off-road and w/o any violation of the boundaries
Static obstacles of the lanes the AD vehicle plans to drive on
PIS Intersection w/ stop sign and the intersection the AD vehicle is going to pass Pass intersection w/ stop sign
Vehicles PI-C2. Follow the AD vehicle following the traffic rule
) PI-C3. Drive on other lanes except current and targeted lanes
Pedestrians PI-C4+5. Off-road and w/o any intention to move towards to
the AD vehicle or the lanes the AD vehicle plans to drive on
PI-C1. Off-road and w/o any violation of the boundaries
Static obstacles of the lanes the AD vehicle plans to drive on
. . and the intersection the AD vehicle is going to pass Pass intersection w/ traffic signal
PI6  Intersection w/ traffic signal PI-C2. Follow the AD vehicle following the traffic rule
chicies PI-C3. Drive on other lanes except current and targeted lanes
Pedestrians PI-C4+5. Off-road and w/o any intention to move towards to
the AD vehicle or the lanes the AD vehicle plans to drive on
PI-C1. Off-road and w/o any violation of the boundaries
Static obstacles of the lanes the AD vehicle plans to drive on
PI7 Bare intersection Vel ;ri(_ict;e I;I;;T;ifctizn ngvlzl?icilghwle s going to pass Pass the bare intersection
ehicles PI-C3. Drive on other lanes except current and targeted lanes
Pedesirians PI-C4+5. Off-road and w/o any intention to move towards to
the AD vehicle or the lanes the AD vehicle plans to drive on
Static obstacles SP-PI-C3. Placed on other parking spots Park into an empt
PI8 Parking Vehicles SP-PI-C4. Parked on other parking spots tareeted parki pYy "
Pedestrians SP-PI-CS. Walking pedestrians moving away from AD vehicle argeted parking Spo

18



	Introduction
	Background & Problem Definition
	Behavioral Planning (BP) in AD Systems
	Attack Goal and Incentives
	Threat Model

	Motivation and Challenges
	Motivating Example
	Design Challenges

	Design: PlanFuzz
	Overview of Key Designs
	PlanFuzz System Design
	Planning Invariant
	PI-aware Physical-Object Generation
	BP Vulnerability Distance

	Evaluation
	Evaluation Setup
	Vulnerability Discovery Effectiveness
	Baseline Comparison

	Exploitation Case Studies
	Lane Following DoS Attack on Autoware
	Intersection Passing DoS Attack on Apollo
	Lane Changing DoS Attack on Apollo

	Discussion and Future works
	Root Cause and Solution Discussions
	Limitations and Future Work

	Related Work
	Conclusion
	References
	Appendix A: Summary of Planning Invariant

